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1 Introduction

One of the most important methods in machine learning and statistics is that
of Bayesian inference. This is the most fundamental method of drawing con-
clusions from data and explicit prior assumptions. In Bayesian inference, prior
assumptions are represented as a probabilities on a space of hypothesis. Each
hypothesis is seen as a probabilistic model of all possible data that we can see.

2 The basics of Bayesian inference

Frequently, we want to draw conclusions from data. However, the conclusions
are never solely inferred from data, but also depend on prior assumptions about
reality.

Example 2.1. John claims he has psychic powers and can predict a series of
coin tosses. We oblige, and throw a coin 8 times. John predicts 8 out of 8 coin
tosses. The probability of him doing so by chance is 2−8. If he was a medium,
as he claims, then his probability of achieving the feat would be 1. Should we
believe John?

Example 2.2. Traces of DNA are found at a murder scene. We perform a DNA
test against a database of 104 citizens registered to be living in the area. We
know that the probability of a false positive (that is, the test finding a match
by mistake) is 10−6. If there is a match in the database, does that mean that
the citizen was at the scene of the crime?

Answering these questions requires us to clearly define what are the possible
hypotheses we wish to consider. Taking the first example, we can define two:

1. hypothesis M , that John is a medium.

2. hypothesis ¬M , that John is not a medium.

We can also define a probability model for the number of successful predictions
that John would make in either case.
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Let xt be 0 if John makes an incorrect prediction at time t and xt = 1 if he
makes a correct prediction. John’s claim that he can predict our tosses perfectly
means that for a sequence of tosses x = x1, . . . , xn,

P(x | M) =

{
1, xt = 1∀t ∈ [n]

0, ∃t ∈ [n] : xt = 0.

That is, the probability of perfectly correct predictions is 1, and that of one or
more incorrect prediction is 0. For the other model, we can assume that all draws
are independently and identically distributed from a fair coin. Consequently, no
matter what John’s predictions are, we have that:

P(x | ¬M) = 2−n.

So, for the given example, as stated, we have the following facts:

• If John makes one or more mistakes, then P(x | M) = 0 and P(x | ¬M) =
2−n. Thus, we should perhaps say that then John is not a medium

• If John makes no mistakes at all, then

P(x | M) = 1, P(x | ¬M) = 2−n. (2.1)

Does that mean that we must conclude that John is a medium? What if n = 1?
What if n = 100? In fact, our conclusion should somehow depend on the
strength of the evidence. Should it also not depend on how likely we think that
a medium exists?

It is this latter idea that we’ll try and exploit. We’d like to combine the
weight of the evidence, with the weight of our prior beliefs about reality. To do
this, we first recall the definition of conditional probability.

2.1 Conditional probability and Bayesian inference

Let A and B be two events. Let P (A) be the probability of event A and P (B)
the probability of event B. We can think of the probability of an event as the
relative size of the event in the space of probabilities.1 The probability of both
events A and B happening at the same time is denoted by P (A ∩ B). This
amounts to measuring the size of the space by the intersection of A and B. The
basic probability laws are the following.

Axioms of probability

1. The probability of the certain event is P (Ω) = 1

1More formally, probability is a measure; a function similar to volume, area, length and
mass.
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2. The probability of the impossible event is P (∅) = 0

3. The probability of any event A is 1 ≤ P (A) ≥ 0.

4. If A,B are disjoint, i.e. A∩B = ∅, meaning that they cannot happen
at the same time, then

P (A ∪B) = P (A) + P (B)

Sometimes we would like to calculate the probability of some event A hap-
pening given that we know that some other event B has happened. For this we
need to first define the idea of conditional probability.

Definition 2.1 (Conditional probability). The probability of A happening if
we know that B has happened is defined to be:

P (A | B) ≜ P (A ∩B)

P (B)
.

Here, the probability measure of any event A given B is defined to be the
probability of the intersection of of the events divided by the second event. We
can rewrite this definition as follows, by using the definition for P (B | A)

Bayes’s theorem

P (A | B) =
P (B | A)P (A)

P (B)
.

Now let us apply this idea to our specific problem. This allows us to calculate
the probability of John being a medium, given the data:

P(M | x) = P(x | M)P(M)

P(x)
,

where
P(x) = P(x | M)P(M) + P(x | ¬M)P(¬M).

The only thing left to specify is P(M), the probability that John is a medium
before seeing the data. This is our subjective prior belief that mediums exist
and that John is one of them.

More generally, we can think of Bayesian inference as follows:

• We start with a set of mutually exclusive hypotheses H = {M1, . . . ,Mk}.

• Each hypothesis M is represented by a specific probabilistic model for any
possible data x, that is P(x | M).
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• For each hypothesis, we have a prior probability P(M) that it is correct.

• After observing the data, we can calculate a posterior probability that the
hypothesis is correct:

P(M | x) = P(x | M)P(M)∑k
i=1 P(x | Mi)P(Mi)

.

Combining the prior belief with evidence is key in this procedure. Our posterior
belief can then be used as a new prior belief when we get more evidence.

3 Naive Bayes classifiers

One special case of this idea is in classification, when each hypothesis corre-
sponds to a specific class. Then, given a new example vector of data x, we
would like to calculate the probability of different classes C given the data,
P(C | x).

From Bayes’s theorem, we see that we can write this as

P(C | x) = P(x | C)P(C)∑
i P(x | Ci)P(Ci)

for any class C. This directly gives us a method for classifying new data, as
long as we have a way to obtain P(x | C) and P(C).

Calculating the prior probability of classes
A simple method is to simply count the number of times each class appears
in the training data DT = ((xt, yt))

T
t=1. Then we can set

P(C) = 1/T
T∑

t=1

I {yt = C}

The Naive Bayes classifier uses the following model for observations, where
observations are independent of each other given the class. Thus, for example
the result of three different tests for lung cancer (stethoscope, radiography and
biopsy) only depend on whether you have cancer, and not on each other.

Probability model for observations

P(x | C) = P(x(1), . . . , x(n) | C) =

n∏
k=1

P(x(k) | C).
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There are two different types of models we can have, one of which is mostly
useful for continuous attributes and the other for discrete attributes. In the
first, we just need to count the number of times each feature takes different
values in different classes.

Discrete attribute model.
Here we simply count the average number of times that the attribute k
had the value i when the label was C. This is in fact analogous to the
conditional probability definition.

P(x(k) = i | C) =

∑T
t=1 I {xt(k) = i ∧ yt = C}∑T

t=1 I {yt = C}
=

Nk(i, C)

N(C)
,

whereNk(i, C) is the numb l l .er of examples in class C whose k-th attribute
has the value i, and N(C) is the number of examples in class C.

Sometimes we need to be able to deal with cases where there are no examples
at all of one class. In that case, that class would have probability zero. To get
around this problem, we add “fake observations” to our data. This is called
Laplace smoothing.

Remark 3.1. In Laplace smoothing with constant λ, our probability model is

P(x(k) = i | C) =

∑T
t=1 I {xt(k) = i ∧ yt = C}+ λ∑T

t=1 I {yt = C}+ nkλ
=

Nk(i, C) + λ

N(C) + nkλ
.

where nk is the number of values that the k-th attribute can take. This is
necessary, because we want

∑nk

i=1 P(x(k) = i | C) = 1. (You can check that this
is indeed the case as a simple exercise).

Continuous attribute model.
Here we can use a Gaussian model for each continuous dimension.

P(x(k) = v | C) =
1

σ
√
2π

e
(v−µ)2

σ2 ,

where µ and σ are the mean and variance of the Gaussian, typically calcu-
lated from the training data as:

µ =

∑T
t=1 xt(k) I {yt = C}∑T

t=1 I {yt = C}
,

i.e. µ is the mean of the k-th attribute when the label is C and

σ =

∑T
t=1[xt(k)− µ]2 I {yt = C}∑T

t=1 I {yt = C}
,
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i.e. σ is the variance of the k-th attribute when the label is C. Sometimes
we can just fix σ to a constant value, i.e. σ = 1.

Estimates versus true probabilities

Remember that the probabilities we get from this calculation are only
estimates. We do not really know the probabilities of each observation given
the classes: we are only estimating them from the data. It is also possi-
ble that our assumption about the independence of features is completely
wrong.

Exercise 1. This is an exercise to get you familiar with the NaiveBayes imple-
mentation in the e1071 library.

• First, open R and install the library e1071 by doing

> install.packages(’e1071’, dependencies = TRUE)

• Then load the library:

\library(’e1071’)

• Then, check the documentation either by going to http://www.inside-r.
org/packages/cran/e1071/docs/naivebayes or by simply typing

> ?naiveBayes

in R.

then type the commands in the tutorial. Some explanations are given below.

The following line creates a Naive Bayes model predicting the Class variable
from all the other variables.

1 model <- naiveBayes(Class ~ ., data = Training)

There are two ways to predict new data given our model. The first method
gives us the labels as outputs

1 class.predictions <- predict(model , Holdout )

The second method gives us the class probabilities as outputs
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1 prob.predictions <- predict(model , Holdout , type = "

raw") #

We can create a contingency table from our class predictions

1 table(class.predictions , Y$Class)

More precisely, the command

1 A <- table(x, y)

gives a matrix, whose entry Aij is equal to the number of times that xt = i
and yt = j. Consequently, the sum of terms in the diagonal is the number of
correctly classified examples and the sum of the remaining terms it that of the
incorrectly classified examples.

Exercise 2. The purpose of this exercise is to explore the effect of the Laplace
smoothing parameter λ on Naive Bayes classification. For this exercise use the
package DNA:

1 data(DNA , package = "mlbench")

The class labels are stored in the column Class. Use

• Data points 1–1593 for training (store it in a variable called Training)

• Data points 1594–2124 for holdout (store it in a variable called Holdout)

• Data point 2125–3186 for testing (store it in a variable called Testing)

Then do the following:

1. Use a loop to go through the parameters λ ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
and for each value

• Train a model using

1 model <- naiveBayes(Class ~ ., data = Training ,

laplace = lambda)

• Measure the classification error of the model on the Holdout data
using predict and do a plot for all different lambda, using a for

loop.

• Save the plot in a PDF file using the pdf command.

• Find the best value (with lowest error) for λ on the Holdout set.
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• Test the accuracy of the model with the best λ on the Test set.

Then submit the following items with a private message on Piazza, using the
tag [hw4].

1. Your R code, in a single R file named MyNameBayes.R which I should be
able to directly run with source("MyNameBayes.R"); to produce:

(a) The hold out classification error for the different lambdas, in a plot.
You can generate PDF plots with the pdf command (see also my
example: knnExample.R)

(b) The value of the best λ, and the resulting testing error classification.

2. An answer to the following questions:

(a) How does the testing error compare to the training and holdout error?
Why do you think this is the case?

(b) What do you think are the advantages and disadvanages of Naive
Bayes over KNN and decision trees?
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