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Abstract—To obtain the information encoded in software it
is necessary to master both the implementation languages and
the tools. This is not only a problem for managers and user
groups who have a claim in the outcome but not the necessary
training in software development to decode the implementation
- our case study shows that it is also a problem for the software
developers. In contrast, text can be understood by everyone. The
generation of textual summaries from software artifacts enables a
more accessible format for validating software. Based on findings
from interviewing practitioners in industry, we have developed
a prototype for generating natural language summaries from
component interfaces for validation purposes.

Keywords—Natural language processing; Reverse engineering;
Software components;

I. INTRODUCTION

One way of handling complexity in large-scale software
development is to decompose the system into autonomous sub-
systems that can be independently developed and maintained.
In order to successfully integrate the implemented subsystems
into a complete and well-functioning system it is necessary to
define the connecting points, the interfaces, of the subsystems
before or during the implementation [1], [2].

However, the validation of the interfaces is not trivial. For
code-centric development it requires an understanding of the
used programming languages. In a model-based approach to
software development the problem is described by Arlow et.
al. [3] as consisting of three main challenges; the necessity
to understand the modeling tools used during development,
the need to understand and interpret the models that describe
the subsystems and their interfaces as well as the underlying
paradigm of the models. So, independent of how the subsys-
tems and their interfaces are implemented their validation can
only be done by those who understand the implementation.
This excludes many of those that have a claim in the delivered
system, such as managers and user groups but it also affects
many of the system developers. In contrast, textual summaries
have the benefit that they can be consumed by all with a claim
in the developed software [4].

In an on-going study of model-driven software develop-
ment for embedded systems in large corporations we discov-
ered that the software engineers had problems with accessing
the information encoded in the models in general as well as
verifying the correctness of the interfaces in particular. To
investigate the effort needed to generate textual summaries

from the interfaces we developed a prototype solution, reusing
existing software models.

Contribution: First we describe the problem of validating
interfaces according to practitioners in industry and why NLG
is a possible solution. We then show that the generation of
textual summarisations of interfaces can be done with a limited
additional effort. The natural language generation technique
can be used for other interface specifications that belong to
the same modelling language.

Overview: The next section presents the theoretical context
of our study, while the practical details are given in Section III.
The results are found in Section IV and we finish off with a dis-
cussion and possibilities for future explorations in Section V.

II. THEORETICAL CONTEXT

We begin by explaining a few theoretical aspects concern-
ing software models and the specific methodology that we used
for generating textual summaries. Related contributions in the
area of generating textual summaries from software conclude
this section.

A. Model-Driven Engineering

One of the aims of using software models is to raise
the level of abstraction in order to capture what is generic
about a solution. Such a generic, or platform-independent [5],
[6], solution can be reused for describing the same software
independent of the platform i.e. the operating system, hardware
and programming languages that are chosen to implement the
system. The level of detail in the models then depend on if
they are to be used as sketches giving the general ideas of
the system, blueprints for manual adaptation into source code
or if they are code generators and developed with a tool that
supports the automatic model translation into source code [7].
A condition for the latter is that there is a metamodel [5],
[8] that specifies the syntactical properties of the modelling
language, just as textual programming languages like Java and
C have a syntactical specification that can be encoded in BNF
[9], [10].

B. Executable and Translatable UML

Executable and Translatable UML, xtUML; [11], [12],
evolved from merging the Schlaer-Mellor methodology [13]
with the Unified Modeling Language, UML. Three kinds of



Fig. 1. The possible signals between the MicroOven and the Tester listed as
an interface.

graphical diagrams are used together with a textual Action lan-
guage. The diagrams are component diagrams, class diagrams
and state machines. The diagrams are organised hierarchically
so that state machines are found inside classes, classes inside
components and components can be recursively nested inside
other components. The Action language is then used within
the diagrams to specify their behaviour and properties. When
the models are complete with respect to behaviour and struc-
ture they can be automatically transformed into source code
through model translation.

Components: A component interacts with other compo-
nents across an interface. An interface declares a contract in
form of a set of public features and obligations but not how
these are to be implemented. The information and behaviour
of the component is only accessible through the specified
interface so that the component can be treated as a black box.
An example of two components and their interfaces is shown
in Figure 1. It consists of two components, MicroOven and
Tester where MicroOven provides an interface which Tester
depends on.

Class diagrams: For the case of this study it is sufficient
to view an xtUML class diagram as equivalent to a UML class
diagram.

State machines: In the context of xtUML, a state machine
is used to model the lifecycle of a class or an object [13]. The
transitions between the states can either be defined as internal
events or the signals defined by the interface can be mapped
onto the transitions so that the external calls change the internal
state of the component.

Figure 2 shows the lifecycle of a test object residing inside
the Tester component. From the state Initial it is possible to
reach the GenerateTimer state by the internal trigger next().
When the external trigger confirmTimer() is called the test
object is updated and the new state is ValidateTimer. Some
of the states include pseudo-code to indicate the action to be
taken when entering that state.

The semantics of xtUML state machines differ from that
of finite-state automata in that the former can interact with
their environment as by creating and deleting instances of
classes, dispatching events in other state machines and trigger
the sending of signals across interfaces etc. Also, if a trigger
event does not enable a transition it is not necessarily an error
since transition triggers can be ignored if so desired.

Action language: An important property of xtUML is
the Action language. It is a textual programming language
that is integrated with the graphical models, sharing the same

Fig. 2. The state machine in Tester describing the validation process.

metamodel [13]. Since the Action language shares the same
metamodel as the graphical models it can be used to define
how values and class instances are manipulated as well as
how the classes change their state. Thus we can find Action
language within the operations of the classes but it is also
used to define the behaviour and the flow of calls through the
interface between the components.

Model translation: Code generation is a specific case of
model translation with the aim of translating the model into
code. However, model translations can just as well be used
for reverse engineering the model into more abstract represen-
tations [14], [15]. Model translations are defined according to
the metamodel, enabling the same transformations to be reused
across domains [5], [16], just like a C compiler is defined
on the BNF grammar, not on a specific C program [9]. The
models become the code. An example of what the xtUML
transformation rules look like and how they can be used is
found in Figure 5, which will be further explained in section
III-D.

C. Related Work

Previous research has reported on both formal and informal
ways of validating the behaviour and structure of software.
Examples of formal methods for validating the interfaces are
presented by Hatcliff et. al. [17], Mencl [18] as well as Uchitel
and Kramer [19] among many. However, they all have similar
problems as those mentioned previously by Arlow et. al. [3];
formal methods require knowledge of the tools, knowledge of
the used models and their paradigm as well as knowledge of
the formal methods.

Lately there has been an increase in the attention towards
more informal possibilities for validating software. Spreeuwen-
berg et. al. [20] argue that if you want to include all stake-
holders in the development process you need to have a textual
representation of the software models that has the right level
of abstraction. In their case they generate a controlled natural
language [21] to validate candidate policy decisions for the
Dutch Immigration Office.

Another approach towards text generation from platform-
independent representations is the translation between the
Object Control Language, OCL [22], and English [23], [24].



This work was followed up by a study on natural language gen-
eration of platform-independent contracts on system operations
[25], where the contracts were defined as OCL constraints that
specified the pre- and post-conditions of system operations,
i.e. what should be true before and after the operation was
executed.

A crosscutting concern is a piece of functionality, such as
an algorithm, that is implemented in one or more components.
As a result of being scattered across the implementation they
are difficult to analyse and when changed or updated it is
difficult to estimate how the changes are going to affect the rest
of the implementation. Rastkar et. al. [26] argue that having
a natural language summary of each concern enables a more
systematic approach towards handling the changes. They have
therefor implemented a system for generating summaries in
English from Java implementations.

Sridhara et. al. [27], [28] have also generated natural
language from software implementations, in their case from
Java code. The motivation is that understanding code is both
a time consuming activity and that accurate descriptions can
summarise the algorithmic behaviour of the code and as well
as reduce the amount of code a developer needs to read for
comprehension. The automatic generation of summaries from
code mean that it is easy to keep descriptions and software
synchronized. Another approach to textual summarisations of
Java code is given by Haiduc et. al. [29]. They claim that
developers spend more time reading and navigating code than
actually writing it. Central to these publications is that they
have to have some technique for filtering out the non-functional
properties from the source code before translation into natural
language.

There are two previous publications on generating textual
descriptions from xtUML. The first describes how natural
language specifications can be generated from class diagrams
[30] while the second reports on the translation from Action
language to English [31] e.g. these publications concentrate
on generating textual summaries that describe the internal
properties of the components instead of the interaction among
components.

III. CASE STUDY

In our collaboration on model-driven engineering with
Ericsson AB, Volvo Group Trucks Technology and Volvo
Cars Corporation we encountered the problem of validating
component interfaces. During our interviews the engineers
reported that it was sometimes challenging to validate that the
interface was correctly implemented and that the information
needed for the validation could be difficult to obtain. As a re-
sponse we developed a prototype to explore the possibilities to
generate natural language summaries for validating component
interfaces while keeping the added effort to a minimum.

A. Motivation

The interviews were conducted in January 2013, stretching
into April 2013. The following interview extract illustrates the
problem of understanding the implementation by reading its
textual specification.

But we have a text document that’s about 300 or 400 pages
in total if you take all the documents. And that hasn’t been

updated for a couple of years. So this is wrong. This document
is not correct.

Another issue is that sometimes the engineers are asked to
specify the interface before they fully understand the internal
behaviour of the component being developed. This means that
defining the interface becomes guess work and subsequently
there are signals that will never be used but still be given their
share of the limited processing capacity.

Q: So do you overload the interface? Throw in a signal
just in case?

A: Yes, that is what we do. At least I do it [. . . ] and then
you end up with the problem knowing which signal it is you
should actually use.

One of the other interviewees had developed a work-around
for handling that the interface specification was constantly out-
dated. The solution is to sieve through a second document after
the information that concerns the interface being developed and
translate that information into a new, temporary, specification.

We have in our requirements a list of signals used in the
requirement. Now that list is seldom updated. It’s hardly ever,
so they’re always out of date. So I don’t actually read them
anymore. I just go in through the specific sub-requirements and
I read what is asked for my functionality. This is asked. What
do I need? I need this and this. So, yeah, so I do it manually,
I guess.

As a final example of the problems concerning the valida-
tion of the component interfaces, a software architect stated
that the development tools were difficult to learn and that the
development process would be much smoother if there was an
accurate textual description of the implementation.

The tools are too unintuitive [. . . ] the threshold for learn-
ing how to use them is high [. . . ] but everybody knows how
to consume text.

B. Aim

Generating text from the implementation should be a suit-
able solution since it allows the textual description to always be
consistent with the implementation as well as understandable
by all those with a claim in the project.

The aim of the text generation is a textual description of
the intended usage of the interface with as little added effort
as possible. For the generation to be feasible in an industrial
setting it is beneficial if the generation rules can be maintained
and updated without requiring new skills of the engineers. At
the same time, the reuse of existing artifacts for generating the
summaries will decrease their cost.

Two paragraphs are included in the generated text, one for
the intended usage of the interface and one for the unused
signals of the interface.

C. Setup

The generation is possible due to the reuse of an existing
test model, that was adapted from Heldal et. al. [32]. They
developed an executable test model for a microwave oven, as
illustrated in Figure 1. The test model is designed to capture the
intended dialogue between the MicroOven and the user, here



Fig. 3. The Tester-model can be reused at code level through code generation.

Fig. 4. The generated text describes both the xtUML model and the generated
code.

represented by the Tester component, as well as its possible
error states and constraints. The sequence of the states and
transitions therefor follows the process of the MicroOven, with
additions for handling erroneous interactions. After the test
case is initialised the test-pattern is to generate a signal to the
MicroOven across the interface with random values for each
parameter. The MicroOven’s response is then validated before
the Tester transitions into the next state in order to generate a
new signal with random values. The test case needs to be able
to store the results of prior interactions in order to compute the
expected value in the validation states and compare that to the
given response. If there is a mis-match the test case generates
an internal fail() event and stores the resulting state so it can
be diagnosticised.

After the MicroOven-model has been validated using the
Tester-model they are both translated into platform-dependent
source code. The MicroOven is then tested again, now as
code by the Tester-code, to see that the intended behaviour of
the oven remains the same after deployment. The relationship
between the different representations of MicroOven and Tester
are depicted in Figure 3.

D. Text Generation

Figure 5 shows a fragment of the generation rules. The
rules are defined using the Rule Specification Language which
are integrated with the xtUML tools [11]. On the first row the
signals defined by the interface are selected by traversing
the concepts of the metamodel according to their relationships.
The concept C_EP refers to the executable properties of the
interface and C_AS refers to those executable properties that
are signals. The relationships between the concepts are referred
to by the unique names R4003 and R4004. Rows 3 and
4 show how the generated text is going to be physically
represented [33] as html-pages, using a table since it enables

01 .select many definedSignals related by interface -> C_EP[R4003] -> C_AS[R4004]
02 [...]
03 <table border="0">
04 <hr>Unused signals in MicroOven:</hr>
05 .assign unusedSignals = definedSignals - usedSignals
06 .if (not_empty unusedSignals)
07 .for each signal in unusedSignals
08 .invoke paramText = GetParamData
09 <tr><td><i>${signal.name}(paramText)</i></td></tr>
10 .end for
11 .else
12 <b>All defined signals are used.</b>
13 .end if
14 </table>

Fig. 5. An example of a model-to-text transformation using xtUML.

the representation of parallel success paths. All rows that
start with a punctuation mark are statements defined by the
transformation language while those rows that do not start with
punctuation mark define the generated text. The string value of
a variable v is obtained by getting its literal text value, ${v},
as in row nine where the signal’s name is inserted into the
table. Even if the success story only includes those signals
that are implemented in the intended usage of the MicroOven
the variable usedSignals on row five is defined by traversing
the entire state machine in order to collect all signals that are
used to implement the test case. On row eight the parameters
are converted into a textual representation, paramText, by
calling the function GetParamData, which is defined by the
translation engineer.

In the context of our study it is not relevant to mention in
what class the state machine resides that handles the interaction
across the interface. That information is excluded in the
content selection phase [34] since it is the possible interaction
across the interface, as modelled by the state machine, that is
interesting, not the internal structure of the components.

For the success path the structure of the text follows the
order imposed by the transitions of the state machine, only
considering the names of the transitions that constitute the
intended usage.

IV. RESULTS

The algorithm for navigating through the metamodel to
generate the textual summaries is on the size of 100 statements.
In comparison, a model compiler for generating Java programs
consists of 500.000 statements but that covers the entire
xtUML definition. Since the state machines and the Action
language are so intertwined with the interfaces it is not possible
to get a number for the statements needed for translating the
interfaces as such into Java. The number of statements for the
textual generation is dependent on the present content selection
and will increase if more model concepts are to be present in
the generation.

In Figure 6, an example of a generated text is shown.
It depicts the summarisation of the interface in Figure 1 as
implemented by the state machine in Figure 2. The top-half
of the web page shows the intended usage of the oven and
the bottom-half details which signals in the interface that are
unused in the implementation. The intended usage is given in
a table format where alternative usages are given on the same
row, side-by-side.

The name of the interacting component is Tester, which is
carried on to the generated text. This emphasizes that naming



Fig. 6. An example of a textual summary.

conventions will affect the readability and understanding of
generated texts when they are derived from software imple-
mentations. In this case the reading of the generated text would
have benefited of naming the testing component to User, who
it is meant to represent.

The paragraph for unused signals include setTimer(min:int,
sec:int), which represents how the interface was overloaded at
the point of specification due to the fact that it was unclear
how the MicroOven would be used. Since then the decision
was taken to specify times in seconds only but the interface was
not changed to reflect this decision. The generated text clearly
identifies that there is a mismatch between the specification of
the interface and its implementation.

Since the text is automatically generated from the source
model it is possible to have a text generated that is consistent
with the implementation whenever it is needed; e.g. when
considering the implications of adding new functionality, to
validate that new functionality conforms to the requirements
during implementation or after implementation to understand
how the software is intended to be used. This is shown in
Figure 4 where the generated text can be used both to describe
the original model or the implementation at code-level.

When the model is translated into code the information
enclosed in the model is extended with details specific to
operative system, chosen programming languages etc. in order
to enable the deployment of the generated source code on a
specific platform. This added information is then automatically
excluded in the generated text since it is not present in the
model. The benefit is that the generated text automatically
becomes a summary of the interface that focuses on its
intended usage while it abstracts away from how the behaviour
is obtained. The text can then be reused independent on how
the interface is realised on different platforms. As an example,
the position of the signal setTimer(time:int) in the sequence of
intended interactions between the oven and the user does not
depend on if C or Java is used to realise the interface.

The algorithms for generating the success stories and
to document unused signals are defined upon the xtUML
metamodel. This means that they are reusable across different
models that adhere to the metamodel, just as a compiler is
defined upon the BNF grammar of programming language and
therefor reusable across programs [9].

The structure and naming of concepts and relationships in
the metamodel is the main source of complexity in this ap-
proach to NLG. Knowing what the concepts and relationships
refer to is more challenging than how to map them into a
textual representation.

V. DISCUSSION AND FUTURE WORK

The Object Management Group are the owners of the
UML specification and the architects behind the MDA [5],
[6] approach to using UML for software development. Their
approach for defining the sequencing of the interface signals
is to develop a new model, a protocol state machine[35]. Their
solution results not only in an additional effort of developing
a new model for explaining an old one, but also relies on
the same techniques that made it difficult to verify the old
model in the first place. As an additional contribution we show
how an existing test model can be used for the same purpose
as a protocol state machine as well as the source for an NL
summary explaining the protocol of the interface.

In relation to previous work on text generation from xtUML
our approach does not rely on the understanding of complex
linguistic tools. The benefit of only using the same techniques
for NLG as for code generation is that there is no additional
training cost for companies. This makes it easier to adopt NLG
in an industrial context since the number of software engineers
with an understanding of both metamodelling and language
technology are few. The mapping of metamodel concepts
and relationships into linguistic properties will increase the
complexity of macro- and microplanning. The drawback of our
approach is the limited expressiveness of the transformation
rules. For a more varied text structure, less repetitive sentences
or for languages with a richer morphology it would be neces-
sary to apply an NLG approach that incorporates linguistic
competence. However, striking the balance between richer
NLG and what companies are prepared to invest in hiring new
competence is yet to be investigated. Our hope is that we will
be able to start a new collaboration to enable practitioners in
industry to evaluate both the generated texts and the generation
procedure. Both lines of query would help to better understand
where the balance between cost and readability lies.

Due to the time constraints of the MDE study there was
not enough time to gain access to the original models to
generate documentation within the industrial context where
the issues were found. Instead, a prototype was implemented to
show how the documentation could be generated from software
models with a minimal effort. This opens for another possible
route for the future, to further explore the possibilities of NLG
for validation purposes in an industrial context. As seen in the
related literature there is little involvement from industry to
actually use NLG for validation purposes. We believe that this
contribution can be a first step to address the problems that
engineers actually are facing and as such also open for new
ways of adapting NLG and summarisation techniques to the
engineer’s needs and context.
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