
A Large-Scale Study of ML-Related Python Projects
Samuel Idowu

Chalmers | University of Gothenburg
Sweden

Yorick Sens
Ruhr University Bochum

Germany

Thorsten Berger
Ruhr University Bochum and

Chalmers | University of Gothenburg
Germany | Sweden

Jacob Krüger
Eindhoven University of Technology

The Netherlands

Michael Vierhauser
Ruhr University Bochum

Germany

ABSTRACT
The rise of machine learning (ML) for solving current and future
problems increased the production of ML-enabled software systems.
Unfortunately, standardized tool chains for developing, employing,
and maintaining such projects are not yet mature, which can mainly
be attributed to a lack of understanding of the properties of ML-
enabled software. For instance, it is still unclear how to manage and
evolve ML-specific assets together with other software-engineering
assets. In particular, ML-specific tools and processes, such as those
for managing ML experiments, are often perceived as incompatible
with practitioners’ software engineering tools and processes. To de-
sign new tools for developing ML-enabled software, it is crucial to
understand the properties and current problems of developing these
projects by eliciting empirical data from real projects, including the
evolution of the different assets involved. Moreover, while studies in
this direction have recently been conducted, identifying certain types
of ML-enabled projects (e.g., experiments, libraries and software sys-
tems) remains a challenge for researchers. We present a large-scale
study of over 31,066 ML projects found on GitHub, with an em-
phasis on their development stages and evolution. Our contributions
include a dataset, together with empirical data providing an overview
of the existing project types and analysis of the projects’ properties
and characteristics, especially regarding the implementation of differ-
ent ML development stages and their evolution. We believe that our
results support researchers, practitioners, and tool builders conduct
follow-up studies and especially build novel tools for managing ML
projects, ideally unified with traditional software-engineering tools.

KEYWORDS
machine learning, ML-enabled systems, evolution, mining study,
open-source projects, large-scale study, TensorFlow, scikit-learn

ACM Reference Format:
Samuel Idowu, Yorick Sens, Thorsten Berger, Jacob Krüger, and Michael
Vierhauser. 2024. A Large-Scale Study of ML-Related Python Projects. In
The 39th ACM/SIGAPP Symposium on Applied Computing (SAC ’24), April

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0243-3/24/04.
https://doi.org/10.1145/3605098.3636056

8–12, 2024, Avila, Spain. ACM, New York, NY, USA, Article 4, 10 pages.
https://doi.org/10.1145/3605098.3636056

1 INTRODUCTION
Developing machine-learning (ML)-enabled software [2] differs from
traditional software development. Specifically, developing an ML
model (i.e., traditional ML or deep learning) involves non-linear,
iterative, and exploratory experimentation to determine acceptable
models for specific requirements [29]. Such experiments are essen-
tial for developing ML-enabled systems, but pose novel challenges
to developers [3, 4, 17]. For instance, traditional software engineer-
ing tooling provides limited support for managing ML assets, due
to the diverse types of assets and the iterative, intuition-based ex-
ploration of the solution space typically associated with ML exper-
iments [3, 10, 17, 29]. To this end, novel tools and further research—
e.g., strongly demanded by Arpteg et al. [4]—is needed to effec-
tively and efficiently develop high-quality and production-ready
ML-enabled software. One example of an existing gap between tra-
ditional software-engineering and ML development practice is the
use of version-control systems for managing the evolution of assets.
While such systems (e.g., Git), are de facto standard tools in software
engineering, they are generally ill-equipped for managing ML assets,
such as datasets and binary model files. However, managing evolu-
tion is especially important for exploratory ML experiments, which
may involve a large number of these assets, but also for production-
oriented software systems, in which ML-models and related source
code interact with other software assets. As such, current software-
engineering methods and tools lack support for ML development at
the right level of abstraction. For example, one cannot query specific
ML assets based on their performance or the features used.

Many different tools have been proposed to address such gaps
in managing ML-specific assets, including workflow management,
pipeline management, model management, dataset management,
and experiment management [19, 28, 32] tools. The latter, for in-
stance, offer means to track assets and processes during and after
ML-experiment iterations, supporting reproducibility [6, 20, 34], col-
laboration [40], or traceability [23]. While such tools are becoming
increasingly popular, they have not yet fully matured [23] and are
especially not well integrated with common software-development
tooling. For instance, many such tools target data scientists who work
rather independently, lacking support for the collaboration required
in large-scale industrial software development. Furthermore, inte-
gration with existing, well-established development tools, such as
version-control systems, is essential to facilitate adoption in practice.

https://doi.org/10.1145/3605098.3636056
https://doi.org/10.1145/3605098.3636056

SAC ’24, April 8–12, 2024, Avila, Spain Samuel Idowu, Yorick Sens, Thorsten Berger, Jacob Krüger, and Michael Vierhauser

To build better tools for managing ML assets, we need to improve
our empirical understanding of ML-related project development
and the common properties, asset types, development stages, and
transitions between these stages that are involved. Recent studies
have investigated the features and support offered by emerging ML
asset management tools [13, 17–20, 28, 32, 37] and attempted to
characterize ML experimentation empirically [5, 8, 16, 29, 33].

Unfortunately, the body of knowledge on the characteristics and
practices related to real ML-related projects is sparse. Early studies
exist on specific aspects, such as code styles, on collaboration prac-
tices, often using small datasets of real projects. Large-scale studies
on larger datasets, investigating general characteristics, identifying
the exact stages, and also the history of changes, are still missing.
For instance, what types of projects are currently developed? How
do these projects and their assets evolve? How do developers manage
and transition between ML development stages?

We contribute in this direction and present a large-scale mining
study. We provide a dataset of 31,066 ML-related projects on GitHub
and collected insights on their types, characteristics, and evolution.
Our focus was on Python as the most popular language for ML-
related projects, as well as on projects relying on the two most
popular ML libraries TensorFlow and/or scikit-learn. We formulated
the following research questions:
RQ1 What types of ML-related projects are maintained on GitHub?

First, we were interested to learn what types of projects are
ML-related. We manually analyzed a smaller, random sample
of the whole dataset, to identify and define the different types
of projects we found, and to learn about their prevalence.

RQ2 Which development stages can be found in ML-related projects
on GitHub? Second, we aimed at a better understanding of
which stages of ML development [9, 17] are maintained in
repositories. For example, some repositories may involve data
processing or modeling stages only, while others may build on
pre-trained models to focus only on the prediction stage. Our
results provide insights into typical development stages and
how developers manage their ML-enabled projects.

RQ3 How do ML projects on GitHub evolve and which practices
are applied? Third, we quantitatively analyzed how typical
ML-enabled projects evolve, focusing on the different stages
identified. For example, the ML model, or its performance
metrics, may be constantly updated in the repository to ensure
traceability, or they may be kept as they are to save space.

In summary, we contribute a large-scale dataset and empirical data
on the projects. All artifacts related to this paper, including the lists
of projects, scripts, and extended results, are available in our online
appendix.1 As such, we contribute to the general understanding
of how ML-related projects are developed and how Git is used to
maintain their assets and evolve these projects. We believe that our
results can help researchers, practitioners, and tool builders improve
software-engineering and ML development practices.

2 BACKGROUND AND RELATED WORK
We now introduce the necessary background on ML model develop-
ment processes, as well as we discuss the literature that is related to
our study.

1https://github.com/isselab/2024-appendix-mlprojectmining

Requirements
analysis stages

System requirements
analysis

Data analysis

Data acquisition Feature engineering

Data preparation Storage

Training

Modeling

Evaluation

Prediction

Data-oriented
stages

Model-oriented
stages

Model monitoring & controlModel deployment DevOps
stages

N
on

-P
ro

du
ct

io
n

fo
cu

se
d

Pr
od

uc
tio

n
fo

cu
se

d

Figure 1: ML development stages [17]; the colored ones are those
actually found in real projects in prior studies [9].

2.1 Background
Like traditional software-engineering processes [31], which include
design, coding, testing, deployment, and maintenance, ML develop-
ment follows processes grounded in data science and data mining.

Figure 1 shows a process for developing ML projects, adapted
from Idowu et al. [17] and Biswas et al. [9], including requirements-
analysis, data-oriented, model-oriented, and DevOps stages [3, 4].
Building on the data, the model-oriented stages include model-
ing, training, evaluation, and prediction of the ML model. We also
show that ML-enabled projects can be production-focused or non-
production-focused. For example, ML for research papers is typically
non-production focused and does not require DevOps. In contrast, in-
dustrial ML-enabled projects become production-focused when the
company decides to leverage the models in products [17]. Other pro-
cesses are, for instance, CRISP-DM [38], KDD [12], and TDSP [21].

Following Biswas et al. [9] we focused on six stages commonly
found in ML pipelines of real projects, as highlighted in Fig. 1:
∙ Data Acquisition focuses on data quality, completeness, consis-

tency, and relevance of the raw data being collected from the
identified sources.
∙ Data Preparation is typically tedious and time-consuming, often

requiring substantial resources and human expertise to process
the acquired raw data into feasible structures. Some preparations
can be performed automatically using Extract-Transform-Load
(ETL) tools, which can process data (e.g., loading, formatting, and
outputting in a data warehouse).
∙ Modeling includes model planning and selection, and data mining

to discover essential properties of the data relevant for the model.
∙ Training, using selected features and labeled data, follows the

modeling stage and focuses on optimizing the model performance
via multiple iterations of (hyper-)parameter search.
∙ Evaluation is concerned with evaluating a model via specified

metrics, such as accuracy and latency performance, which should
be done on real-world data to assess the model’s performance
under production and non-production conditions.
∙ Prediction involves using the trained ML model on unseen exam-

ples (i.e., unlabeled data). The prediction capability of a model
can also be evaluated by comparing its performance using test and
training datasets.

https://github.com/isselab/2024-appendix-mlprojectmining

A Large-Scale Study of ML-Related Python Projects SAC ’24, April 8–12, 2024, Avila, Spain

2.2 Related Work
Researchers have mined open-source ML projects from GitHub [5,
7, 9, 14, 27, 33, 35] before. Bhatia et al. [7] present a qualitative
and quantitative empirical study on the contributions and degree of
collaboration in ML-enabled system. They mined over 1,300 ML
GitHub repositories and over 67,000 forks. Gonzalez et al. [14] also
study ML tools and application repositories hosted on GitHub to
identify their unique properties, development patterns, and trends.
Their work provides a detailed study of developer workflow, measur-
ing their collaboration and autonomy within a repository. Similarly,
Biswas et al. [9] study the pipelines of 21 Python-based matured data
science systems from GitHub. In addition to GitHub repositories,
they also mine 105 data-science projects from Kaggle. Their study
explores and identifies the typical stages of ML pipelines, how they
are connected, and the differences between pipelines used in practice
and those from theory. Van Oort et al. [35] mined 74 open-source
ML-enabled systems to discover code smells and refactoring opportu-
nities in their source code. In addition, they observed multiple factors
affecting the maintainability and reproducibility of ML-enabled sys-
tems. Simmons et al. [33] performed a large-scale empirical study of
coding standards in ML-enabled systems to investigate their adher-
ence to code standards. The study compared over 1,000 open-source
ML-enabled systems to similarly-sized non-ML systems with sim-
ilar quality and maturity levels. Barrak et al. [5] mined repositories
to explore the degree of coupling between ML-specific and other
software assets, as well as the adoption of ML versioning features.
They empirically studied 391 ML-enabled systems on GitHub that
were managed using DVC. Nahar et. al. [27] contribute a dataset of
262 ML products from GitHub and manually analyze 30 of these.
They report about collaboration within interdisciplinary development
teams, software architecture related to ML models, development pro-
cesses, testing, operation, and the use of responsible AI.

Similar to these related works, we mined software repositories
to collect ML-related projects from GitHub to identify properties
of ML-related projects’ development stages and assets. Our study
mainly deviates from the previous ones by the size of the analyzed
dataset; by the range of project types covered; and by our large-scale
analysis of the ML stages present in projects, and especially our
investigation of the history. At the same time, we were inspired by
these works, such as by Simmons et al. [33], who conclude that ML
codebases are distinct from traditional SE codebases and do not fol-
low traditional SE conventions; or by Biswas et al. [9], whose results
(i.e., presence of ML stages in real project codebases) and published
artifacts we build upon to identify ML stages in our repositories.

3 METHODOLOGY
We now describe our data collection procedure, as well as methods
to analyze the resulting dataset and answer our research questions.

3.1 Data Collection
Like prior studies on traditional software development [15, 39], our
primary data source was real public repositories mined from GitHub.
Our inclusion (IC) and exclusion criteria (EC) were as follows:

IC1 The project is implemented in Python.
IC2 The project depends on one or both of the established ML

libraries scikit-learn or TensorFlow.

Inclusion filter
- Dependency on scikit-learn
- Commits >= 50
- Not forked
- Language = Python

Inclusion filter
- Dependency on TensorFlow
- Commits >= 50
- Not forked
- Language = Python

Exclusion filter

- Clone errors
- Unused dep. package
- Found no ML stage

GitHub
All projects

45,030
projects

28,167
projects

21,318
 SK-based

projects

13,644
TF-based
projects

31,066
unique
projects

Figure 2: Selection process for GitHub repositories

IC3 The project is original, meaning that it is not forked from an-
other repository.

IC4 The project repository involves at least 50 commits.
EC1 The project causes errors when cloning.
EC2 The project is not using one of the two ML libraries.
EC3 The project has no identifiable or established stages of the

ML workflow when mapped with our library API dictionary
(explained in Sec. 3.2).

Figure 2 illustrates our mining process. We focused on projects
developed primarily in Python (IC1) as the most popular language
for ML-related projects [9, 14, 30]. Restricting the study to one pro-
gramming language makes the projects comparable, yielding higher
internal validity of our analysis. We used the GitHub dependency
graph to identify projects with a dependency on at least one of the
two most popular ML development libraries (IC2): scikit-learn and
TensorFlow [1, 14, 22, 30]. Scikit-learn is arguably the most com-
mon library used for classical ML projects, while TensorFlow is
a standard library for DL projects. We identified 223,822 GitHub
repositories that depend on scikit-learn and 130,580 that depend on
TensorFlow. After removing forks from our dataset (IC3), we were
left with 221,084 and 128,084 repositories for each library. This
was done because we considered that they would not provide any
additional insights but rather skew the results, as large projects with
many forks would otherwise be counted disproportionately. In fact,
the analysis of fork ecosystems for ML-related projects would consti-
tute a study of its own. Since we were interested in the development
process of ML-related projects, we considered only projects with a
somewhat substantial evolution history for our analysis (IC4). To that
end we made a reasonably subjective decision to filter out projects
with fewer than 50 commits, leaving 45,030 and 28,167 projects. Af-
ter merging the two lists we were left with 61,062 unique repositories
after removing 12,135 duplicates that depend on both libraries.

We then cloned all remaining unique repositories for further anal-
ysis of the source code, excluding those that we could not clone
due to errors (EC1), such as HTTP request failures and non-existent
Git remote reference errors. This removed a marginal number of
repositories. Since the GitHub dependency graph does not guarantee

SAC ’24, April 8–12, 2024, Avila, Spain Samuel Idowu, Yorick Sens, Thorsten Berger, Jacob Krüger, and Michael Vierhauser

that a project listing a particular library actually uses that library
by invoking the corresponding API, we filtered out projects that do
not invoke any of the two libraries’ APIs in any of the code files in
their repository (EC2). We performed this filtering by analyzing the
import directives of the Python source files. To this end, we trans-
formed all Jupyter Notebooks into Python source files. Thereafter,
we created abstract syntax trees for all Python files from which we
extracted a list of imported modules and skipped files that we could
not automatically process due to syntax errors. Finally, we checked
whether one of the two libraries or any of their modules were in the
resulting list of each project.

Using the ML development stages (cf. Fig. 1) identified for
GitHub repositories by Biswas et al. [9], we filtered out (cf. Sec. 3.2)
projects that do not involve any of these (EC3). After this selection,
we obtained 21,318 scikit-learn-based projects, 13,644 TensorFlow-
based projects, of which 3,896 projects use both libraries, leaving us
with 31,066 projects as subjects for our empirical analysis.

3.2 Data Analysis
Identifying project types (RQ1). We were first interested to un-
derstand what types of projects are ML-related. To characterize the
dataset, we conducted a manual analysis on a randomly selected
sample of 100 repositories. We defined the categories during this
process, as we observed recurring project types. Because it is hard
to clearly differentiate these categories, we assigned some projects
to multiple categories. We manually reviewed the projects, also doc-
umenting using what strategy and using what parts of the projects
we could identify the project types.
Identifying ML Stages (RQ2). To identify concrete ML develop-
ment stages in our subject projects, we used the API dictionary de-
fined by Biswas et al.[9], which maps popular ML library calls from
source code to the development stages. A similar API-dictionary
method has also been used by Wang et al. [36] when they analyzed
external dependencies used in computational notebooks written in
Python. In addition to scikit-learn and TensorFlow, the API dic-
tionary also contains functions from additional libraries involved
in ML development, such as pandas, numpy, keras, theano, and
caffee. So it covers the most popular ML libraries studied in prior
work [1, 22, 30]. Since a project can use multiple ML libraries, we
found it useful to consider these other libraries for the API dictionary
beyond the two we used for our selection process.

Before the actual analysis, we transformed all Jupyter Notebooks
into normal Python source files, which was technically required
for the following steps. For each Python source file (and converted
Jupyter Notebook) in a given repository, we parsed the code into an
abstract syntax tree and iterated over all of its elements, extracted
function calls, and mapped them to ML stages using the dictionary.
With this method, we extracted a list of ML stages implemented in
each file and from that created a list of files implementing each stage
for the entire project. For this specific RQ we applied the technique
only on the most recent state of the main branch. Based on this
information we investigated which stages are present in each project
and how many files are associated with those. We also counted how
often multiple stages were combined in a single file and which stages
frequently occur together.

Stage A

Stage C Stage C

Stage B

Stage A Stage A

Project Files
Rev. 1 Rev. 2 Rev. 3 Rev. 4 Rev. 5 Rev. 6

Stage B

Stage C Stage C

Stage B

Figure 3: Illustration how we determined the changed ML stages
per commit

Evolution of ML Stages (RQ3). We observed the delta between
successive commits for each project to investigate how it evolved
over time. For this purpose, we employed the previously described
method for the identification of ML stages on the files changed in
each commit to determine which stages of ML workflow were af-
fected. Specifically, for each commit, we iterated through all changed
source files and applied the API mapping to both the old and the new
source code of the file. We chose to analyze the entire file rather than
only the changed lines since the source code is very interconnected.
Therefore, it is difficult to assign individual lines to ML stages. For
example, if a line defining some hyperparameter was changed, and
that parameter is used later in the code when a corresponding ML
function is called, this would normally be considered a change af-
fecting the corresponding ML stage, although the changed line does
not contain any functions from the API dictionary. Consequently, we
considered every change in a file implementing a specific ML stage
as a change to that stage. Figure 3 illustrates how each commit’s
affected ML stages were determined. During our analysis, we only
considered the main branch for each project.

To understand the development process of ML-related projects,
we investigated how often changes related to each stage were done
throughout the lifecycle of the projects. To this end, we observed
the file changes and the corresponding affected ML stages for each
project; We then calculated the ratio of projects that introduced
changes in specific stages per commit, over the entire lifecycle
of all the projects studied. We also investigated the proportion of
the projects’ commits affecting each ML stage across projects of
different sizes. We grouped the repositories into five groups based
on commit count:

Group A: 7,324 projects with (50,70] commits.
Group B: 6,107 projects with (70,100] commits.
Group C: 5,420 projects with (100,150] commits.
Group D: 5,843 projects with (150,300] commits.
Group E: 5,682 projects with (300,113K] commits.

We used this grouping to balance the number of repositories and
the extent of their evolution within as well as between groups.

4 RESULTS
We now present and discuss the results for our research questions.

To generally characterize the projects, Table 1 and Fig. 4 sum-
marize core statistics of the 31,066 projects in the whole dataset.
The identified ML-related projects span a wide range of scales, from
small to very large projects, as follows. The vast majority of the
projects are rather small with a median of 110 commits, 2 contrib-
utors, 2 branches, 1 star, and 26 source files. The average number
of ML-related source files (source files that apply one of the ML
development stages defined in Sec. 3.1) is 15, so roughly half of the
source files implement ML components of the software.

A Large-Scale Study of ML-Related Python Projects SAC ’24, April 8–12, 2024, Avila, Spain

Table 1: Core characteristics of all 31,066 projects in our dataset

min max mean median

number of source files 0 17,747 75 26
number of ML files 0 5,318 42 15
number of commits 50 27,692 304 110

number of contributors 1 459 9 2
number of branches 1 1,601 6 2

number of stars 1 131,686 69 1

4.1 Types of Projects (RQ1)
In our manual project analysis, we observed that the most helpful
assets were the project documentation (README, etc.), but also
the project structure and types of files present. In total, we identi-
fied 7 distinct categories of projects in our random sample of 100
repositories.

4.1.1 Identified Types. In the following we define the identified
types of projects and provide an example for each category. Figure 5
shows the prevalence of the different categories.
Experiment. This ML project type refers to projects that aim to
develop a suitable ML model for a specific application by conduct-
ing multiple runs of training, testing and validation using variations
of the hyperparameters, data features, and training procedure. The
results of each run usually contain a trained model, its performance
metrics and its predictions on the dataset. Incidentally we noticed
that most experiments appear not to store the results from multiple
experiment runs, only committing the latest version of the trained
model and associated source code.

Example: An example of a project with ML experimentation is
“Photon Sphere.”2 The goal of this project is to filter pernicious DNS
requests using a DNN. It includes model implementations, scripts
for training them and multiple trained models as binary files. Some
commits make small changes to the source code for training the
models, especially modifying hyperparameters. Others change the
model’s binary files, as the developers trained new model versions.
Such commits can be related to experiment runs. Interestingly, the
developers do not store multiple versions of the same model in the
repository, but rather replace the binary files as better performing

2https://github.com/jkerrigan/photon_sphere

Source files
101

102

103

104

ML files

101

102

103

Commits

102

103

104

Contributors
100

101

102

Branches
100

101

102

103

Stars
100

101

102

103

104

105

Figure 4: Distributions of core characteristics of the 31,066
projects visualized as boxplots

models become available. Neither do they store results from exper-
iment runs, like performance metrics or the hyperparameters used.
The different models in the repository are apparently different types
of models for different purposes.
Education. This ML project type includes all content that supports
education, like practical examples for university courses, homework
solutions or student projects. It is usually explicitly stated in the
project description for which course they were developed.

Example: An example of an education project is “Machine Learn-
ing Engineer Nanodegree.”3 This is part of the material for a uni-
versity course. It contains five projects, each with a task description,
data and template code. The projects are typical problems to be
solved with ML, like predicting Titanic survivors.
Tutorial. This type of ML-related project is designed to facilitate
understanding of a specific ML topic. This category shares similari-
ties with with education, but with the difference that tutorials are not
restricted to formal types of education (e.g., university education),
but are often less formal and target practitioners; they can also be
intended for self-study.

Example: A tutorial example is “Putting TensorFlow Models Into
Production,”4 describing model serving with TensorFlow. It contains
multiple Jupyter notebooks with explanations and examples.
Research. This type refers to projects that accompany research
papers. The aim is usually the development of new ML models,
training methods, optimization techniques or applications of ML.
Experiments are often conducted as part of these projects, leading to
most research projects also being classified as experiments. Some
research projects could also be called “system prototypes.” We distin-
guish them from systems by the fact, that the main goal of research
projects is the accompanying scientific publication, not a possible
usage by an end user.

Example: A research project example is “UCADI.”5 It is devel-
oped as part of a research paper to provide a framework for training
a model to automatically diagnose COVID-19. The system proto-
type consists of a central sever that trains the model based on data
obtained from multiple clients (hospitals using the system) while
preserving data privacy.

3https://github.com/italopguimaraes/Machine-Learning-Engineer-Nanodegree
4https://github.com/bugra/putting-tensorflow-models-to-production
5https://github.com/HUST-EIC-AI-LAB/UCADI

Experiment Education Tutorial System Research Library Toolset
Project type

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f p
ro

je
ct

s

41%

31%

15% 14%
12%

10%
8%

Figure 5: Number of projects of each type found in a random
sample of 100 repositories.

https://github.com/jkerrigan/photon_sphere
https://github.com/italopguimaraes/Machine-Learning-Engineer-Nanodegree
https://github.com/bugra/putting-tensorflow-models-to-production
https://github.com/HUST-EIC-AI-LAB/UCADI

SAC ’24, April 8–12, 2024, Avila, Spain Samuel Idowu, Yorick Sens, Thorsten Berger, Jacob Krüger, and Michael Vierhauser

System. This type refers to executable applications designed for
providing end-user-oriented functionality. We distinguish systems
from libraries (explained shortly), which target developers instead
of end-users. ML-enabled systems incorporate a variety of different
software assets, both ML-related, such as model files, and non-
ML-related, such as configuration files or GUI resources. We also
distinguish them from toolsets (explained shortly), which are similar,
but focus on specific functionality and are not systems in the sense
of being comprised of multiple modules or components integrated
with each other. ML-enabled systems are among the largest and most
complex projects in our dataset.

Example: An example for a system is “NEWS Headline Classifier
Project.”6 It is a web application for classification of topics for news
headlines. The repository contains scripts for training the models,
binary files of trained models, web-related assets, such as HTML
and CSS files, and a Django wrapper.
Library. This type of projects refers to ML libraries, i.e., packaged
code to be integrated in other projects—especially ML-enabled
systems—via an API. These libraries range from specialized toolkits
for ML-related purposes,such as deep learning, computer vision, or
natural language processing to more general-purpose libraries that
offer a wide array of algorithms and utilities. The libraries in our
sample are often well-maintained with active collaborators. They
often come with extensive documentation, tutorials, and example
projects to assist developers in integrating them into their own work.

Example: A library example is “CTLearn.”7 This library pro-
vides functionality for analyzing data from imaging atmospheric
Cherenkov telescopes. It contains mostly source files, with functions
such as model implementations, but also configuration files. The doc-
umentation is mainly provided on an external page. It explains the
installation as a Python package and usage of the provided functions.
Toolset. This type refers to ML-related projects that are intended
for practical use, but that are very limited in their applicability.
In contrast to systems, they lack the property of interconnected
components and functionalities. Instead, they consist of a set of
isolated functionalities.

Example: An example is the project “Copro.”8 It is a command-
line tool for training models to predict conflict risks. As such, it can
be executed via shell scripts or by directly interacting with the code.

The types of ML-related projects on GitHub are diverse. The
majority consist of non-production focused projects, specifically
experiments/research projects or tutorials/education projects. In
contrast, libraries, toolsets, and actual ML-enabled systems rep-
resent minorities. We provided definitions, but the boundaries are
not always sharp between the types, especially between education
and tutorials, and between toolsets and systems. For the latter,
for instance, we relied on a subjective assessment of whether we
consider the number of components and their interconnection to
be sufficient to call it a system.

Summary RQ1: Types of Project

6https://github.com/AnityaGan9urde/NEWS-Headline-Classifier-project
7https://github.com/ctlearn-project/ctlearn
8https://github.com/JannisHoch/copro

4.1.2 Discussion. Properly defining the different types of ML-
related projects is important to foster future work and build specific
methods and tools for the different types of projects. In fact, we have
not found such a classification in the literature, so we defined our
own types in a bottom-up way. As already discussed, the boundaries
are not always clear-cut, as we explained for systems and toolsets.
For example, the tool “Copro” we mentioned above was classified
as a tool, because the individual functions, like training models and
making predictions on a given data, are executed separately from the
command line. The project “NEWS headline Classifier” on the other
hand was classified as a system, because it is wrapped in the Django
framework and offers a web interface. Future work needs to expand
on our analysis and definitions, manually analyzing larger samples
of projects, and refine our definitions, which is valuable future work,
but a study on its own.

The small share of software systems compared to research and
education projects is an interesting characteristic of the dataset. It
indicates a lack of adoption of ML, which can have many reasons.
Whether ML technology is still immature, or whether current open-
source software systems are not yet ready to adopt it, is an interesting
future research question. However, it definitely confirms that more
support is required, especially for developers of small and medium
sized open-source projects, possibly through simple and generic
tools and frameworks.

Our analysis also revealed that identifying specific types of ML-
related projects, such as experiment projects or ML-enabled systems,
and distinguishing them (e.g., systems from libraries), is challenging.
While it was possible to manually extract small samples of those,
it is hard to automatically filter them from a large dataset like the
one we present in this paper. Possible solutions could be found by
refining the filtering criteria, such as the number of source files or
lines of code. Alternatively, classification could be done using ML
techniques, such as large language models (LLMs). In fact, building
a reliable, perhaps LLM-based classification technique is an open
problem. It would constitute valuable future work and enable future
large-scale studies of ML-related projects.

4.2 ML Development Stages (RQ2)
Within the full dataset of 31,066 GitHub projects, we were able to
identify all six ML development stages (cf. Fig. 6) we are concerned
with: Data Acquisition, Data Preparation, Modeling, Trai-
ning, Evaluation, and Prediction.

4.2.1 Prevalence and Combination of Stages. Among all projects,
we found the data acquisition (30,063) and preparation (31,008)
stages in over 96 % and 99 %, respectively. The modeling stage oc-
curred fewer times, in 26,808 projects, the training stage in 27,140
projects, the prediction stage in 26,136 projects, and the evaluation
stage in 21,894 projects. This shows that most projects involve data
acquisition and preparation, while the evaluation stage is the least
observed ML stage. We note that the prevalence of these stages is
very similar to the results of Biswas et al. [9] obtained on a set of
105 data science projects from Kaggle.

Since the unique combinations of these stages in each project can
provide valuable insights into the projects’ development, we elicited
the frequency of all ML stage combinations. For example, 17,333
projects (over 55 %) implement all of the six ML development stages.

https://github.com/AnityaGan9urde/NEWS-Headline-Classifier-project
https://github.com/ctlearn-project/ctlearn
https://github.com/JannisHoch/copro

A Large-Scale Study of ML-Related Python Projects SAC ’24, April 8–12, 2024, Avila, Spain

15.9 36.3 7.510.7 6.25.6

Data
Acquisition

Data
Preparation Modeling Training Evaluation Prediction

96.8% 99.8% 86.3% 87.4% 70.5% 84.1%

Figure 6: Overview of the individual ML development stages in our subject projects with the average number of associated source files
and the share of the projects that contain each stage.

Overall, we identified 51 different combinations of these ML stages,
ranging from projects with only one stage to those including all. Fig-
ure 7 shows an overview of the most common combinations. Over
half of the projects (17,333) implement all ML stages, making this
by far the most prominent combination. Only the data preparation
stage is present in all combinations, while the evaluation stage is
missing most often.

Furthermore, we investigated the implementation of multiple ML
stages within the same file. Figure 8 shows the number of stages
implemented in each source file on average. This confirms that the
majority of files are either associated with no stage (e.g., support
files) or can be attributed to a single stage; allowing us to draw
conclusions about the evolution of that stage, based on changes to
the file. Nevertheless we found some amount of tangling, where
multiple stages were implemented in the same file.

We also investigated which stages frequently occur within the
same file, as shown in Fig. 9. We found that stages that follow
each other in the normal workflow, such as data acquisition and
data preparation, often occur together. We also found a substantial
number of files where almost all stages were packed together.

Data
Acq.

Data
Prep Modeling Training Evaluation Prediction

17,333

4,196

1,718

815

804

774

722

714

619

435

424

424

340

267

265

224

209

200

No of projectsML workflow stages

Figure 7: Combination of ML development stages that occur at
least 100 times among our subject projects.

Most ML-related projects cover all typical development stages.
Variations in those stages may imply different practices and goals,
but the low ratio for evaluations indicates that many projects
are exploratory, not focused on training models to be used in
practice. While many files seem connected to an individual ML
stage, there is tangling that may challenge developers’ work and
could be facilitated through better traceability and tools.

Summary RQ2: ML Development Stages

4.2.2 Discussion. As shown in Fig. 6, the most frequent stage
is the Data Preparation stage followed by Data Acquisition.
This indicates that many development activities for ML-enabled
projects contribute towards data-oriented stages. Another insight
from the stages we found in the projects is the lack of evaluation
activities in many of them. This observation is strange and may
indicate poor practices, since it implies that those ML projects are not
evaluated. However, this may also indicate that many ML projects
are exploratory or focus on experimentation without having any
intended goal of becoming production-ready. This is in line with our
findings from Sec. 4.1, where we found that most projects in our
dataset are experiments and tutorials.

More than half of our subject projects involve development activ-
ities affecting all observed ML stages. This implies that most ML
development activities can be anticipated and expected to follow
the established development process sketched in Sec. 2.1. However,
while almost all projects include data acquisition and preparation,
the modeling, training, and prediction stages occur less often. Some
projects also skip modeling altogether, but conduct training and
prediction stages. This finding may be a reflection of different ML
practices or methods. For instance, projects with prediction stages
that skip modeling or training may use pre-trained models.

0 1 2 3 4 5 6
Number of stages

0

5

10

15

20

25

30

Av
er

ag
e

nu
m

be
r o

f f
ile

s

Figure 8: Number of files that are associated with multiple ML
stages, average for each project

SAC ’24, April 8–12, 2024, Avila, Spain Samuel Idowu, Yorick Sens, Thorsten Berger, Jacob Krüger, and Michael Vierhauser

Data
Acq.

Data
Prep Modeling Training Evaluation Prediction

488,021

192,948

73,549

71,151

43,664

29,579

28,323

27,987

25,842

22,542

19,470

19,181

17,595

16,878

14,627

14,586

14,180

13,096

No of filesML workflow stages

Figure 9: Combination of ML development stages within the
same file

The implementation of multiple ML stages within one file oc-
curred more often than expected. Especially the tangling of many
stages or stages that are far apart in the workflow raises quality
concerns, as it may complicate developers’ comprehension of such
files. These observations could indicate that some developers are
unaware of the established workflow procedures. On the other hand
it may also stem from necessities or other requirements in software
development that we are unaware of or fail to capture with our em-
pirical approach. Better traceability and tool support for managing
such tangled ML development stages and the corresponding assets
could potentially help facilitate developers’ tasks. The phenomenon
is definitely worth further investigation.

0 200 400 600 800 1000
Commits

0.1

0.2

0.3

0.4

0.5

Sh
ar

e
of

 p
ro

je
ct

s

Acquisition
Preparation
Modeling
Training
Evaluation
Prediction

Figure 10: Share of all subject projects changing a specific ML
stage at a certain point in the projects development.

Acquisition Preparation Modeling Evaluation PredictionTraining

 0.5

 0.4

 0.3

 0.2

 0.1

 0.0

Pr
op

or
tio

n

 Project Group

Group A Group B Group C Group D Group E

Figure 11: Proportion of project commits affecting each ML
stage per group

4.3 ML Project Evolution (RQ3)
For our final research question, we investigated the evolution of
ML projects by counting how often the code related to specific ML
development stages is modified and how this changes throughout
the lifecycle of a project.

4.3.1 Evolution Patterns. Figure 10 presents the proportion of our
subjects affecting different ML development stages throughout their
lifecycle as observed in their commits. Based on our findings, most
project changes predominantly impact the data acquisition and data
preparation stages. Approximately 50% of the projects consistently
make changes to the stage Data Preparation over time. We ob-
served that, aside from the initial few commits, modifications related
to data preparation remain consistent throughout the lifecycle of the
projects. As for the stage Data Acquisition, on average 30% of
the projects introduce changes to this stage over time. This activity
has a slight downward trend as the number of commits increases.

In contrast, the other stages—Modeling, Training, Evaluation,
and Prediction—exhibit relatively stable trends, with only minor
decreases over time. The proportion of projects affecting these stages
per commit ranges from approximately 5% to 20%

To give a similar but diverse perspective, Fig. 11 presents the
proportion of commits affecting each ML stage across groups of
projects with different numbers of commits. Data acquisition and
preparation are the primary observations of all the project groups
(i.e., Group A-E). Similar to the results from Fig. 10, there is no
significant change in the pattern observed between shorter and longer
projects. Nevertheless, as we progress from projects with fewer
commits to those with more commits, the data preparation activities
slightly increase, while other activities decrease marginally.

We also measured the average project duration (i.e. the period
from the first commit to the last observed commit). Group A has an
average duration of 264 days, group B, 357 days, group C, 399 days,
group D, 533 days, and group E, 989 days.

Data acquisition and preparation remain continuously relevant
ML development stages throughout such projects’ evolution, re-
quiring corresponding tool support for developers.

Summary RQ3: ML Project Evolution

A Large-Scale Study of ML-Related Python Projects SAC ’24, April 8–12, 2024, Avila, Spain

4.3.2 Discussion. Building on these results, the data acquisition
and preparation stages are the most common and likely expensive
activities, requiring adequate tool support for developers. Recall that
the statistics in Fig. 4 show that most projects have comparably few
commits. So, the changes in evaluation-related stages may be lower
due to an abundance of small experimental projects, indicating that
developers need tool support for model evaluation.

As the number of commits to a project increases, we would expect
to see changes in the stages of development according to the ML
workflow described in Sec. 2.1. For example, we would expect the
data-related stages to decrease towards the end of a project lifecy-
cle, while the modeling and evaluation stages would increase with
more commits. However, our analysis shows that there is no signif-
icant shift in the distribution of stages over time. Data acquisition
decreases slightly, while data preparation increases slightly with
increasing commits, indicating a tendency to have continuous data
preparation stages in long-living projects. On the other hand, training
and prediction-related stages slightly reduce with an increasing num-
ber of commits. Contrary to our assumption, the development stages
of affected ML stages seem to remain relatively constant throughout
a project’s lifespan.

5 IMPLICATIONS
For RQ1, we found that ML projects on GitHub span a wide array
of different types, with the majority being non-production focused.
This indicates a need for further research into how the develop-
ment of open-source Ml projects can transition from prototypes and
experiments to mature software systems.

The small fraction of these projects being actual ML-enabled
systems raise the following considerations. A reason could be di-
verse tool dependencies (i): One possible explanation for the limited
presence is the complex nature of such system, which mostly re-
quire developers to rely on an array of specialized tools serving a
unique purpose. It is plausible that Git repositories are used to man-
age a subset of all assets, such as documentation and code, while
other assets, such as data, trained models, and so on, are managed
through alternative tools. Another reason could be the isolation of
ML experiments and software systems (ii): Our findings could also
be interpreted to support the theory that ML experiments and soft-
ware system development are often conducted in isolation rather
than as an integrated project. This separation may arise from the
historical division between data science and software engineering
teams, resulting in disjoint workflows and project structures. For
example, there could be separate teams or developers working on
different aspects of ML-based systems. For instance, the ML compo-
nent could be managed as a Git project by a team while a separate
team develops the software systems utilizing the model.

These findings illustrate a need for novel studies that specifically
identify ML-enabled systems on a large scale. This, however, re-
quires designing automated project type identification techniques
(cf. Sec. 4.1.2) that can be used to drive future studies. In addition,
identifying the reasons behind the limited presence of systems re-
quires exploratory studies, relying on interviews or surveys with
developers, also confirming or refuting our results.

Our results for RQ2 and RQ3 show that the most important
aspects in the development of ML-enabled software are related to

data acquisition and preparation. This finding confirms that data
management is typically identified as the biggest challenge when
building software with ML models, such as ML-enabled systems [24–
26]. These findings demand improved tool support for DataOps,
specifically for making changes to the data-related parts of ML
pipelines.

Also recall that including ML requires many different assets (e.g.,
datasets, hyperparameters). In combination with our results and the
highly iterative nature of ML development, novel tool support for
managing the evolution is needed. Current version-control systems
as known from software engineering (e.g., Git) are insufficient, while
specialized tools, such as experiment management tools, are not well
integrated with existing software-engineering tooling, especially
version-control systems. Since our results indicate that ML mod-
els and software (sub-)systems seem to be developed in isolation,
we recommend the development of tools that facilitate the unified
management of ML experiment assets with version-controlled repos-
itories. These tools should seamlessly handle code, datasets, models,
and experimentation records, making Git a more suitable platform
for ML projects targeting software systems.

6 THREATS TO VALIDITY
We now discuss possible threats to the validity of our study.

6.1 External Validity
To enhance external validity, we focused on ML-related projects
developed with Python, the primary language used in developing
ML components. However, other programming languages should
also be examined to further investigate and confirm or refute our
results and observations. Furthermore, we filtered projects using
only two ML libraries and their APIs. However, TensorFlow and
scikit-learn are among the most popular ML libraries, and we see
our study as a comprehensive starting point for further investigations
in this direction. The other filtering criteria we employed, such as
the number of commits or the presence of ML workflow stages were
chosen heuristically and are therefore subject to possible biases. We
leave it to future research to evaluate their effectiveness and propose
possible alternatives. Finally, recall that there are multiple possible
workflows for ML development, comprising different stages. We
focused on the six stages that were already defined and analyzed by
Biswas et al. [9], because they could be found in GitHub repositories.
Future work could build on our study by also taking other stages
into account, which would require a different methodology and a
separate study.

6.2 Internal Validity
We note that our dataset includes a diverse array of project types (cf.
Sec. 4.1). The analysis performed in sections 4.2 and 4.3 did not cap-
ture how the implementation and usage of ML development stages
differs between project types. For example, it would be possible
that the lack of evaluation activities is caused by one or two project
types, such as libraries or tutorials. Differentiating these categories
and analyzing them individually is beyond the scope of this paper
and would be a study of its own. Furthermore the counted number
of projects does not take into account how large the projects are. It
might be possible that some categories, such as systems or libraries

SAC ’24, April 8–12, 2024, Avila, Spain Samuel Idowu, Yorick Sens, Thorsten Berger, Jacob Krüger, and Michael Vierhauser

contain projects that are larger than the projects in other categories.
We also note that the manual classification of project types is sub-
ject to possible errors and biases by the authors, who might have a
different understanding of these categories than someone else.

Finally, to design and implement our mining methodology, we
have considered the limitations and challenges of mining reposito-
ries raised by Cosentino et al. [11] and Gousios et al. [15] to avoid
common pitfalls, including low-level replicability, poor sampling
techniques, inefficient collection process, and biased results.

7 CONCLUSION
We presented a large-scale study on ML-related Python projects
on GitHub. We studied what types of projects are ML-enabled,
the occurrence of development stages, and the dominant evolution
activities found in over 31,000 repositories on GitHub. Our work
contributes to a growing research interest in improving the practices
and engineering of ML-enabled software projects. We find that most
ML-related projects are research- and education-oriented, indicat-
ing that the technology is not yet commonly integrated in major
open-source software systems. Furthermore, our findings show that
data-related development stages dominate these projects, whose re-
lated assets are also most frequently changed. Notably, we found the
model evaluation stage in the least number of projects, followed by
the training and prediction stages. Finally, we observed that, while
the distribution of ML stages is consistent as projects evolve with
increasing commits, the proportion of data preparation increases and
data acquisition decreases. The outcome of our study offers insights
into essential aspects of ML development stages and asset types that
tool developers and researchers should prioritize.

ACKNOWLEDGMENTS
Supported by Berger’s fellowship granted by the Royal Swedish
Academy of Sciences and the Wallenberg Foundation.

REFERENCES
[1] 2021. Most popular machine learning libraries - 2014/2021. https://

statisticsanddata.org/data/most-popular-machine-learning-libraries
[2] Mohannad Alahdab and Gül Çalıklı. 2019. Empirical analysis of hidden technical

debt patterns in machine learning software. In PROFES.
[3] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,

Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software engineering for machine learning: A case study. In ICSE/SEIP.

[4] A Arpteg, B Brinne, L Crnkovic-Friis, and J Bosch. 2018. Software Engineering
Challenges of Deep Learning. In SEAA.

[5] Amine Barrak, Ellis E Eghan, and Bram Adams. 2021. On the co-evolution of ml
pipelines and source code-empirical study of dvc projects. In SANER.

[6] Andrew L Beam, Arjun K Manrai, and Marzyeh Ghassemi. 2020. Challenges to
the reproducibility of machine learning models in health care. Jama 323, 4 (2020),
305–306.

[7] Aaditya Bhatia, Ellis E Eghan, Manel Grichi, William G Cavanagh, Zhen Ming,
Bram Adams, et al. 2022. Towards a Change Taxonomy for Machine Learning
Systems. arXiv preprint arXiv:2203.11365 (2022).

[8] Sumon Biswas, Md Johirul Islam, Yijia Huang, and Hridesh Rajan. 2019. Boa
meets python: a boa dataset of data science software in python language. In MSR.

[9] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2021. The Art and
Practice of Data Science Pipelines: A Comprehensive Study of Data Science
Pipelines In Theory, In-The-Small, and In-The-Large. arXiv:2112.01590 (2021).

[10] Dan Bohus, Sean Andrist, and Mihai Jalobeanu. 2017. Rapid development of mul-
timodal interactive systems: a demonstration of platform for situated intelligence.
In ICMI.

[11] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2016. Findings
from GitHub: methods, datasets and limitations. In MSR.

[12] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. 1996. The KDD
Process for Extracting Useful Knowledge from Volumes of Data. Commun. ACM
39, 11 (1996), 27–34.

[13] Rudolf Ferenc, Tamás Viszkok, Tamás Aladics, Judit Jász, and Péter Hegedüs.
2020. Deep-water framework: The Swiss army knife of humans working with
machine learning models. SoftwareX 12 (2020), 100551.

[14] Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. 2020. The
state of the ml-universe: 10 years of artificial intelligence & machine learning
software development on github. In MSR.

[15] Georgios Gousios and Diomidis Spinellis. 2017. Mining software engineering
data from GitHub. In ICSE-C.

[16] Samuel Idowu, Osman Osman, Daniel Strueber, and Thorsten Berger. 2022. On the
Effectiveness of Machine Learning Experiment Management Tools. In 44th Inter-
national Conference on Software Engineering, Software Engineering in Practice
track (ICSE/SEIP).

[17] Samuel Idowu, Daniel Strüber, and Thorsten Berger. 2022. Asset Management in
Machine Learning: State-of-research and State-of-practice. Comput. Surveys 55,
7, Article 144 (dec 2022), 35 pages.

[18] Samuel Idowu, Daniel Strueber, and Thorsten Berger. 2022. EMMM: A Uni-
fied Meta-Model for Tracking Machine Learning Experiments. In Euromicro
Conference on Software Engineering and Advanced Applications (SEAA).

[19] Samuel Idowu, Daniel Strüber, and Thorsten Berger. 2021. Asset Management in
Machine Learning: A Survey. In ICSE/SEIP.

[20] Richard Isdahl and Odd Erik Gundersen. 2019. Out-of-the-Box Reproducibility:
A Survey of Machine Learning Platforms. In eScience.

[21] Microsoft. 2017. Team Data Science Process Documentation. https://docs.
microsoft.com/en-us/azure/machine-learning/team-data-science-process/

[22] Ml-Tooling. [n. d.]. ML-tooling/best-of-ml-python: A ranked list of awesome
machine learning python libraries. updated weekly. https://github.com/ml-
tooling/best-of-ml-python

[23] Marçal Mora-Cantallops, Salvador Sánchez-Alonso, Elena García-Barriocanal,
and Miguel-Angel Sicilia. 2021. Traceability for trustworthy AI: A review of
models and tools. Big Data and Cognitive Computing 5, 2 (2021), 20.

[24] Aiswarya Raj Munappy, Jan Bosch, and Helena Homström Olsson. 2020. Data
pipeline management in practice: Challenges and opportunities. In PROFES.

[25] Aiswarya Raj Munappy, Jan Bosch, Helena Holmström Olsson, Anders Arpteg,
and Björn Brinne. 2022. Data management for production quality deep learning
models: Challenges and solutions. Journal of Systems and Software 191 (2022),
111359.

[26] Aiswarya Raj Munappy, David Issa Mattos, Jan Bosch, Helena Holmström Olsson,
and Anas Dakkak. 2020. From ad-hoc data analytics to dataops. In ICSSP.

[27] Nadia Nahar, Haoran Zhang, Grace Lewis, Shurui Zhou, and Christian Kästner.
2023. A Dataset and Analysis of Open-Source Machine Learning Products.
arXiv:2308.04328 [cs.SE]

[28] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. 2021. A taxonomy of tools
for reproducible machine learning experiments. AIxIA (2021).

[29] Dhivyabharathi Ramasamy, Cristina Sarasua, Alberto Bacchelli, and Abraham
Bernstein. 2023. Workflow analysis of data science code in public GitHub reposi-
tories. Empirical Software Engineering 28, 1 (2023), 1–47.

[30] Sebastian Raschka and Vahid Mirjalili. 2019. Python machine learning: Machine
learning and deep learning with Python, scikit-learn, and TensorFlow 2. Packt
Publishing Ltd.

[31] Iqbal H Sarker, Faisal Faruque, Ujjal Hossen, and Atikur Rahman. 2015. A Survey
of Software Development Process Models in Software Engineering. International
Journal of Software Engineering and Its Applications 9, 11 (2015), 55–70.

[32] Marius Schlegel and Kai-Uwe Sattler. 2022. Management of Machine Learning
Lifecycle Artifacts: A Survey. SIGMOD Rec. (2022), 18–35.

[33] Andrew J Simmons, Scott Barnett, Jessica Rivera-Villicana, Akshat Bajaj, and
Rajesh Vasa. 2020. A large-scale comparative analysis of coding standard confor-
mance in open-source data science projects. In ESEM.

[34] Rachael Tatman, Jake Vanderplas, and Sohier Dane. 2018. A Practical Taxonomy
of Reproducibility for Machine Learning Research. In ICML.

[35] Bart van Oort, Luís Cruz, Maurício Aniche, and Arie van Deursen. 2021. The
Prevalence of Code Smells in Machine Learning projects. In WAIN.

[36] Jiawei Wang, Li Li, and Andreas Zeller. 2021. Restoring execution environments
of Jupyter notebooks. In ICSE.

[37] Thomas Weißgerber and Michael Granitzer. 2019. Mapping platforms into a
new open science model for machine learning. it - Information Technology 61, 4
(2019), 197–208.

[38] Rüdiger Wirth and Jochen Hipp. 2000. CRISP-DM : Towards a standard process
model for data mining. In KDD.

[39] Yue Yu, Gang Yin, Huaimin Wang, and Tao Wang. 2014. Exploring the patterns
of social behavior in GitHub. In CrowdSoft.

[40] Amy X Zhang, Michael Muller, and Dakuo Wang. 2020. How do data science
workers collaborate? roles, workflows, and tools. Proc. of the ACM on Human-
Computer Interaction 4, CSCW1 (2020), 1–23.

https://statisticsanddata.org/data/most-popular-machine-learning-libraries
https://statisticsanddata.org/data/most-popular-machine-learning-libraries
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/
https://github.com/ml-tooling/best-of-ml-python
https://github.com/ml-tooling/best-of-ml-python
https://arxiv.org/abs/2308.04328

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Methodology
	3.1 Data Collection
	3.2 Data Analysis

	4 Results
	4.1 Types of Projects (RQ1)
	4.2 ML Development Stages (RQ2)
	4.3 ML Project Evolution (RQ3)

	5 Implications
	6 Threats to Validity
	6.1 External Validity
	6.2 Internal Validity

	7 Conclusion
	References

