Parsing Linear Context-Free Rewriting Systems

October 10th 2005,
IWPT’'05 VVancouver

Hakan Burden and Peter Ljunglof
Department of Linguistics, Goteborg University

Abstract

We present a description of four algorithms for parsing Linear Context-
Free Rewriting Systems. The algorithms are described as deductive
parsing systems, in the spirit of Shieber, Schabes & Pereira (1995).

Motivation

Most of the existing parsing algorithms for Linear Context-Free Rewrit-
ing Systems (LCFRS; Vijay-Shanker et al., 1987) are designed for
theoretical purposes:

An important subclass of Grammatical Framework (Ranta, 2004) is
equivalent to LCFRS (Ljunglof, 2004).

Minimalist Grammars (Stabler, 1997) can be parsed as LCFRS (Michaelis,
1993).

Linear Context-Free Rewriting Systems

An LCFRS is a linear, non-erasing Multiple Context-Free Grammar
(MCFG; Seki et al., 1991).

We write a combined MCFG rule in the following way,
A— f [Bl...B5] L= {7“1 =oz1;...;7“n=ozn}

For convenience, we use records instead of tuples.

An example LCFRS grammar
for cross serial dependencies

S— flA1] = {s=ApAq}

A—glA1 Ag] = {p=A1pAsp, q= A1.9 As.q}
A—acl] = {p=a; g=c}
A—bd[] = {p=b, q=d}

The grammar generates sentences on the form

XN

abacdc
N

l.e: bd , abcd and aacc are recognized but not abc nor abcdabed .

SWISS german cross dependencies

A popular example from Shieber (1985) for swiss german:

LN N

...mer em Hans es huus halfed aastr

Parsing LCFRS

Until now there were three ways of parsing LCFRS:

e CKY-variant (Seki et al, 1991)

e Boolean matrix multiplication (Nakanishi et al., 1997)

e Earley-variant (Albro, 2002)

Our contribution

We give four new algorithms:

e Naive,

e Approximative,

e Active and

e Incremental.

Ranges
We borrow the idea of ranges from Boullier (2000).

In the string w a range p is a pair of indices, (i, j), s.t. 0 <i<j < |w|.
The range (i, j) then denotes the substring w;41...w; .

If + = 5 the range is empty and denotes the empty string.

Concatenation of two ranges is non-deterministic,

Range restriction

To get the ranges of a substring s in a sentence w we define range
restriction of s with respect to w as

<8>={(i,j) |3:wi—|—1'--wj}

Range restriction of a linearization record, & , is written (P) .
Range restriction fails if range concatenation fails for two adjacent
ranges. Any argument projections, A;.p , are left unaffected.

10

Examples

Given the string abb we get

(a) ={(0,1)}
() =1{(1,2),(2,3);
(a b) = (a) - (b) = {(0,2)}

and

(A.p a b B.q) = {A.p (0,2) B.q}

11

Parsing as deduction (Schieber et al., 1995):

In general we have:

Y1---In (c
Y

The standard inference rule Combine might look like this for CFG:

[S — NPeVP; /]
[VP; o]
[S— NP VPe;p]

{pep o'

12

T he Naive algorithm
Passive item [A;]

Active item for the rule A — f[By1...Bs] (= WV
has the form

where & = \If[Bl/I‘l e B5/I‘5]

Inference rules: Predict, Combine and Convert

13

Naive Predict

{A—>f[Bl...B5] = W
[A— fleB1...Bsl;®; 1 | (V)

Predict an active item for every grammar rule.

14

Naive Combine

[A%f[Bl"'Bk—l’Bk Bk_|_1...B5];\U;|_1...|_k_1]
[B; i)
[A — f[B]_ - Bk—lBk ° Bk—l—l - B(S]; PD;lMq... I’k_l, rk]

{P e V[B/T]

An active item searching for B, can be combined with a passive item
that has found By .

15

Naive Convert

[A — f[Bl...B(gO];CD; |_1...|_5]
[A;]

{r=e

A fully instantiated active item is converted to a passive item.

16

T he Approximative algorithm
A variant of the Naive algorithm.

We use Context-Free approximation instead of range-restriction:

e Parse the sentence using a Context-Free approximation

e Recover the resulting chart into a LCFRS chart

17

The Active algorithm

Passive item [A;].
Active item for the rule A — f[By...Bs] := {®;r = af; V}

has the form

[A— f[By...Bsl;T,r=peB,W;l...[g]

Inference rules: Predict, Complete, Scan, Combine and Convert.

18

T he epsilon-range
We use p¢ to simultaneously denote all empty ranges (i, 7).
Range restricting the empty string gives (e) = p°.

Concatenation: p-p*=pc-p=p .

19

Active Predict

{A—>f[BlB5] :={r=a;<l>}

[A — f[B;1...Bsl; r=ptea, ® ...Ts]

Predict an active item that has found the empty range for every rule
in the grammar.

20

Active Complete

[A—>f[Bl...B5];I‘,r=poe,q=a;d>;l‘1...l'5]
[A— f[B1...Bsl;;r=p,gq=pfea,®;I1...Ts]

When an active item has found an entire linearization row, we continue
with the next row, starting it off with the empty range.

21

Active Scan

[A— f[B1...Bsl;,r=pesa,®;[{...I]
[A—>f[Bl...Bcg];r,T:p/OOé,CD;rl...l_(g]

{0 €p-(s)

Scanning is applied when the next symbol is a terminal.

22

Active Combine

[A— f[B1...Bs];,r=peBjqoa,®;I1...T7;...T]
[B;; '] {p/Ep-r/.q
5]

[A— f[By...Bsl;C,r=p ea,d;1...T7"... r,cr’

A passive item, with B; as its category, can be combined with an
active item searching for a projection B; .

23

Active Convert

[A— f[By...Bs;T,r=pee ;Iy...Tg
[A; T, r = p]

An active item that has fully recognized all its linearization rows is
converted to a passive item.

24

T he Incremental algorithim
A variant of the Active algorithm.

The linearization records are treated as sets, not sequences.

e \We cannot use the p® , so we get more items.

e Fewer matches when applying Combine.

25

Prediction strategies

Predict an item for the rule A — f[B] with the linearization row r = «
if ...

e ... there is an item looking for A.r (Top-down) or

e ... there is a passive item that has found the first symbol in «
(Bottom-up).

26

A small comparison of runtimes

Parsing three sentences with a non-trivial grammar of 561 rules gives

the following table:

Sentence Albro’s algorithm | Active bottom-up
The boy is young 1.1 s 0.2 s
The boy is so young 2.0s 0.3 s
They had forgotten that the boy 828 s 46 s

who told the story is so young

The grammar is called 'Larsonian’ and automatically generated from

a Minimalist grammar

27

e EXxtensive evaluation.

e Filtering techniques.

TODO

28

