
Limits of Model Transformations
for Embedded Software

Rogardt Heldal
Computer Science and Engineering
Chalmers University of Technology

and University of Gothenburg
Gothenburg, Sweden

Email: heldal@chalmers.se

Håkan Burden
Computer Science and Engineering
Chalmers University of Technology

and University of Gothenburg
Gothenburg, Sweden

Email: burden@chalmers.se

Martin Lundqvist
Baseband Research

Ericsson AB
Gothenburg, Sweden

Email: martin.lundqvist@ericsson.com

Abstract—We report on an effort to use executable modeling
languages for developing software for the Ericsson LTE-A uplink
test bed. The test bed was a part of a 4G telecommunications
system, that was presented at the Mobile World Congress in
Barcelona, February 2011. The requirements for the delivered
software included efficient real-time performance for signal
processing on new hardware as well as a firm non-negotiable
delivery deadline. Our results show that the existing model
transformations were not efficient enough on the new platform
and that model transformations across paradigms is a challenging
task; to meet the deadline and the requirements the generated
code had to be manually optimised.

I. INTRODUCTION

Currently, industrial embedded software applications are
often composed of an interacting set of solutions to problems
originating from different domains in a relatively complex
way. Although these problem domains may be naturally
separated, and initially specified by different domain expert
designers using different appropriate methods, the actual im-
plementation of the combined application is often delegated to
programmers using general programming languages. The pro-
grammers are forced to use programming language-dependent
details in their manually produced code, including added
optimizations for the chosen deployment platform. The result
is a mix-up of the desired functionality and structure of the
system together with hardware-specific details, all intertwined
in the syntax of the programming languages used for imple-
mentation.

An answer to this problem is Model-Driven Architecture
(MDA; [1], [2]). In MDA the functionality of the system is
encoded in platform-independent models that abstract away
from hardware- and programming language-specific issues.
This way the models become reusable assets across platforms.
Besides describing the system, the models can be used to
generate a platform-specific implementation through model
transformations.

Contribution: We show two challenges for model transfor-
mations within the telecom industry; transformations from a
functional to an imperative paradigm and reuse of existing
transformations for new hardware.

Overview: In section II we will further motivate our case
study. In section III we give the necessary background about

the investigated domains and what we consider suitable mod-
eling languages for each domain. In section IV the delivered
application is described together with the implementation
process. The outcome of the process is then found in section
V which is followed by our discussion in section VI. We relate
our own findings to previous work in section VII before we
conclude in section VIII.

II. MOTIVATION

To what extent are model transformations reusable? Accord-
ing to Mellor et al. [2] the vision of MDA is to have reusable
transformations for new deployments. On the other hand the
MDA Guide [1] delivered by the Object Management Group1

states that transformations might need adjusting for new de-
ployments. In addition to this conflict among MDA promoters,
Mohagheghi and Haugen [3] state that the efficiency and
completeness of the generated code are two important aspects
when using models in software development. To further in-
vestigate the nature of model transformations we evaluate two
modeling languages, one functional and one object-oriented,
with regards to their code generation capabilities during a
project at Ericsson.

The task was to deliver a subsystem of an Ericsson test
bed for a 4G telecommunications system, namely the uplink
part of an LTE-A radio base station [4]. The requirements
on such an application include unconditional real-time perfor-
mance for calculations on synchronous data and the contextual
determination of when signals shall be sent and processed
as well as operational reliability on new hardware. Since the
system was to be demonstrated at the Mobile World Congress
in Barcelona, February 2011, there was a firm dead-line. In
this context, hand-written C (or sometimes even Assembly)
is the current state-of-the-art when it comes to optimally ex-
ploiting the hardware’s processors and memory. For platform-
independent models to provide the software implementations,
it is necessary to be able to generate code from them that
performance-wise is comparable to hand-written C code [5].

The calculations of the data were modeled using a new
functional modeling language with efficient generation of C

1http://www.omg.org/

code, developed in-house. To model the control flow we opted
to use an object-oriented modeling language with proven code
generation capabilities. Given the requirements on real-time
performance and the firm dead-line this raised two questions:

Research Question 1: Which are the key challenges to
consider when generating imperative code from a functional
modeling language?

Research Question 2: To what extent is it possible to reuse
existing model transformations for new hardware?

III. BACKGROUND

Before we turn our attention towards the case study we will
first define the domains and modelling languages that were
considered.

A. Domain Definition

For us a domain represents one subject matter which is
an autonomous world with a set of well-defined concepts
and characteristics [6] that cooperate to fulfill a well-defined
interface [7]. This definition of a domain is in line with what
Giese et al. [8] call a horizontal decomposition and ensures
the separation of concerns between the domains [9] as well as
information hiding [10]. Each domain can be realised as one
or more software components as long as these are described
by the same platform-independent modeling language [7].

B. The Signal Processing Domain

1) Signal Processing: Within Ericsson the signal process-
ing domain is characterized by a data processing flow, where
program state changes and external interactions are kept at
a minimum, while more or less fixed and carefully optimized
algorithms filter, convert or otherwise calculate incoming data.
In telecommunication applications, signal processing plays a
crucial role and the necessary algorithms have to be efficient
in order to achieve the performance required on speed and
quality.

2) Implementing Signal Processing: In order to obtain
necessary optimized performance on the intended deployment
platform, the implementation of the signal processing has to be
padded with non-standardized, hardware specific instructions.
These instructions are referred to as intrinsic functions, and
specify how the specific hardware should be used, in a stricter
way than just by compiling standard C or similar. Although
the signal processing solution may be fixed and thoroughly
verified, every change in deployment platform will bring on the
need for new manual intervention, since optimization might
be reached in new ways, using other code styles and intrinsic
functions.

Feldspar is a domain-specific language currently developed
by Chalmers University of Technology and Ericsson for signal
processing [11]. The purpose is to limit the gap between the
mathematical notation used in the design of signal processing
algorithms and their implementation. Feldspar is embedded in
Haskell2 and has no side-effects. A Feldspar program can be
evaluated directly via a Haskell interpreter. There is also a code

2http://www.haskell.org/

DCT − 2n =

[
cos k(2l+1)π

2n

]
0≤k,l<n

dct2 :: DVector Float -> DVector Float
dct2 xn = mat ** xn

where mat =
indexedMat (length xn) (length xn)
(\k l -> dct2nkl (length xn) k l)

dct2nkl n k l =
cos ((k’*(2*l’+1)*3.14)/(2*n’))

where (n’,k’,l’) = (intToFloat n,
intToFloat k,
intToFloat l)

Fig. 1. The Discrete Cosine Transform matrix in mathematical and Feldspar
notation.

generator that transforms Feldspar programs into C, since run-
time performance plays such an important role within signal
processing. In Fig. 1 there is an example of a mathematical
matrix multiplication used in signal processing together with
the equivalent Feldspar definition [11].

C. The Control Domain

1) Controlling the Flow of Execution: We define the term
Control Domain as a part of a software application controlling
the flow of execution through internal state machinery re-
sponding to external communication. The control domain itself
does not contain any complicated algorithmic complexity,
instead it controls the order in which things are executed;
in our case receiving and sending signals, initiating signal
processing routines, and collecting their results.

2) Executable and Translatable UML: Previous experi-
ences show that an object-oriented modeling language is well
suited for describing the control domain; modeling the interac-
tion with surrounding applications in the system and managing
the control and exchange of data between the different parts
of the signal processing domain [12].

Executable and Translatable UML (xtUML; [7], [13], [14])
evolved from merging the Shlaer-Mellor method [6] with
the Unified Modeling Language(UML3). xtUML has three
kinds of diagrams, together with a textual action language.
The diagrams are component diagrams, class diagrams and
state machines. There is a clear hierarchical structure between
the different diagrams; state machines are only found within
classes, and classes are only found within components. Com-
ponent diagrams have more or less the same syntax as in UML,
but both class diagrams and state machines are more restricted
in their syntax in comparison to UML. There is an action lan-
guage, integrated with the graphical elements by a shared meta
model [14]. The number of constructions is deliberately kept
small so that there is always an appropriate correspondence in
the platform-specific model. This also makes it an unsuitable
language for complex algorithms since it has a limited set of
data structures and only fundamental mathematical notations.

Since xtUML models have unambiguous semantics vali-
dation can be performed within the xtUML model by an

3http://www.uml.org/

Fig. 2. The considered application consisted of the control domain, in turn
enclosing the signal processing domain.

interpreter. During execution all changes of the association
instances, attribute values and class instance are shown [15]
as well as the change of state for classes with state machines
in the object model.

IV. CASE STUDY

A. Context

The application chosen for our case study was part of a
larger Ericsson test bed project, already involving legacy and
new software and hardware, and also new features. The test
bed involved 4G telecommunication baseband functionality,
based on Ericssons existing LTE products, both base station
parts and user equipment parts. The test bed included adding
features as well as deploying applications on a new hardware
platform, resulting in an LTE-A [4] prototype to be presented
at the Mobile World Congress in Barcelona, February 2011.

The test bed project lasted part-time for over one year.
Already from the beginning it was emphasized that delivering
an application that fulfilled the requirements within deadline
was more important than using specific methods or languages.

B. Domain Identification

The application considered in this project was identified as
a self-contained software component, managing a specific part
of the data flow in the LTE-A base station, see Fig. 2. The
components external interfaces were well specified, both in
terms of parameter interchange and real-time responsibilities.
The application was to be periodically provided with incoming
data, while independently requested to update its configuration
regarding how to process the incoming data. Upon external
triggering in one of these ways, internal chains of data
processing was initiated, and expected to run to completion.

1) Modeling Control using xtUML: Previous experiences
with xtUML at Ericsson include reuse of platform-independent
models [12] and test generation [16] while still finding the tool
easy enough to use by novice modellers [17]. We also knew
from experience that xtUML integrates nicely with legacy code
written in C.

Since the models are executable it is possible for designers
to validate that the models have the required functionality
without generating code for deployment. Finally, Ericsson had
an existing xtUML-to-C transformation that could compete
with hand-written code [5]. We chose BridgePoint4 as the tool
for modeling xtUML.

2) Modeling Signal Processing using Feldspar: It was
decided that it would be a good opportunity to test Feldspar for
modeling the signal processing. Feldspar had never been used
in an industrial development project before and we wanted to
see how well it would fulfill our requirements on real-time
performance for the generated code.

3) Modeling the Interface between the Domains: The actual
processing of incoming data was dynamic depending on the
current configuration. In one instant, a certain configuration
would put emphasis on a specific algorithm, quickly changing
with a new configuration the next millisecond. Since the
number of signal processes and available processors changed
from one millisecond to the next it called for the need for
independent possibilities for parallelization of each of the
involved algorithms, in order to continuously maximize the
processing throughput, while keeping the processing latency
at a minimum.

The interface between the two domains was defined in
an implementation language independent way, identifying pa-
rameters necessary for describing the algorithmic and paral-
lelization needs of the different algorithms within the data
processing chain. Lochmann and Hessellund refer to such an
interface as semantic [18].

C. Developers

The people involved in the project had been working
between 5 to 15 years each with layer one baseband signal pro-
cessing in telecommunication equipment at Ericsson. Mainly
three developers were involved in the implementation of the
models, two implementing the signal processing domain using
Feldspar and one developer using xtUML for implementing the
control domain. The developers had an unusual combination of
expertise in that they were both domain experts and proficient
C coders. In addition to the implementors, there was one
domain expert in designing signal processing algorithms linked
to the project as well as two experts in model transformations;
one transformation expert for each modeling language. These
two also served as mentors in respective modeling language.
Two academic researchers participated as observers and par-
ticipated in Ericsson AB’s internal discussions regarding mod-
elling and model transformations.

D. Operation

The operation of the project was inspired by the Scrum
method5, using a backlog and in each sprint there were daily
meetings and a burn down chart. At the end of each sprint
there was a sprint review and a delivery.

4http://www.mentor.com/products/sm/model development/bridgepoint/
5http://www.scrum.org/scrumguides/

The implementation was done following a component-based
development principle [19], where the control domain was
viewed as one autonomous component and each algorithm as
a component of its own residing inside the control component.
Our choice of language for each domain enabled testing
of each software component independently and continuously
throughout the implementation. When the implementation was
complete the models were transformed into target code.

V. RESULTS

Neither the Feldspar nor the xtUML transformation met the
requirements of the project and they were both too compli-
cated for those developers without transformation expertise to
change.

A. Transformations across paradigms

Since memory was sparse on the designated platform
all variables were limited to 16 bits representation. When
transforming Feldspar into C we encountered a problem; the
transformation introduced an internal variable for storing an
intermediate result. This variable required better precision than
the memory constraint allowed, in order to get good enough
results 32 bits representation was needed for its encoding.
Since this variable was not present in the Feldspar code it
could not be marked [2] for exclusive treatment and if all
variables were given more memory it would overflow the
platform. Due to the time limit the only possibility was to
manually change the generated code so that one particular
variable accessed an increased memory space.

B. Reuse of Transformations

At a crucial moment in the project the xtUML transfor-
mation expert was moved to another project taking place
in another country. This meant that there was not enough
time to change the organization of the project to adapt the
existing transformation to the new platform. This adaptation
was necessary since the generated C code could not obtain
the appropriate utilization of the limited memory and pro-
cessing capabilities to meet the requirements on real-time
performance.

C. Transforming the Interface to Multicore

Neither of the existing transformations could adequately
handle the multicore parallelization of the platform. This came
as no surprise since both lacked a way of specifying the
necessary dynamic configurations. The behavior and structure
when realizing the interface deployment was therefore coded
by hand.

VI. DISCUSSION

The possibility for reusing existing solutions is supposed
to be one of the strengths of using a model-driven approach
to software development [2]. Our case study indicates that
this was not the case, at least not when the transformations
themselves need to be updated, as was the case in our project.
We believe this is particularly true when a new platform is
involved. Maybe after a few projects are completed for the

same platform, all the relevant platform-specific knowledge
is encoded in the transformation. In industrial settings where
hardware is continuously changed and updated this is going
to be a challenge that MDA has to address for each modeling
language that is used within a project.

Hutchinson et al. [20] argue that there are too few who have
the necessary skills in developing domain-specific languages
and efficient transformations within industry. A key issue for
successful MDA in industry is the access to transformation
experts with short notice since it is not always possible to
foresee when a transformation needs to be updated or opti-
mized. We believe that the importance of the transformations
will increase as the number of modeling languages in a project
grows. We have probably only started to see the issue of
transformation reuse in industry; Lettner et al. [21] also report
on the problems of porting existing solutions to new platforms
in their case study. This is in contrast to the view taken
by Kelly and Tolvanen [22] who claim that defining your
own modelling language with transformation to code is more
efficient than using a general purpose language such as C.

We found that it is vital for an MDE project to have access
to the model transformation developers when needed since it
is not possible to foresee when a transformation is not going
to meet the combined requirements of the project and new
hardware. For each modeling language used within a project
containing code generation there is going to be one more
transformation to adapt and optimize for.

Even if efficient code generation for multicore was not
attainable we see some promising possibilities in the inherent
properties of the chosen languages. Feldspar functions have
no side effects and designed as a library of dynamically
composable low-level operations, they would be well suited for
execution in a distributed and concurrent manner. Independent
instances of state machinery in xtUML can also be deployed as
distributed and concurrent threads in a multicore environment.

VII. RELATED WORK

Hutchinson et al. [20] give a general overview of the current
industrial practice in model-based software development. As
seen in the Discussion, section VI, our experiences relate to
their findings on the importance of transformation experts in
MDA projects.

Motorola has applied model-driven engineering to describe
the asynchronous message passing in a telecommunication
system [23]. They also split their system into domains by
hierachical decomposition. The difference lies in that while
we have used a modeling language to describe the signal
processing they have used hand-written code. Another report
from Motorola, by Weigert and Weil [24], also found that the
transformations had to be adapted to fit new hardware when
porting their models. Just as for the previous Motorola report,
they do not use models to implement the complex algorithmic
behaviour.

VIII. CONCLUSION AND FUTURE WORK

The project was a success in terms of meeting deadline
and performance, but that was largely due to the fact that the

model implementers also had good knowledge of C; the target
language of the model transformations. Based on this project
we cannot recommend anyone to commence on a similar
project without knowing the target language and platform well
when considering real time systems running on new platforms.
This is due to the fact that the quality of the target code is
highly important for performance and it might not be as easy
as expected to reuse existing models and transformations.

In our point of view if industry shall succeed in using MDA
more research is needed on model transformations, both from
an organisational view and the perspective of the efficiency
of the generated code. Today, there are usually only a few
gurus within companies who have the necessary competence
in model transformation [20]. MDA projects will then get
too dependent on these transformation experts which creates
a bottleneck if they are not continuously accessible during
development. Whittle and Hutchinson report on the necessity
of educating more software modelers with transformation
skills [25]. Based on our own experience we can only agree.

The challenge of generating code across paradigms is an-
other area that needs further exploration. Not only in the case
of moving from a functional paradigm to an imperative but
also in the case of modeling for multicore and the subsequent
transformation to many platforms.

REFERENCES

[1] J. Miller and J. Mukerji, “MDA Guide Version 1.0.1,” Object Manage-
ment Group (OMG), Tech. Rep., 2003.

[2] S. J. Mellor, S. Kendall, A. Uhl, and D. Weise, MDA Distilled. Redwood
City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 2004.

[3] P. Mohagheghi and Ø. Haugen, “Evaluating Domain-Specific Modelling
Solutions,” in ER Workshops, ser. Lecture Notes in Computer Science,
J. Trujillo, G. Dobbie, H. Kangassalo, S. Hartmann, M. Kirchberg,
M. Rossi, I. Reinhartz-Berger, E. Zimányi, and F. Frasincar, Eds., vol.
6413. Springer, 2010, pp. 212–221.

[4] E. Dahlman, S. Parkvall, and J. Sköld, 4G: LTE/LTE-Advanced for
Mobile Broadband, ser. Academic Press. Elsevier/Academic Press,
2011.

[5] T. Siljamäki and S. Andersson, “Performance Benchmarking of real time
critical function using BridgePoint xtUML,” in NW-MoDE’08: Nordic
Workshop on Model Driven Engineering, Reykjavik, Iceland, August
2008.

[6] S. Shlaer and S. J. Mellor, Object lifecycles: modeling the world in
states. Upper Saddle River, NJ, USA: Yourdon Press, 1992.

[7] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model Driven
Architecture with Executable UMLTM. New York, NY, USA: Cambridge
University Press, 2004.

[8] H. Giese, S. Neumann, O. Niggemann, and B. Schätz, “Model-Based
Integration,” in Model-Based Engineering of Embedded Real-Time Sys-
tems, ser. Lecture Notes in Computer Science, H. Giese, G. Karsai,
E. Lee, B. Rumpe, and B. Schätz, Eds. Springer Berlin/Heidelberg,
2011, vol. 6100, ch. 2, pp. 17–54.

[9] E. W. Dijkstra, “EWD 447: On the role of scientific thought,” Selected
Writings on Computing: A Personal Perspective, pp. 60–66, 1982.

[10] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, December
1972.

[11] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Ly-
ckegård, A. Persson, M. Sheeran, J. Svenningsson, and A. Vajdax,
“Feldspar: A domain specific language for digital signal processing algo-
rithms,” in Formal Methods and Models for Codesign (MEMOCODE),
2010 8th IEEE/ACM International Conference on, July 2010, pp. 169
–178.

[12] S. Andersson and T. Siljamäki, “Proof of Concept - Reuse of PIM,
Experience Report,” in SPLST’09 & NW-MODE’09: Proceedings of
11th Symposium on Programming Languages and Software Tools and
7th Nordic Workshop on Model Driven Software Engineering, Tampere,
Finland, August 2009.

[13] L. Starr, Executable UML: How to Build Class Models. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2001.

[14] S. J. Mellor and M. Balcer, Executable UML: A Foundation for Model-
Driven Architectures. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[15] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition).
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2004.

[16] F. Ciccozzi, A. Cicchetti, T. Siljamäki, and J. Kavadiya, “Automating
test cases generation: From xtUML system models to QML test models,”
in MOMPES: Model-based Methodologies for Pervasive and Embedded
Software, Antwerpen, Belgium, September 2010.

[17] H. Burden, R. Heldal, and T. Siljamäki, “Executable and Translatable
UML – How Difficult Can it Be?” in APSEC 2011: 18th Asia-
Pacific Software Engineering Conference, Ho Chi Minh City, Vietnam,
December 2011.

[18] H. Lochmann and A. Hessellund, “An Integrated View on Modeling with
Multiple Domain-Specific Languages,” in Proceedings of the IASTED
International Conference on Software Engineering. ACTA Press,
February 2009, pp. 1–10.

[19] G. T. Heineman and W. T. Councill, Eds., Component-based software
engineering: putting the pieces together. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2001.

[20] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Em-
pirical assessment of MDE in industry,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 471–480.

[21] M. Lettner, M. Tschernuth, and R. Mayrhofer, “A Critical Review
of Applied MDA for Embedded Devices: Identification of Problem
Classes and Discussing Porting Efforts in Practice,” in Model Driven
Engineering Languages and Systems, ser. Lecture Notes in Computer
Science, J. Whittle, T. Clark, and T. Kühne, Eds. Springer Berlin /
Heidelberg, 2011, vol. 6981, pp. 228–242.

[22] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full
Code Generation. Wiley-IEEE Computer Society Pr, March 2008.

[23] T. Cottenier, A. van den Berg, and T. Elrad, “Motorola WEAVR: Aspect
and Model-Driven Engineering,” Journal of Object Technology, vol. 6,
no. 7, pp. 51–88, August 2007, aspect-Oriented Modeling.

[24] T. Weigert and F. Weil, “Practical Experiences in Using Model-Driven
Engineering to Develop Trustworthy Computing Systems,” Sensor Net-
works, Ubiquitous, and Trustworthy Computing, International Confer-
ence on, vol. 1, pp. 208–217, 2006.

[25] J. Whittle and J. Hutchinson, “Mismatches between industry and teach-
ing of model-driven software development,” in 7th Educators’ Sympo-
sium@MODELS 2011 – Software Modeling in Education, M. Brand-
steidl and A. Winter, Eds., Wellington, New Zealand, September 2011,
pp. 27–30.

