
Gothenburg June 2005
ImplementationsofParsing AlgorithmsforLinear MultipleContext-Free GrammarsThesis for M.A. in Computational Linguistis

HåkanBurdenDept. of LinguistisGöteborg UniversitySupervisor: Peter LjunglöfDept. of Computing SieneChalmers University of TehnologyGöteborg University

AbstratThis thesis is an aount of implementations of parsing algorithms for Linear MultipleContext-Free Grammars (LMCFG). The algorithms have originally been proposedfor Parallel Multiple Context-Free Grammars (PMCFG), a superlass to LMCFG, byPeter Ljunglöf. LMCFG is a Mildly Context-Sensitive Grammar formalism.The implementations are part of the work being arried out for the TALK projetat the departements of Linguistis at Göteborg University and Computing Siene atChalmers University of Tehnology and Göteborg Univerity.The Language Tehnology Group at Chalmers is urrently onduting researh roundthe grammar formalism Grammatial Framework (GF). The important sublass ontext-free GF is equivalent to PMCFG. This implies that a subset of the ontext-free GFgrammars an be parsed as equivalent LMCFG grammars.Four di�erent algorithms for parsing LMCFG are implemented, using dedutive agenda-driven hart-parsing. The �rst algorithm is a straightforward bottom-up strategy om-bining items with smaller over of the input string to items with larger over. Theseond algorithm uses a ontext-free approximation and then reovers the resultinghart. The third algorithm is an ative algorithm with Earley and Kilbury predition.And the last algorithm is inremental.The algorithms have not been thoroughly tested as part of the work presented here.However, preliminary testing indiate that they seem faster than the existing parserfor GF.SammanfattningDen här uppsatsen är en redogörelse för implementeringar av parsningsalgoritmer förLinear Multiple Context-Free Grammars (LMCFG). Algoritmerna har från börjanföreslagits av Peter Ljunglöf för Parallel Multiple Context-Free Grammars (PMCFG),en superklass till LMCFG. LMCFG är en milt kontextkänslig grammatikformalism.Implementeringen är en del av det arbete som institutionerna för Lingvistik vid Göte-borgs Universitet oh Datavetenskap på Chalmers Tekniska Högskola oh GöteborgsUniversitet utför inom TALK projektet.Språkteknologigruppen vid Chalmers bedriver bland annat forskning kring grammatikformalismen Grammatial Framework (GF). Den viktiga subklassen ontext-free GFär ekvivalent med PMCFG. Det innebär att vissa ontext-free GF grammatiker kanparsas som ekvivalenta LMCFG grammatiker.Fyra olika algoritmer har implementerats utifrån deduktiv agenda-driven hart-parsning.Den första algoritmen är en enkel bottom-up algoritm som kombinerar den erhållnahartinformationen nerifrån oh upp till större oh större enheter. Den andra algorit-men utgår från en kontextfri uppskattning oh �ltrerar sen ut den information somöverensstämmer med den ursprungliga LMCFG:n. Tredje algoritmen är en variantpå aktiv parsning med både Earley oh Kilbury �ltrering som alternativ. Den sistaalgoritmen är en inkrementell algoritm.Det har inte genomförts någon omfattande utvärdering av algoritmerna inom det ar-bete som presenteras här. Preliminära tester antyder dok att algoritmerna är snab-bare än den nuvarande parsningsalgoritmen för GF.i

ii

AknowledgmentsTime to get down to serious business. It always seems appropriate when onehas negleted life for aademi virtues.First of all I have to give Peter my sinere thanks. He's responsible for intro-duing me to parsing algorithms in the �rst plae. Parsing algorithms are morethan siene, they are art forms. I'm also very grateful for the way he's guidedme through my �rst major solo projet.Thank you Silverbullit for Citizen Bird.Thank you Liverpool for your Champions League adventures. Long nights atthe omputer pass by quik as anything when Juventus and Chelsea are knokedout by The Reds. And an extra round of applause for Carragher and Dudek,your performane in Istanbul will be a part of me for the rest of my life.Thank you, my modernly extended family. I love you Burdens, Blåbergs,Bukowinskas and Josefsson. You've always believed in me and your supporthas often been vital.A very big thanks to all my friends at shool. I've enjoyed your ompany. Ihope I won't have to miss you.To my friends outside, I love you. For all we have done and everything we saidwe ould do. I hope to see you soon.And thank you Malva for keeping it real. Godspeed You Blak Emperor. I loveyou and ould never have done it without you. You ombine the knowledge ofa buddhist monk with a hedonists appetite for life, bringing order to haos andhaos to order.Finally, Ellen, I love you ♥. Thank you for all your love and support. Livingwith me hasn't always been that easy. I wish you the best and hope to be apart of your future, for ever and ever./Håkan

iii

iv

Contents
1 Introdution 11.1 Motivation . 11.2 Struture . 11.3 Haskell . 22 Bakground 32.1 Preliminary de�nitions . 32.1.1 Sets and strings . 32.1.2 Reords and tuples . 42.2 Grammars . 52.2.1 Context-Free Grammars 62.2.2 Deorated Context-Free Grammar 72.2.3 Mildly Context-Sensitive Grammars 82.2.4 Abstrat and onrete syntax 92.2.5 Grammatial Framework 102.2.6 Generalized Context-Free Grammars 102.2.7 Parallel Multiple Context-Free Grammars 112.2.8 PMCFG and f-GF are equivalent! 142.3 Ranges . 142.3.1 Some operations on ranges 152.3.2 Range onatenation . 152.3.3 Range restrition . 152.3.4 Equivalent reord types 162.4 Parsing . 162.4.1 Reognition vs Parsing . 172.4.2 Parsing as dedution . 17v

2.4.3 Parse items . 182.4.4 Deorated parse items . 182.4.5 Chart . 192.4.6 Inferene rules for Deorated CFG 192.4.7 Earley predition . 222.4.8 Kilbury predition . 232.4.9 Implementing parsing as dedution 232.5 Polynomial PMCFG parsing strategies 242.5.1 Naïve algorithm . 242.5.2 Context-free approximation algorithm 242.5.3 Ative parsing algorithm 252.5.4 Inremental parsing algorithm 253 Implementation 273.1 Adapting the algorithms to LMCFG 283.2 The Naïve algorithm . 293.2.1 Item form . 293.2.2 Goals for reognition . 293.2.3 Inferene rules . 303.2.4 Naïve parse hart . 303.3 The Approximative algorithm 323.3.1 The ontext-free approximation 323.3.2 Items for the ontext-free approximation 323.3.3 Converting the DCFG forest 333.3.4 Items for the reovery step 343.3.5 Goals for reognition . 343.3.6 Inferene rules for the reovery step 343.3.7 Example of Approximative parsing 353.4 The Ative algorithm . 353.4.1 The range for ǫ . 383.4.2 Item form . 383.4.3 Goals for reognition . 383.4.4 Inferene rules . 393.4.5 Earley �ltration for the Ative algorithm 39vi

3.4.6 Kilbury �ltration for the Ative algorithm 403.4.7 Example for the Ative algorithm 413.5 The Inremental algorithm . 413.5.1 Inrementality and range restrition 433.5.2 Item form . 433.5.3 Goals for reognition . 433.5.4 Inferene rules . 433.5.5 Example run . 443.5.6 Proposed predition strategies 464 Small-sale evaluation 474.1 Preliminary testing . 474.2 Parse table . 484.2.1 E�ieny for orret sentenes 484.2.2 Comments . 484.2.3 E�ieny for inorret sentenes 495 Summary 515.1 Future work . 515.2 Conlusion . 52Bibliography 53A The ode 55A.1 ExampleGrammar . 57A.2 Ranges . 58A.3 NaiveParse . 61A.4 ApproxParse . 63A.5 AtiveParse . 67A.6 InrementalParse . 71
vii

viii

List of Figures1 Notations used throughout the thesis x2.1 An example of a Context-Free grammar 62.2 A Deorated CFG . 82.3 Parse tree . 92.4 An erasing PMCFG . 132.5 Example hart . 202.6 The hart as direted graph . 212.7 An agenda-driven hart parsing algorithm for reognition 243.1 An interesting LMCFG . 283.2 Naïve parse hart . 313.3 The LMCFG onverted to a CFG 333.4 Deorated ontext-free hart and equivalent preMCFG items . . 363.5 A hart for the Approximative algorithm 373.6 Ative parse hart . 424.1 Evaluation of valid sentenes . 484.2 Evaluation of invalid sentenes 50A.1 Types and ode . 56
ix

Figure 1: Notations used throughout the thesis
w an input string s.t. w = w1 . . . wn

ǫ the empty sequene/string
s a substring in w, s = wi, . . . , wj 0 ≤ i ≤ j ≤ |w|
G a grammar, G = (C, Σ, S, R)
C the set of non-terminals, also alled the ategories
Σ the set of terminal tokens (the alphabet)
S a start-symbol of a grammar s.t. S ∈ C
R the set of rules
V the set of symbols, C ∪ Σ
A, B elements in C
~B a sequene of ategories, B1, . . . Bn

a, b elements in Σ
L ; L(A) a language; the language of ategory A
f, g funtion symbols
δ arity of a funtion or rule
α, β, γ sequenes of linearizations or elements in V
Φ, Ψ linearization reords or sequenes of linearizations,

Φ = α1 . . . αn
∗ the Kleene star
· onatenation of two sequenes
→ A→ α ≡ (A,α) ∈ R
⇒ B ⇒ αβγ whenever B → β
⇒∗ the re�exive and transitive losure of a ategory
|x| the length/size of x
n, m natural numberswe often use n when |x| is known
Γ a reord of any type. Often used for range reords
~Γ a sequene of reords, ~Γ = Γ1, . . . Γn

r, s reord labels
i, j, k natural numbers used for indies
(i, j) the range i to j
ρ any range (i, j)
ρǫ the range for the empty string
⌈(i, j)⌉ the eiling of a range, returns (j, j)
⌊(i, j)⌋ the �oor of a range, returns (i, i)

x

Chapter 1Introdution
1.1 MotivationThis thesis is the report for the implementations of parsing algorithms arriedout during the spring of 2005. The parsing algorithms are proposed in PeterLjunglöf's PhD thesis �Expressivity and Complexity of the Grammatial Frame-work� (2004). The implementations over a subset of the proposed algorithms.We have tried to follow the notations of Ljunglöf when possible, to make it easyto ompare the proposed algorithms with the implemented.Grammatial Framework (GF) is one of the areas of researh at Chalmers Uni-versity of Tehnology. The work around GF is also a part of the work beingarried out for the TALK-projet (Tools for Ambient Linguisti Knowledge) atChalmers and Göteborg University. For information about GF and the TALKprojet, see GF (2004) and TALK (2004) respetively.1.2 StrutureThe hapters have the following struture

• Chapter 2 Bakground: Introdution and de�nition of some grammar for-malisms. Explanation of deorated ontext-free parsing algorithms usingdedution and a brief desription of the proposed algorithms.
• Chapter 3 Implementation: A desription of the algorithms as they havebeen implemented.
• Chapter 4 Small Evaluation: For several reasons there has not been anyextensive evaluation onduted. Nevertheless it is possible to draw someonlusions, and to show some parse results.
• Chapter 5 Summary: Comments on the implementations and proposalsfor future work. Rounding o� the thesis.
• Appendix A The Code: The soure ode of the implemented algorithms.1

1.3 HaskellThe algorithms are implemented in Haskell as is most of the GrammatialFramework. It is not neessary to understand Haskell to read the report evenif the ode of the implementations is in Haskell. The bulk of the implementedode an be found in Appendix A.Haskell is a funtional programming language named after one of the pioneers in
λ-alulus, Haskell B. Curry. It is based on λ-alulus and statially typed. Thismeans that the implemented funtions are de�ned for spei� types; a funtionfor doubling a Float will not take an Integer as an argument. Funtions an behigher-order, meaning that a funtion an have other funtions as arguments.For more information on Haskell, see Hudak et al. (1999), Peyton Jones (2003)or Thompson (1999).

2

Chapter 2Bakground
The bakground hapter an roughly be divided into two parts. The �rst partintrodues the grammar formalisms that are bakground knowledge Linear Mul-tiple Context-Free Grammars. It also gives a variant of Context-Free Grammarsalled Deorated Context-Free Grammars. The seond part presents the toolsfor parsing. A brief aount of the proposed algorithms is given at the end.2.1 Preliminary de�nitions2.1.1 Sets and stringsConatenation of setsGiven that X and Y are sets then X · Y = {x · y | x ∈ X , y ∈ Y }. Further,
X n+1 = {X · X n | x ∈ X } and X 0 = {ǫ}, where ǫ is an empty sequene.TheKleene starThe Kleene star, ∗, is used to denote all possible repetitions of a set X

X ∗ = X 0 ∪ X 1 ∪ . . . ∪ X i =

∞
⋃

0

X iAlphabetA �nite set of terminal tokens is alled an alphabet and denoted Σ.3

Strings and substringsA string w ∈ Σ∗ is a sequene w1 . . . wn in whih eah wi ∈ Σ. A substringis any ontinuous part of a string. This means that every terminal token of astring w an be seen as a substring of w.Example Given the string w = 1 2 3 4 5; 1, 3 4 and 2 3 4 5 are all substrings of
w but 1 3, 1 2 4 5 and 4 5 6 are not.LanguageA language, L, is a set of strings over an alphabet, Σ, i.e. L ∈ Σ∗.Example The language

{ anbicn | n, i ≥ 0 }an be written as
anb∗cn2.1.2 Reords and tuplesReordA label is an atomi symbol and a reord is a set of unique label-value pairs.Example If r1, . . . , rn are labels and x1, . . . , xn are values (suh as ranges orsequenes of symbols) then

Γ = {r1 = x1; . . . ; rn = xn}is a reord.Reord projetionProjetion on a reord Γ with the label ri is written Γ.ri. The projetion willreturn the value paired with ri.Projetions will either return a terminal value or another projetion, givingreord projetion a reursive struture.Example Given the two reords
Γ1 = {r = Γ2.r

′}

Γ2 = {r′ = a}the projetion Γ1.r returns the projetion Γ2.r
′ whih in turn will give theterminal value a. 4

Reord uni�ationWe de�ne simple uni�ation of reords as
Γ1 ⊔ Γ2 = Γ1 ∪ Γ2Simple uni�ation sueeds i� there is no r s.t. Γ1.r 6= Γ2.rReord substitutionWe an substitute one reord for another in a list of reords. We write theoperation as
Γ1, . . . , Γn[i := Γ]meaning that in the list Γ1, . . .Γn the i:th element is substituted by Γ. Sub-stitution an also be performed on projetions in reords. The operation isdenoted

Γ[Bk/Γk]and every projetion Bk .r in α1 . . . , αn is substituted by the value given by Γk.r.Example Γ1, Γ2, Γ3[2 := Γ] will substitute the seond reord for Γ, returning
Γ1, Γ, Γ3.Given Γ = {r = aA1.r a; r2 = A1.r

′} and Γ1 = {r = a, r′ = A2.r
′′} then

Γ[A1/Γ1] = a a aA2.r
′′.TuplesA tuple an be seen as a reord sine every reord projetion an be replaedby the orresponding tuple projetion.Example As an example, the tuple T = (x1, . . . , xn) is equivalent to the reord

Γ = {1 = x1; . . . ;n = xn} and the i:th element in T is the same elementas that given by the projetion Γ.i.2.2 GrammarsIn the following setion we will de�ne Context-Free Grammars (CFG) and avariant of CFG alled Deorated Context-Free Grammars (DCFG). We will alsointrodue the grammar formalisms Grammatial Framework (GF, Ranta, 2004)and Parallel Multiple Context-Free Grammars (PMCFG, Seki et al., 1991). Theseparation of syntax into an abstrat and a onrete part will be introdued sinethis is the way both GF and PMCFG handle syntax.5

Figure 2.1: An example of a Context-Free grammarA ontext-free grammar (adapted from Ljunglöf (2004), page 17) where therules are
S → NP , VP

NP → D , N

NP → N

VP → V , NP

D → a

D → many

N → lion

N → lions

N → fish

V → eat

V → eatsand S = sentene, NP = noun phrase, VP = verb phrase, D = determiner,
N = noun and V = verb. Only the rules are given sine it follows from R what
C, S and Σ are.2.2.1 Context-Free GrammarsContext-Free Grammars (CFG) are a sublass of the Phrase Struture Gram-mars. They are alled ontext-free sine the rules have no ontext-dependentinformation on when they are allowed to be applied; the left-hand side of therule is restrited to ontain a single ategory, (Chomsky, 1959).A ontext-free grammar is a four-tuple (C, S, Σ, R), where

• C is the set of non-terminal symbols,
• Σ is the alphabet,
• S is the start ategory of G s.t. S ∈ C and
• R is the set of rules: R ⊆ C × V ∗ where V = C ∪ Σ is known as the setof symbols.An example of a CFG, reognizing a small fragment of English, an be found in�gure 2.1.Some grammar notationsFor most grammars C, S and Σ are obvious fromR and therefore only the rulesare given.We use the Greek letters α, β and γ to denote any sequene of symbols in V . Itis ommon to use A→ β instead of (A, β) ∈ R, and we all A the left-hand side6

and β the right-hand side of the rule. Elements in β are the daughters of A.For a sequene of symbols, αBγ, we an use the rewriting relation ⇒ to write
αBγ ⇒ αβγ i� B → β.The empty string is denoted ǫ and the rule A→ ǫ is alled an ǫ-rule. The numberof ategories on the right-hand side of → is the arity of the rule, denoted δ.Expressivity of CFGExpressivity features handled by a ontext-free grammar inlude

• nesting (anbn) and
• reverse opying {wwR|w ∈ (a ∪ b)∗} (where ababR = baba)For most pratial uses the omplexity of everyday language ould be apturedwithin the expressivity of Context-Free Grammars. There are however somelinguisti features that do require more expressive power;
• multiple agreement (ambmcm),
• rossed agreement (anbmcndm) and
• dupliation {ww |w ∈ (a ∪ b)∗}.For exampleShieber (1985) proposes that the subordinate lauses of Swiss Ger-man arry a syntax ontaining disontinuent onstituents (rossed agreement).The same has been laimed for Duth by Joshi (1985).Language of a CFGThe re�exive and transitive losure of ⇒ is written as ⇒∗. The language of aategory A is then

L(A) = {w ∈ Σ∗|A ⇒∗ w}The language reognized by a grammar G is L(G) whih equals L(S) i� S isthe starting ategory of G.2.2.2 Deorated Context-Free GrammarThe ontext-free approximation desribed in setion 3.3 uses a form of CFG withdeorated rules. The deoration onsists of a name for the rule and subsriptingeah non-terminal in the right-hand side in order to failitate implementation.The example CFG as a Deorated CFG is shown in �gure 2.2.In all other respets a Deorated CFG (DCFG) an be seen as any other straight-forward CFG.Example The following ontext-free rule7

Figure 2.2: A Deorated CFGThe example CFG in �gure 2.1 as a Deorated CFG
s : S → NP1, VP2

np : NP → D1, N2

np : NP → N1

vp : VP → V1, NP2

d : D → a

d : D → many

n : N → lion

n : N → lions

n : N → fish

v : V → eat

v : V → eats

S → NP , VPan be deorated to
s : S → NP1, VP2

many lions eat fish is an example of a sentene generated by the deorated gram-mar. See �gure 2.3 its syntatial struture.2.2.3 Mildly Context-Sensitive GrammarsSeveral grammar formalisms have evolved under the name Mildly Context-Sensitive grammars, a term oined by Joshi (1985).Expressivity and omplexity of Mildly Context-Sensitive GrammarsMildly Context-Sensitive grammars form a sublass of Context-Sensitive gram-mars (Chomsky, 1959) and have the following properties:1. They an express any ontext-free language.2. They have onstant growth property (when ordered by inreasing lengththe sentenes of a language do not di�er by more than a onstant).3. They an be parsed in polynomial time (with respet to the length of theinput).4. They an express multiple agreement, rossed agreement and dupliation.8

Figure 2.3: Parse treeThe string many lions eat fish is generated by the deorated grammar. Thesyntatial struture of the sentene is shown below.s:S
a

a
aa

!
!

!!np:NP
Z

Z
�

�d:Dmany n:Nlions vp:VP
Z

Z
�

�v:Veat np:NPn:N�shThe �rst and fourth of these properties are true for all Context-Sensitive gram-mars but the seond and third properties are not. The bene�t of a MildlyContext-Sensitive grammar is that it an express features beyond the expres-sivity of CFG:s without having the full-sale time-onsumption of Context-Sensitive grammars.In order to give formal bounds on expressivity the properties in the last pointan be de�ned in the following way:
• k-multiple agreement: am

1 . . . am
k

• k-rossed agreement: am1

1 . . . amk

k bm1

1 . . . bmk

k

• k-dupliation: {wk|w ∈ (a ∪ b)∗}With these de�nitions, a CFG is apable of expressing at most 2-multiple agree-ment, 1-rossed agreement and 1-dupliation. The mildly ontext-sensitivegrammar formalism Tree Adjoining Grammars (TAG, Joshi et al. 1975) anexpress 4-multiple agreement, 2-rossed agreement and 2-dupliation and Mul-tiple Context-Free Grammars (Seki et al., 1991) an express these properties forany given k.There are limits to what a mildly ontext-sensitive grammar an handle. Thelanguage a2
n , whih gives all sequenes of a with length 2n, is suh an examplesine it does not have a onstant growth property.2.2.4 Abstrat and onrete syntaxConsider the ontext-free syntax rule for modifying a noun with an adjetive9

NP → AP , N(where NP is the resulting noun phrase, AP is the modifying adjetive phraseand N is the noun). The rule an be written in two ways, depending on whatlanguage the grammar shall generate.Spanish modi�es nouns by putting the adjetive after the noun, vino blano.In English the adjetive omes �rst, as in white wine, and in Frenh the orderdepends on the partiular adjetive in use: bon vin but vin blan.Thus we would need one more rule for the word order N , A and a way ofspeifying when to use whih rule. Alternatively, we an separate the syntaxinto an abstrat and a onrete part.The abstrat rule would only speify whih ategories that an be ombinedinto a noun phrase. The di�erent ways of realising the abstrat rule wouldthen be desribed in onrete linearization rules. The grammars for Spanish,English and Frenh would share the abstrat rule but would eah have theirown onrete linearizations of it.AdvantagesThere are some lear advantages of separating the abstrat and the onretesyntax.
• One abstrat syntax rule an have several onrete linearizations, allow-ing the abstrat syntax to work like an interlingua between the onretesyntaxes. This works both for translating between natural languages butalso between di�erent kinds of output modes (plain text, XML douments,outputting speeh synthesis et.) for a ertain piee of information.
• The abstrat syntax an onentrate on the main issues and let the on-rete linearizations take are of the details.2.2.5 Grammatial FrameworkGrammatial Framework (GF; Ranta, 2004) uses the type theory of Martin-Löf(1984) to express the semantis of natural languages, supporting higher-orderfuntions and dependent types.An important sublass of GF is obtained when the abstrat rules are ontext-free, i.e. only ontain �rst-order funtions, and there are no dependent types.This sublass is therefore alled Context-Free GF or f-GF for short.2.2.6 Generalized Context-Free GrammarsGeneralized Context-Free Grammars (GCFG) were introdued as a way of de-sribing Head Grammars (HG; Pollard, 1984). It is a Turing omplete (Chom-sky, 1959) formalism. Sine the 1980's, GCFG has been used as a framework10

for desribing other grammar formalisms. One of these formalisms is ParallelMultiple Context-Free Grammars (PMCFG; Seki et al. 1991) and one of theonlusions in Ljunglöf (2004) is that it is possible to use GCFG and PMCFGto desribe ontext-free GF.GCFG separates the syntax into an abstrat and a onrete part.Abstrat GCFG rulesThe abstrat syntax of GCFG is ontext-free and an abstrat GCFG rule iswritten as
A → f [A1, . . . , Aδ]There are two things that distinguish the abstrat GCFG rule from an ordinaryontext-free rule. The �rst di�erene is that there an only be ategories in theright-hand side of the rule. The seond is the funtion name f , whih showsby whih onrete rule the abstrat rule is to be linearized.Conrete GCFG linearizationsFor every abstrat funtion f with arity δ, there is one orresponding onretelinearization funtion f ◦ de�ned on δ arguments
f ◦(x1, . . . , xδ) = αThe onrete syntax is made up of funtions over linguisti objets. The objetsare not de�ned in GCFG; it is up to the spei� grammar formalism to de�neits own objets.Combined GCFG rulesSometimes it an be easier to write the abstrat rule together with the onretelinearization. The ombined rule is then written

A → f [A1, . . . , Aδ] := α′where α′ is the result from substituting every xi in α for Ai .2.2.7 Parallel Multiple Context-Free GrammarsParallel Multiple Context-Free Grammars (PMCFG; Seki et al. 1991) are in-stanes of Generalized Context-Free Grammars. In PMCFG the linguisti ob-jets are de�ned as tuples of strings and the funtions are de�ned using stringonatenation. As we have seen, tuples an be replaed by equivalent reords(2.1.2 on page 4), so we use reords of linearization information as linguistiobjets. An abstrat PMCFG rule looks just like an abstrat GCFG rule.An example of a PMCFG an be found in �gure 2.4 on page 13.11

Linearization reordsA linearization reord is a reord of linearization rows. A linearization row isin turn a list of symbols, and a symbol is either a terminal or a projetion of aategory.The terminals' linearization information depends on their types. Sine the ter-minals are strings in PMCFG, the terminals will be linearized by onatenation.The ategories are given their linearization information by reord projetions.And reord projetions have a reursive struture, in the end giving a ategorya string linearization.A linearization reord only ontaining terminals is a fully instantiated lineariza-tion reord. We denote linearization rows by α or β. A linearization row has thesame purpose as the right-hand side of a CFG rule: It tells us how the left-handside is going to be linearized. A sequene of linearization rows is denoted by Φor Ψ. For onveniene we sometimes write the linearization reord
{s1 = V.s1 NP2.s; s2 = V.s2 NP2.s}as
s1 = V.s1 NP2.s, s2 = V.s2 NP2.sExample Consider the onrete linearization reord (from �gure 2.4)
s1 = V.s1 NP2.s, s2 = V.s2 NP2.sit has two rows, one for the label s1 and one for s2. The projetion V .s2is an unbound variable, dependent on the value paired with s2 in thelinearization row for V . Beause of the reursive nature of projetions,sooner or later the value will be a terminal and V .s2 instantiated as astring.Conrete PMCFG linearizationsTo every abstrat funtion f there is a linearization funtion f ◦ returning alinearization reord

f ◦(x 1 . . . xδ) = {r1 = α1; . . . ; rn = αn}CombinedPMCFG rulesWe an write the abstrat rule and the onrete linearization as a ombinedrule. We then substitute every xi in αk for Ai

A→ f [A1, A2]
f◦(x1, x2) = {r = x1.r

′ a
s = x2.s

′ b}

A→ f [A1, A2] := r = A1.r
′ b

s = A2.s
′ b12

Figure 2.4: An erasing PMCFGThe following grammar is taken from Ljunglöf (2004), page 59.
S → ssg [NPsg , VP] := s = NPsg .s VP .ssg

S → spl [NPpl , VP] := s = NPpl .s VP .spl

NPsg → npdsg [Dsg , N] := s = Dsg .s N .ssg

NPpl → npdpl [Dsg , N] := s = Dpl .s N .spl

NP → npp [N] := s = N .spl

VP → vpcsg [V , NPsg] := ssg = V .ssg NPsg .s

spl = V .spl NPsg .s

VP → vpcpl [V , NPpl] := ssg = V .ssg NPpl .s

spl = V .spl NPpl .s

Dsg → da [] := s = a

Dpl → dm [] := s = many

N → nl [] := ssg = lion

spl = lions

N → nf [] := ssg = fish

spl = fish

V → ve [] := ssg = eats

spl = eat

We use subsripts to distinguish between the �rst and the seond instane ofthe equivalent ategories A and A in the rule's right-hand side. Atually allategories on the right-hand side are subsripted, so the rule
S → f [A] := s = A.p A.qis the shorthand notation for the rule

S → f [A1] := s = A1.p A1.qHowever, sine there is no way of onfusing whih A is linearized by whih label,there is no need to expliitly write out the subsripts.Linear grammarsIf there an be at most one ourrene of eah possible projetion Ai.r in alinearization reord the PMCFG rule is linear. If all rules are linear the grammaris linear. 13

Example In the grammar in �gure 2.4 the rule
V P → vpcpl[V, NPpl] := ssg = V.ssg NPpl .s,

spl = V.spl NPpl .sis linear sine no reord projetion ours twie in the linearization.Erasing grammarsA rule is erasing if there are argument projetions that have no realization inthe linearization. A grammar is erasing if it ontains an erasing rule. Seki et al.(1991) have shown that it is possible to transform an erasing grammar to anon-erasing grammar. The non-erasing grammar an then be used for parsinginstead of the erasing grammar.Example The grammar in �gure 2.4 is erasing sine the rule
S → ssg [NPsg , VP] := s = NPsg .s VP .ssgonly uses the ssg linearization of the VP :s linearization rows. The otherrow (labeled spl) is erased from the resulting linearization.Linear Multiple Context-Free GrammarsIf a grammar is linear it is alled a Linear MCFG (LMCFG). If the grammaris non-erasing and linear it is alled a Linear Context-Free Rewriting System(LCFRS, Vijay-Shanker et al. (1987)). Sine there is an equivalent non-erasinggrammar for every erasing grammar it is implied that LMCFG and LCFRS areequivalent grammar formalisms.2.2.8 PMCFG and f-GF are equivalent!The result ahieved by Ljunglöf (2004) is to show that f-GF and PMCFG areequivalent formalisms. Consequently, a f-GF an be redued to a PMCFG andthen we an use the PMCFG for parsing. However, we will not disuss how theequivalene an be proven.2.3 RangesWe use ranges in order to pinpoint partial strutures for substrings in a sentene.RangeA range is a pair of indies, (i , j) in whih 0 ≤ i ≤ j ≤ |w |, in an input string

w . The entire string w = w1 . . . wn spans the range (0, n). The word wi spansthe range (i− 1, i) and the substring wi, . . . , wj spans the range (i− 1, j). A14

range with idential indies, (i, i), is alled an empty range and spans the emptystring.We use ρ to denote any range (i, j).Example Given the input string abcd, the range for a is (0, 1) and bc has therange (1, 3).Range reordsIf a reord ontains label-range pairs we all it a range reord, Γ = {r1 =
ρ1, . . . , rn = ρn}. All range reords are fully instantiated, meaning there are novariables paired with the labels.2.3.1 Some operations on rangesGiven the range ρ = (i, j), the eiling of ρ returns an empty range for the rightindex

⌈ρ⌉ = (j, j)and the �oor of ρ does the same for the left index
⌊ρ⌋ = (i, i)2.3.2 Range onatenationThe result of onatenating two ranges (i, j) and (j′, k) is non-deterministi,de�ned only when j = j ′

(i, j) · (j′, k) = (i, k) i� j = j′2.3.3 Range restritionIn order to retrieve the ranges of any substring s in a sentene w = w1 . . . wnwe need to range restrit the sentene with respet to the linearization(s) forthat token. Range restrition of a string s with respet to w is de�ned as:
〈s〉

w
= {(i, j) | s = wi+1 . . . wj}If w is understood from the ontext we simply write 〈s〉.Example Range restriting the terminal a with respet to the string abba willgive

〈a〉 = (0, 1) or (3, 4)15

Range restrition of a linearization reord, Φ, with respet to a sentene iswritten 〈Φ〉. The result from range restriting a linearization reord is thatevery terminal token s is replaed by its range, 〈s〉. The result is of ourse non-deterministi sine there an be several instanes of a terminal in w, resultingin di�erent replaements. The range restrition of two terminals next to eahother fails if range onatenation fails for the resulting ranges. Any unboundvariables in Φ are una�eted by range restrition.The above holds for range restrition of any sequene of symbols. The terminalswill be substituted by their ranges and the ategories left as they are.Example Given the string w = abba and the linearization reord
Φ = {r1 = a; r2 = b; r3 = A1.r4}range restrition would give

〈Φ〉 = {r1 = (0, 1), r2 = (1, 2), r3 = A1.r
′}or {r1 = (0, 1), r2 = (2, 3), r3 = A1.r
′}or {r1 = (3, 4), r2 = (1, 2), r3 = A1.r
′}or {r1 = (3, 4), r2 = (2, 3), r3 = A1.r
′}Range restriting α = a,A, b, B with w will return

〈α〉 = (0, 1), A, (1, 2), Bor (0, 1), A, (2, 3), Bor (3, 4), A, (1, 2), Bor (3, 4), A, (2, 3), BRange restriting Φ = {r = a b} with abba gives
〈Φ〉 = {r = (0, 2)}The other possible solutions fail sine they annot be range onatenated.2.3.4 Equivalent reord typesA fully instantiated, range restrited linearization reord will only ontain ranges.It an therefore be seen as a range reord. We say that the range reord

Γ = {r1 = ρ1; . . . ; rn = ρn}is equivalent to the fully instantiated, range restrited linearization reord
Φ = {r1 = ρ1; . . . ; rn = ρn}2.4 ParsingAn introdution to parsing deorated ontext-free grammars using dedutiveagenda-driven hart-parsing. 16

2.4.1 Reognition vs ParsingReognition onsists of determining whether the sentene w is in the languagegenerated by the grammar G or not (i.e. w ∈ L(G)). Parsing on the other handonsists of determining the syntatial struture of w given G. The aquiredsyntatial information an in turn be used to simulate the generation of w.It is obvious that the two are linked: If there is a way to generate w from G then
w ∈ L(G). And orrespondingly, if w ∈ L(G) then there is a way to generate
w from G. However reognition will return either True or False while parsingwill return some representation of the possible syntatial struture(s) of thestring.2.4.2 Parsing as dedutionParsing as dedution was introdued by Shieber, Shabes and Pereira (1995).General form for inferene rulesWhen viewing parsing as a dedutive proess new onsequenes are derivedby inferene rules from already aquired information. The inferene rules arewritten as dedution rules and an have side onditions.Given the anteedent items A1 to Aδ and the side onditions conds the onse-quene item is C, whih is written

A1 , ... , An

C
{condsExample If there is a ontext-free grammar rule NP → N and we already havean N we an draw the onlusion that there is an NP

N

NP
{NP → NAxiomsA dedution without anteedents is always true, given that the onditions hold.Suh a dedution is alled an axiom. Axioms are vital for any dedution proesssine without them there will never be any anteedents for deriving the �rstonsequenes.Example When dedutive parsing is started there are no items to derive on-sequenes from. One way to get started is to predit from the grammar.These preditions would then be axioms. The axiom

S → α
{S → αis a predition that says that we will �nd a way to linearize the ontext-freerule for the start ategory to math the input string.17

2.4.3 Parse itemsParse item A parse item is a representation of a piee of information thatthe parsing algorithm has aquired. The items an be implemented in manyways, depending on whih strategy is used for parsing.Ative and passive itemsOne way of representing the ontext-free rule A → α, β is with the ative item
[ρ;A → α • β], where ρ is a range (i, j). This means that we have foundeverything to the left of the dot •, α, between i and j, and are looking foreverything to the right of the dot, β, in order to omplete the entire range of A.An ative item thus represents a partial analysis of the input and a preditionof what we might �nd later on.If β is empty, [ρ;A→ α•], we an onvert the ative item to [ρ;A] and all it apassive item sine there is no longer anything left for it to �nd. A passive itemrepresents a omplete analysis of the input.2.4.4 Deorated parse itemsDeorated ative itemsA deorated ative item has the form

[ρ; f : A→ [α • β]]in whih all ategories in α are indexed and given with their range. Terminalsare given as they are.Deorated passive itemsA deorated passive item is de�ned as having the form
[ρ; f : A]Example Given our example grammar in �gure 2.2 and the sentene many

lions eat fish, we an have the passive item [(0, 1); d : D] laiming that
d : D has been found with the range (0, 1). Or we an have the ativeitem [(2, 3); vp : VP → V1(2, 3)•NP2] for having found the verb in a verbphrase, with the predition that there is an np : NP starting at index 3.Passive items for terminal rules (in whih the right-hand side is empty) arryenough information to enable the onstrution of parse trees. Passive items fornon-terminal rules do not sine it is not possible to see how they ame to ahievethe parse information. For instane it annot be derived from the grammar howthe passive item [(0, 4); s : S] ame to have the range (0, 4). For that we willhave to use the orresponding ative item. But it is possible to derive how thepassive item [(0, 1); d : D] ame to have the range (0, 1).18

Goals for reognitionWe use goal items to determine if a sentene belongs to the language of agrammar or not. This is ahieved by �rst parsing the sentene and then hekingif the goal item is in the hart. If it is, then reognition returns True, otherwiseFalse.Goal items are dependent on the grammar and on how the implementation ofthe parsing algorithm.Example In the deorated hart in �gure 2.5 the passive item (40)
[(0, 4); s : S]is a goal item. We ould also use the orresponding ative item (39)

[(0, 4); s : S → NP1(0, 2), VP2(2, 4)•]2.4.5 ChartIn order to store the results of parsing we use a set of items alled a hart. Wedenote the hart by C. See �gure 2.5 for an example of a deorated ontext-freeparse hart.Another way of looking at the hart is to desribe it as a direted graph,
C = (V , E), in whih V is the set of verties, orresponding to the index posi-tions, and E orresponds to the parse items.The hart will depend on both the input and the grammar. However, it willalso depend on the parsing algorithm sine the derived items will be di�erent fordi�erent strategies. In �gure 2.6 we give a direted graph of the passive itemsin �gure 2.5.The left parse tree in �gure 2.3, the passive items in �gure 2.5 and the diretedgraph 2.6 all represent the same syntati struture. However in the hart andgraph we also retain the struture with respet to the input positions.2.4.6 Inferene rules for Deorated CFGThere are three fundamental inferene rules for a dedutive hart-parsing al-gorithm (Kay, 1986; Wirén, 1992). The inferene rules have been adapted fordeorated ontext-free parsing. For onveniene we add the inferene rule Con-vert, whih vonverts fully instantiated ative items to passive ones. This makesit easier to de�ne the inferene rule Combine 2.2 and to searh the hart formathing items sine there will be fewer passive than ative items.The items have the form de�ned in 2.4.3. It is important to remember that newitems are only derived if the range onatenation sueeds. This is also the asefor range restrition. 19

Figure 2.5: Example hartParsing the sentene many lions eat fish gives the following deorated ontext-free hart when using Earley �ltering
1 [(0, 0); s : S → •NP1, VP2] Predict

2 [(0, 0);np : NP → •N 1] Predict

3 [(0, 0);np : NP → •D1, N2] Predict

4 [(0, 0);n : N → •lion] Predict

5 [(0, 0);n : N → •lions] Predict

6 [(0, 0);n : N → •fish] Predict

7 [(0, 0); d : D → •a] Predict

8 [(0, 0); d : D → •many] Predict

9 [(0, 1); d : D → many•] Scan 8

10 [(0, 1); d : D] Convert 9
11 [(0, 1);np : NP → D1(0, 1) • N2] Combine 3, 10
12 [(1, 1);n : N → •lion] Predict

13 [(1, 1);n : N → •lions] Predict

14 [(1, 1);n : N → •fish] Predict

15 [(1, 2);n : N → lions•] Scan 13
16 [(1, 2);n : N] Convert 15
17 [(0, 2);np : NP → D1(0, 1), N2(1, 2)•] Combine 11, 16
18 [(0, 2);np : NP] Convert 17
19 [(0, 2); s : S → NP1(0, 2) • VP2] Combine 1, 18
20 [(2, 2); vp : VP → •V1, NP2] Predict

21 [(2, 2); v : V → •eat] Predict

22 [(2, 2); v : V → •eats] Predict

23 [(2, 3); v : V → eat•] Scan 21
24 [(2, 3); v : V] Convert 23
25 [(2, 3); vp : VP → V1(2, 3) •NP

2
] Combine 20, 24

26 [(3, 3);np : NP → •N 1] Predict

27 [(3, 3);np : NP → •D1, N2] Predict

28 [(3, 3);n : N → •lion] Predict

29 [(3, 3);n : N → •lions] Predict

30 [(3, 3);n : N → •fish] Predict

31 [(3, 3); d : D → •a] Predict

32 [(3, 3); d : D → •many] Predict

33 [(3, 4);n : N → fish•] Scan 30
34 [(3, 4);n : N] Convert 33
35 [(3, 4);np : NP → N1(3, 4)•] Combine 26, 34
36 [(3, 4);np : NP] Convert 35
37 [(2, 4); vp : VP → V1(2, 3), NP2(3, 4)•] Combine 25, 36
38 [(2, 4); vp : VP] Convert 37
39 [(0, 4); s : S → NP1(0, 2), VP2(2, 4)•] Combine 19, 38
40 [(0, 4); s : S] Convert 39

20

Figure 2.6: The hart as direted graphThe edges are the passive items from the hart in �gure 2.5. On top of the edgewe have the left-hand side and underneath is the syntatial struture of theright-hand side.

1 2 3 40

many lions eat fish

s:S

np:NP

np:NP

d:D n:N v:V n:N

vp:VP

21

Predit
[(i i); f : A→ •β]

{

f : A→ β
0 ≤ i ≤ |w|

(2.1)The axioms as given by Predit. Predition gives an item for eah rule in
R with an empty range for every input position 0 ≤ i ≤ |w|.Combine

[ρ′; f : A→ α •Bi β] [ρ′′; g : B]

[ρ; f : A→ α Biρ′′ • β]
{ρ ∈ ρ′ · ρ′′ (2.2)If there is an item for the rule f : A → αBβ having found α within ρ′and a passive item for the ategory B spanning the range ρ′′ we an adda new item to the hart, where αB has the range ρ.San

[ρ′; f : A→ α • sβ]

[ρ; f : A→ αs • β]

{

ρ ∈ ρ′ · 〈s〉 (2.3)If there is an item for the rule f : A → αsβ with the range ρ′, where thenext token is a terminal, we an add a new item where αs spans ρ′ · 〈s〉.For onveniene, the fully instantiated ative items are onverted to passiveitems.Convert
[ρ; f : A→ β•]

[ρ; f : A]
(2.4)Fully traversed ative items are onverted to passive items.Predition is very blunt. It predits an item for every rule at every input posi-tion. This gives a vast number of useless items, espeially if the number of rulesand/or the size of the input is very large.2.4.7 Earley preditionThis �ltering tehnique was introdued by Earley (1970) and is a top-downstrategy. Instead of prediting every possible rule at every possible input po-sition Earley limits the preditions by only prediting a new item when an oldone is looking for it.Predit

[ρ′; g : C → γ •Aα]

[ρ; f : A→ •β]

{

f : A→ β
ρ = ⌈ρ′⌉

(2.5)Only predit an item for the rule f : A→ β when there already is an ativeitem looking for A. The new item's range is the eiling of the anteedentitem's range. 22

Initial Predition
[(0, 0) : f : S → •α]

{f : S → α (2.6)Predit an item spanning (0, 0) for every rule in R where the left-handside of the rule is a start-ategory.Combine and San are inluded as inferene rules numbers 2.2 and 2.3.2.4.8 Kilbury preditionAnother �ltering strategy is the one proposed by Kilbury (1985), using a bottom-up approah. An item is only predited for a grammar rule if the rule looks fora ategory that already has been found.This predition strategy is also alled left-orner parsing (as in Carroll, 2003).Predit+Combine
[ρ; g : B]

[ρ; f : A→ Bρ • β]
{f : A→ Biβ (2.7)Given a passive item for B and a rule in whih B is the �rst element ofthe right-hand side we an add a new item for the rule, searhing for therest of the right-hand side.Predit+San

[ρ;A→ s • β]

{

f : A→ sβ
ρ ∈ 〈s〉

(2.8)For every rule with a substring as the �rst element in the right-hand side,add an ative item for the rule spanning the substring, looking for the restof the right-hand side.Combine and San are inluded as inferene rules numbers 2.2 and 2.3.2.4.9 Implementing parsing as dedutionThe atual implementation will depend on the grammar, the parsing algorithmand of ourse the goal for parsing.As long as the dedution proess enumerates all derivable items it is of nointerest in whih order they are produed. However, for e�ieny reasons, wedo not want to enumerate an item more than one. Therefore the hart has tobe implemented as a set, only ahing one instane of every item.New items are added to the hart as they are derived by the inferene rules.Sine eah new item an in itself have new items as it's onsequene all newitems are stored in a seperate data-struture alled an agenda. When an itemis removed from the agenda, all its onsequenes are derived. They are addedto the hart and agenda, if they are not already in the hart. This proedure23

Figure 2.7: An agenda-driven hart parsing algorithm for reognitionalgorithm : Agenda-driven Chart parsinginput : Initial Items derived from Axiomsoutput : True / Falsedata strutures: Chart, a set of ItemsAgenda, a olletion of Itemsinitialize:Chart to set of Initial Items ;Agenda to olletion of Initial Items ;while Agenda not empty :remove a Trigger Item from Agenda ;ompute all Consequene Items of Trigger Item ;for eah Consequene Item :if Consequne Item not in Chart :then: Add Consequene Item to Chart and Agenda ;if Goal Item in Chart :then: True ;else: False ;is iterated until there are no more items in the agenda. The resulting hartwill then onsist of all the syntatial information that an be derived from thesentene with respet to the grammar.An algorithm for agenda-driven hart parsing an be found in �gure 2.7.2.5 Polynomial PMCFG parsing strategiesLjunglöf (2004) proposes four main strategies for parsing PMCF grammars. Thestrategies have in turn di�erent �ltering tehniques or versions. For an extensivedesription, see hapter 4 in Ljunglöf (2004).2.5.1 Naïve algorithmThis is a naïve algorithmwith a passive and an ative version. The algorithm fol-lows a straightforward bottom-up proedure, ombining parse items with rangesovering smaller parts of the string to parse items with larger overing.2.5.2 Context-free approximation algorithmFor this strategy the PMCFG is onverted to a Deorated CFG. Parsing with theDCFG an then be arried out using any ontext-free algorithm. The deorated24

ontext-free approximation might give items that are inorret sine the DCFGis overgenerating. Therefore the resulting hart needs to be �ltered in a reoverystep.The omplete but unsound deorated ontext-free hart is reovered in twosteps. First the deorated ontext-free hart is transformed into a PMCFGhart. Then the items are ombined into items with disontinuous onstituentsaording to the original PMCFG in a way similiar to the one proposed for theNaïve algrotithm.2.5.3 Ative parsing algorithmFor the Ative algorithm, an item is predited for every possible range restritionof every linearization reord. The linearization rows of the items are traversed bysanning and ombining. Whenever a row has been fully instantiated, the nextrow in the linearization reord is traversed until there are no more linearizationrows.Just as for ontext-free parsing, it an be unneessary and time onsuming topredit an item for every rule in the grammar, so adaptions of the two �lteringstrategies Earley and Kilbury to PMCF grammars are proposed.2.5.4 Inremental parsing algorithmAn inremental parsing algorithm reads one token at a time from the inputstring and omputes all possible onsequenes from that token before readingthe next token.The proposed strategy is similar to the Ative parsing algorithm above with oneimportant di�erene: For the Ative algorithm an item is predited for everypossible range restrition of every linearization reord. However, sine the tokensare read inrementally (and therefore the order of the tokens is unknown) therehas to be an item for every possible range restrition of a linearization row. Thesame proedure, and argument, goes for ompletion.If massive and time onsuming predition was a problem for the Ative algorithmit is an even bigger problem for the Inremental algorithm. Therefore a way ofimplementing Earley and Kilbury �ltering is proposed. This should make theparsing proess more time e�ient.

25

26

Chapter 3Implementation
There has not been enough time to implement all variants of the proposedalgorithms. Both the Naïve and the Context-free approximation algorithms areproposed with an ative and a passive version. Only the ative versions havebeen implemented. The Ative algorithm is implemented with both Earley andKilbury preditions. The Inremental algorithm is implemented but none of theproposed predition strategies are.ExamplesAll algorithms are explained with an example setion, where we parse the sen-tene abcd with respet to the grammar in �gure 3.1. For the Naïve, Approxi-mative and Ative algorithms the parse hart is given in full. However, for theInremental algorithm this would take too muh spae so only an abbreviatedexample run is given.The examples are given in the same notation as the algorithms. For thoseinterested, the algorithms an be found in ode in Appendix A.ItemsJust as for the ontext-free parse items in 2.4.3 on page 18, it is not possible toderive parse trees from passive items for non-terminal rules, only for terminalrules.In setion 2.4.6 on page 19 we range restrited the terminals as they weresanned. For the implemented algorithms range restrition is arried out atthe same time as predition. This means that the items in the inferene ruleswill have ranges instead of terminals in their linearization reords. A onse-quene is that only rules that an be range restrited will be predited as items,possibly making the hart smaller. 27

Figure 3.1: An interesting LMCFGIn order to have a small but interesting grammar for examples we use the fol-lowing from Ljunglöf (2004), page 82.
S → f [A] := s = A.p A.q

A→ g[A1, A2] := p = A1.p A2.p,

q = A1.q A2.q

A→ ac[] := p = a,

q = c

A→ bd[] := p = b,

q = dThe grammar generates the language
L(S) = {s shm | s ∈ (a ∪ b)∗}where shm is the homomorphi mapping s.t. eah a in s is translated to c, andeah b is translated to d. So, the homomorphi mapping of abbab equals cddcd .Examples of generated strings are ac, abcd and bbaddc. However, neither abcnor abcdabcd will be generated.The language an not be desribed by a CFG sine it ontains a ombination ofmultiple and rossed agreement with dupliation. For instane the string abbcddhas multiple agreement on a, b, c and d, rossed agreement on the pairs a − cand b − d respetively and a mapped dupliation of the �rst part of the string

abb to the seond part cdd.NotationsIn some algorithms we hoose to use the equivalent range reord, Γ, for the fullyinstantiated, range-restrited linearization reord, Φ. This is written Γ ≡ Φ.The equivalene is desribed in setion 2.3.4.A sequene B1, . . . ,Bδ an be denoted by the more ompat ~B . The same goesfor range reords; Γ1, . . . ,Γn an be written as ~Γ.
3.1 Adapting the algorithms to LMCFGThe original algorithms are designed for PMCFG, but sine there are no suhgrammars in use at this time in the GF environment we have adjusted the al-gorithms for LMCFG. This also makes them more time e�ient. The di�erenelies in how ranges are implemented. As we have seen (setion 2.2.7 on page 13)PMCFG supports parallel linearizations for rules. In order to represent the28

possibly multiple presene of the projetion Ai.r in the input, the proposedalgorithms use sets of ranges.For a LMCFG it is enough to represent every projetion with a single rangesine it annot our more than one in any linearization reord.3.2 The Naïve algorithmThe �rst algorithm proposed by Ljunglöf is the `Polynomial parsing for ontext-free GF' and it has two versions, a passive and an ative. The passive versionrequires �nding δ items for every rule A→ f [B1, . . . , Bδ] := Φ in order to makea new item. Finding this subset of the hart is ompliated and takes a lot oftime. Therefore only the ative version has been implemented.3.2.1 Item formThere are two kinds of items, ative and passive.Ative itemAn ative item for the rule
A→ f [~B] := Ψhas the form

[A→ f [~B′ • ~B′′]; Φ; ~Γ]in whih the ategories to the left of the dot •, ~B′, have been found with thelinearizations in the list of range reords ~Γ. Ψ is range restrited to Φ.Passive itemA passive item onsists of a ategory and its range reord
[A; Γ]Use of passive items makes it easier to implement the algorithm and also helpswhen manually heking the parse result. They an be omitted with smallhanges to the inferene rules.3.2.2 Goals for reognitionGiven the grammar in �gure 3.1 we an now de�ne a goal item for the Naïvealgorithm for any input string w

[S; {s = (0, |w|)}]29

3.2.3 Inferene rulesThe implemented rules are similiar to the ones proposed by Ljunglöf, but notethat all range reords are reords over simple ranges.Predit
[A → f [•~B]; Φ;]

{

A → f [~B] := Ψ
Φ ∈ 〈Ψ〉

(3.1)Predition gives an item for every rule in the grammar and the rangerestrition of its linearization is what it has found from the beginning.The sequene of range reords is empty sine none of the daughters in ~Bhave been found yet.Combine
[A → f [~B • Bk

~B ′]; Φ; ~Γ] [Bk ; Γk]

[A → f [~B ,Bk • ~B ′]; Φ′; ~Γ,Γk]
{Φ′ ∈ Φ[Bk/Γk] (3.2)An ative item looking for Bk and a passive item that has found Bk anbe ombined into a new ative item. The new item has found Bk and inits linearization reord we substitute Bk for its range. We also add thepassive item's range reord to the new item's reord of daughters.The ative items with fully instantiated linearizations are onverted to passiveitems.Convert

[A → f [~B•]; Φ; ~Γ]

[A; Γ]
{Γ ≡ Φ (3.3)Every fully instantiated Ative item is onverted into a Passive item. Thefully instantiated linearization reord is transformed into a range reordwith equivalent information.3.2.4 Naïve parse hartFigure 3.2 ontains the parse hart for parsing the string abcd with the Naïvealgorithm. Items 1 and 9 are examples of fully instantiated ative items, 6 and 10of the orresponding passive items. Predition ensured that the four �rst itemswere added to the hart. Items 3 and 5 were ombined into item 7. The ativeitem 12 has been onverted into item 13, whih is the goal item for reognition.Item 11 is the ombination of items 3 and 10, i.e. the predited item for therule A → g[A,A] and its orresponding passive item. It will never beomefully instantiated sine range onatenation always fails when the remainingprojetions in Φ〈ab,cd〉A

are substituted for the ranges in the passive item's rangereord.The linearization reord Φ〈a,,c〉b,d is partially instantiated and Φg is the rangerestrited linearization reord from the grammar rule A → g[A, A] := Φ. Sinethere are only unbound variables in Φ they arry the same information. Therange reord Γ〈b,d〉 ontains the same parse information as the fully instantiatedlinearization reord Φ〈b,d〉. 30

Figure 3.2: Naïve parse hartWe get the following parse hart when parsing the string abcd with the grammarin �gure 3.1 on page 28
1 [A → ac[•]; Φ〈a,c〉;] Predict

2 [A → bd [•]; Φ〈b,d〉;] Predict

3 [A → g[•A, A]; Φg ;] Predict

4 [S → f [•A]; Φf ;] Predict

5 [A; Γ〈a,c〉] Convert 1
6 [A; Γ〈b,d〉] Convert 2
7 [A → g[A •A]; Φ〈a,c〉bd ; Γ〈a,c〉] Combine 3, 5
8 [A → g[A •A]; Φ〈b,d〉ac ; Γ〈b,d〉] Combine 3, 6
9 [A → g[A, A•]; Φ〈ab,cd〉; Γ〈a,,c〉Γ〈b,d〉] Combine 6, 7
10 [A; Γ〈ac.bd〉] Convert 10
11 [A → g[A •A]; Φ〈ab,cd〉A

; Γ〈ac,bd〉] Combine 3, 10
12 [S → f [A•] : Φ〈abcd〉 : Γ〈ac,bd〉] Combine 4, 10
13 [S ; Γ〈abcd〉] Convert 12where the range reords are the following

Γ〈a,c〉 = {p = (0, 1); q = (2, 3)}

Γ〈b,d〉 = {p = (1, 2); q = (3, 4)}

Γ〈ac,bd〉 = {p = (0, 2); q = (2, 4)}

Γ〈abcd〉 = {s = (0, 4)}and the range restrited linearization reords are
Φ〈a,c〉 = {p = (0, 1); q = (2, 3)}

Φ〈b,d〉 = {p = (1, 2); q = (3, 4)}

Φ〈ab,cd〉 = {p = (0, 2); q = (2, 4)}

Φ〈abcd〉 = {s = 0, 4)}

Φ〈a,c〉bd = {p = (0, 1) A1.p; q = (2, 3) A1.q}

Φ〈b,d〉ac = {p = (1, 2) A1.p; q = (3, 4) A1.q}

Φ〈ab,cd〉A
= {p = (0, 2) A1.p; q = (2, 4) A1.q}

Φg = {p = A1.p, A2.p; q = A1.q A2.q}

Φf = {s = A1.p, A1.q}

31

3.3 The Approximative algorithmParsing is performed in two steps in the Approximative algorithm. The �rststep is to parse the sentene with the LMCFG onverted to a Deorated CFG.The resulting hart is then reovered in step two to a LMCFG hart.3.3.1 The ontext-free approximationIn order to obtain the initial axioms for the dedution proess, the LMCFG isonverted into a DCFG whih is used to make an approximative parse. Thegrammar onversion is done by reating a deorated ontext-free rule for everyrow in the linearization reord. This means that any rule
A→ f [~B] := r1 = α1, . . . , rn = αnwill give n new rules

f : A.ri → αiThe parsing an then be ompleted as desribed in setion 2.4.Example The rule
A→ f [~B] := r1 = α1, r2 = α2 , r3 = α3will give the following ontext-free rules

f : A.r1 → α1

f : A.r2 → α2

f : A.r3 → α3Sine the DCFG is over-generating ompared to the LMCFG the returned parsehart is unsound. We therefore need to retrieve the passive items from theDCFG parse hart and hek them against the LMCFG to get the disontinuousonstituents and mark them for validity.The hart of passive DCFG items is then extended by adding the items frompredition, to give the omplete set of axioms.The Approximative algorithm never range restrits. The ranges for the tokensin the input are given by the deorated ontext-free parsing.A onsequene of reduing a ontext-free GF grammar to a LMCFG is that allfuntion names are unique. This means that every ombination of an abstratrule with a onrete linearization will be distinguishable by the funtion name.3.3.2 Items for the ontext-free approximationThere are two items involved when we onvert the hart from the approximativeparsing into axioms for the reovery step.32

Figure 3.3: The LMCFG onverted to a CFGThe rules of the example grammar 3.1 looks like this when onverted to a De-orated CFG
f : S .s → A.p A.q
g : A.p → A1 .p A2 .p
g : A.q → A1 .q A2 .q

ac : A.p → a

ac : A.q → b

bd : A.p → c

bd : A.q → dThe subsripted numbers are for distinguishing the two ategories from eahother, sine they are equivalent. Here A1.q is a ategory of its own, not a reordprojetion.Deorated itemThe items returned from the approximative parsing have the same form as thatde�ned in 2.4.3 for ative items
[ρ; f : A→ [α • β]]PreMCFG itemWe only need the funtion name in the item sine every ombination of abstratrule and onrete linearization has a unique funtion name

[f ; r = ρ; ~Γ]

~Γ is extrated from a deorated item.3.3.3 Converting the DCFG forestThe items in the DCFG hart are onverted to preMCFG items, using thefollowing ruleMake PreMCFG items
[ρ; f : A.r → β]

[f ; r = ρ; ~Γ]
(3.4)

~Γ is a partition of the daughters in β suh that,
Γi ⇔ {r = ρ | Bi .rρ ∈ β}where Γi, the i:th range reord in ~Γ, will onsist of the label r from the projetion

Bi.r in β and the range orresponding to Bi.r in the �nal linearization.33

Example Given β = A1.r
′ ρA1

, A2.r
′′ ρA2

then Γ1 = {r ′ = ρA1
} and Γ2 = {r ′′ = ρA2

}For the terminal rules with empty right-hand sides, ~Γ will be empty sine thereare no projetions. For a rule with a non-empty right-hand side Γi will onsistof the information for the i:th ategory in the right-hand side. In total, ~Γ willhave a range reord for every daughter in the right-hand side.3.3.4 Items for the reovery stepThe reovery step uses three items.Pre itemThe items derived from the LMCFG have the following form
[A → f [~B]; Γ • ri , . . . , rn ; ~Γδ]where ri . . . rn is a list of labels, ~Γδ is a list of | ~B| range reords, and Γ is arange reord for the labels r1, . . . , ri−1Mark item In order to reover the hart we use mark items with dotted rulesand dotted reords

[A → f [~B • ~B ′]; Γ; ~Γ • ~Γ′]The idea is to move ategories from the right-hand side of the dot, •, tothe left at the same time as we hek if the orresponding range reordan be marked for orretness.Passive item A passive item onsists of a ategory and its range reord
[A : Γ]3.3.5 Goals for reognitionGiven the grammar in �gure 3.1 and the input string w we get the goal item

[S ; {s = (0 , |w |)}]3.3.6 Inferene rules for the reovery stepPre-Predit
[A → f [~B]; •r1, . . . , rn ; ~Γδ]

{

A → f [~B] := Φ (3.5)Every rule in the grammar is predited as a Pre item. The ontext-freeapproximation gives the ranges for every token in the input, so we neverneed to range restrit. Instead, we use the labels r1, . . . , rn in Φ to retrievethe ranges given by the preMCFG items. ~Γδ is a list of δ range reords inwhih all reords are empty. 34

Pre-Combine
[A → f [~B]; Γ • r , ri , . . . rn ; ~Γ] [f ; r = ρ; ~Γ′]

[A → f [~B]; Γ, r = ρ • ri , . . . rn ; ~Γ′′]

{

~Γ′′ ∈ ~Γ ⊔ ~Γ′ (3.6)If there is a PreMCFG item for the funtion f with a range for the label
r, we an ombine that PreMCFG item with a Pre item where f is thefuntion name and the next label is r. Then we move the dot forward.The new item has the uni�ation of the anteedents reord strutures asits own struture of range reords.Mark-Predit

[A → [~B]; Γ•; ~Γ]

[A → [•~B]; Γ; •~Γ]
(3.7)When all reord labels have been found and given a range, we an startto hek if the items have been derived in a valid way by marking thedaughters' range reords for orretness.Mark-Combine

[A → f [~B • Bi, ~B ′]; Γ; ~Γ • Γi, ~Γ
′] [Bi; Γi]

[A → f [~B ,Bi • ~B ′]; Γ; ~Γ,Γi • ~Γ
′
]

(3.8)Reord Γi an be marked for orretness if there is a passive item forategory Bi that has found Γi.Convert
[A → f [~B•]; Γ; ~Γ•]

[A; Γ]
(3.9)Fully instantiated ative items are onverted to passive items.3.3.7 Example of Approximative parsingAn example hart from top-down parsing the string abcd with the DCFG anbe seen in �gure 3.4. Item 8 is an example of the deorated grammar beingovergenerating. The hart will have one orresponding preMCFG item for everydeorated ontext-free item, whih is given in the same �gure.Parsing abcd gives a hart of 32 items if the deorated ontext-free parsing isarried out with top-down �ltering. For bottom-up �ltering the resulting harthas 38 items. The hart an be seen in �gure 3.5, exept for the pre items.These an instead be found in �gure 3.4 together with the fully instantiateditems from the ontext-free approximation.The preMCFG item 8 gets as far as beoming a mark item, but it will never bemark-ombined sine there are no passive items with the range reord Γab,c.3.4 The Ative algorithmThe ative algorithm parses without ontext-free approximation.35

Figure 3.4: Deorated ontext-free hart and equivalent preMCFG itemsThe following hart of fully instantiated items is derived by parsing abcd withthe DCFG in �gure 3.3.
1 [(3, 4); bd : A.q → d]
2 [(2, 4); g : A.q → A1.q (2, 3), A2.q (3, 4)]
3 [(2, 3); ac : A.q → c]
4 [(1, 2); bd : A.p → b]
5 [(0, 2); g : A.p → A1.p (0, 1), A2.p (1, 2)]
6 [(0, 1); ac : A.p → a]
7 [(0, 4); f : S .s → A1.p (0, 2), A1.q (2, 4)]
8 [(0, 3); f : S .s → A1.p (0, 2), A1.q (2, 3)]Converted to preMCFG items the deorated ontext-free items look like

1∗ [bd ; {q = (3, 4)};]
2∗ [g; {q = (2, 4)}; {q = (2, 3)}, {q = (3, 4)}]
3∗ [ac; {q = (2, 3)};]
4∗ [bd ; {p = (1, 2)};]
5∗ [g; {p = (0, 2)}; {p = (0, 1)}, {p = (1, 2)}]
6∗ [ac; {p = (0, 1)};]
7∗ [f ; {s = (0, 4)}; {p = (0, 2)}, {q = (2, 4)}]
8∗ [f ; {s = (0, 3)}; {p = (0, 2)}, {q = (2, 3)}]

36

Figure 3.5: A hart for the Approximative algorithmThe hart from parsing abcd when the deorated ontext-free approximation isapplied top-down. The preMCFG items are numbered i∗ and found in �gure3.4.
1 [A→ bd[]; •{p, q};] Pre− Predict
2 [A→ ac[]; •{p, q};] Pre− Predict
3 [A→ g[A, A]; •{p, q}; {}, {}] Pre− Predict
4 [S → f [A]; •{s}; {}] Pre− Predict
5 [A→ bd[]; Γb • {q};] Pre− Combine 4∗, 1
6 [A→ ac[]; Γa • {q};] Pre− Combine 6∗, 2
7 [A→ g[A, A]; Γab • {q}; Γa,Γb] Pre− Combine 5∗, 3
8 [S → f [A]; Γ〈abcd〉•; Γ〈ab,cd〉] Pre− Combine 8∗, 4
9 [S → f [A]; Γabc•; Γab,c] Pre− Combine 7∗, 4
10 [A→ bd[]; Γ〈b,d〉•;] Pre− Combine 1∗, 5
11 [A→ ac[]; Γ〈a,c〉•;] Pre− Combine 3∗, 6
12 [A→ g[A, A]; Γ〈ab,cd〉•; Γ〈a,c〉,Γ〈b,d〉] Pre− Combine 2∗, 7
13 [A→ bd[•]; Γ〈b,d〉; •] Mark − Predict 10
14 [A→ ac[•]; Γ〈a,c〉; •] Mark − Predict 11
15 [A→ g[•A, A]; Γ〈ab,cd〉; •Γ〈a,c〉,Γ〈b,d〉] Mark − Predict 12
16 [S → f [•A]; Γ〈abcd〉; •Γ〈ab,cd〉] Mark − Predict 8
17 [S → f [•A]; Γabc; •Γab,c] Mark − Predict 9
18 [A; Γ〈b,d〉] Convert 12
19 [A; Γ〈a,c〉] Convert 13
20 [A→ g[A •A]; Γ〈ab,cd〉; Γ〈a,c〉 • Γ〈b,d〉] Mark − Combine 15, 19
21 [A→ g[A, A•]; Γ〈ab,cd〉; Γ〈a,c〉Γ〈b,d〉•] Mark − Combine 20, 18
22 [A; Γ〈ab,cd〉] Convert 21
23 [S → f [A•]; Γ〈abcd〉; Γ〈ab,cd〉•] Mark − Combine 17, 22
24 [S; Γ〈abcd〉] Convert 23where the range reords, Γ〈...〉 are the same as in �gure 3.2. The other rangereords are as follows

Γa = {p = (0, 1)}

Γb = {p = (1, 2)}

Γab = {p = (0, 2)}

Γabc = {s = (0, 3)}

Γab,c = {p = (0, 2), q = (2, 3)}

37

3.4.1 The range for ǫFor this algorithm we use a speial kind of range, ρǫ, whih denotes simulta-neously all empty ranges (i , i). There is an important di�erene between therange (i , i) and the variable ρǫ sine (i , i) is a range with idential indies, but
ρǫ is a onstant for all empty ranges.Operations on the epsilon-rangeThe range restrition of ǫ gives 〈ǫ〉 = ρǫ. Range onatenation of any range ρwith the ǫ-range gives

ρ · ρǫ = ρǫ · ρ = ρFor the ǫ-range, ρǫ, both the eiling and the �oor will return ρǫ.3.4.2 Item formAtive itemAtive items for the rule
A→ f [~B] := Φ, r = αβ,Φ′have the form

[A→ f [~B]; Γ, r = ρ • β′,Ψ; ~Γ]where Γ is the equivalent range reord for the linearization rows in Φ and α hasbeen reognized as the range ρ. We are still looking for the rest of the row, β′,and the remaining linearization rows Ψ. Both β and Φ′ are range restrited to
β′ and Ψ respetively. ~Γ is the list of range reords ontaining the informationabout the daughters in [~B].Passive itemPassive items say that we have found A inside Γ

[A; Γ]3.4.3 Goals for reognitionGiven the grammar in �gure 3.1 and the input string w we use the followinggoal item
[S; {s = (0, |w|)}]38

3.4.4 Inferene rulesPredit
[A→ f [~B]; r = ρǫ • α′, β′; ~Γδ]

{

A→ f [~B] := r = α,Φ
α′,Φ′ ∈ 〈α,Φ〉

(3.10)For every rule in the grammar, predit a orresponding item that hasfound the empty range. ~Γδ is a list of | ~B| range reords. All range reordsare empty sine nothing has been found yet.Complete
[A→ f [~B]; Γ, r = ρ•, r′ = α,Φ; ~Γ]

[A→ f [~B]; Γ, r = ρ, r′ = ρǫ • α,Φ; ~Γ]
(3.11)When an item has found an entire linearization row we ontinue with thenext row by starting it o� with the empty range.San

[A→ f [~B]; Γ, r = ρ′ • ρ′′α,Φ; ~Γ]

[A→ f [~B]; Γ, r = ρ • α,Φ; ~Γ]
{ρ ∈ ρ′ · ρ′′ (3.12)Sanning is applied when the next symbol to read is a range. This rangemight be onatenated with the range for what the row has found so far. Ifrange onatenation sueeds, there will be a new item with the resultingonatenation as range.Combine

[A→ f [~B]; Γ, r = ρ′ •Bi.r
′α, β; ~Γ] [Bi; Γ

′]

[A→ f [~B]; Γ, r = ρ • α, β; ~Γ[i := Γ′]]

{

ρ ∈ ρ′ · Γ′.r′

Γi ⊆ Γ′ (3.13)If the next thing to �nd is a projetion on Bi, and there is a passive itemwhere Bi is the ategory, ombination an be applied. The dot will thenbe moved past the projetion. If Γ′ is onsistent with the information theative item has for its i:th daughter, reord substitution an be used. Therange for r is the onatenation of ρ and the range orresponding to theprojetion Γ′.r′.Convert
[A→ f [~B]; Γ, r = ρ•; ~Γ]

[A; Γ, r = ρ]
(3.14)An ative item that has fully reognized all its linearization rows is on-verted to a passive item.3.4.5 Earley �ltration for the Ative algorithmEarley �ltration is an adaption from 2.4.7. There are three rules for Earleypredition. The Earley preditions give passive items for the terminal ruleswith fully range restrited linearizations. The rest of the rules are predited as39

ative items. All rules with the start ategory as left-hand side are assumed tobe non-terminal rules, so initial predition will only give ative items.Predit Passive
[. . . ; . . . , r = ρ′ •A.r . . . ; . . .]

[A; Γ]

{

A→ f [] := Ψ
Γ ≡ 〈Ψ〉

(3.15)We only predit from the grammar if there is already an item looking for theleft-hand side of the rule. The Passive item has the range reord orrespondingto the fully instantiated linearization reord of the rule.Predit Ative
[. . . ; . . . , r = ρ′ •A.r′ . . . ; . . .]

[A→ f [~B]; r = ρ • α′,Γ; ~Γδ]

A→ f [~B] := r′′ = α,Φ
α′,Γ ∈ 〈α,Φ〉
ρ = ⌈ρ′⌉

(3.16)This version of predition is applied if the right-hand side is non-empty.The new range is the eiling of ρ.Initial predition
[S → f [~B]; s = (0, 0) • Γ; ~Γδ]

{

S → f [~B] := s = α
Γ ∈ 〈α〉

(3.17)Sine there are no items at �rst, the parsing is initiated by prediting anitem for every rule with a start ategory as left-hand side. ~Γδ is a list ofrange reords in whih all reords are empty.Complete, San, Combine and Convert are inluded as inferene rules 3.11-3.14.3.4.6 Kilbury �ltration for the Ative algorithmKilbury predition is an adaption from 2.4.8. The Kilbury preditions are lim-ited to grammars in whih terminals only our in rules with empty right-handsides. However, Seki et al. (1991) have shown that any PMCFG that does notful�ll this requirement an be onverted to an equivalent grammar that does.An alternative would be to slightly alter the inferene rules.There are two new rules, while Complete, Combine and Convert are inludedas the rules 3.11, 3.13 and 3.14. San is replaed by Terminal.Predit
[Bi; Γi]

[A→ f [~B]; r = ρ • α′,Γ; ~Γδ[I := Γi]]

A→ f [~B] := r = Bi.r
′α,Φ

α′,Γ ∈ 〈α,Φ〉
ρ = Γi.r

′ (3.18)We only predit a new item for a rule, if there is a Passive item for the �rstategory in the �rst linearization row. We move the dot past the ategoryand add the Passive item's reord to the new item's struture of reords.The new item reieves its range from the projetion Γi.r
′.40

Terminal
[A; Γ]

{

A→ f [] := φ
Γ ∈ 〈φ〉

(3.19)Every terminal rule is predited as a passive item.3.4.7 Example for the Ative algorithmThe Ative algorithm an be used with Earley or Kilbury �ltering, or without�ltering. Parsing the string abcd gives the following table for hart sizeFilter SizeNone 25Earley 20Kilbury 15The hart after parsing without predition �lters an be seen in �gure 3.6.Comments on the hartItems 11 and 12 are examples of passive items; they are onverted from the ativeitems 9 and 10 respetively. Item 5 has fully traversed its �rst linearization rowand has been ompleted to give item 7. Sanning item 8 gives an example ofonatenation with ρǫ. The result an be seen in item 10. Item 24 is the resultof ombining the passive item 21 with the ative item 23. Predition gave the�rst four items.Both predition strategies result in fewer items sine the terminal rules arepredited as passive items.EarleyThe use of Earley predition gives a hart without items 1, 2, 4, 5, 6, 7, 8, 9,10 and 15. Instead we get 4 items for the non-terminal rule A→ g . . . where ρǫis substituted for the empty ranges (0, 0) . . . (3, 3). The predited item for thestart rule will be predited with the range (0, 0) instead of ρǫ.KilburyIf we instead use Kilbury predition the same items are �ltered out with twoexeptions; item 15 will be inluded and item 3 will not be predited. Insteadthe passive item 12 will trigger the predition of item 14 (the ombination of 3and 12).3.5 The Inremental algorithmAn inremental algorithm reads one token at a time. However our implementa-tion does not, due to how we de�ned range restrition.41

Figure 3.6: Ative parse hartThis is the hart for parsing abcd with the Ative algorithm without �ltering.The range reords Γ... are the same as in �gure 3.2. We also use
Φgq

= {q = A1.q A2.q}and
Γab = {p = (0, 2)}In order to �t the table on the page, the following notations are used for theinferene rules P = Predit, S = San, Cv = Convert, Cp = Complete and

C = Combine.
1 [A → bd []; p = ρǫ • (1, 2) q = (3, 4);] P

2 [A → ac[]; p = ρǫ • (0, 1) q = (2, 3);] P

3 [A → g[A, A]; p = ρǫ • A1.p, A2.p Φgq
; {}, {}] P

4 [S → f [A]; s = ρǫ • A1.p, A2 .q; {}] P

5 [A → bd []; p = (1, 2(3, 4);] S 1
6 [A → ac[]; p = (0, 1) • q = (2, 3);] S 2
7 [A → bd []; {p = (1, 2)}, q = ρǫ • (3, 4);] Cp 5
8 [A → ac[]; {p = (0, 1)}, q = ρǫ • (2, 3);] Cp 6
9 [A → bd []; {p = (1, 2)}, q = (3, 4)•;] S 7
10 [A → ac[]; {p = (0, 1)}, q = (2, 3)•;] S 8
11 [A; Γ〈b,d〉] Cv 9
12 [A; Γ〈a,c〉] Cv 10
13 [A → g[A, A]; p = (1, 2) • A2.p Φgq

; Γ〈b,d〉, {}] C 3, 11
14 [A → g[A, A]; p = (0, 1) • A2.p Φgq

; Γ〈a,c〉, {}] C 3, 12
15 [S → f [A]; s = (1, 2) • A1.q; Γ〈b,d〉] C 4, 11
16 [S → f [A]; s = (0, 1) • A1.q; Γ〈a,c〉] C 4, 12
17 [A → g[A, A]; p = (0, 2) • Φgq

; Γ〈a,c〉,Γ〈b,d〉] C 11, 14
18 [A → g[A, A]; Γab , q = ρǫ • A1.q A2.q; Γ〈a,c〉,Γ〈b,d〉] Cp 17
19 [A → g[A, A]; Γab , q = (2, 3) • A2.q; Γ〈a,c〉,Γ〈b,d〉] C 12, 18
20 [A → g[A, A]; Γab , q = (2, 4)•; Γ〈a,c〉,Γ〈b,d〉] C 11, 19
21 [A; Γ〈ab,cd〉] Cv 20
22 [A → g[A, A]; p = (0, 2) • A2.p Φgq

; Γ〈ab,cd〉, {}] C 3, 21
23 [S → f [A]; s = (0, 2) • A1.q; Γ〈ab,cd〉] C 4, 21
24 [S → f [A]; s = (0, 4)•; Γ〈ab,cd〉] C 23, 21
25 [S ; Γ〈abcd〉] Cv 24

42

3.5.1 Inrementality and range restritionRange restrition, as we have de�ned it, annot handle partial results. Eitherthe symbol is a terminal and an be substituted by its range or it is an unboundvariable and is left as it is. When parsing inrementally this de�nition is notsu�ient. For instane, the range restrition 〈p = a, q = c〉
a will fail sine thereis no range for c in the string a. We would need a new de�nition of rangerestrition, allowing partial results.To get round the problem of not having partial range restrition we range restritthe entire input from the start. This means that the algorithm will no longerbe truly inremental. This ompromise has advanteges. The e�ieny of aninremental algorithm depends to some degree on how fast the user provides theinput. In order to test how the inferene rules ompare to the other algorithmsit an be easier if it is in a stati environment, and not given input a token ata time.3.5.2 Item formAtive itemsThe only item form is ative

[A→ f [~B]; Γ, r = ρ • β, ψ; ~Γ]The items have the same form as the ative items used in the Ative algorithm.However we use the notation [A; Γ, r = ρ], where r = ρ is the latest reognizedrow, for the item [A → . . . ; Γ, r = ρ • φ; . . .] and all the item passive. Notethat there are no passive items implemented and that any item with a fullyinstantiated row is alled passive, even if there are more rows to instantiate.3.5.3 Goals for reognitionFor the example grammar 3.1 on page 28 we get the following goal item
[S → f [A]; s = (0, |w|); {p = (0,

|w|

2
); q = (

|w|

2
, |w|)}]We use an ative item as goal item sine there are no passive items.3.5.4 Inferene rulesNotationsIf we only want to be sure that two items have the same abstrat rule, we denotethe rule by R. 43

Predit
[A→ f [~B]; r = (i, i) • α′,Φ′,Ψ′; ~Γδ]

A→ f [~B] := Φ, r = α,Ψ
α′,Φ′,Ψ′ ∈ 〈α,Φ,Ψ〉
0 ≤ i ≤ |w| (3.20)An item is predited for every linearization row and every input position.

~Γδ is a list of range reords of length δ in whih all reords are empty.Complete
[R; Γ, r = ρ • Φ, r′ = α,Ψ; ~Γ]

[R; Γ, r = ρ, r′ = (k, k) • α,Φ,Ψ; ~Γ]

{

ρ = (i, j)
j ≤ k ≤ |w|

(3.21)Whenever a linearization row is fully traversed ompletion is applied. Thismeans that an item is predited for every remaining linearization row andevery remaining input position between the range of the traversed row andthe end of the input.San
[R; Γ, r = ρ′ • ρ′′, α,Φ; ~Γ]

[R; Γ, r = ρ • α,Φ; ~Γ]
{ρ ∈ ρ′ · ρ′′ (3.22)If the next item in the linearization row is a range, it is onatenated tothe range for the partially reognized row.In the Ative algorithm the inferene rule Convert 3.14 added the last label-range pair to the range reord for the passive item. In the absene of passiveitems we just have to remember that there is suh a pair when ombining.Combine

[R; Γ, r = ρ′ •Bi.r
′ α,Φ; ~Γ] [Bi; Γ

′, r′ = ρ′′]

[R; Γ, r = ρ • α,Φ; ~Γ[i := (Γ′, r′ = ρ′′)]]

{

ρ ∈ ρ′ · ρ′′

Γi ⊆ (Γ′, r′ = ρ′′)
(3.23)Combining is applied if the next item is a reord projetion and there is apassive item for the orresponding ategory. The information in the i:thrange reord of ~Γ must be onsistent with the information found for thepassive item. This an be heked by a subset hek sine the range reordof the passive item must be fully instantiated.3.5.5 Example runParsing the sentene abcd with the Inremental algorithm results in a hartwith 78 items. Therefore the example run will only brie�y explain the inferenerules. The large number of items is a onsequene of using (i, i)-ranges insteadof ρǫ(setion 3.4.1), and of prediting items for every linearization row.44

PreditionPredition is rude. The grammar rule
A→ g[AA] := p = A1.p A2.p, q = A1.q A2.qwill be predited as ten di�erent items, one item for every row and for everyinput position 0 ≤ i ≤ 4. Examples of suh items are

[A→ g[AA]; p = (2, 2) •A1.p A2.p {q = A1.q A2.q}; {}, {}]and
[A→ g[AA]; q = (2, 2) •A1.q A2.q {p = A1.p A2.p}; {}, {}]This holds for every rule, all in all prediting 35 items. The terminal rules willhave ranges instead of projetions in the linearization reord.CompleteThe above holds also for ompletion. When a linearization row is fully instanti-ated to a range, an item is predited for every remaining row and input position.For example if the last row was instantiated to the range (1, 3), then in our asethis would give two possible ranges, (3, 3) and (4, 4), for every row. The hartontains 16 items as a onsequene of ompletion.SanSanning is arried out in exatly the same way as in the Ative algorithm.CombineCombining is also performed in the same way as in the Ative algorithm, butwith an important di�erene. In the inremental algorithm the range of the rowto be traversde is always known. Therefore it is always possible to give a partialindex for the items to ombine. Thus the ative item

[. . . ; . . . r = (i, 3) • {Bi.r
′ . . . ; . . .]an only be ombined with a passive item

[B → . . . ; . . . r′ = (3, j) • φ; . . .]In the Ative algorithm it was not always the ase that the range was known.Therefore we ould not be as expliit in looking for items to ombine. Thismakes the Inremental inferene rule for ombining more e�ient sine we anlimit our searh spae. However, this will not show in runtimes and hart sizeuntil prediting is more eonomi. Until then there will be far more items toombine with at every input position. 45

3.5.6 Proposed predition strategiesThere was not enough time to implement the proposed Earley or Kilbury �lter.EarleyThe Earley predition onsists of three rules for prediting, ompletion and ini-tial predition. Initial predition is the same as the rule number 3.17, returningitems for every rule where the left-hand side is a start ategory. Predition andompletion predit new items for grammar rules when the left-hand side of therule is searhed for by an existing item.KilburyNew items are only predited for linearization rows in whih the �rst symbolhas already been found. At the same time the dot an be moved forward. Thereare two rules for prediting to be ombined with both San and Combine, givingfour new inferene rules for Kilbury �ltering.

46

Chapter 4
Small-sale evaluation
The algorithms have not been tested for realisti grammars and large orpi aspart of this thesis. This is due to that there was not enough time to reate bigenough grammars and orpuses to test against. Some preliminary tests havebeen onduted and it is possible to show how the algorithms ompare for thegrammar in �gure 3.1.It is not possible to draw any onlusions from the tables on the general perfor-mane of the algorithms. They are for showing how they perform ompared toeah other for a very small grammar.4.1 Preliminary testingThe parser used today in the GF-library onverts the given grammar to a CFGin order to make an approximate parse. As we have seen the CFG will atmost ertainly be overgenerating. Therefore a reovery step is used just as inthe Approximative algorithm (3.3 on page 32). However, instead of using thestrategy we used, the GF-parser reovers the parse-result tree-by-tree.In preliminary tests the implemented algorithms are more e�ient than theoriginal GF-parser. A grammar for English was used in the tests. It onsists ofroughly 500 GF rules. Converted to LMCFG rules this gives a grammar withapproximately 22.000 rules or 20.000 rules if onverted to a CFG.Example Parsing the randomely generated sentene you had begged to die heregives roughly 60.000 ontext-free trees. After reovery only 6 remain. It isthe reovering of the ontext-free hart that makes the GF parser slowerthan our implemented algorithms.47

4.2 Parse table4.2.1 E�ieny for orret sentenesIn �gure 4.1 we give the result from parsing sentenes of lengths 6, 12 and 24terminal tokens. Parsing is arried out with respet to the grammar in �gure3.1. This is by no means an extensive evaluation of the algorithms, but doesillustrate how they perform for a small grammar. Their performane ould verywell turn out to be quite di�erent when using a larger or more ontext-freegrammar. The used grammar generates sentenes with multiple and rossedagreement ombined with dupliation, all features outside the expressivity of aCFG. Figure 4.1: Evaluation of valid sentenesChart sizes and running times for parsing strings of various lengths. The stringsare valid, suh as abbacddc. All strings are parsed with respet to the LMCFGon page 28. Times are in milliseonds and hart size is given in number of items.Length6 12 24Naïve Chart 31 137 834Time <1 10 110Approx Chart 116 2980 170216bottom-up Time 20 70 9910Approx Chart 96 2888 169818top-down Time <1 100 9670Ative Chart 78 663 8207no �lter Time <1 40 2650Ative Chart 59 574 7778Earley Time 10 120 7630Ative Chart 56 589 7917Kilbury Time <1 40 2560Inremental Chart 254 2375 34813Time 10 150 7760
4.2.2 CommentsThe Naïve algorithmThe Naïve algorithm is by far the most e�ient algorithm. It would be inter-esting to see how it performs for muh larger grammars.48

The Approximative algorithmIt seems to make no di�erene if we implement the deorated ontext-free ap-proximation with bottom-up or top-down predition. Even if the resulting hartsare very big ompared to the other algorithms, the run-times do not grow tothe same extent. One reason for the large hart size is that we use four di�erentkinds of items. A lot of information is dupliated as it is passed from one kindof item to another. Many of the items are also derived from ontext-free parsingwhih is quiker than parsing mildly ontext-sensitive grammars.The Ative algorithmUsing Earley predition for the Ative algorithm gives fewer items but makesparsing a lot slower. Kilbury gives the same redution on hart size and a slightlyquiker parsing ompared to using no �ltering. Remember, it is not possible tosay anything about the performane of the di�erent predition strategies untilthey have been tested on muh larger grammars.Both predition strategies result in fewer items as a onsequene of preditingpassive items for terminal rules. This an turn out to be even more e�ientfor grammars with a big perentage of terminal rules. A possible explanationfor the poor behaviour of Earley an be that the gain of top-down predition islost on suh a small grammar and the use of empty ranges, (i, i), instead of the
ǫ-range, ρǫ.The Inremental algorithmThe performane of the inremental algorithm improves as the size of the inputgrows, ompared to the Approximative algorithm. Otherwise it is slow andmemory demanding.4.2.3 E�ieny for inorret sentenesChart sizes and runtimes are not only interesting when the sentene is valid. Itis just as interesting to have quik, memory e�ient parsing algorithms if thesentene is invalid. In the table in �gure 4.2 all the implemented algorithms arefaster and derive less items when reognizing invalid sentenes.Espeially the Approximative algorithm is muh faster for rejeting sentenesin whih a c or d has been substituted for a or b respetively, in an otherwisevalid sentene.

49

Figure 4.2: Evaluation of invalid sentenesThe strings have the form abbacdbc, i.e. somewhere in the seond half of thesentene a c or d is substituted for a or d. Parsing is arried out with respetto the grammar in �gure 3.1 on page 28. Times are in milli-seonds and hartsizes in number of items. Length6 12 24Naïve Chart 16 79 449Time <1 10 40Approx Chart 48 614 34063bottom-up Time <1 30 1390Approx Chart 28 449 21744top-down Time <1 20 810Ative Chart 32 316 4215no �lter Time <1 20 870Ative Chart 11 238 3837Earley Time <1 80 3120Ative Chart 14 246 3929Kilbury Time <1 20 890Inremental Chart 128 1538 21689Time 10 120 2490

50

Chapter 5Summary
5.1 Future workFurther implementationsThe implementations do not over all proposed algorithms. There are passiveversions of the Naïve and Approximative algorithms still left to do. It would beinteresting to implement them for the sake of omparison.Neither of the predition �lters have been implemented for the Inrementalalgorithm. The proposed Earley predition should be easy to implement, itis very similiar to the version of Earley used for the Ative algorithm. Theimplementation of Kilbury is probably more demanding.Re-implementing the Inremental algorithm in a dynami environment is also anintersting future development. This will mean that an extended range restritionhas to be implemented, able to ope will partial results.EvaluationFurther tests are neessary. For now, all we know is that the Naïve algorithm issuitable for very small grammars. Whih algorithm to use for larger grammarsannot be deided before the algorithms have been tested on large grammars.Readapting to PMCFGThe algorithms are implemeted for LMCFG. If we want to use the tehnique ofreduing a ontext-free GF to a PMCFG in order to get faster parsing algorithmsit is neessary to readapt the strategies to PMCFG. It might very well be thatthe algorithms will parse PMCFG faster than the GF parser parses f-GF.ComplexityIt would be a Master thesis in its own right todetermine the omplexity of thealgorithms. Until proven we will just have to hope the omplexity is polynomial.51

CorretnessThere has not been time to give formal proofs of the algorithms being or-ret. The proposed PMCFG algorithms are proved both omplete and soundby Ljunglöf (2004). A omparison of his disussion with the implemented algo-rithms indiates that the di�erenes are too large for just opying his proofs toour work.For now, all we an say is that they seem to be orret.5.2 ConlusionWe have implemented four algorithms for parsing Linear Multiple Context-FreeGrammars. A thorough testing of the algorithms with grammars of varying sizesis neessary before any onlusions an be drawn on their overall performane.However preliminary testing indiates that the implemented algorithms parsean LMCF grammar faster than the existing parser for GF parses an equivalentontext-free GF grammar. It seems promising. . .

52

BibliographyCarroll, J. (2003). Parsing. In Mitkov, R., editor, The Oxford Handbook of Com-putational Linguistis, hapter 12, pages 233�248. Oxford University Press.Chomsky, N. (1959). On ertain formal properties of grammars. Informationand Control, 2:137�167.GF (2004). The Grammatial Framework homepage. Loated athttp://www.s.halmers.se/~aarne/GF/Hudak, P., Peterson, J., and Fasel, J. (1999). A gentle introdution to Haskell98. Tehnial report, Yale University. Available from the Haskell web site:http://www.haskell.org/tutorialJoshi, A. (1985). How muh ontext-sensitivity is neessary for haraterizingstrutural desriptions � tree adjoining grammars. In Dowty, D., Karttunen,L., and Zwiky, A., editors, Natural Language Proessing: Psyholinguisti,Computational and Theoretial Perspetives, pages 206�250. Cambridge Uni-versity Press, New York.Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree adjunt grammars.Journal of Computer and System Sienes, 10(1):136�163.Kay, M. (1986). Algorithm shemata and data strutures in syntati proess-ing. In Grosz, B., Jones, K., and Webber, B., editors, Readings in NaturalLanguage Proessing, pages 35�70. Morgan Kaufman Publishers, Los Altos,CA.Ljunglöf, P. (2004). Expressivity and Complexity of the Grammatial Frame-work. PhD thesis, Göteborg University and Chalmers University of Tehnol-ogy.Martin-Löf, P. (1984). Intuitionisti Type Theory. Bibliopolis, Napoli.Okasaki, C. (1998). Purely Funtional Data Strutures. Cambridge UniversityPress.Peyton Jones, S. (2003). Haskell 98 Language and Libraries. Cambridge Uni-versity Press, New York.Pollard, C. (1984). Generalised Phrase Struture Grammars, Head Grammarsand Natural Language. PhD thesis, Stanford University.53

Ranta, A. (2004). Grammatial Framework, a type-theoretial grammar for-malism. Journal of Funtional Programming, 14(2):145�189.Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple ontext-free grammars. Theoretial Computer Siene, 88:191�229.Shieber, S. (1985). Evidene against the ontext-freeness of natural language.Computational Linguistis, 20(2):173�192.Shieber, S., Shabes, Y., and Pereira, F. (1995). Priniples and implementationof dedutive parsing. Journal of Logi Programming, 24(1�2):3�36.TALK (2004). The Talk projet homepage. Loated athttp://www.talk-projet.org/Thompson, S. (1999). The Craft of Funtional Programming, 2nd ed. Addison-Wesley.Vijay-Shanker, K., Weir, D., and Joshi, A. (1987). Charaterizing struturaldesriptions produed by various grammatial formalisms. In 25th Meetingof the Assoiation for Computational Linguistis.Wirén, M. (1992). Studies in Inremental Natural-Language Analysis. PhDthesis, Linköping University, Linköping, Sweden.

54

Appendix AThe odeTo fully understand the ode the reader will probably need to know at leastsome Haskell. There is a di�erene between the ode developed for this thesisand the atual ode implemented into GF. The main reason being that it is alot easier to develop outside of GF and that GF has some features that extendHaskell.The funtion reognize is grammar dependent for all algorithms as a onse-quene of the goal items being grammar dependent. This is apparent in thetype delaration for reognize and the same holds for the funtion parse inalgorithm 3.3, sine the information passed to the CF parser is grammar depen-dent. Haskell supports dependent types.All harts are implemented as RedBlakMap:s, a RedBlakTree struture withkey-value pairs as leaves (see Okasaki, 1998 for more information on funtionaldata strutures).The type of a grammar is Grammar n l t where n is the type of the funtionnames, is the type for the ategories, l is the type for lables and t is the typefor tokens. Hene all objets used in grammars or for parsing are dependent onone or more of these four types. Referring to the table in �gure A.1 the typeLin l t is the type for a linearization row. Its �nal type is dependent on thetype of the ategories, lables and tokens used in the grammar.In the implementaion of the Example grammar in �gure 3.1, the type is Stringfor the funtion names, the lables and the tokens while the ategories are of theuser-de�ned type NT.When a linearization reord is range restrited, the type is rede�ned from LinRe l t to LinRe l Range and the orresponding instantiation of types oursfor the tokens; Tok t beomes Tok Range .The Nondet type is used when a funtion an return several solutions for thegiven arguments. The funtions for range restrition an give a number ofdi�erent ranges, all depending on the arguments (see 2.3.3). The reurn valuefor 〈s〉 is therefore Nondet Range.For every algorithm an example of the items in ode are given. Some items are55

Figure A.1: Types and odeThe four �rst are the basi types of the grammar. All other types depend onthe basi types, exept Nondet.Code: Used for: Variable type for elements in Cl Variable type for labelsn Variable typ for funtion namest Variable type for elements in ΣTok t A token of type tTok Range A token of type RangeRange The onstrutor for Range (Int, Int)Grammar n l t = [Rule n l t ℄Rule n l t = Rule [℄ (LinRe l t) nLin l t A linearization row,Lin l [Symbol (, l Int) t ℄LinRe l t A linearization reord, [Lin l t ℄Symbol (, l, Int) t = Cat (, l, Int) | Tok tRangeRe l A range reord, [(l, Range)℄NT The type for ategories in 3.1Cat (A, �p�, 0) The ategory A0.p, where A is of the type NTAbstratRule n = (n, , [℄)DottedRule n = (n, , [℄, [℄)Nondet Used when a funtion is non-deterministi

56

so long that they are written on several lines, following the layout of how theitems are de�ned in the algorithm.A.1 ExampleGrammarThis is the example grammar in �gure 3.1, written in Haskell. The projetions
A1.p, A2.qare implemented as[Cat (A, "p", 0), Cat (A, "q", 1)℄using the type NT for the ategories and String for the labels.All ategories are indexed expliitly in the ode while it was an impliit featurein the text. The indies are redued by one to math Haskell's list indexing.{-- Module --Filename : ExampleGrammar.hsAuthor : Håkan BurdenTime-stamp : <2005-03-03, 16:00>Desription: Implementation of Example grammar 4.1as desribed in Ljunglöf 2004--}module Examples where-- imported GF modulesimport MCFGrammarimport Parser-- Following Non-Terminals are used: S, A ---------------------------------data NT = S | Aderiving(Eq, Ord, Show)-- Example grammar 4.1 --ex41 = [Rule S [A ℄ [Lin "s" [Cat (A, "p", 0),Cat (A, "q", 0) ℄℄ "f",Rule A [A, A ℄ [Lin "p" [Cat (A, "p", 0),Cat (A, "p", 1) ℄,Lin "q" [Cat (A, "q", 0),Cat (A, "q", 1) ℄℄ "g",Rule A [℄ [Lin "p" [Tok "a" ℄,Lin "q" [Tok "" ℄℄ "a",Rule A [℄ [Lin "p" [Tok "b" ℄,Lin "q" [Tok "d" ℄℄ "bd" ℄57

A.2 RangesThe module for all funtions on ranges. Even those funtions only used by onealgorithm are plaed in the Ranges module and not as helper funtions in thealgorithm's module. ρǫ is written as ERange.{-- Module --Filename : Ranges.hsAuthor : Håkan BurdenTime-stamp : <2005-02-12, 18:52>Desription: Funtions for Ranges--}module Ranges where-- imported Haskell modulesimport Listimport Monad-- imported GF modulesimport MCFGrammarimport Nondetimport Parser-- Delared new types: Linearization- and Range reords as lists ----------type LinRe l t = [Lin l t ℄type RangeRe l = [(l, Range)℄{-- Funtions ---Ceiling : Returns the eiling of a RangeConatenation : Conatenation of Ranges, Symbols andLinearizations and reords of LinearizationsReord transformation: Makes a Range reord from a fully instantiatedLinearization reordReord projetion : Given a label, returns the orresponding RangeRange restrition : Range restrition of Tokens, Symbols,Linearizations and Reords given a list of TokensReord replament : Substitute a reord for another in a list of RangereordsArgument substitution: Substitution of a Cat at to a Tok Range, whereRange is the over of atNote: The argument is still a Symbol RangeReord Subsumation : Cheks if a Range reord subsumes another RangereordReord unifiation : Unifiation of two Range reords--}--- Ceiling ---eil :: Range -> Rangeeil ERange = ERangeeil (Range (i, j) = (Range (j, j)58

--- Conatenation ---onRanges :: Range -> Range -> Nondet RangeonRanges ERange (Range (i, j)) =return (Range (i, j))onRanges (Range (i, j)) (Range (j', k)) =do guard (j == j')return (Range (i, k))onSymbols :: [Symbol Range ℄ -> Nondet [Symbol Range ℄onSymbols (Tok rng:Tok rng':toks) = do rng� <- onRanges rng rng'onSymbols (Tok rng�:toks)onSymbols (sym:syms) = do syms' <- onSymbols symsreturn (sym:syms')onSymbols [℄ = return [℄onLin :: Lin l Range -> Nondet (Lin l Range)onLin (Lin lbl syms) = do syms' <- onSymbols symsreturn (Lin lbl syms')onLinRe :: LinRe l Range -> Nondet (LinRe l Range)onLinRe = mapM onLin--- Reord transformation ---makeRangeRe :: LinRe l Range -> RangeRe lmakeRangeRe lins = map (\(Lin lbl [Tok rng ℄) -> (lbl, rng)) lins--- Reord projetion ---projetion :: Eq l => l -> RangeRe l -> Nondet Rangeprojetion l re = maybe failure return $ lookup l re--- Range restrition ---rangeRestTok :: Eq t => [t ℄ -> t -> Nondet RangerangeRestTok toks tok = do i <- member (elemIndies tok toks)return (makeRange (i, i + 1))rangeRestSym :: Eq t => [t ℄ -> Symbol a t -> Nondet (Symbol a Range)rangeRestSym toks (Tok tok) = do rng <- rangeRestTok toks tokreturn (Tok rng)rangeRestSym _ (Cat at) = return (Cat at)rangeRestLin :: Eq t => [t ℄ -> Lin l t -> Nondet (Lin l Range)rangeRestLin toks (Lin lbl syms) =do syms' <- mapM (rangeRestSym toks) syms59

return (Lin lbl syms')rangeRestRe :: Eq t => [t ℄ -> LinRe l t-> Nondet (LinRe l Range)rangeRestRe toks = mapM (rangeRestLin toks)-- Reord replament --replaeRe :: [RangeRe l ℄ -> Int -> RangeRe l -> [RangeRe l ℄replaeRe res i re = (fst tup) ++ [re ℄ ++ (tail $ snd tup)where tup = splitAt i res--- Argument substitution ---substArgSymbol :: Eq l => Int -> RangeRe l -> Symbol (, l, Int) Range-> Symbol (, l, Int) RangesubstArgSymbol i re (Tok rng) = (Tok rng)substArgSymbol i re (Cat (at, lbl, j))| i==j = maybe (Cat (at, lbl, j)) Tok $ lookup lbl re| otherwise = (Cat (at, lbl, j))substArgLin :: Eq l => Int -> RangeRe l -> Lin l Range-> Lin l RangesubstArgLin i re (Lin lbl syms) =(Lin lbl (map (substArgSymbol i re) syms))substArgRe :: Eq l => Int -> RangeRe l -> LinRe l Range-> LinRe l RangesubstArgRe i re lins = map (substArgLin i re) lins--- Reord Subsumation --subsumes :: Eq l => RangeRe l -> RangeRe l -> Boolsubsumes re re' = and [elem r re' | r <- re ℄--- Reord unifiation --unifyRangeRes :: Ord l => [RangeRe l ℄ -> [RangeRe l ℄-> Nondet [RangeRe l ℄unifyRangeRes res res' = zipWithM unify res res'where unify re [℄ = return reunify [℄ re = return reunify re1'�(p1�(l1, r1):re1) re2'�(p2�(l2, r2):re2)= ase ompare l1 l2 ofLT -> do re3 <- unify re1 re2'return (p1:re3)GT -> do re3 <- unify re1' re2return (p2:re3)EQ -> do guard (r1 == r2)re3 <- unify re1 re2return (p1:re3)60

A.3 NaiveParseThe ative item 11 in the naïve parse hart in �gure 3.2 on page 31 is writtenin ode asAtive ("g",A,[A℄,[A℄)[Lin "p" [Tok (Range (1,2)),Cat (A,"p",1)℄,Lin "q" [Tok (Range (3,4)),Cat (A,"q",1)℄℄[("p",Range (1,2)),("q",Range (3,4))℄where the dot in the DottedRule is represented as two lists of ategories, [A℄,[A℄.The passive item 13 is in turn written asPassive S[("s",Range (0,4))℄This is also the goal item for reognition.{-- Module --Filename : NaiveParse.hsAuthor : Håkan BurdenTime-stamp : <2005-02-24, 14:43>Desription: An agenda-driven implementation of the algorithm 4.2.1,"Polynomial parsing for ontext-free GF",as desribed in Ljunglöf (2004)--}module NaiveParse where-- imported GF modulesimport ExampleGrammarimport GeneralChartimport MCFGrammarimport MCFParserimport Nondetimport Parserimport Ranges{-- Datatypes and types ---NChart : A RedBlakMap with Items and NKeysItem : The parse Items are either Ative or PassiveNKey : One key for Ative Items, one for Passive Items and one forAtive Items onverted to Passive Items--}type NChart n l = ParseChart (Item n l) (NKey)data Item n l = Ative (DottedRule n)(LinRe l Range)(RangeRe l)| Passive (RangeRe l)61

deriving (Eq, Ord, Show)data NKey = At | Pass | Finalderiving (Eq, Ord, Show){-- Parsing ---reognize: Returns 'True' if the goal Item is in the parse-hartotherwise 'False'parse : Builds a hart from the initial agenda (given by predition)and the inferene ruleskeyof : Given an Item returns an appropriate NKey for storing theItem in the Chart--}reognize :: Grammar String NT String String -> [String ℄ -> Boolreognize mfg toks =hartMember (parse mfg toks)(Passive S [(�s�, Range (0, n))℄(Pass S)parse :: (Eq t, Ord n, Ord , Ord l) => Grammar n l t -> [t ℄-> NChart n lparse mfg toks = buildChart keyof [onvert, ombine ℄(predit mfg toks)keyof :: Item n l -> NKey keyof (Ative (_, _, _, (next:_)) lins _) = At nextkeyof (Passive at _) = Pass atkeyof _ = Final{--Inferene rules --predit: Creates an Ative Item of every Rule in the Grammar to give theinitial agendaombine: Creates an Ative Item every time it is possible to ombine anAtive Item from the agenda with a Passive Item from the Chartonvert: Ative Items with nothing to find are onverted to Passive Items--}predit :: (Eq t, Eq) => [t ℄ -> Grammar n l t -> [Item n l ℄predit mfg toks =[Ative (f, at, [℄, rhs) lins' [℄ | Rule at rhs lins f <- mfg,lins' <- solutions $ rangeRestRe toks lins ℄ombine :: (Ord n, Ord , Ord l) => ParseChart (Item n l) (NKey)-> Item n l -> [Item n l ℄ombine hart (Ative (f, at', found, (at:toFind)) lins re) =[Ative (f, at', found ++ [at ℄, toFind) lins� (re ++ re') |Passive at re' <- hartLookup hart (Pass at),lins� <- solutions $ onLinRe $ substArgRe (length found)re' lins ℄ombine hart (Passive at re) =[Ative (f, at', found ++ [at ℄, toFind) lins� (re'++ re) |(Ative (f, at', found, (at:toFind)) lins' re')<- hartLookup hart (At at),62

lins� <- solutions $ onLinRe $ substArgRe (length found)re lins' ℄ombine _ _ = [℄onvert :: (Ord n, Ord , Ord l) => ParseChart (Item n l) (NKey)-> Item n l -> [Item n l ℄onvert _ (Ative (f, at, rhs, [℄) lins _) =[Passive at (makeRangeRe lins) ℄onvert _ _ = [℄A.4 ApproxParseThere are four di�erent kinds of items for the Approximative algorithm, pre-mg, pre, mark and passive. The pre-mfg item
[g; {q = (2, 4); {q = (2, 3), q = (3, 4)}]is written asPreMCFG "g"[("q",Range (2,4))℄[[("q",Range (2,3))℄,[("q",Range (3,4))℄℄The pre item

[A→ bd[]; {p = (1, 2)}; {q}; {}]looks as followsPre ("bd",A,[℄) [("p",Range (1,2))℄ ["q"℄ [℄A mark item uses DottedRules and has two lists for separating marked rangereords from unmarked ones
[A→ g[A•A]; {p = (0, 2), q = (2, 4)}; {p = (0, 1), q = (2, 3)}; {p = (1, 2), q = (3, 4)}]This item will look likeMark ("g",A,[A℄,[A℄)[("p",Range (0,2)),("q",Range (2,4))℄[("p",Range (0,1)),("q",Range (2,3))℄[[("p",Range (1,2)),("q",Range (3,4))℄℄when written in ode. Finally we have the passive items, that look just like thepassive items for the Naïve algorithm.63

Passive S [("s",Range (0,4))℄is the goal item
[S; {s = (0, 4)]{-- Module --Filename : ApproxParse.hsAuthor : Håkan BurdenTime-stamp : <2005-03-08 16:36:26>Desription: An agenda-driven implementation of the algorithm 4.3.4,"Parsing through ontext-free approximation",as desribed in Ljunglöf (2004)--}module ApproxParse where-- imported Haskell modulesimport Listimport Monad-- imported GF modulesimport ConvertMCFGtoDeoratedCFGimport qualified DeoratedCFParser as CFPimport qualified DeoratedGrammar as CFGimport ExampleGrammarimport GeneralChartimport qualified MCFGrammar as MCFGimport MCFParserimport Nondetimport Parserimport Ranges{-- Datatypes ---AChart: A RedBlakMap of Items and AKeysItem : Four different Items are used:* PreMCFG for MCFGPre-Items,* Pre-Items are the Items returned by the pre-Funtions,* Mark-Items are the orresponding Items for the mark-Funtions,* orretly marked Mark-Items are onverted to Passive Items.AKey : One AKey for every kind of Item and one for Items to be onverted--}data Item n l = PreMCFG n(RangeRe l)[RangeRe l ℄| Pre (AbstratRule n)(RangeRe l)[l ℄[RangeRe l ℄| Mark (DottedRule n)(RangeRe l)(RangeRe l)[RangeRe l ℄| Passive 64

(RangeRe l)deriving (Eq, Ord, Show)type AChart n l = ParseChart (Item n l) (AKey n l)data AKey n l = Pm n l| Pr n l| Mk (RangeRe l)| Ps (RangeRe l)| Finalderiving (Eq, Ord, Show){-- Parsing ---reognize: Returns 'True' if the goal Item is the parse-hart,otherwise 'False'parse : Builds a parse-hart from the agenda and the inferene rules.The agenda onsists of the Passive Items from ontext-freeapproximation (as PreMCFG-Items) and the Pre-Items inferred bypre-predition. The Context-Free parsing is done by eitherbottom-up or top-down filteringkeyof : Given an Item returns an appropriate Key for storing the Itemin the Chart--}reognize :: (Ord t) => Strategy-> MCFG.Grammar String NT String t -> [t℄ -> Boolreognize strategy mfg toks =hartMember (parse strategy mfg toks) (Passive S re) (Ps S re)where re = [("s" , MCFG.Range (0, length toks))℄parse :: (Ord t) => CFP.Strategy -> MCFG.Grammar String NT String t-> [t ℄ -> AChart String NT Stringparse strategy mfg toks =buildChart keyof [preCombine, markPredit, markCombine, onvert ℄((makePreItems (CFP.parse strategy(CFG.pInfo (onvertGrammar mfg))[(S, "s")℄ toks)) ++(prePredit mfg))keyof :: Item n l -> AKey n lkeyof (PreMCFG f [(lbl, rng)℄ _) = Pm f lblkeyof (Pre (f, _, _) _ (lbl:_) _) = Pr f lblkeyof (Mark (_, _, _, (at:_)) _ _ (re:_)) = Mk at rekeyof (Passive at re) = Ps at rekeyof _ = Final{-- Initializing agenda ---makePreItems: Every Passive Item from the Context-Free hart is made into aPreMCFG-Item--}makePreItems :: (Eq , Ord i) => CFG.Grammar n (Edge (, l)) i t-> [Item n l ℄makePreItems fhart = 65

[PreMCFG fun [(lbl, MCFG.makeRange (i, j))℄ (symToRe beta) |CFG.Rule (Edge i j (at,lbl)) beta fun <- fhart ℄{-- Inferene rules ---prePredit : Predits a Pre-Item for every Rule in the MCF grammarpreCombine : Combines a Pre-Item looking for the lable l with aPreLCFG-Item for l into a new Pre-ItemmarkPredit: Predits a Mark-Item for every Pre-Item with no lables left tolook formarkCombine: Combines a Mark-Item looking for a reord re with a PassiveItem for re into a new Mark-Itemonvert : Converts a fully marked Mark-Item into a Passive Item--}prePredit :: (Ord n, Ord , Ord l) => MCFG.Grammar n l t-> [Item n l ℄prePredit mfg = [Pre (f, at, rhs) [℄ (getLables lins)(repliate (length rhs) [℄) |MCFG.Rule at rhs lins f <- mfg ℄preCombine :: (Ord n, Ord , Ord l)=> ParseChart (Item n l) (AKey n l) -> Item n l-> [Item n l ℄preCombine hart (Pre head�(f, _, _) re (l:ls) res) =[Pre head (re ++ [(l, r)℄) ls res� |PreMCFG f [(l, r)℄ res' <- hartLookup hart (Pm f l),res� <- solutions (unifyRangeRes res res') ℄preCombine hart (PreMCFG f [(l, r)℄ res) =[Pre head (re ++ [(l, r)℄) ls res� |Pre head re (l:ls) res' <- hartLookup hart (Pr f l),res� <- solutions (unifyRangeRes res res') ℄preCombine _ _ = [℄markPredit :: (Ord n, Ord , Ord l)=> ParseChart (Item n l) (AKey n l) -> Item n l-> [Item n l℄markPredit _ (Pre (f, at, rhs) re [℄ res) =[Mark (f, at, [℄, rhs) re [℄ res ℄markPredit _ _ = [℄markCombine :: (Ord n, Ord , Ord l)=> ParseChart (Item n l) (AKey n l) -> Item n l-> [Item n l ℄markCombine hart (Mark (f, at', found, (at:toFind)) re' marked(re:toMark)) =[Mark (f, at', found ++ [at ℄, toFind) re'(marked ++ re) toMark |Passive at re <- hartLookup hart (Ps at re) ℄markCombine hart (Passive at re) =[Mark (f, at', found ++ [at ℄, toFind) re' (marked ++ re)toMark |Mark (f, at', found, (at:toFind)) re' marked (re:toMark)<- hartLookup hart (Mk at re) ℄markCombine _ _ = [℄ 66

onvert :: (Ord n, Ord , Ord l)=> ParseChart (Item n l) (AKey n l) -> Item n l-> [Item n l℄onvert _ (Mark (_, at, _, [℄) re re' [℄) = [Passive at re ℄onvert _ _ = [℄{-- Helper funtions --getLables: Returns the list of lables in LinResymToRe : Gives a RangeRe from the lables and ranges in the Context-Freehart--}getLables :: LinRe l t -> [l ℄getLables lins = [l | MCFG.Lin l syms <- lins ℄symToRe :: Ord i => [Symbol (Edge (, l), i) d ℄-> [[(l, MCFG.Range)℄℄symToRe beta =map makeLblRng $ groupBy (\(_, d) (_, d') -> (d == d'))$ sortBy sBd [(Edge i j (, l) , d) |Cat (Edge i j (, l), d) <- beta ℄where makeLblRng edges =[(l, (MCFG.makeRange (i, j))) |(Edge i j (_, l), _) <- edges℄sBd (_, d) (_, d')| d < d' = LT| d > d' = GT| otherwise = EQA.5 AtiveParseFor the Earley funtion initial the rules with a start symbol as left-hand sideis hard-oded. In the atual GF implementation it is substituted for the resultfrom the funtion pInfo, whih returns the parse-information of the grammar.The two rules for Earley predition are ombined into one rule in the ode.The ative item 13 in �gure 3.6 looks likeAtive ("g",A,[A,A℄)[℄(Range (1,2))(Lin "p" [Cat (A,"p",1)℄)[Lin "q" [Cat (A,"q",0),Cat (A,"q",1)℄℄[[("p",Range (1,2)),("q",Range (3,4))℄,[℄℄written in ode. When fully instantiated and onverted to a passive item itlooks likePassive A[("p",Range (0,2)),("q",Range (2,4))℄The inferene rules for Kilbury and Earley predition are given in the end ofthe module. 67

{-- Module --Filename : AtiveParse.hsAuthor : Håkan BurdenTime-stamp : <2005-03-24, 14:43>Desription: An agenda-driven implementation of algorithm 4.6,"Ative parsing of PMCFG",as desribed in Ljunglöf (2004)--}module AtiveParse where-- imported GF modulesimport ExampleGrammarimport GeneralChartimport MCFGrammarimport MCFParserimport Nondetimport Parserimport Ranges{-- Datatypes ---AChart: A RedBlakMap with Items and AKeysItem : Items are either Ative or PassiveAKey : One key for every kind of Item and one for Ative Items onvertedto Passive Items--}data Item n l = Ative (AbstratRule n)(RangeRe l)Range(Lin l Range)(LinRe l Range)[RangeRe l ℄| Passive [RangeRe l ℄deriving (Eq, Ord, Show)type AChart n l = ParseChart (Item n l) (AKey)data AKey = At | Pass | Finalderiving (Eq, Ord, Show){-- Parsing ---reognize: If the goal Item is in the parse-hart: 'True',otherwise: 'False'parse : Builds a Chart from the initial agenda, given by predition, andthe inferene rules. Parsing an be done with either Earley orKilbury filtering, or without filteringkeyof : Given an Item returns an appropriate Key for storing the Item inthe Chart--}reognize :: Strategy -> Grammar String NT String String -> [String ℄-> Bool 68

reognize strategy mfg toks =hartMember (parse strategy mfg toks) item (keyof item)where item = Passive S [("s", Range (0, n))℄n = length toksparse :: (Ord n, Ord , Ord l, Eq t) => Strategy -> Grammar n l t-> [t ℄ -> ParseChart (Item n l) (AKey)parse (False, False) mfg toks =buildChart keyof[omplete, san, ombine, onvert ℄(predit mfg toks)parse (True, False) mfg toks =buildChart keyof[preditKilbury mfg toks, omplete, ombine, onvert ℄(terminal mfg toks)parse (False, True) mfg toks =buildChart keyof[preditEarley mfg toks,omplete, san, ombine, onvert ℄(initial (take 1 mfg) toks)keyof :: Item n l -> AKey keyof (Ative _ _ _ (Lin _ ((Cat (next, _, _)):_)) _ _) = At nextkeyof (Passive at _) = Pass atkeyof _ = Final{--Inferene rules --predit : Creates an Ative Item of every Rule in the Grammar to give theinitial Agendaomplete: Predits an Ative Item for the next linearization row, if theprevious row is fully satisfied.san : If the next symbol to read is a range for a token, onatenatethe range for what is found so far with the range for the tokenombine : Creates an Ative Item every time it is possible to ombinean Ative Item from the agenda with a Passive Item from the Chartonvert : Ative Items with nothing to find are onverted to Passive Items--}predit :: Eq t => Grammar n l t -> [t ℄ -> [Item n l ℄predit grammar toks = [Ative (f, at, rhs) [℄ ERange lin' lins'(repliate (length rhs) [℄) |Rule at rhs lins f <- grammar,(lin':lins')<- solutions $ rangeRestRe toks lins ℄omplete :: (Ord n, Ord , Ord l) => ParseChart (Item n l) (AKey)-> Item n l -> [Item n l ℄omplete _ (Ative rule found (Range (i, j)) (Lin l [℄)(lin:lins) res) =[Ative rule (found ++ [(l, Range (i,j))℄) ERange linlins res ℄omplete _ _ = [℄san :: (Ord n, Ord , Ord l) => ParseChart (Item n l) (AKey)-> Item n l -> [Item n l ℄69

san _ (Ative rule found rng (Lin l ((Tok rng'):syms)) lins res) =[Ative rule found rng� (Lin l syms) lins res |rng� <- solutions $ onRanges rng rng' ℄san _ _ = [℄ombine :: (Ord n, Ord , Ord l) => ParseChart (Item n l) (AKey)-> Item n l -> [Item n l ℄ombine hart (Ative rule found rng (Lin l ((Cat (, r, d)):syms))lins res) =[Ative rule found rng� (Lin l syms) lins(replaeRe res d found') |Passive _ found' <- hartLookup hart (Pass),rng' <- solutions $ projetion r found',rng� <- solutions $ onRanges rng rng',subsumes (res !! d) found' ℄ombine hart (Passive found) =[Ative rule found' rng (Lin l syms) lins(replaeRe res' d found) |Ative rule found' rng' (Lin l ((Cat (, r, d)):syms))lins res'<- hartLookup hart (At),rng� <- solutions $ projetion r found,rng <- solutions $ onRanges rng' rng�,subsumes (res' !! d) found ℄ombine _ _ = [℄onvert :: (Ord n, Ord , Ord l) => ParseChart (Item n l) (AKey)-> Item n l -> [Item n l ℄onvert _ (Ative (f, at, rhs) found rng (Lin l [℄) [℄ res) =[Passive at (found ++ [(l, rng)℄) ℄onvert _ _ = [℄{-- Earley Filtering --initial : Predit an Ative Item for every rule in the grammar wherethe left-hand side of the rule is a start symbolpreditEarley: If there is an Ative Item looking for a ategory and a rulewhere that ategory is the left-hand side of a rule, predita new Item--}initial :: Eq t => [Rule n l t ℄ -> [t ℄ -> [Item n l ℄initial starts toks =[Ative (f, s, rhs) [℄ (Range (0, 0)) lin' lins'(repliate (length rhs) [℄) |Rule s rhs lins f <- starts,(lin':lins') <- solutions $ rangeRestRe toks lins ℄preditEarley mfg toks _ (Ative _ _ rng(Lin _ ((Cat (at, _, _)):_)) _ _) =onat [earley rng rule | rule�(Rule at' _ _ _)<- mfg, at == at' ℄where earley _ (Rule at [℄ lins f) =[Passive at (makeRangeRe lins') |lins' <- solutions $ rangeRestRe toks lins ℄earley rng (Rule at rhs lins f) =[Ative (f, at, rhs) [℄ (eil rng) lin' lins'70

(repliate (length rhs) [℄) |(lin':lins') <- solutions $ rangeRestRe toks lins ℄preditEarley _ _ _ _ = [℄{-- Kilbury Filtering ---preditKilbury: Predit an Ative Item for a rule if there already is aPassive Item for the first ategory in the firstlinearization rowterminal : Predit a Passive Item for every rule with empty right-handside--}preditKilbury mfg toks _ (Passive (_, at, _) found _) =[Ative (f, a, rhs) [℄ rng lin' lins' daughters |Rule a rhs ((Lin l ((Cat (at', r, i)):syms)):lins) f <- mfg,at == at',lin' <- solutions $ rangeRestLin toks (Lin l syms),lins' <- solutions $ rangeRestRe toks lins,rng <- solutions $ projetion r found,let daughters =(replaeRe (repliate (length rhs) [℄) i found) ℄preditKilbury _ _ _ _ = [℄terminal mfg toks =[Passive at (makeRangeRe lins') |Rule at [℄ lins f <- mfg,lins' <- solutions $ rangeRestRe toks lins ℄A.6 InrementalParseThe ative item
[A→ g[A, A]; {p = (0, 2)}, q = (2, 4)•; Γ〈ac,bd〉]where Γ〈ac,bd〉 is taken from �gure 3.2, will be written asAtive ("g",A,[A,A℄)[("p",Range (0,2))℄(Range (2,4))(Lin "q" [℄)[℄[[("p",Range (0,1)),("q",Range (2,3))℄,[("p",Range (1,2)),("q",Range (3,4))℄℄The layout follows the de�nition of an ative item in the ode.{-- Module --Filename : InrementalParse.hsAuthor : Håkan BurdenTime-stamp : <2005-04-29, 14:10>Desription: An agenda-driven implementation of algorithm 4.6,"Inremental PMCFG parsing",71

as desribed in Ljunglöf (2004)--}module InrementalParse where-- imported Haskell modulesimport List-- imported GF modulesimport ExampleGrammarimport GeneralChartimport MCFGrammarimport MCFParserimport Parserimport Rangesimport Nondet{-- Datatypes ---IChart: A RedBlakMap with Items and IKeysItem : One kind of Item sine the Passive Items not neessarily need tobe fully saturated, they an still have rows to reognize.IKey : Three kind s of IKeys; one for Items investigating an unsaturatedrow, one for Items who have saturated an entire row and one forfully saturated Items--}type IChart n l = ParseChart (Item n l) (IKey l)data Item n l = Ative (AbstratRule n)(RangeRe l)Range(Lin l Range)(LinRe l Range)[RangeRe l ℄deriving (Eq, Ord, Show)data IKey l = At l Int| Pass l Int| Finalderiving (Eq, Ord, Show){-- Parsing ---reognize: Reurns 'True' if the goal Item is in the Chart,otherwise 'False'parse : Builds a Chart from the initial agenda, given by predition, andthe inferene ruleskeyof : Given an Item returns an appropriate IKey for storing the Itemin the Chart--}reognize mfg toks = hartMember (parse mfg toks) item (keyof item)where item = Ative ("f", S, [A ℄)[℄ (Range (0, n)) (Lin "s" [℄) [℄[[("p", Range (0, n2)), ("q", Range (n2, n))℄℄n = length toksn2 = n `div` 2 72

parse :: (Ord n, Ord , Ord l, Eq t) => Grammar n l t -> [t ℄-> IChart n lparse mfg toks = buildChart keyof[omplete toks n, san, ombine ℄(predit mfg toks n)where n = length tokskeyof :: Item n l -> IKey lkeyof (Ative _ _ (Range (_, j))(Lin _ ((Cat (next, lbl, _)):_)) _ _)= At next lbl jkeyof (Ative (_, at, _) found (Range (i, _)) (Lin lbl [℄) _ _)= Pass at lbl ikeyof _= Final{-- Inferene Rules ---predit : Predits an Item for every linearization row in every rule in thegrammaromplete: Predits a new item for every remaining linearization row, whenthe previous row is fully saturatedsan : Range onatenates the range for what is found so far with therange of the next symbol, if it is a linearized tokenombine : Combines an Ative Item looking for the ategory at with aPassive Item for at--}predit :: (Eq n, Eq , Eq l, Eq t) => Grammar n l t -> [t ℄ -> Int-> [Item n l ℄predit mfg toks n =[Ative (f, , rhs) [℄ (Range (k, k)) lin' lins�(repliate (length rhs) [℄) |Rule rhs lins f <- mfg,lins' <- solutions $ rangeRestRe toks lins,(lin', lins�) <- selet lins',k <- [0..n ℄ ℄omplete :: (Ord n, Ord , Ord l) => [t ℄ -> Int-> ParseChart (Item n l) (IKey l) -> Item n l-> [Item n l ℄omplete toks n _ (Ative rule found rng�(Range (_, j)) (Lin l [℄)lins res) =[Ative rule (found ++ [(l, rng)℄) (Range (k, k))lin lins' res | (lin, lins') <- selet lins,k <- [j..n ℄ ℄omplete _ _ _ _ = [℄san :: (Ord n, Ord , Ord l) => ParseChart (Item n l) (IKey l)-> Item n l -> [Item n l ℄san _ (Ative rule found rng (Lin l ((Tok rng'):syms)) lins res) =[Ative rule found rng� (Lin l syms) lins res |rng� <- solutions $ onRanges rng rng' ℄san _ _ = [℄ 73

ombine :: (Ord n, Ord , Ord l)=> ParseChart (Item n l) (IKey l) -> Item n l-> [Item n l ℄ombine hart (Ative rule found rng�(Range (_, j))(Lin l ((Cat (, r, d)):syms)) lins res) =[Ative rule found rng� (Lin l syms) lins(replaeRe res d (found' ++ [(l', rng')℄)) |Ative _ found' rng' (Lin l' [℄) _ _<- hartLookup hart (Pass r j),subsumes (res !! d) (found' ++ [(l', rng')℄),rng� <- solutions $ onRanges rng rng' ℄ombine hart (Ative (_, , _) found rng'�(Range (i, _))(Lin l [℄) _ _) =[Ative rule found' rng� (Lin l' syms) lins(replaeRe res d (found ++ [(l, rng')℄)) |Ative rule found' rng (Lin l' ((Cat (, r, d)):syms))lins res <- hartLookup hart (At l i),subsumes (res !! d) (found ++ [(l,rng')℄),rng� <- solutions $ onRanges rng rng' ℄ombine _ _ = [℄

74

