

On the Effect of Using SysML Requirement Diagrams to Comprehend Requirements: Results from Two Controlled Experiments

Giuseppe Scanniello,

Miroslaw Staron, Håkan Burden, Rogardt Heldal

University of Basilicata, Italy

Chalmers | University of Gothenburg, Sweden

Results at a glance

Using requirements diagrams from SysML increases comprehension and does not change the time

SysML vs. UML

SysML reuses a subset of the UML2 (UML4SysML), and defines its own extensions. Therefore SysML includes nine diagrams instead of the thirteen diagrams from the UML 2.0, making it a smaller language that is easier to learn and apply.

SysML vs. UML

- Extensions and / or changes with respect to the UML:
- Reuse and Extension of the UML:
 SysML reuses the UML and makes changes without altering the language, the moreextended with new diagrams;
- Package:
 the package is the basic unit of partitioning in the specification, i.e. packages share model elements into logical groups;
- Stratification:
 each package is treated as an extension to the UML model layer;

Structure of SysML

SysML is defined on a modular basis. We can distinguish between elements of the Structural Model (Structure) used to describe the structure of the system, elements of the Behavioral Model (Behavior) used to describe the functions of the system, and other model elements that relate to both (structural and behavioral).

Example of a requirement diagram

Requirements diagram and Use Cases

Example of a requirement diagram

Experiment design – hypotheses

Goal

- Analyze SysML requirement diagrams
- for the purpose of **evaluating requirements comprehensibility**
- with respect to correctness of comprehension and time to accomplish a comprehension task
- from the point of view of the requirements analyst and the developer
- in the context of students in Computer Science/Software Engineering.

Hypotheses

- Hn0: The mean value of the comprehension for the RD factor is the same as the mean value of the comprehension variable for the NORD factor.
- Hn1: The mean value of the comprehension for the RD factor is the same as the mean value of the comprehension variable for the NORD factor.

RD: SysML document with requirement diagram NORD: UML document with Use case diagram

Experiment objects

Tot White

Constitute

Constit

Class diagram

Use case diagram

Requirements diagram

> Intruder Emergency Response

→ <u>Intrusion Detection and False Alarm Rate:</u> ESS must provide intrusion detection and the frequency of false alarms. It must ensure the detection of intrusions in the perimeter (Perimeter Detection), interior (Internal Detection) and entry-exit (Entry-Exit Detection) area of the place where the system is present/installed.

> Fire Detection and False Alarm Rate

ESS must ensure fire detection and must take note of false alarms (frequency).

Requirements specification

Experiment operation

	Trial #1	Trial #2		
Group A	RD, Automobile	NORD, Surveillance		
Group B	NORD, Automobile	RD, Surveillance		
Group C	RD, Surveillance	NORD, Automobile		
Group D	NORD, Surveillance	RD, Automobile		

The experiment was done at *University of Basilicata* (24) and *Chalmers* | *University of Gothenburg* (63 students)

Data collection: Example question

7. The maximum acceleration of a car is strongly connected to (one or more answers may be correct)								
□ Engine power								
□ Car noise								
☐ The number of the cylin	\Box The number of the cylinders of the engine							
☐ The space for the occupants inside the car								
□ The maximum speed								
How much do you trust your answer?								
□ Unsure	□ Not sure enough		□ Sure Enough	□ Sure	□ Very Sure			
How do you assess the question?								
□ Very difficult	□ Difficult		□ On average	□ Simple	□ Very simple			
What is the "main" source of information used to answer the question?								
□ Previous Knowledge	□ Requirements List	□ Internet	□ Use Cases	□ Use Case Diagram	□ Requirement Diagrams			

- Pre-experiment questionnaire
- Comprehension test
- Post-experiment questionnaire

Results (hypothesis testing)

Experiment	Dependent Variable	#obs for RD	#obs for NORD	p-value	Statistical Power	β -value
E-UBAS	Comprehension	24	24	YES (< 0.001)	0.949	0.051
	Completion time	24	24	NO (0.556)	0.068	0.932
R1-UGOT	Comprehension	63	63	YES (< 0.001)	0.881	0.119
	Completion time	59	56	NO (0.805)	0.064	0.936

- The effect on comprehension is significant
 - —Size of the effect: 24% and 32% improvement in comprehension

Results (information source)

- What is the main source of information used to answer the question?
 - ─1. Previous Knowledge
 - **−**2. Requirements List
 - -3. Internet
 - -4. Use Cases
 - -5. Use Case Diagram
 - 6. RequirementDiagrams
- Requirements diagrams seem to be useful (and used)

Conclusions

- Summary
 - Using requirements diagrams increases comprehension and does not affect speed
- Practical implications
 - Lower number of defects
 - —Higher design costs (additional effort to create requirements)
 - —Modelled requirements are more expressive