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Abstract:
Understanding software artifacts is not only time-consuming, without the proper training and
experience it can be impossible. From a model-driven perspective there are two bene�ts from
translating platform-independent models into natural language texts: First, the non-functional
properties of the solution have already been omitted meaning that the translations focus on de-
scribing the functional behaviour of the system. Second, the platform-independent models are
reusable across platforms and so are the translations generated from them. As a proof-of-concept
a platform-independent Action language is translated into natural language texts through the
framework of model transformations.

1 INTRODUCTION

In MDA the platform-independent model,
PIM, should be a bridge between the speci�ca-
tions in the computationally-independent model,
CIM, and the platform-speci�c model, PSM
(Miller and Mukerji, 2003; Mellor et al., 2004).
Thus it is important that the PIM is clear and
articulate (Lange et al., 2006) to convey the inten-
tions and motivations in the CIM as well as cor-
rectly describe the PSM (Perry and Wolf, 1992).

Since the PSM can be automatically generated
from the PIM all changes to the software can be
done at PIM-level or on the transformations. In
this way the PIM and the PSM are in synchroni-
sation with each other. To keep the CIM and the
PIM synchronised is not as easy since their are
no automatic transformations from CIM to PIM,
yet. Here the translation of the PIM into textual
representations can serve as a means of validation
of the PIM, in regard to the CIM, during devel-
opment or to make it easier for new developers to
comprehend the structure and behaviour of the
system (Arlow et al., 1999).

Claims have been made that comprehensibil-
ity is more important than completeness if models
are used for communication between stakehold-

ers (Mohagheghi and Aagedal, 2007). But if the
stakeholders want to know if the PIM is correct
with regards to the software speci�cations, com-
pleteness is just as important. Understanding the
annotation and testing of a model requires an un-
derstanding of object-oriented design, knowledge
of the used models and experience of using the
modelling tools (Arlow et al., 1999). Natural lan-
guage on the other hand is suitable for stakehold-
ers without the necessary expertise in models and
tools (Spreeuwenberg et al., 2010).

Contributions

This paper shows i) how a platform-independent
Action language can be translated into natural
language texts ii) by putting natural language
generation of software behaviour within the per-
spective of model-driven software development
iii) with transformation rules that are reusable
across domains and platforms.

Overview

Section 2 presents the theoretical framework for
the study. The tools, technologies and transfor-
mations that are used in the study are explained



together with examples of translations in section
3. The study is then put in a more general context
in the discussion, section 4, before the conclusion
is given in section 5. Finally, possibilities to fur-
ther explore the results are presented in section
6.

2 THEORETICAL

FRAMEWORK

2.1 Natural Language Generation

Natural Language Generation (NLG; (Reiter and
Dale, 1997)) is a theoretical framework for de-
scribing the transformation from software inter-
nal models of information into natural language
representations. The content, its layout and the
internal order of the generated text is dependent
on who the reader is, the purpose of the text
and by which means it is displayed. Traditionally
NLG is broken down into a three-stage pipeline;
text planning, sentence planning and linguistic re-
alisation (Reiter and Dale, 1997).

Text Planning Text planning is to decide on
what information in the original model to
communicate to the readers.

Sentence Planning The second stage de�nes
the structure of the individual sentences. This
is also the time for choosing the terms that
are going to be used for the di�erent con-
cepts. The original software model has now
been transformed into an intermediate linguis-
tic model, a grammar.

Linguistic Realisation In the last stage the
linguistic model is used to generate text
with correct word order and word forms.
Through the linguistic realisation the interme-
diate model has been transformed into natural
language text.

2.2 Related Work

Nicolás and Toval (Nicolás and Álvarez, 2009)
provide a systematic literature review on the tex-
tual generation from software models. This is a
good starting point for a broader investigation
into the topic. In their study there is no evidence
of text generation from platform-independent Ac-
tion languages that specify software behaviour.

Recently there has been a �ourish of publica-
tions on generating natural language from source

Java statement

if (saveAuctions())

English translation

/* If save auctions succeeds */
Figure 1: Example translation of Java to English

code. Rastkar et. al. (Rastkar et al., 2011) gen-
erate English for crosscutting concerns, function-
ality that is de�ned in multiple modules, from
Java code. As a result of the scattered nature
of the crosscutting concerns they are di�cult to
handle during software evolution. Having a nat-
ural language summary for each part of the con-
cern and where it is implemented helps develop-
ers handle software change tasks. Sridhara et.
al. (Sridhara et al., 2010; Sridhara et al., 2011)
have also investigated natural language genera-
tion from Java code. Their motivation is that
understanding code is a time consuming activity
and accurate descriptions can both summarise the
algorithmic behaviour of the code and reduce the
amount of code a developer needs to read for com-
prehension. The automatic generation of sum-
maries from code mean that it is easy to keep
descriptions and system synchronized. An exam-
ple of a translation from Java to English is found
in Figure 1, taken from (Sridhara et al., 2010).
Another approach to textual summarisations of
Java code is given by Haiduc et. al. (Haiduc
et al., 2010). They claim that developers spend
more time reading and navigating code than ac-
tually writing it. Central to these publications is
that they have to have some technique for �ltering
out the non-functional properties from the source
code before translation into natural language.

There are also contributions on using gram-
mars to translate platform-independent speci�ca-
tions into natural language. One such attempt is
the translation between the Object Control Lan-
guage (OCL; (Warmer and Kleppe, 2003)) and
English (Hähnle et al., 2002; Burke and Johan-
nisson, 2005). This work was followed up by a
study on natural language generation of platform-
independent contracts on system operations (Hel-
dal and Johannisson, 2006), where the contracts
were de�ned as OCL constraints and speci�ed the
pre- and post-conditions of system operations.



3 EXPLORATORY CASE

STUDY

In order to explore how a platform-
independent Action language can be translated
into natural language texts Executable and

Translatable UML is used to encode the PIM
and de�ne the transformation rules. Instead
of generating text straight from the PIM the
Grammatical Framework works as an intermedi-
ate modelling language to handle the linguistic
properties of the text. In this way the MDA
process is integrated with the process of natural
language generation.

3.1 Executable and Translatable

UML

Executable and Translatable UML (xtUML;
(Starr, 2001; Mellor and Balcer, 2002)) evolved
from merging the Schlaer-Mellor methodology
(Shlaer and Mellor, 1992) with the UML1 and is
a graphical programming language for encoding
platform-independent models. BridgePoint2 was
chosen as the xtUML tool.

Three kinds of diagrams are used for the
graphical modeling together with a textual Action
language. The diagrams are component diagrams,
class diagrams and state-machines. There is a
clear hierarchical structure between the di�erent
diagrams; state-machines are only found within
classes, classes are only found within components.
Action language can be used in all three compo-
nent types to de�ne their functional behaviour.
The diagrams and action language will be fur-
ther explained using simpli�ed examples taken
from the problem domain chosen for the proof-of-
concept implementation, a hotel reservation sys-
tem.

3.1.1 Diagrams

The xtUML component diagram follows the def-
inition given by UML. In Fig. 2 there is an ex-
ample of a component diagram. It consists of two
components, Hotel and User, connected across an
interface.

Fig. 3 shows the class diagram that resides
within the Hotel component in the component
diagram. The xtUML classes and associations

1http://www.uml.org/
2http://www.mentor.com/products/sm/model\

_development/bridgepoint/

Figure 2: An xtUML component diagram

Figure 3: An xtUML class-diagram

are more restricted than in UML. Only those dif-
ferences that are interesting for the case study
are mentioned. In UML the associations be-
tween classes can be given a descriptive associa-
tion name while in xtUML the association names
are automatically given names on the form RN
where N is a unique natural number. In Fig. 3
Room is associated to Reservation over the associ-
ation R2. The BookingProcess has no operations,
instead the dynamic behaviour is de�ned by the
statemachine residing within, marked by the icon
in the top-left corner of the BookingProcess class.

In xtUML a statemachine comprises states,
events, transitions and procedures (Mellor and
Balcer, 2002). Fig. 4 shows the statemachine that
describes the lifecycles of individual instances of
a BookingProcess. Given the statemachine there
are two possible transitions from the state Search-
ing; either the event add_room is triggered and
the BookingProcess transits to the Adding rooms
state or cancel is triggered and the new state is
Canceling. If another event is triggered while
a BookingProcess is in the Searching state, the
event is either ignored or an error is thrown. The
states can contain procedures, both events and
procedures are de�ned by the Action language.

3.1.2 Action Language

An important property of xtUML is the Action
language. It is a textual programming language
that is integrated with the graphical models, shar-
ing the same meta-model (Shlaer and Mellor,
1992). Since the Action language shares the same



Figure 4: An xtUML statemachine

metamodel as the graphical models it can be used
to de�ne how values and class instance are manip-
ulated (Larman, 2004) as well as how the classes
change their state (Shlaer and Mellor, 1992). Ac-
tion language can be used to de�ne the calls be-
tween the components as described by the inter-
faces or to control the �ow of calls through the
ports of the components. An example of how the
Action language can be used is given in Fig. 7.
The code details a simple algorithm for �nding
available rooms and resides within the Searching
state of Fig. 4. The example will be further ex-
plained in section 3.

The number of syntactical constructs is delib-
erately kept small. The reason is that each con-
struction in the Action Language shall be easy to
translate to any programming language enabling
the PIM to be reused for di�erent PSMs. Over
the years a number of di�erent Action languages
have been implemented (Mellor and Balcer, 2002)
and in 2010 OMG released there own standard,
ALF3.

3.1.3 Translating the Models

The xtUML model can be translated into a
Platform-Speci�c Model by a model compiler. A
model compiler traverses the metamodel of the
PIM and maps each concept into the correspond-
ing concepts of the target language, while preserv-
ing the structure of the PIM. Since the platform-
speci�c code is generated from the model, it is
possible for the code and the models to always be
in synchronization with each other since all up-
dates and changes to the system are done at the
PIM-level, never by touching the code.

3http://www.omg.org/spec/ALF/

The abstract syntax:

cat Exp
fun Sum : Exp × Exp → Exp

EInt : Int → Exp

The concrete syntax:

lincat Exp = Str
lin Sum n m = "the sum of" ++ n ++

"and" ++ m
EInt i = i.s

Figure 5: A small GF grammar

3.2 Grammatical Framework

Grammatical Framework (GF4; (Ranta, 2011))
is a domain-speci�c language for de�ning Turing
complete grammars (Chomsky, 1959).

3.2.1 GF Grammars

GF separates the grammars into abstract and
concrete syntaxes (Mccarthy, 1962). The ab-
stract syntax is de�ned by two �nite sets, cate-
gories (cat) and functions (fun). The categories
are used as building blocks and de�ne the argu-
ments and return values of the functions. From
an NLG view the categories are the content and
the functions the structure of the text. In the con-
crete syntax each category and function is given
a linearisation de�nition (lincat and lin respec-
tively). These de�nitions gives the sentences their
structure and the terminology to be used for the
concepts.

A small example of a GF grammar is given
in Fig. 5. In the concrete syntax the linearisa-
tion of expressions is de�ned as strings. Integers
are represented by their string values which are
obtained by record selection, i.s (Ranta, 2011).
The linearisation rule for Sum is then de�ned by
concatenating the string arguments into their cor-
responding slots.

An abstract syntax tree de�nes in which or-
der the functions of the abstract syntax are to be
used. A text with multiple readings is ambiguous
and will return an abstract tree for each possible
reading but each tree will only return one text.

Given the example above the sentence the sum
of 3 and 5 will have the tree

Sum (EInt 3) (EInt 5)

The transformation from abstract tree to text
is called linearisation. Linearisation corresponds
to the linguistic realisation of NLG. This trans-

4http://www.grammaticalframework.org/



formation is a built-in property of GF (Ljunglöf,
2011; Angelov, 2011).

3.2.2 The GF Resource Library

In the Resource Grammar Library (RGL; (Ranta,
2009)) a common abstract syntax has 24 di�er-
ent implementations in form of concrete syntaxes.
Among the concrete languages are English, Cata-
lan and Japanese. The resource grammars have
a shared interface which hides the complexity
of each concrete language behind abstract func-
tion calls. Just as a programmer can use a Java
API without knowing how the methods are im-
plemented, the resource grammars support gram-
mar development through an interface that speci-
�es how grammatical structures can be developed
(Ranta, 2008). The implementation of each func-
tion can be retrieved from the source code and its
documentation.

3.3 Model-to-Text

Transformations

The automatic translation from software models
to natural language texts consists of two trans-
formations, see Fig. 6. The �rst transformation
takes the software model and reshapes it to an
intermediate linguistic model by performing text
and sentence planning. The second transforma-
tion is the linguistic realisation when the linguis-
tic model is used to generate natural language
text.

Both transformations are examples of uni-
directional and automatic transformations
(Stevens, 2007). The �rst transformation is a
reverse engineering translation since the level
of abstraction is higher in the target models
than in the source models and the two models
are de�ned by di�erent metamodels (Mens and
Gorp, 2006).

Each transformation consists of a set of rules
(Kleppe et al., 2005) and an algorithm for how
to apply the rules (Mellor et al., 2004). Since
the rules of both transformations are de�ned ac-
cording to their respective meta-models they are
reusable for all models that conform to the same
meta-model (Atkinson and Kuhne, 2003; Mellor
et al., 2004). The transformations can even be ap-
plied to partial xtUML models, enabling textual
feedback throughout development on all changes
and updates, even if the models need further re-
�ning.

Figure 6: From platform-independent models to nat-
ural language texts

3.4 De�ning the Grammar

The abstract grammar of the Action language
speci�es two main categories, expressions and
statements. Expressions can be of two kinds, sen-
tences or noun phrases.

3.4.1 Expressions

From a linguistic point of view a sentence, ab-
breviated as S, expresses a proposition about the
world it inhabits. An example from the Action
language is x == y, represented in English as x

equals y. The proposition itself does not claim to
be true or false, that is dependent on the con-
text of its evaluation. A characteristic of En-
glish propositions are that they follow the form
subject-predicate-object, in the example above x
is the subject, equals is the predicate and y is the
object.

In natural languages, both subjects and ob-
jects can have more complicated structures, an
example being the sum of n and m, written n +

m in Action language. Such a structure is referred
to as a noun phrase, abbreviated as NP. The re-
sult of combining the two examples is the expres-
sion x == n + m, translated as x equals the sum

of n and m. (Expressions such as x == y == n

+ m can not be formed since the expressions on
either side of the equality sign have to refer to
members of the program. From a linguistic point
of view the expressions have to be NPs.)

This distinction between expressions as sen-
tences and noun phrases is captured in the ab-
stract grammar by the two categories SExpr and
NPExpr. The abstract syntax for the equality
function then becomes
equality : NPExpr × NPExpr → SExpr

with the concrete syntax for English de�ned using
the resource grammars
equality x y = mkS (pred (mkV2 "equal" x y)

The function mkV2 takes a string value and re-
turns a verb that expects two NPs, a subject (x)
and an object (y). The function pred then takes
the verb and the two NPs in order to return an



intermediate structure that is passed on to mkS.
The result of applying mkS is a sentence on the
form x equals y where both x and y can be com-
plex NPs. In order to handle agreement between
subject and verb the linearisation categories for
nouns and verbs have to be more complex than
just strings. Exactly how complicated is not a
problem for those using the RGL as an API for
grammar development, it has already been dealt
with by the RGL developers. Instead, the com-
plexity lies in applying the appropriate functions
from the API in the right order.

Both the S- and NP-expressions are derived
from the xtUML metamodel where they are en-
coded as subtypes of the metaclass Value or as
instances of Variable. In the above example
for equality both the binary operation and the
NPExpr are de�ned as Values. By recursively
analysing the left and right expressions of the op-
eration shows that x and y are instances of the
metaclass Variable with their respective names.
Unary operations, attribute references and pa-
rameters for events and operations are other sub-
classes of Value.

3.4.2 Statements

If expressions could be both noun phrases and
sentences, all statements are sentences. An exam-
ple of this is the Action language's return state-
ment return x where x could be both an NP such
as the sum of n and m as well as a sentence, n
equals m. The solution is to have two abstract
functions de�ning the return statement, one for
returning noun phrases and one for returning sen-
tences

returnNP : NPExpr → Stmt
returnS : SExpr → Stmt

For the concrete syntax a more general phras-
ing than return n is used since it can be unclear
for non-programmers to whom n is returned and
what this means. This decision highlights how
the abstract syntax de�nes the text planning of
the natural language generation while the con-
crete syntax de�nes the words to be used for dif-
ferent concepts and how these words are to be
strung together, i.e. the sentence planning.

The �rst function for return statements is im-
plemented in a fashion similar to the one used for
equality expressions

returnNP n =
mkS (pred n (mkNP the_Det (mkN "result")))

and returns statements such as the result is the

sum of n and m for return n + m. For returning

sentences other functions from the RGL are used
since the type of the argument is di�erent

returnS s =
mkS (mkCl (mkNP the_Det (mkN "result")) s)

As an example the result is x equals y is the equiv-
alent translation for return x == y.

Finally, a program is de�ned as a list of state-
ments

fun sequence : [Stmt] → Prgm

3.5 Translations

The diagram in Fig. 7 shows an example of a
program written in Action language side-by-side
with its translation where the Action code resides
within the Searching state shown in Fig. 4. The
generated text is an example of a controlled nat-
ural language (CNL; (Wyner et al., 2010)) where
the described language is a subset of a natural
language. A common aspect of such languages is
that they are perceived as lacking in naturalness
(Clark et al., 2009) and that the sentences have
a repetitive structure inherited from the source
model. This can also be a bene�t since it allows
readers to quickly recognise and interpret the dif-
ferent sentence structures (Clark et al., 2009).

The Action language is platform-independent
in the sense that it makes no assumptions on how
collections are to be implemented, all collections
are treated as sets. This is exempli�ed on line 6
where many Rooms are selected and stored as a
set using the variable rooms. On line 7 a for-loop
is used to iterate over the set. On the other side,
the Action language is not independent from the
object-oriented modelling paradigm. This shows
in lines 1 and 2 where an instance of an object is
created and then associated to another object. To
interpret the Action language requires an under-
standing of the implicit information encoded in
the paradigm of object-oriented languages (Ar-
low et al., 1999). The aim of the translation is
to make such information explicit without being
to lengthy. Another aspect of the underlying de-
sign choices of the Action language is shown in
the naming convention for traversing across asso-
ciations. Here the unique association names are
used, which have no relevance for the domain. In
the translation to natural language texts associ-
ation names, such as R2, are therefor not men-
tioned.

Just as graphical models the Action language
is supposed to deliver a high-level view of the
system. But the abstraction gets muddled by



create object instance res of Reservation; res refers to a Reservation

relate res to self across R4; res and the BookingProcess share information

res.check_in = param.in; res's check in gets the value of the given in

res.check_out = param.out; res's check out gets the value of the

given out

res.guests = param.quantity; res's guests gets the value of the given

quantity

room_number = 0; room number gets the value of 0

select many rooms from instances of Room; rooms refers to many Rooms

for each room in rooms for each room in rooms

relate self to room across R6; the BookingProcess and room share information

select many ress related by ress refers to many Reservations

room -> Reservation[R2];
for each res in ress for each res in ress

if (res.check_in > param.out if res's check in is greater than the

given out

or res.check_out < param.in) or res's check out is less than the given in

and room.beds == param.quantity and room's beds equals the given quantity

room_number = room.getNumber(); then room number gets the value of room's

get Number

break; %the for-loop is terminated

end if;
end for;
if room_number > 0 if room number is greater than 0

break; %the for-loop is terminated

end if;
end for;
if room_number == 0 if room number equals 0, then a cancellation

send HotelInterfaces:: with process id and message is sent to User

cancellation(process_id:self.process_id,
message:"No available rooms.");

else else a confirm room with process id and room

send HotelInterfaces:: is sent to User

confirm_room(process_id:self.process_id,
room:room_number);

end if;

Figure 7: An example of Action language code with natural language summarisation

language-speci�c details such as the association
names and the object-oriented syntax, concepts
that are not meaningful to all stakeholders (For-
ward and Lethbridge, 2008).

The generated text is dependent on that
meaningful values have been assigned to class
names, parameters etc. If the class Reservation
was named RSV instead the translation would
generate sentences such as res refers to an RSV

making the generated texts harder to compre-
hend.

On line 2 the statement relate res to self

across R4 could have been translated as relate

res to self. But what does it mean that two ob-
jects are related? From an object-oriented view
it means that they can access each other's public
attributes and operations. The translation tries
to capture this without going into details about
the fundamentals of object-oriented design, sub-
stituting the reference self for the de�nite form

of the class name of the referent, the BookingPro-
cess.

The Action code �nishes by sending a signal
across the interface to the User component. De-
pending on if a room was found or not di�erent
signals are sent. Here the name of the interface,
HotelInterfaces is substituted for the more in-
formative User which is found by traversing the
metamodel across the interface and its ports to
the receiving component.

The signals exemplify a challenge for gener-
ating summarisations; should the parameters be
translated using the parameter name, its de�ning
expression or both? In the case of the message

the expression is more descriptive than the name
but for the room:room_number parameter both
name and expression would be useful. The value
of the process_id is less informative than the
parameter name (process_id is included as a
parameter to ensure that the right instance of



BookingProcess gets the reply from the User).
To make an informed decision on the best phras-
ing in each case would require a semantic analysis
of the values of the parameter expressions in com-
parison to the parameter names, something that
is not supported by the transformation language.

4 DISCUSSION

4.1 Changing the Language

Di�erent stakeholders have di�erent needs in
terms of the content of the summarisations, e.g.
the developers want a quick introduction to the
functionality of the system (Sridhara et al., 2010)
while domain experts want to validate that cer-
tain requirements are met and maintained (Arlow
et al., 1999). This can be accommodated by using
di�erent transformation rules for generating the
grammars. One transformation can then generate
a grammar that produces summarisations for the
developers while another transformation is aimed
towards the needs of the domain experts. The re-
sult is a shared abstract syntax that is realised by
di�erent concrete syntaxes to �t their respective
needs using di�erent functions from the RGL.

Some stakeholders might prefer another lan-
guage than English. This can be facilitated by the
multilingual aspect of the Grammatical Frame-
work. In this approach the lexicon (or domain
vocabulary) of the grammar is generated from
the Action language. However, it is not obvi-
ous that the domain concepts share their names
across languages. There are two ways to over-
come this challenge; The naïve way is to ensure
that the modelling elements use the terminology
of the desired target language, by this approach
the lexicon is automatically generated in the de-
sired language. The other solution is to manu-
ally develop a lexicon per desired language, as
explained in (Angelov and Ranta, 2009). Since
the abstract functions de�ned by the RGL are
language-independent, the same rules can be
used for all desired languages. In this way the
structure and content of the texts are preserved
but with language-speci�c implementations of the
sentences.

It is important to remember that any changes
to the grammars are made through the transfor-
mation rules. As a consequence the transforma-
tion experts need to know the grammar that is
used to model the texts well enough to imple-
ment the changes. It also means that neither

the software modellers nor the customers need to
know how the text is generated or how to for-
mulate model transformations. When the trans-
formations have been de�ned the translations are
generated by a push on the button. The gen-
eration can then be repeated and reused for all
models that conform to the same metamodel as
the transformation rules (Atkinson and Kuhne,
2003; Mellor et al., 2004).

4.2 The Complexity of Model

Transformation

The complexity of the model transformations
does not lie in the complexity of the transforma-
tion rules but in the complexity of the modelling
language they are applied to (Jézéquel et al.,
2012).

On the target end of the transformation a
knowledge of linguistics in general and the gram-
mar API is needed to utilise the di�erent cate-
gories and functions of the grammar in an e�-
cient way. The alternative to grammars would
be to generate text straight from the models with
the tedious work of making sure that there is con-
gruence between the verbs and the noun phrases
as well as taking care of aspects like a reservation

but an interface.

4.3 Text vs Models

Another bene�t of natural language translations
of textual software models embedded in graphi-
cal model elements is that they enable using any
preferred text editor for searching after concepts
and actions that should be in the text. Di�er-
ent modelling tools have their own support for
searching with di�erent interfaces, learning how
to use them all is a tall request on stakeholders
(Arlow et al., 1999).

5 CONCLUSIONS

The proposed way of translating Action code
di�ers from previous work on code summarisation
in that the platform-independent models already
have �ltered away the non-functional properties
of the software, leaving the functional properties
exposed. In comparison to previous research on
generating natural language texts from software
models this is the �rst attempt to generate soft-
ware behaviour from platform-independent code.



The PIM can be reused to generate a num-
ber of di�erent platform-speci�c models that in-
clude the usage of di�erent APIs, programming
languages, connections to operative systems and
deployment on hardware. Since, the functional-
ity of the system is captured in the PIM so the
generated text gives a natural language summary
of the system's behaviour disregarding how this
behaviour is implemented. This means that the
generated text can be used across platforms and
updated by re-generation whenever the PIM is
changed to re�ect new requirements or bug-�xing.
So, instead of having one framework for translat-
ing Java, another framework for translating C and
a third for C++, a general framework for trans-
lating platform-independent code can be reused
across platforms independently of how the sys-
tem is realised.

6 FUTURE WORK

The mapping rules that de�ne the transfor-
mation from PIM to PSM add the non-functional
features that determine a certain combination of
platform-speci�c details. Generated summarisa-
tions from the mappings could then describe the
di�erent pro�les and properties of the system,
such as safety and persistency.

The challenges in natural language generation
from the combination of textual and graphical
models is an interesting step to further explore. A
case study is planned for including transformation
rules that map the structure of the statemachines
on to the generated translations. In this way the
translations will give an overall structure of the
software that follows the lifecycles of the system's
classes and objects.
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