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Abstract

Software often needs to exist in different variants, which account for varying customer requirements, environments, or non-
functional aspects, such as energy consumption. Unfortunately, the number of variants can grow exponentially with the number of
features. As such, developing and evolving variant-rich systems is challenging, since they do not only evolve “in time” as single
systems, but also “in space” with new variants. Fortunately, many different methods and tools for variant-rich systems have been
proposed over the last decades, especially in the field of software product line engineering. However, their level of evaluation
varies significantly, threatening their relevance for practitioners and that of future research. Many tools have only been evaluated
on ad hoc datasets, minimal examples, or unrealistic and limited evolution scenarios, missing large parts of the actual evolution
lifecycle of variant-rich systems.

Our long-term goal is to provide benchmarks to increase the maturity of evaluation of methods and tools for evolving variant-
rich systems. However, providing manually curated and sufficiently detailed benchmarks that cover the whole evolution lifecycle
of variant-rich systems is challenging. We present the framework vpbench, which simulates the evolution of a variant-rich system
and thereby generates an evolution enriched with metadata explaining the evolution. The generated benchmarks, i.e., the evolution
histories and metadata, can serve as ground truth to check the results of tools applied on it. We formalize the claims we make about
the generator and the generated benchmarks as requirements. The design of vpbench comprises modular generators and evolution
operators that automatically evolve real codebases. We implement simple and advanced evolution operators—e.g., relying on code
transplantation to incorporate features from real projects. We demonstrate how vpbench addresses its claimed requirements, also
considering multiple degrees of realism, extensibility and language-independence of the generated benchmarks.
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1. Introduction ity mechanisms [3, 11, 64] that allow enabling or disabling fea-
tures and their implementation via variation points in the code.
A platform greatly reduces redundancies among the variants

and allows to quickly derive new variants—often automatically,

Almost any software system needs to exist in multiple vari-
ants. Developers create variants to experiment with ideas and

to address varying stakeholder requirements—including differ-
ent markets, environments, and non-functional properties, such
as performance or energy consumption. Unfortunately, devel-
oping variant-rich systems is challenging [12, 15, 20, 21, 27,
28, 31, 66]. However, evolving them is even more complex
[8, 30, 61], especially compared to single systems. Organiza-
tions often start with clone&own—copying and adapting indi-
vidual variants—as a simple and readily available strategy [10,
12, 14]. During clone&own the different variants are evolved
by manually propagating new features (end-user-visible func-
tionality [3, 9]), and other code changes (e.g., bug fixes) among
the cloned variants. However, while cheap at first, the main-
tenance overheads quickly exceed the benefits of clone&own.
Then, organizations need to integrate several or all variants
into a configurable platform, realized with so-called variabil-
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supported by model-based representations (e.g., feature mod-
els [10, 23]) and configurator tools. Still, evolving a platform
is difficult, since developers work on many variants at the same
time, with variation points (e.g., using #ifdef) cluttering the
source code and features being scattered across the codebase.

A huge portfolio of methods and tools has been proposed
over the last three decades in the field of software product
line engineering [3, 46] to support the evolution of variant-rich
systems—software product lines (SPLs). These methods and
tools provide techniques [1, 5, 30, 36, 45, 47, 49, 50, 53, 57]
to automatically locate features in source code, to manage
and identify clones, to propagate changes and features, to
re-engineer cloned source code into a configurable platform,
to manage and evolve feature models, to evolve the config-
urable platforms, and many other evolution scenarios. So, in
summary, many different methods and tools exist that support
individual parts of the typical evolution lifecycle of variant-rich
systems, covering ad hoc clone&own, the migration to a
configurable platform, and its evolution.
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A core challenge is the evaluation of these techniques [61].
A recent study found that only 3 of 11 common evolution
scenarios of variant-rich systems are fully supported by bench-
marks [61]. While open-source variant-rich systems exist[11],
the main problem is the lack of large ground-truth datasets
that challenge the techniques and provide detailed information
about the actual evolution, to determine the techniques’ per-
formance (e.g., precision or recall). While a few open-source
systems annotated with features exist, no dataset provides the
whole evolution history of realistic systems, together with the
necessary information to use them as a ground truth for the
evaluation of methods and tools.

Consider for instance a feature-location technique [49].
Evaluating it requires a codebase and recorded feature loca-
tions, since the latter are typically not recorded in software
systems. The intuition is that developers implement features,
being fully aware of what feature they implement (since fea-
tures are part of the design), but they only write code, with-
out recording the feature itself. Feature-location techniques
recover such feature locations, relying on input such as code,
where they exploit identifier names and other domain informa-
tion, or they rely on the evolution history. Now, evaluating such
techniques requires ground-truth information. Surprisingly, be-
yond smaller datasets with retroactively added features [22, 61],
no dataset exists that resembles a substantial evolution lifecy-
cle of a variant-rich system. A workaround for researchers
was to study the evolution of optional features in software
platforms with preprocessor-based variation points, where fea-
tures are easily identifiable in code (via #ifdef annotations).
While this strategy helps evaluating preprocessor-focused tech-
niques (e.g., variability-aware type-checking of C code [25]),
it misses mandatory features, which are not annotated and
which differ from optional features [29]; and it misses the early
clone&own phases with redundant feature implementations
among the cloned variants. Also, preprocessor-annotated code
is only available for certain programming languages (e.g., C).

Consider as another example a change-propagation or
variant-synchronization technique[45, 61].  Evaluating it
requires the code of the affected variants before and after
synchronization, the exact source of the propagation (e.g., a
specific feature in a variant), the exact target, and information
how the variants were synchronized (e.g., code was merged
or overwritten). Similarly to the feature-location example
above, if developers would record this information (henceforth
called metadata) when they evolve a system, this metadata
with the codebase and its history could be used as a benchmark
to evaluate respective techniques. Unfortunately, we are not
aware of any such dataset. Adding the necessary information
to an existing system would require clone detection and
reverse-engineering of the exact evolution, which is laborious
and error-prone, and has only be done for smaller systems [22].

In addition to these two examples, many more evolution sce-
narios and techniques supporting them exist[61]. Evaluating
and improving them requires evolution histories with metadata
to establish ground-truth datasets. Given the lack of substantial
benchmarks resembling the evolution of variant-rich systems,
researchers often resorted to simple proofs of concept or

hand-crafted small datasets.

We strive to improve the situation and advocate the gen-
eration of evolution histories with metadata. We present the
framework vpbench to generate software evolution histories
reflecting common evolution scenarios found in variant-rich
systems while recording the required metadata—exactly the in-
formation that is not recorded by developers in real systems, but
that is necessary to evaluate methods and tools for variant-rich
systems. Upon an initial codebase, vpbench simulates the evo-
lution of a variant-rich system by automatically adding, re-
moving, and cloning features, mutating implementation assets
(e.g., code), and cloning variants. Feature addition is realized
using automated code transplantation [6] from other software
projects. We formulate the claims behind vpbench as require-
ments; intuitively, these express properties of the generator and
the generated benchmarks. We show that automatically evolv-
ing a variant-rich system and recording the necessary metadata
is feasible, where the generated evolution history adheres to
the requirements. We show that this automated evolution can
rely on a small set of feature-oriented evolution operators, all
defined and implemented in an extensible framework.

The key requirements are: The generated evolution histories
should (i) resemble the evolution of a software system, which
should be evolved (ii) in a feature-oriented way and in different
variants. The generated revisions should (iii) try to be realistic.
Since complete realism is infeasible to achieve by a synthetic
generation process, we defined and addressed three basic levels
towards realism reflecting syntactic and semantic properties of
the generated system. Finally, (iv) the evolution and especially
the high-level intentions behind changes should be documented
as metadata, e.g., whether a feature is added or not and where
exactly. The generator itself should be (v) extensible and (vi)
programming-language-independent.

We contribute:

e requirements for our benchmark generation framework;

e the vpbench framework with a set of generators and
evolution operations to generate evolution histories, in-
cluding a novel mechanism for feature transplantation,
which transplants callable functionalities from external
projects;

e an evaluation demonstrating its generation capabilities
with respect to requirements and properties and the dif-
ferent levels of realism,;

¢ an online appendix with our code and evaluation data, at
bitbucket.org/VPBench/vpbench.

On a final note, research in software configuration man-
agement and product line engineering is hindered by a lack
of benchmarks. This was a main outcome of a Dagstuhl
seminar on variability and evolution [8]. Without proper
benchmarks with ground-truth information, tools cannot be
evaluated sufficiently. However, such ground truths do not
exist —the baseline for our paper—and recovering them from
existing evolution histories is laborious and error-prone and
has only been done for smaller-scale systems and specific
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aspects [22]. We address this problem with vpbench and show
its capability to generate evolution histories enriched with
metadata providing a ground truth.

2. Motivation and Background

Evolution of Variant-Rich Systems. Modern software
evolves in time and space[2, 8]. Evolution ‘in time’ reflects
the natural evolution over system revisions, including adding
new and changing existing code. In contrast, evolution in
‘space’ reflects the creation of system variants, which co-exist
and also evolve themselves. These variants typically share
common features (abstract, end-user-visible functional and
non-functional aspects [9]) while they differ in other (variable)
features, which are present only in some variants, and poten-
tially customized towards the variant. Variants can be realized
as clones (clone&own [14]) or through a configurable platform
(explained shortly) [3, 12, 68] that integrates all common and
variable features in one codebase.

Often, organizations start with clone&own and transition
towards a platform when the effort to maintain and evolve the
cloned variants explodes [10, 14, 15, 27, 34]. Establishing a
platform requires identifying the features that are part of the
individual variants, and then declaring those in a tree-based
representation called feature model[10, 23, 44]. Feature
models help developers keep an overview understanding of the
platform and are an input to interactive configurator tools that
allow deriving concrete variants—those that were migrated
or new ones defined by new configurations—in an automated
process. While a platform reduces redundancy and substan-
tially shortens the development of new variants, evolving a
platform is still challenging, since developers work on many
different variants at the same time, and need to keep the feature
model consistent with the codebase. A good overview over
the challenges of evolving variant-rich systems, with a focus
on re-engineering clone variants into a configurable platform is
given by Lopez-Herrejon et al. [34].

Virtual Platform. To simulate software evolution in a feature-
oriented way, vpbench relies on the Virtual Platform (VP) [36],
a framework that offers operations which developers can
execute to manage and evolve variant-rich systems. vpbench
reuses, extends, and automatically executes them to simulate
an evolution. An important advantage of the VP is that its
operations support a stepwise migration of clone&own-based
variants into a configurable platform, reflecting actual evolu-
tion scenarios from practice [30]. The VP offers two kinds of
operations: traditional, asset-oriented ones (e.g., add asset,
clone asset) and novel, feature-oriented ones (e.g., map asset to

A.java B.java C.java Feature Model

class A { class B { class C{

public void fooA() { public void fooB() { public void fooC() {

} } }

public void barA() { public void barB() {

public void barC() {

} } }
1 } }

Figure 1: Running example: initial revision of V1

feature or add feature), which also evolve a feature model and
assure its consistency with the software assets. Operations are
applied on the asset tree, an abstract-syntax-tree-like system
representation inspired by feature structure trees[4]. We
introduce these concepts in more detail in the remainder.

Code Transplantation. A core part of software development is
the addition of new features. As we strive for full automation,
we build on the ideas of automated code transplantation [6] to
clone whole features among variants—a common evolution
scenario in variant-rich systems. Code-transplantation tech-
niques extract some code of interest (the organ) from a donor
system and implant it into a host system. Existing techniques
typically require some type of user input to identify the organ
and insertion point [6, 35, 58, 72].

In our context, existing transplantation techniques are not
sufficient and face the following three problems we address
with vpbench. The first and the third problems arise from the
absence of a user who provides input to the tools, whereas in
vpbench we need to automate those steps.

Problem 1: How to identify transplantable features? Features
come in many forms and with various facets [9] and need to be
identified and located manually or automatically before they
can be transplanted. This is trivial if the features are explicitly
documented (e.g., in feature models), but may be hard if this
knowledge is only implicitly contained in the implementation.
While automated feature-location techniques exist[49], they
are difficult to setup, need feature descriptions as input, and
yield too many false positive results to be useful in practice.

Problem 2: How to extract a transplantable feature, i.e., the
organ from the donor system? Transplanting a feature requires
locating it in code and then not only transplanting the feature
code, but also its dependencies. This includes the code that sets
up an execution environment for the feature and the code that
is called during feature execution, i.e., forward and backward
dependencies [6].

Problem 3: How to integrate the transplanted feature into
the host system? After extracting the organ from the donor
system it needs to be integrated with the host system, so that
the functionality can be called within the host. This includes
identifying insertion points for the organ—which would be
provided by the user with existing transplantation techniques—
and finding a variable mapping to translate between the donor’s
and host’s execution environments, e.g., variable names or
types need to be converted between systems.

3. Running Example

To exemplify vpbench’s output and explain concepts through-
out this paper, we introduce a running example. Let us assume
a company developing the software system V1 depicted in
Fig. 1. It initially consists of three files implementing the
features F1 and F2. While F2 is implemented solely in A. java,
F1’s implementation is scattered over B. java and C. java. As
the software is continuously evolving in time, the company is
approached by a customer, who wants a similar, yet different
variant of V1. Specifically, the customer does not require



feature F1, but wants some additional functionality in feature
F3. Later, the original customer of V1 might hear about feature
F3 and request its inclusion into V1, too.

Figure 2 shows on a high level how vpbench could simulate
such evolution. It applies feature-oriented operations over a
set of iterations and records the operation’s type and targets as
metadata (shown here schematically and explained in detail in
Sec. 5.3). It also stores feature models, feature locations and
clone traces between implementation assets (e.g., code) and
features (the latter two not depicted for simplicity). Vpbench
begins by cloning the existing variant V1 to create variant V2,
initially an exact copy (It. I). Feature F1 is removed by delet-
ing it from the feature model and removing its implementation
assets (see Fig. 1), including the entire file C. java (It. 2).
Feature F3 is added to V2 as shown in Fig. 3, i.e., by inserting
a code snippet into A. java, calling the feature code in the also
newly added file D. java, effectively weaving the feature into
the existing program ({/z. 3). Finally, F3 is cloned into V1, in-
cluding its implementation assets (It. 4). Of course, individual
evolution in time of the variant might also occur in-between.

4. Requirements

Our goal is to establish a generation framework for evolution
histories useful for benchmarking. It shall automatically
simulate the evolution of variant-rich software, while recording
detailed metadata about this evolution. We now present the
requirements for this framework, which are inspired by existing
evolution scenarios from Striiber et al. [61]. We reference the
relevant scenarios throughout following the descriptions.

We first present gemeration requirements, which concern
the generated evolution histories, and then framework require-
ments, which concern the (re-)usability of our framework.

4.1. Generation Requirements

Feature-Orientation. Systems are developed by adding,
reusing, removing, and changing features, similar to our
running example. In fact, developers have features in their
mind when writing code, even if they are typically not made
explicit in the code and the evolution history, beyond commit
messages. Consequently, the generator should evolve systems
in a feature-oriented way, i.e., it should add, remove, change
and reuse features across the typical lifecycle of a variant-rich
system, comprising clone&own, migrating to a configurable
platform, and evolving it.

An explicit representation of features and their evolution is
required for several scenarios, such as variant synchroniza-
tion in terms of features, feature identification and location,
constraint extraction, feature model synthesis, analysis of non-
functional properties, visualization and co-evolution of problem
space and solution space [61].

Metadata. The generated evolution history should serve as a
ground-truth dataset for evaluating two kinds of tools: (i) tools
that automatically extract information necessary for the evolu-
tion (to assess the precision of a tool), or (ii) tools that automat-
ically evolve code (to assess the tools’ results against the bench-
mark). Both require information that is typically not recorded

Iteration 0
Feature Model Variant
Vi
A.java
B.java
C.java
. . Metadata
Operation: Clone Variant X N
-------------------------------------- Clone variant V1 to create variant V2.
Iteration 1
Feature Model Variant Variant Feature Model
& v
t o " t
X Ajava - Ajava ~
D B.java - B.java d— o
L Cjava " Cjava
Metadata
’ Operation: Remove Feature Remove feature F1 from variant V2 and in turn
also its implementation assets, i.e., two code
\L blocks in V2\B.java and the entire file V2\C.java.
Iteration 2
Feature Model Variant Variant Feature Model
V1 V2
[Root | o : [Root |
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4 = | B.java ~ B.java )\
[FL] Cjava
Metadata

Add feature F3 to variant V2 beneath the root
feature. Adds a codeblock at the beginning of
method barA() in V2\A.java and the file
V2\D.java containing the feature’s
implementation.

Iteration 3
Feature Model Variant Variant Feature Model
V1 V2
A.java I A.java
B.java i B.java
C.java D.java

Metadata
Clone feature F3 from variant V2 to variant V1.
The feature is added as a subfeature to the root-
_______ Operation: Clone Feature | feature in V1. To add the feature’s

implementation, clone the codeblock in the
beginning of method barA() in A.java and the
entire file D.java from variant V2 to variant V1.

Iteration 4
Feature Model Variant Variant Feature Model
V1 V2
A.java | A.java
B.java I B.java
C.java D.java
D.java

Figure 2: Running example: evolution of V1 and V2




Variant A.java D.java  Feature Model
v2 - ublic voi class D {
A.java public void barA( { public int doStuff() {
B.java _ <N\
D.java I }
: )

Figure 3: Running example: adding F3 during iteration 3

during system evolution: feature locations, clone traces, and
developer intentions. The latter conveys the high-level feature-
oriented change the developer has in mind when changing code.

For example, in iteration 4 in Fig. 2, feature F3 is cloned from
V2 to V1 by propagating implementation assets such as D. java
from V2 to V1. A normal evolution history would only show the
changes to the code, but not in which context they were made.
This makes it impossible to realize that in fact a feature was
cloned between two variants without carefully examining both
variants’ code.

Recording information on applied operations allows the ex-
traction of concrete evaluation tasks for automatic evolution
tools from an evolution history by identifying the point in time
where a high-level operation took place, i.e., by filtering for
specific high-level intentions (i.e., what operation was done on
a feature level), and providing the respective changes in code as
a solution to the task given by the simulated high-level inten-
tion. This is required for variant synchronization and integra-
tion and transformations, while recorded feature locations and
models, and clone traces may additionally support feature loca-
tion, feature model synthesis, visualization, and co-evolution of
problem and solution space [61].

Evolution. A development history is a sequence of system
snapshots, i.e., revisions, which should evolve considerably
over time. We require evolution in both time and space.

This requirement is a necessity to support the benchmarking
scenarios [61] variant synchronization and integration, trans-
Sformations, test co-evolution and co-evolution of problem and
solution space, where tools automatically propose evolution
steps. All these scenarios require two system revisions, one
containing the problem that tools should solve and one con-
taining its solution to evaluate tool output against. These may
be extracted from full evolution histories, where a problem is
identified and solved during evolution. System evolution may
also support historical feature location.

Towards Realism. Achieving full realism with a fully
automated generation technique is impossible. Instead, we
take first steps towards realism using three basic levels of
syntactic and semantic properties that are reasonable for a
generation technique: (1) The first level reflects evolution as
described above. (2) The second level requires compilability,
a prerequisite to the stronger, but much more difficult to check
executability. While of course, syntax errors might exist in
SPLs [26], independently developed variants should always
adhere to basic compilability, just as non-variable software sys-
tems. (3) The third level requires callability of new features.
Features that are added during system evolution should not be
implemented stand-alone as dead code, but be integrated with

vpbench

steers to-be-evolved transplantable serialize to
evolution system features filesystem
Input Feature Donor Version
Configuration K
8 Codebase Systems History

Figure 4: Vpbench I/O

the already existing system. We say that a feature is integrated,
if it is called by the system and is thus callable. In our running
example, the feature F3 included a code snippet that was added
to A. java to include the code from D. java into the program
flow. F3 was integrated into the existing system by being
called, so F3 is callable. This is a small, but non-trivial step to
improve the realism of our generated evolution histories.

Future work may build on top of these levels to create in-
creasingly realistic evolution histories, e.g., by controlling the
type and size of changes using real-world evolution histories or
providing executable systems and also enhancing the natural-
ness of code [18].

4.2. Framework Requirements

Extensibility. The framework should be extensible with more
mechanisms to simulate evolution (e.g., apply other types of
changes or utilize different algorithms) or advance realism to
support an increasing set of benchmarking scenarios and tools
with growing realism.

Language Independence. The framework should make no
assumption regarding specific programming languages or im-
plementation technologies. Any language- or technology-
dependent part should be replaceable, allowing to tailor the out-
put to different benchmarking tools.

5. Vpbench

Vpbench takes as input a configuration, an external system
representing the initial codebase, and multiple external systems
serving as feature donors. The configuration guides the sim-
ulation of the evolution starting with the initial codebase. The
feature donor systems are used to transplant new features into
the evolving codebase. Vpbench iteratively applies changes
to the input codebase and then serializes its internal system
representation (asset tree, explained shortly) to generate the
evolution history. We provide a brief overview of vpbench and
follow up with more detailed explanations of each component.
Overview. The framework provides both core modules and
extensible modules, as illustrated in Fig. 5. It represents the
generated revisions (a codebase with folders and files) of the
evolution history internally as an asset tree (Sec. 5.1) and
modifies it using dedicated operations (Sec. 6), deterministic
procedures automatically applying asset- or feature-oriented
evolution steps. Operations may internally call nested oper-
ations and store metadata, detailing the evolution, i.e., which
implementation asset or which feature was modified, and how.
We call operations that call nested operations higher-order
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Figure 5: Vpbench overview

operations. These two concepts are reused and extended from
the underlying VP [36].

Applying an operation requires identifying system elements
that can sensibly be evolved, first. This task is handled by a
set of matching generators, each catering to a specific type of
operation, such as adding features or mutating implementation
assets. Generators scan the entire system to find suitable
operation targets, select one, and instantiate operations accord-
ingly. Operations are not immediately executed, but embedded
into transactions, which may check for the satisfaction of
correctness criteria (e.g., compilability) before applying the
operation on the evolved system.

This entire process is coordinated by the runner. It selects a
generator to generate an operation, wraps it into a transaction,
executes it and—on success—serializes the resulting system,
which may consist of several variants. Through iteration, this
creates a sequence of revisions, i.e., the version history. The
user can configure the runner and the generators.

5.1. Generated System Representation

The generation process outputs a version history in the form of
ordered system snapshots , the first one being the input initial
codebase. Each snapshot encompasses the structure and code
of all cloned and individually maintained variants and includes
feature models and feature locations, which are stored in the
code as embedded annotations [54].

Internally, the variant-rich system is represented through
assets, features and feature models, all stored within a tree
structure (asset tree [36]). In our context, an asset is anything
that gives structure to a software system, from a repository
over folders and files to classes, methods and code blocks.

The asset tree keeps structure only to the extent necessary
to realize operations, but is otherwise almost fully language-
independent. Assets can map to features, which are stored in-
side of feature models that are associated with elements in the
tree. The system is split into different repositories (which rep-
resent cloned system variants), all located beneath a synthetic
root node.

5.2. Coordinating the Evolution

The runner coordinates the simulation process, iteratively
delegating change generation to generators, embedding the
resulting operations in transactions, and responding to their
execution. The generator selection is guided by a probability
distribution, assigning a selection probability to each gener-
ator. The resulting operation is wrapped and executed in a
transaction, checking for compilability of the evolved system
and persisting changes only on success. On failure, the runner
retries (up to a configurable maximum) the same generator
to create another operation. This mechanism is in place,
since the generators are typically stochastic, so they might
sometimes fail to produce valid changes. In case no valid
operation was generated in all attempts, e.g., when querying
a feature-deletion generator on an empty feature model, the
runner proceeds to query the next generator. These steps are
iterated for a user-specified number of iterations.

5.3. Recording Metadata

To provide valuable ground truths for different types of
problems, our framework provides four types of metadata as
part of the generated evolution histories. It records features
in a feature model and the feature locations in the asset tree,



updating them as operations get executed. An important part of
variant-rich system evolution is cloning. Vpbench stores clone
traces in a trace database, when elements of the asset tree are
cloned as part of operations. Additionally, it stores metadata
of the simulated evolution to document the evolution steps and
to allow for full replayability. More specifically, we store for
each evolution step which operation was executed with what
parametrization and which nested operations. Table 1 illustrates
the format we use for storing the evolution metadata. We store
general metadata about the simulation and code-generation
process (GenerationMetadata), comprising the list of donor
projects used for feature transplantation (projects; explained
in Sec. 6.3) and metadata about every single evolution step
(history, recorded as a list of IterationMetadata). Every
IterationMetadata details one applied evolution step,
storing when it was applied (iterationNumber) and which
operation was executed within (stored as OperationMeta-
data). For the OperationMetadata, which stores operations’
parameters, the involved elements (implementation assets, fea-
ture model, feature mappings) need to be uniquely referenced:

Implementation assets are uniquely identifiable via their
position in the asset tree, stored as filesystem path and index.

Feature models are referenced using their associated asset,
and features via their encompassing feature model and their
least-partially-qualified path [54]. Precisely what metadata is
stored for each operation type is discussed in Sec. 6. Since oper-
ations are deterministic by definition, storing their parametriza-
tions allows full replayability of the system’s evolution. vp-
bench also stores all nested operations called during the execu-
tion of an operation, also to document which low-level changes
belong to which high-level change.

5.4. Configuration Options

Vpbench allows configuring the coordinating runner and every
generator. The runner can be configured using six input param-
eters: The number of iterations defines the maximum number of
operations that may be applied on the evolved system. Genera-
tion may end earlier if an optional user-specified exit condition
is met after any iteration. The user can also define which gen-
erators should be used for the evolution process, and can pass
a probability distribution, which defines a selection probabil-
ity for each generator in any iteration (without this parameter,
a uniform distribution is assumed). As the selection of gen-
erators and the generators themselves are stochastic, they may
fail to generate a operation that maintains the compilability of
the system on the first attempt. The user can, therefore, define
a maximum number of retries, i.e., how often a generator may
retry to generate an operation that maintains the compilability.
Finally, the user can define a compilation mechanism, e.g., a
build tool, to check whether an operation compiles. We discuss
the generator’s configuration options in Sec. 6.

6. Generators and Operations

System evolution is encoded in operations—evolution patterns
of variant-rich systems, e.g., cloning variants or adding,

removing, mutating, and cloning features in our running
example (see Sec. 3). Their execution requires parametrization,
e.g., which feature should be cloned where. Determining this
is the main task of a generator. It filters the asset tree down
to elements on which an operation may sensibly be invoked,
selects one, and instantiates the operation.

Every generator specializes in creating a specific operation
type, so the set of generators determines the types of changes
that may be applied to the evolving system. We provide a
base set of five operation types, covering major evolution
patterns of variant-rich systems, identified in a simulation
study of a clone-based product line [22], that can be further
extended in the future. Crucial for benchmarking, each oper-
ation records metadata, encompassing mostly the operation’s
parametrization as provided by the generator, but also some
additional information on its execution in some cases. We
give an overview of this base set of operations, including
parametrization and metadata, in Table 2 and explain them
with their corresponding generators in-depth in the following.

We use a set of helper functions for our generator expla-
nations: getAllAssets(asset, assetType) returns all re-
cursive children of asset of type assetType. getAllFea-
tures(asset, condition) returns all features that meet a
condition contained in feature models associated with as-
set or any of its recursive children. The helper function
getContainingFeatureModel (asset) returns the feature
model (potentially recursively) containing asset, while fea-
tureModel .getRootFeature() returns the root feature of
featureModel. The function pickRnd(set) returns a ran-
domly selected element within a set. Furthermore, getCon-
tainingFolder (asset) returns the folder asset containing
asset, testCase.getProject () returns the project contain-
ing the testCase, and getTestCases(donors) returns all
test cases implemented in any project within the set donors. Fi-
nally, getRandomSeed () returns a random seed for a pseudo-
random number generator.

6.1. Removing Features

Operation.  Existing features might be removed from a
variant for different reasons, e.g., due to updated requirements.
We model this behavior using an existing operation from
VP, called RemoveFeature. It removes a selected feature
(featureToRemove) and its subfeatures from the feature
model, also deleting all assets that are solely mapped to the
removed features in the process (stored as nested operations),
e.g., the entire file C.java and both mapped code blocks
within B. java in our running example (compare Sect. 3).

Generator. Our generator selects a random non-root feature
from the set of all included features over all repositories to
invoke the operation. In our running example, any feature
within both variants, V1 and V2, could have been selected.

6.2. Mutating Implementation Assets

Operation. Implementation assets often evolve without affect-
ing the feature model, e.g., when fixing bugs or refactoring.
Generally, all code changes can be described as a sequence



Table 1: Evolution metadata

GenerationMetadata := {projects: List[DonorProject], history: List[IterationMetadata]}

IterationMetadata

:= {iterationNumber: Int, operation: OperationMetadata}

OperationMetadata  := {operationType: String, parametrization: OperationParametrization, nestedOperations: List[OperationMetadata] }

Operation Parameters Metadata

RemoveFeature featureToRemove: Feature featureToRemove

MutateAsset
AddLine changedAsset: Asset, lineNumber: Int, newLine: String changedAsset, lineNumber, newLine
ReplaceLine changedAsset: Asset, lineNumber: Int, newLine: String changedAsset, lineNumber, newLine
DeleteLine changedAsset: Asset, lineNumber: Int changedAsset, lineNumber

TransplantFeature insertionPoint: Tuple[Asset, Int], donor: DonorProject,
testCase: TestCase, parentFeature: Feature, randomSeed: Int

CloneVariant clonedRepo: Asset, cloneName: String

CloneFeature

clonedFeature: Feature, newParentFeature: Feature

insertionPoint, donor, testCase, parentFeature

clonedRepo, cloneName

clonedFeature, newParentFeature

Table 2: Operation overview

Input: An asset tree at
Output: A parametrized RemoveF eature operation
Function generate():
rmFeats «— getAllFeatures(at, lisRootFeature),
featureToRemove «— pickRnd(rmFeats);
return RemoveFeature(featureToRemove);
Algorithm 1: RemoveFeature Generation

of changes to single lines of code, where a single line can be
added, deleted or edited (i.e., replaced). We cover such changes
by extending the operation ChangeAsset from VP with three
concrete suboperations, each catering to one specific change
type. AddLine inserts a newLine at a specified 1ineNumber,
ReplaceLine replaces the current 1ineNumber with newLine,
and DeleteLine simply deletes the current 1ineNumber.
Generators. We define three separate generators to mutate
assets, each catering to a specific suboperation. Common to all,
the generators needs to select a mutable asset and define how
to change it. The former is done similarly to the selection of
featureToRemove: we randomly choose an asset representing
a block of code. The latter depends on the concrete operation
to generate. In all three cases, we select an edit point, a
random lineNumber within the selected asset to insert a new
line or replace or delete an old one. For adding or replacing,
we select a newLine of code from any file within the same
folder as the selected implementation asset to be edited. This
strategy (both operations and generators) is inspired by the
program transformations add-Random, replace-Random, and
delete, as proposed by Baudry et al. [7]. Compared to the
original implementation, our generators work on the line level,
rather than the statement level. This makes our generators
language-independent.

Since this strategy is fully random, it may create semantically
ineffective and syntactically invalid changes. We added sensi-
bility checks to discard some otherwise common, yet ineffective
changes, e.g., addition of an empty line, with a parametrized
probability (configuration option). Syntactically invalid
changes are caught by vpbench’s transaction mechanism check-

Input: An asset tree at
Output: A parametrized MutateAsset operation
Function generate():
mutAs « getAllAssets(at, codeBlockType);
changedAsset «— pickRnd(mutAs),
changeAsset(changedAsset),
return;
Function AddLineGen.changeAsset(a):
lineCount <« a.content.size();
lineNumber < pickRnd(lineCount);
potLines «— getPotentialLines(a);
newLine < pickRnd(potLines);
return AddLineToAsset(a,lineNumber,newLine);,
Function ReplaceLineGen.changeAsset(a):
lineCount <« a.content.size();
lineNumber < pickRnd(lineCount);
potLines «— getPotentialLines(a);
newLine < pickRnd(potLines);
return ReplaceLinelnAsset(a,lineNumber,newLine);
Function DeleteLineGen. changeAsset(a):
lineCount <« a.content.size();
lineNumber < pickRnd(lineCount);
return DeleteLineFromAsset(a,lineNumber);
Function getPotentialLines(a):
resultList < newList();
folder « getContainingFolder(a);
cBlocks < getAllAssets(folder, codeBlockType);
foreach block in cBlocks do

‘ resultList += block.content;
end
return resultList;

Algorithm 2: MutateAsset Generation

randomSeed, clonedAssets: Map[String, Asset]



ing for compilability and are not applied on the evolved system.

6.3. Adding Features

Operation. Adding features is one of the most natural ways
to evolve software, but poses a complicated problem for
automation. While work exists that automatically creates new
functionality [16], it requires defining test cases and ideally fur-
ther guidance information. Instead of generating new features,
our framework facilitates feature transplantation [6, 35, 58, 72]
from existing projects.

We implement an operation TransplantFeature that auto-
matically extracts and integrates a feature from a donor system
into the evolved system. As input it requires an insertion-
Point specified via a location in the asset tree and a parent-
Feature , a randomSeed to guarantee that certain parts of the
operation remain deterministic as well as some information on
the feature itself.

Identifying features. We approximate features using test cases.
Similar to Li et al. [32], we assume test cases to call features to
test their functionality. So, a feature for transplantation is iden-
tified by a testCase in a donor system with the actual feature
being the unit under test (solving Problem I from Sec. 2). This
only allows identifying features that are actually tested by the
donor system, but that are consequently of reasonable quality.
Extracting features. Given a feature to be transplanted, we re-
cursively slice the donor project down to the test case’s depen-
dencies to extract the feature, the test case, and dependencies.
As test cases build an execution environment (arrange) before
executing their unit under test (act), this provides us with all
required code to set up and execute the tested functionality
(solving Problem 2 as specified in Sec. 2). However, this also
means that untested parts of the feature under transplantation
are not included in the organ. Slicing is conducted on the level
of implementation files to limit the difficulty of the integration
step, which would otherwise skyrocket. One notable charac-
teristic of our technique is that required implementation assets,
which were already transplanted into a different repository be-
fore, may be cloned from there (configurable on the genera-
tor level). This maintains a sense of continuity and imitates
clone&own. This selection is semi-random if the asset exists
in multiple variants at the same time, so knowledge of the used
random seed keeps this step deterministic.

Integrating features. This slice of the test case’s dependen-
cies is added into a separate folder in the target variant and
integrated with past transplants from the same donor. While
this technically “adds™ the feature to the host, it does not
integrate it. We ensure that the feature is also called by the
host system. This requires us to set up a suitable execution
environment and execute the feature within. We reuse the test
case’s implementation for both. We apply some preprocessing
and add it at the specified insertion point, not as a test case,
but as “ordinary” code calling a feature (solving Problem
3 as specified in Sec. 2). An example for this is given in
Fig. 6, showing the insertion of the test case’s code for testing
plaintext encryption using AES inside the evolving codebase.
Note that we do not only extract and implant the test case,

public void foo() {

//8&begin test_encrypt_EncryptsPlaintext
try {

AesEncryptionStrategy strategy = new AesEncryptionStrategy(
128, 1000, "©6DC30A48ADEEE72D98E33C2CEAEAD3E",
"ED124530AF64A5CAD8EF463CF5628434", "password");

String ciphertext = strategy.encrypt(“Hello world");
assertEquals("A/DzjV17WVS6ZAKsLOaC/Q==", ciphertext);

} catch (Exception e) {}
//&end test_encrypt_EncryptsPlaintext

+ o+ o+ o+

return;

}

Figure 6: Transplantation example: achieving callability using test cases (test
case from github.com/structurizr/java)

but also further dependent code, e.g., the test class’ import
statements or attributes. Extracting only the source code is
not sufficient. We also need to manage its external libraries
to achieve compilability. To this end, we transplant not only
source code, but relevant build scripts and project structure,
too. Build files may introduce a lot of complexity, a lot of
which is not needed to achieve basic compilability. So, we slice
not only the required code, but also the required build structure
down to the basic configuration detailing code dependencies
on external libraries. This step needs to be performed once for
every donor project, from which we transplant functionality.

All resulting changes are encoded in nested operations, e.g.,

adding new assets to the asset tree or mapping them to newly
introduced features. This is crucial as it allows executing
operations on these added features in the future. In contrast
to other operations, this operation stores an additional point of
metadata, clonedAssets, which records which dependency
assets were reused from which variants. This provides a quick
lookup to users who want to understand the changes without
re-creating them using the stored randomSeed.
Generator. The generator is initialized with a set of donor
projects, from which we identify annotated test cases using
an existing technique [42], to randomly select features for
transplantation. An insertion point is sampled randomly from
the set of functions defined in the original project in a random
repository. We do not add features into transplanted code from
other feature donor projects to avoid dependency circles. Sim-
ilarly, we avoid strong feature tangling for now by defaulting
the parent features within the selected variant. Test cases are
blocklisted on selection, so that transplantation of a test case is
only attempted once during a single generation process.

While our generator integrates features into the evolved sys-
tem by default, i.e., makes them callable, the user may also
configure the generator to only guarantee compilability and not
callability.

6.4. Clone Variant

Operation. Typical variant-rich system evolution begins
with clone&own. Existing variants are cloned and developed
independently. Given a variant to be cloned (clonedRepo)
and a name for the new clone (cloneName), the VP operation
CloneAsset creates an exact clone of the source and records
a clone trace.


https://github.com/structurizr/java

Input: An asset tree at, a list of donor projects donors,
a list of already transplanted test cases blocklist,
a list of assets filterInsertion beneath which the

feature may be inserted

Output: A parametrized T ransplantFeature operation

Function generate():

testCase « selectTestCase(),

donor « testCase.getProject();

parentFeature «—
selectParent(insertionPoint.getAsset());

randomSeed «— getRandomSeed(),

return TransplantFeature(insertionPoint, donor,
testCase, parentFeature, randomSeed);

Function selectInsPnt (at, filterInsertion):

if filterInsertion # null then
potAssets «—

getAllAssets(filterInsertion, methodType)
end

else
| potAssets «— getAllAssets(at, methodType)

end

selAsset «— pickRnd(potAssets);

potlnsindex < selAsset.children.count();
insIndex < pickRnd(potinsindex);

return (selAsset, insIndex);

Function selectTestCase():

potTestCases «— new List();

foreach testCase tc of getTestCases(donors) do

if /blocklist.contains(tc) then
| potTestCases += tc

end

end
testCase < pickRnd(potTestCases),
blocklist += testCase;
return restCase;
Function selectParent (a):

fm « getContainingFeatureModel(a);
parentFeature < fm.rootFeature;

return parentFeature;
Algorithm 3: TransplantFeature Generation

insertionPoint < selectIlnsPnt(at, filterlnsertion),
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Generation. The corresponding generator randomly selects a
variant to clone and generates a name by appending the selected
variant’s name with a unique id.

Input: An asset tree at, a variant counter id
Output: A parametrized CloneVariant operation
Function generate():
cloneableRepos «— getAllAssets(at, repositoryType);
clonedRepo < pickRnd(cloneableRepos);
cloneName «— clonedRepo.name.append(id),
id+= 1,
return CloneVariant(clonedRepo, cloneName);
Algorithm 4: CloneVariant Generation

6.5. Clone Feature

Operation.  While variant-rich systems developed using
clone&own are typically evolved largely independently,
specific functionality might be propagated between variants.
Cloning a feature clonedFeature and adding it beneath a
newParentFeature in a different variant requires cloning and
integrating assets that implement the feature with the assets
already present in the target variant. Depending on whether an
asset is already contained in the target or not, we have to solve
two different problems: (1.) The asset is already contained in
the target, but potentially in a different version. (2.) The asset is
not contained in the target, but needs to be integrated [33] with
its siblings in the target, that might not exist beneath its parent in
the source. This is especially difficult, yet crucial for code level
assets. We extend the VP operator CloneFeature, which relies
on user interaction for integration. For the former problem, we
simply keep the version in the target, keeping variant-specific
evolution. For the latter, we rely on the recorded clone traces
to maintain the partial ordering of common assets between
source and target. Cloning a feature from a donor system also
requires setting up its build structure as well, similar to our
transplantation operator. We perform the same steps if required.
Generator. A generator suggests a clonable feature and a
parent feature in a different variant, beneath which the feature
should be propagated. As our operation requires clone traces
to relate previously cloned elements to each other, this con-
strains the applicability of this operation to repositories, that
originated from each other. Our generator randomly chooses
a feature (from a source variant), and defaults a parent feature
(from a cloned & owned variant, which does not contain the
selected feature). The user can define a maximum feature size
(measured via the number of assets mapping to it) that the
generator may clone.

7. Implementation

We implemented vpbench in Scala, building it upon the system
representation (asset tree) and the evolution operation concept
from the VP framework [36]. The implementation effort for
vpbench was substantial, especially the integration with Gradle
due to its high flexibility and customizability. Overall, it took



Input: An asset tree at
Output: A parametrized CloneF eature operation
Function generate():
candidates = new List(),
foreach CloneVariant trace repoTrc in
TraceDatabase do
src « repoTrc.source;
tgt < repoTrc.target;
foreach feature fin
getAllFeatures(src, lisRootFeature) do
if fwas not cloned between src and tgt then
‘ candidates += (src,1gt,f);
end
end

end
selection < pickRnd(candidates);
clonedFeature « selection.getFeature();
targetRepo «— selection.getTarget(),
targetFM « targetRepo.featureModel,
newParentFeature < targetF'M.getRootFeature();
return CloneFeature(clonedFeature,

newParentFeature);

Algorithm 5: CloneFeature Generation

the main author over six months in full time (still excluding the
evaluation).

We especially needed to extend all reused operations from
VP so that they record the necessary metadata before opera-
tion invocation. They also need to be serialized afterwards,
which we implemented using the library lift-json (github.c
om/lift/framework/tree/master/core/json). Our
framework implementation includes the runner, extended or
newly created operations and generators, all of which contain
either a language-independent interface or implementation, and
a transaction mechanism. In fact, only our implementation for
adding and cloning features is not language- and build-tool-
independent. Both change and simplify the donor project’s
build files to automate dependency management. To this end
and as a compilation mechanism, we incorporate the build tool
Gradle. We believe this does not constrain the applicability
of our tool due to Gradle’s widespread use in practice pro-
viding us with a large set of projects from which functional-
ities might be transplanted. Our implementation further spe-
cialises on Java code, using the dependency analyzer jdeps
(docs.oracle.com/javase/9/tools/jdeps.htm) as a
base for code slicing. We incorporated the implementation by
Mukelabai et al. [42], which builds on srcML [37], as a mecha-
nism to identify test cases and extended it to extract a selected
test case’s code dependencies including functions by searching
for specific JUnit annotations, e.g., @Before. To implement
the transaction mechanism, we also extended a small cloning
library (github. com/kostaskougios/cloning).
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8. Evaluation

We evaluate vpbench qualitatively and experimentally,
addressing the following three questions.

RQ1. How does vpbench address its requirements? We provide
detailed qualitative arguments based on our design decisions.

RQ2. Can vpbench generate version histories of evolving,
feature-oriented, and variant-rich systems? We evaluate with
real-world projects. We generate seven different version his-
tories from three initial codebases, transplanting features from
four open-source repositories we use as donor systems, to in-
vestigate vpbench’s potential for simulating evolution.

RQ3. What levels of realism can vpbench achieve? We exam-
ine how well vpbench achieves the three levels of realism (cf.
Sec. 4). We mainly focus on feature transplantation as the most
complex operation and the only one having to fulfill callability
of new features.

8.1. RQI: Requirements Addressed

Recall that the first four requirements are about properties of
the generated version histories, and that the other two are about
the generator framework itself.

Feature-Orientation. Vpbench includes a base set of five op-
eration types reflecting evolution patterns identified in a simula-
tion study of a real-world SPL [22]. We cover the most frequent
feature evolution patterns affecting problem and solution space,
i.e., adding or extending a feature (P1), removing or disabling a
feature (P2) and propagating a feature (P8; we call this cloning
features) and two vital patterns for simulating clone&own, i.e.,
cloning a project (P7) and evolving annotated assets (P9).
Metadata. Vpbench records four types of metadata: feature
models, feature locations, clone traces, and the simulated
developer’s change intentions. Change intentions are stored via
the applied operations, i.e., we record the operation type, its
parametrization and the suboperations, invoked during execu-
tion. Operation type and parametrization allow understanding
the change conceptually, while the suboperations detail how
the high-level intentions were realized on a low level, e.g.,
removing assets as part of removing a feature.

Evolution. Vpbench evolves an initial codebase by incre-
mentally applying operations to it. These affect problem and
solution space, adding, cloning and removing features includ-
ing their implementing code, and also provide mechanisms to
mutate code assets on their own (on a line-based level). These
mechanisms evolve systems in both size and variability. We
further evaluate this experimentally in RQ2 (see Sec. 8.2).
Towards Realism. As already discussed for Evolution and
Feature-Orientation, vpbench evolves a given codebase by
adding features and changing existing code (first level).
Building up on that, the second level (compilability) is ensured
by design. Through usage of a dedicated transaction type,
we enforce that only changes resulting in a compiling system
are applied. The third level (callability of new features)
is achieved by transplanting not only the feature, but also
inserting feature-executing code into the initial codebase. We
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examine this level further in RQ3 (see Sec. 8.3) and discuss
avenues for extending realism in the next paragraph.
Extensibility. Vpbench is published as a framework, providing
two main avenues for extension: operation & generator
pairs, and transactions to improve on vpbench’s generation
capabilities and correctness criteria, i.e., different forms of
realism. Operations can be reused from the available set
of VP’s operators, covering both conventional development
activities and variability-specific ones, or implemented from
scratch by extending the abstract operation class. The latter
can also be helpful for realizing more complex changes, such
as our approach to feature addition, which we implemented as
a new operation encompassing multiple other operations. An
important property of operations is determinism for a given
parametrization to allow for their complete traceability through
recorded metadata. Existing generators may be improved or
new ones added by extending a Scala trait, giving access to
the asset tree and requiring only an implementation of the
generate-function to return an operation when called.
Transactions constrain applicable operations to achieve
correctness criteria, e.g., compilability of the generated system.
Stronger constraints such as executability, satisfaction of clean
code properties or even accordance to a behavior specification
may be implemented by extending the provided transaction
class, supervising the operations’ execution.
Language Independence. Vpbench includes concepts and
implementations for five operations and corresponding gener-
ators. While two implementations cater to a specific language
and build tool, the general concepts do not. To further alleviate
this, we provide language-independent implementation skele-
tons and interfaces, as well as a checklist summarizing where
our implementation is language- or build-tool-dependent and
thus where it needs to be changed:

e VP parser: While the asset tree itself is language-
independent it needs to be converted into this format. To
this end, a parser needs to be created that parses a file in
a given programming language into an implementation as-
set.

e Compilation Mechanism: We use Gradle to validate
whether a system compiles. To support a different build
tool, the compilation mechanism needs to be adjusted.

e Feature Transplantation: Supporting feature transplan-
tation for a different language requires (i) a different slic-
ing technique (we use an existing dependency analyzer for
Java and srcML [37] to extract the test case’s implementa-
tion) and potentially (ii) some preprocessing for code inte-
gration (e.g., in Java we need to add an additional import
statement to the test case’s package so that the code can
compile). Gradle is mainly required to (iii) copy, adapt,
and simplify the donor’s required build files and alter the
initial system’s build structure to achieve a compiling sys-
tem. We also rely on Gradle during slicing to (iv) map
identified dependencies to their implementation location
in the donor system. All four points need to be adjusted to
support different programming languages and build tools.
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e Cloning Features: Cloning features is similar to trans-
planting them as you do not need to just deal with code, but
with build files, too. We do not map excerpts of build files
to features, so we cannot clone them in the same language-
and build-tool-independent way that we clone code. In-
stead, we manually (i) identify which parts of the donor
systems (i.e., Gradle (sub-)projects) need to be initialized
and (ii) alter the initial system’s build files, similar to our
strategy during feature transplantation. Both need to be
revised to support different build tools.

8.2. RQ2: Simulating Evolution

We assess whether we can actually generate versions that
evolve in time and space. While changes to existing code are
assured by respective operators, we quantitatively investigate
whether the number of variants or the variability (evolution in
space), as well as the system size increase over time.

Setup. We generate version histories for three different
initial systems over 500 iterations using different parameter-
izations. The selected initial systems are a small calculator
example with 62 LoC, an open-source json-parser for Java
(github.com/stleary/JSON-java) with 11,837 lines of
code (LoC) and a library for event-based programming in Java
(github.com/ReactiveX/RxJava). For the latter two we
cloned the repository and applied some small preprocessing
steps, detailed in our replication package.

We simulate the evolution of these initial systems using three
different probability distributions. In all three cases we set
a selection probability of p = 0.01 to both cloning generators
due to scalability issues in memory consumption and runtime.
The remaining probability is split up in the following ways:
a uniform distribution (Uniform) over the operations Trans-
plantFeature, RemoveFeature and MutateAsset (splitting
up the probability on all three generators), a distribution prior-
itizing mutation over other operations (Preferring Mutation),
i.e., giving all mutation generators the same probability as
feature addition and removal, and a distribution prioritizing
system growth (Preferring Growth). The latter selects each as-
set mutation generator with a probability of p = 0.2, adds a new
feature with p = 0.29, and removes a feature with p = 0.09.
We evolve the first two systems using all three probability
distributions and the third one using only the last distribution.

A selected generator has 50 attempts to generate a compiling
change before the runner proceeds to the next generator.
Mutation generators discard ineffective changes with a prob-
ability of p 0.5. We use four different feature donor
systems from GitHub for transplantation: the Structur-
izr client library (github.com/structurizr/java),
the HPC inter-thread messaging library LMAX Disruptor
(github.com/LMAX-Exchange/disruptor), an educa-
tional library of algorithm- and datastructure-implementations
(github.com/williamfiset/Algorithms) and the dex to
java decompiler jadx (github.com/skylot/jadx).

We screen all four donors for callable features (cf. Sec. 8.3
for details) and use this subset as input for transplantation. This
preselection is done for performance reasons only, as it reduces
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Figure 7: Evolution of variability over first 500 iterations

the retries required to find a transplantable feature. It does not
improve the generation output in any way.

Evolution in Space. Figure 7 shows the evolution of the
amount of features as a measurement of variability inside the
generated systems over time. We display both the number
of distinct features and the number of non-distinct features,
i.e., features existing in different variants and thus potentially
versions. The probabilities for adding and removing features
are the same for Uniform and Preferring Mutation. As such,
features that are added might quickly be removed again, result-
ing in a constantly evolving low-variability system. While this
behavior can be well observed in the early phases of the two
former examples, the amount of distinct features starts growing
fairly steady at some point. The reason for this is that variants
and their included features are getting cloned at some point,
requiring all feature clones to be removed to delete the entire
feature, making the complete removal of features from the
entire variant space less likely than the addition of new ones.
Constant addition and removal of features can instead be seen
in the number of non-distinct features, which stays typically
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similar, apart from larger differences, when a new variant is
cloned (comp. Fig. 7b from iteration 200). Finally, Preferring
Growth adds features more frequently than it removes them,
building up a solid feature base quickly and resulting in a
higher variability after 500 iterations in both cases were we
used all three probability distributions. It is noticable that while
the first 250 iterations of the RxJava evolution bear similarity
to the other two systems, no additional features get added
from this point. This is due to the fact that a large portion
of transplantable features for the other two initial systems
stem from the Algorithms donor system. For RxJava the same
transplantations were attempted, but none of these compiled,
indicating compatibility issues between the two systems.
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Figure 8: Evolution of system size over first 500 iterations

Evolution in Size. The evolution of the size of the generated
versions can be seen in Fig. 8. We visualize the evolution
in lines of code (LoC) of the initial repository, that was read
in as the initial codebase. All evolution histories contain
large changes in LoC. The reason for this is that our coarse
slicing approach identifies a large number of dependencies
for a significant portion of the transplanted features, which



are added along with the test case, if they are currently not
present in the system. This can result in code additions of
multiple thousands of LoC for a single feature. We observed
this behavior especially within test cases transplanted from the
structurizr donor project. Of course, once the dependencies
of a feature and respective test case are added, they will be
reused by other features from the same donor with similar
dependencies. Consequently, less dependency code needs to be
added by the following transplantations, easing the evolution.

However, removing the only feature mapping to a large set of
dependencies deletes not only the feature, but all dependencies,
too. This results in a sharp cutback in code. This happens
especially frequently for Uniform and Preferring Mutation, as
these add and remove features with equal probability.

While this can also happen for Preferring Growth (compare
Fig. 8c), it achieves a smooth evolution more consistently as
it adds more features with similar dependencies faster and can
thus more reliably safeguard large dependency chunks from be-
ing removed again. Similar to above, the evolution of RxJava
differs from the other two, as no new features could be added to
the system starting from evolution step 241.

Our results show that vpbench is capable of evolving a
variant-rich system in both variability and size over time. As
expected, depending on the used probability distributions over
generators, systems are evolved in very different ways. It is
also important to note that enough donor systems should be
compatible with the initial system to ensure the addition of new
features throughout the entire evolution.

8.3. RQ3. Levels of Realism

The first level is achieved for the generated version histories, as
shown in our experimental results presented in Sec. 8.2. Also,
all generation results compile without exception.

Callability of new features can sensibly only be handled by

our operation-generator-pair for feature addition. Thus, we
focus on this mechanism and examine how often our approach
succeeds in achieving transplantation fulfilling different realis-
tic properties: from pure transplantation without compilability
and callability to both.
Setup. We use the same GitHub repositories as in Sec. 8.2,
preprocess and build them, and extract all features using our
proposed approach. For preprocessing, we delete all multi-line
comments within the projects’ test classes due to a bug in our
used test case identification tool and remove one task from the
Structurizr projects’ main build file, which caused compilation
to fail otherwise.

All features are then inserted into the same predefined
location in a basic dependency-free system. The experiment
is split up in three phases, testing the different properties: We
check for which test cases (1.) the transplantation terminates
without throwing an exception, (2.) the transplantation results
in a compiling system, (3.) the transplantation additionally
succeeds in making the feature callable inside the evolving
system. Each consecutive step in the pipeline takes as input
all test cases that passed the previous step. The first two steps
select only one test case per test class, as our implementation
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#Total #Compiled #Callable
Donor Class Case Class Case Class Case
Structurizr 71 799 50 498 17 122
Disruptor 27 97 27 97 4 8
Algorithms 70 521 70 521 46 250
Jadx 446 623 440 595 3 7

Table 3: Transplantable features

prototype shows no test case- but only test class-specific
behavior for transplantation without callability.

Assessing Applicability. Table 3 shows the experiment’s re-
sults. We omitted the results of the first evaluation step (passing
without an exception) from the table, as not a single case failed
here (i.e., the results being the same as #Total). The majority
of test cases can be transplanted to produce compiling systems,
showing the general usability of the technique. Raising the
targeted realism degree to transplanting callable functionality
poses a much more difficult problem. While we received good
results in two cases (Structurizr and Algorithms), only a small
percentage of available test cases was convertible into callable
features in the other two projects.

Open Problems. We manually examined a small set of test
cases failing to insert both compiling and callable features,
to understand which problems our approach can currently not
solve. We identified two issues for compilability and three is-
sues for callability: For compilability, our implementation does
not support the entire flexibility of Gradle build scripts, e.g., we
support only two out of three main dependency types, and our
dependency analysis failed to identify dependencies that were
only defined in annotations. For callability, our implementation
fails to extract some types of code from the test classes, e.g., at-
tributes initialized during declaration, non-annotated methods
and in general code from other test classes. A more concep-
tual problem is package-private members being accessed by test
cases, as the test case’s code is moved to a different package.

While our prototype does not solve all problems, most iden-
tified ones (apart from accessing package-private members) are
solely implementation-related and can be solved to support
even more test cases. Even so, it transplants compiling fea-
tures from over 80% and callable features from almost 20% of
all test cases of all four donors, showing the technique’s gen-
eral feasibility. In fact, these numbers may be higher in prac-
tice, as at least dependency adding would become a non-issue if
the missing dependencies had already been added in an earlier
transplantation.

Limitations for Feature Transplantation. The constraints
that exist for our proposed form of feature transplantation dif-
fer based on the level of abstraction. Most exist on the level of
our concrete implementation, which is limited to transplanting
features via test cases between Java systems using Gradle as a
build tool. We discussed some further implementation issues
in the previous subsection. However, on a conceptual level we
pose less requirements. The generator algorithm introduced in
Sec. 6.3 is not constrained to specific programming languages
of host and donor systems and might even support multilingual



transplantation [38] in the future. The sole constraint that re-
mains on the level of the presented TransplantFeature gen-
erator is the existence of test cases for features. On the level
of vpbench as a whole, this constraint might be less impor-
tant, since we may implement new generators using alternative
forms of feature transplantation (not utilizing test cases). Thus,
on a framework level we only require the existence of donor
projects (as input) for system evolution. We allow and welcome
improvements and extensions on all abstraction levels.

8.4. Threats to Validity

External validity. Our evaluation considers only one program-
ming language and build tool and evolves only three initial sys-
tems, restricting external validity. While experimentally explor-
ing a broader selection of programming languages and build
tools would be desirable, vpbench is by no means specific to
Java and Gradle. In fact, our framework has been designed to be
conceptually language-independent and only two modular gen-
erators need to be reimplemented to support different languages
or build tools. We showed that all our generators can generate
valid changes on both a toy example and two different-sized
real-world systems. This includes transplanting functionality
from four donor systems, stemming from different domains.
Internal validity. Our technique relies on a number of param-
eters. In our evaluation, we observed that the configuration
(as explained in Sec. 5.4) and specifically the used probability
distribution strongly affects the plausibility of the generated
version histories. While we found a configuration that leads
to plausible outcomes, these parameters have to be tuned every
time a new generator is available. Guiding this tuning process
systematically is a desirable direction for future work.
Construct validity. Our operationalisation of realism relies on
a set of common activities during the evolution of variant-rich
systems [22] and qualitative understanding of basic code qual-
ity measures (towards realism). Future work might extend the
implemented levels of realism as discussed in Sec. 8.1 or assess
vpbench’s output against real version histories by guiding the
parametrization of our technique using a comparable activity
distribution found in real projects. Second, our evaluation of
vpbench’s usefulness is solely based on a set of requirements,
derived from an existing set of benchmark scenarios. An actual
application of our generated systems to different benchmarking
scenarios and tools is out of scope of this work, but subject to
future work.

9. Related Work

Benchmark Generation. A plethora of work on system
generation for benchmarking purposes exists. Techniques
typically follow one of three strategies: (i) generating a system
from scratch [19, 40, 55, 59, 60, 71], (ii) modifying a given
initial system [13, 24, 43, 62, 65, 69, 70, 73], and (iii) repro-
ducing a given system in a different way [19, 39, 48, 63, 67].
Vpbench fits the second category. While covering a wide
set of domains including variability-related ones, none of the
identified techniques include historical information.
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We identified only two approaches actively incorporating
version histories. Michelon et al. [41] extract feature revisions
from version histories of C preprocessor SPLs to be identified
in preprocessed variants. And, closest to our work, Schultheif3
et al. [S1] propose VEVQOS, a tool deriving version histories of
clone&own based systems from real SPLs’ version histories.
Their benchmarks include source code, feature models, con-
figurations, locations and clone tracing. Both approaches are
extractive, i.e., they draw benchmarks from existing version
histories, in this case of SPLs. The system’s variants’ evolution
is directly mapped from the evolution of the entire SPL. While
this accesses realistic code bases, it sacrifices the validity
of the evolution, i.e., the independence of clone&own based
systems [52], the focus of VEVOS [51]. Vpbench focuses on
more variety in evolution, allowing for variant drift[52] and
the addition of new features through transplantation, and takes
first steps to towards achieving realism. Finally, due to their
focus on the task of feature location, Michelon et al. [41] only
provide such as metadata. VEVOS [51] aims at larger bench-
mark applicability, but crucially misses information detailing
the evolution itself, i.e., the changes applied by the developer.
Code Transplantation. Automated code transplantation is
a rather recently established branch of research. It was first
proposed in 2013 [17] and realized in 2015 with the tool
uScalpel [6]. uScalpel extracts an annotated organ and its
execution environment for it, i.e., the vein, using program
slicing, and adapts and implants it at a user-specified insertion
point using genetic programming. It validates the operation’s
success through user-defined test cases. Similarly, Code-
CarbonCopy [58] requires the user to provide the organ and
insertion point. It limits its applicability to programs working
on the same input type to convert data representations between
host and donor code. It extracts the specified functionality
using a compile-time dependency graph and inserts it at the
given insertion point. Lu et al. [35] propose a search-based
way of adding new functionality. Grafter [72] enables test
reuse between code clones through transplantation. It replaces
a tested piece of code with its clone using five transplantation
rules guaranteeing compilability on termination. Finally, Patch-
Weave [56] tackles the patch transplantation problem on two
similar programs. It utilizes the donor’s version history to ex-
tract a bugfix and find an insertion point by identifying change
locations in the donor and relating them to the erroneous host.

Other approaches to feature transplantation rely on user
input [6, 35, 58, 72] or similarity of host and donor sys-
tems [56, 58, 72]. Our novel approach does neither, apart from
requiring donor and host to use the same build tool. We note
however, that this degree of automation is only possible in the
context of simulating software evolution as proposed.

10. Conclusion

We presented vpbench, a framework for the generation of ver-
sion histories. It aims to lift the maturity of current and future
methods and tools for evolving variant-rich systems. It simu-
lates the evolution of a variant-rich system while proactively



recording metadata. It uses an extensible set of generators,
emulating the execution of evolution tasks, including simple
ones (e.g., changing assets, deleting features) and much more
advanced ones (e.g., adding features through transplantation).
We discussed vpbench’s design with regards to requirements
useful for benchmarking purposes, and evaluated its generation
capabilities by generating seven evolution histories evolving
three initial codebases. Vpbench contributes an important step
towards a consolidated benchmarking infrastructure.

Valuable future work is to extend vpbench’s generation ca-
pabilities to further improve its realism. Specifically, we plan
to leverage more modern code-generation techniques, such as
those based on novel language models. Using such models to
generate even more consistent more comprehensible code with
a better domain-orientation of the feature model, can go a long
way. Especially the feature model together with its features
and their organization in a hierarchy is highly domain-specific.
Having long been the sole responsibility of a domain expert,
we believe that such modern language models can substantially
enhance the generation.
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