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Abstract— Service robots are mobile autonomous robots, often
operating in uncertain and difficult environments. While being
increasingly popular, engineering service robots is challenging.
Especially, evolving them from prototype to deployable product
requires effective validation and verification, assuring the robot’s
correct and safe operation in the target environment. While
testing is the most common validation and verification technique
used in practice, surprisingly little is known about the actual
testing practices and technologies used in the service robotics
domain. We present an experience report on field testing of
an industrial-strength service robot, as it transitions from lab
experiments to an operational environment. We report challenges
and solutions, and reflect on their effectiveness. Our long-term
goal is to establish empirically-validated testing techniques for
service robots. This experience report constitutes a necessary,
but self-contained first step, exploring field testing practices in
detail. Our data sources are detailed test artifacts and developer
interviews. We model the field testing process and describe test-
case design practices. We discuss experiences from performing
these field tests over a 10-month test campaign.

I. INTRODUCTION

Service robots are increasingly becoming essential for
our daily lives—not only during emergencies, such as the
current pandemic. Their widespread use requires robotic
software of much higher maturity, beyond the current state
of practice, which is often limited to prototypes that are
hardly maintainable and evolvable in the long term. In fact,
the deployment of service robots in real-world applications
requires engineers to efficiently evolve such prototypes and
proof-of-concept systems into fully deployable products. Most
importantly, developers need to demonstrate that these robots
operate correctly and safely in their intended operational
environment. Validation and verification techniques—most
commonly testing—are especially difficult to realize for
service robots, given their operation in uncertain environments,
under conditions that can hardly be encoded in traditional test
cases, such as unit tests. Unfortunately, while software testing
is very well understood in traditional software domains, with
a large set of testing techniques available, surprisingly little
is known about testing practices for service robots.

In fact, service robots, as special cases of autonomous,
cyber-physical systems, face unique challenges, requiring spe-
cialized testing techniques. Specifically, challenges arise from:
(i) ad hoc development processes and the lack of sufficient
technologies to integrate systems of systems [1]; (ii) the char-
acteristics of robotic systems as safety-critical, real-time, and
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embedded systems of systems, among others, increasing their
complexity, amount of integration testing, or risk management
efforts [2]; (iii) the complexity of the operational environ-
ments, resulting in unpredictable corner cases, complicating
test design that accounts for many possible conditions [3];
and (iv) as cyber-physical systems, the non-deterministic
behaviors, noisy sensors, and AI components, challenging
the definition of test oracles (expected results) [4], [3].

To advance software engineering technology, particularly
testing, we need to improve our empirical understanding of
real-world practices. Studying cases and reporting detailed
experiences in publications will eventually allow building
theories [5], [6] of effectively building respective systems.
Specifically, eliciting testing practices, including identifying
concrete challenges and solutions, facilitates addressing our
long-term goal of building effective testing techniques for
service robotics systems.

In this experience report, we focus on field testing, as a
common technique to validate service robots. It facilitates eval-
uating the full system in its real runtime environment [3]. Field
testing addresses the unlimited space of runtime behavior,
which challenges defining test data, and especially observing
and measuring actual robot behavior in real environments, as
well as defining and comparing this behavior to test oracles.
Although there are a handful of reports about the deployment
of robots with long-term autonomy capabilities [7], [8], [9],
[10], studies suggest that in general, the robotics software are
validated or demonstrated in a laboratory environment [11].

Our subject system is an industrial-strength disinfection
robot (Kelo AD). The goal of field tests is to assess the
efficiency, reliability and safety of the robot in a real-
world operational environment early in the development
process. Unlike existing definitions of field tests [3] and
other long-term deployments that report system-level tests,
the reported approach uses real-world environments and inputs
for component and integration level tests as well. To the best
of our knowledge, there are no other reports that describe
testing practices that bridge the gap between the development
and deployment of a service robot.

Our contributions are: the models of the test processes of
the field testing approach; the quantitative analysis of the test
design practices compared to their execution; and a discussion
of challenges and best practices, including aspects to consider
for field testing that can be tailored to other robotic systems.

II. RELATED WORK

Two of the biggest challenges in software engineering for
service robots, namely robustness, and validation, are tightly
related to testing [12], and testing of AI-based systems has



Fig. 1: Kelo AD disinfection robot in its target environment

challenges in and of itself [4], [3]. Studies summarize testing
techniques and practices for autonomous systems [13], but
rather on a general level without going into details of a partic-
ular system and setup. Other studies describe methodologies
for integration testing based on simulated environments [14]
or describe high-level testing processes [15].

Benchmarking has long been used to compare
the performance of algorithms or systems. While
competitions [16], [17], [18] strive to replicate real-
world conditions for the tests, the test objectives have mostly
focused on the performance of the system under test [19] as
opposed to verifying the properties of a product that should
operate autonomously over long periods of time. Reports
of long-term deployments [7], [8], [9], [10] usually report
system tests on TRL7 or 8, but little is known about the
V&V practices employed by the developers and that likely
played a key role in their success. Furthermore, few works
report on the conformity of robots to safety standards [11].

Frameworks to test long-term autonomy [20], [21] using
hardware-in-the-loop test are also promising; however, the
adoption of these tools depends on the contextual factors
that influence the testing process, their ability to support
real-world environments on a variety of scales, and the level
of detail of the test basis. Furthermore, even for cases where
manual testing is needed, studying current practices can reveal
opportunities for optimization [22].

III. SUBJECT SYSTEM

We now describe our subject—a.k.a., system under test
(SUT)—with contextual factors(e.g., operational constraints,
available resources, organizational policies, internal and
external standards) that influence testing.
Autonomous Disinfection Robot. Our subject is the Kelo
AD disinfection robot, shown in Fig. 1, developed by the
company Kelo. Its hardware is designed in-house, featuring
the omnidirectional base and six UVC lamps for disinfection
of surfaces. To avoid overexposure of UVC to humans who
share its environment, the robot is equipped with a 360◦

camera system used for people detection as a safety feature
to turn off the UVC lamps in the vicinity of people.

The software stack is based on ROS; most packages
have been developed by the company. These include the
lamp control package, a people detection component used
to turn off the lamps to avoid overexposure, and their
navigation stack that performs the disinfection tasks based
on pre-specified routes. Other components include sensor

TABLE I: Background details of interview participants

Participant Position & Experience Background

P01 Sr. Developer (13 yrs) Computer Science
P02 Jr. Developer (3 yrs) Mechatronics
P03 Jr. Developer (3 yrs) Mechatronics

drivers and their ROS wrappers for the lasers, LiDAR, and
cameras that are used for localization and obstacle avoidance.
Organization and Testing Team. Kelo is a small start-up
with 20 software developers, five of which are in charge of
developing the ROS packages and other software components
used by the robot. The team does not strictly follow agile
practices as part of their organization, but has adopted parts of
them into their development workflow, e.g. the duration of the
sprints is variable according to the feature or issues currently
being addressed. We interviewed the subset of the developers
that are mostly in charge of the tests of all features; Table I
shows the details of the participants interviewed in this study.

In parallel to the software development, hardware
engineers develop some components of the robot. On a
case-by-case basis, hardware engineers will join the testing
efforts when their expertise is required to find the root cause
of the issue or to solve hardware-related problems. Risk
analysis activities are performed together with software
developers, and include failure mode and effects analysis
(FMEA) and hazard identification based on ISO 12100.
Development Toolkit. Several tools are used to support the
testing activities of the robot. Risk analysis activities are docu-
mented using worksheets in Microsoft Excel. Test reporting is
done on an in-house tool called “Technology Readiness Level
Test Report Library” (TRL2), and on a “testing” git repository
where test incidents—“issues requiring further action that
were identified during the test execution process” [23]—are
documented. Log files are recorded using the rosbag tool1 and
only contain the subset of topics relevant to the test case being
executed. They post-process these log files to have easy access
to the metrics and store them as person detection logs. Fig-
ure 2 shows the information flow between different artifacts,
and Table II a summary of the test work products we analyzed.

The tool TRL2 relies on the ISO 29119 standard for

1http://wiki.ros.org/rosbag/Commandline
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software testing, including defining test report templates.
After a test, engineers manually capture each run, including
the experiment name, robot versions (using wstool2), any
failures, and the names of any log files, among other data.
The tool was originally developed to improve the traceability
between requirements, FMEA, software bugs, hardware
issues, and test runs; however, in practice, it is only used
to occasionally document the test runs because the time
required to record and manually annotate test runs, along
with the cost of development and maintenance of the tool
itself, are prohibitive for such a small team.

IV. FIELD TESTING STRATEGIES

We now describe the test processes and activities used
for field testing. The engineers follow two different test
processes for the Kelo AD: Exploratory field testing and
Endurance field testing. The process models we derived from
the interviews are shown in Fig. 3. Table III summarizes the
test activities with examples for each process.
Exploratory field tests. (Fig. 3a) follow short, agile-like
development-test cycles. Exploratory testing is an experience-
based technique where the tester designs and executes tests
based on prior knowledge, previous tests, curiosity, and other
heuristics for common failures [23]. The main goal of these
tests is to cause new failures by trying new scenarios that
cause the robot to deviate from its expected behavior or that
cause undesired side effects. Exploratory field tests take advan-
tage of the variability in the input data, i.e. real-world environ-
ments and the execution of tasks, to find corner cases, fix bugs
on the spot, and identify improvements for existing features.

Obs. 1: Exploratory testing helped find defects caused
by the variability in real-world inputs, to identify
corner cases that could have been missed by the risk
assessment.

Field endurance tests. (Figs. 3b and 3c) follow a more
classical test process. Endurance tests are a type of efficiency
testing, where the SUT operates at high levels of load for
long periods of time [23]. In the robotics context, we define
endurance tests as the operation of a robot, a subsystem,
or component operating continuously in its operational
environment. In practice, field endurance tests also
incorporate elements of performance testing, e.g., to measure
the time required to disinfect a variety of rooms; load testing

2http://wiki.ros.org/wstool

TABLE II: Test documents and artifacts

Source Description

Test procedures A markdown file that contains the specification of
the endurance field test cases

Test reports 46 JSON files exported from an in-house tool along
with the JSON schema that describes them

Rosbag files A list with the file names of 1656 rosbag files, out
of which we had access to 1517 bag files.

Test incident
reports

16 test incident reports recorded as GitLab issues
and exported through their API

Person detection
test cases

A spreadsheet containing the test cases used to test
the person detection models

to verify how the robot handles increasingly larger areas;
stress testing, particularly of hardware components as in
Hawes et al. [8]; and compliance testing to identify violations
of safety requirements, e.g., overexposure to UVC light.

Obs. 2: Data collected from field tests was useable to
validate multiple test types, factoring the amount of
information gained given the limited number of testers
available into the cost of testing.

Field endurance tests are carried out when features have
reached certain maturity or stability, usually after several
exploratory field sessions. When the tests are run at system
integration or system level, they can be used to verify the
autonomous operation of the robot as well.

Obs. 3: Exposing the robot early in the development
process to real-world environments reduced the gap
between development and deployment.

V. DESIGN OF FIELD ENDURANCE TESTS

Engineers designed the field endurance tests, covering Test
analysis (A4) and Test design (A5) on Table III, based on
software testing concepts from the literature [24], [2], [25],
as follows. The Kelo engineers followed three main steps.
First, they identified test conditions (testable system aspects)
relevant for test objectives (system safety and reliability); then
they defined or generated the preconditions, inputs, actions,
expected results (test oracle), and post conditions of the SUT
or the testers. Finally, engineers specified the test data.
Test Condition Identification. The first step for identifying
test conditions is to review the test basis, i.e. the body of
knowledge to be used as a source during test analysis and
design [24]. To validate that the robot operates correctly
and safely, engineers commonly treat the robot and its
components as a black-box. Black-box testing techniques
derive test cases from the specification of the SUT, which
vary in levels of detail and formality; they are especially
suited to evaluate the behavior of a system, regardless of
how that system achieves the behaviour [25]. In general,
specifications contain the required or desired behavior of
the system and can include non-functional requirements,
including reliability, performance, and safety of the robot.

For the Kelo AD robot, the test basis includes the
experience of developers, previous tests (including past test
incident reports and reports in the TRL2 tool), architecture
and components of the robot, and the application use
cases. Key Performance Indicators (KPI) about the expected
performance of the robot are defined as part of their project
planning; these include business requirements, like the
time required to disinfect an area, but also elements of
the organization’s testing policy, such as the number of
kilometers traveled by the robot for a given project milestone.

The risk analysis activities reveal defects of the system
under test and help developers prioritize which features to
test first. These activities add standards to the test basis:
DIN EN 14255-1 and DIN EN 62471 are used to define the
safety requirements related to overexposure to UVC light;

http://wiki.ros.org/wstool
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Fig. 3: Test processes for field testing. Activities are described in Table III
TABLE III: Test activities

ID Test activity
group

Description Exploratory Field Testing Field Endurance Testing

A1 Planning Definition of testing objectives and
testing approach

No formal planning, takes place two or
three times a week.

Test plan and schedule are created. Tests take
place full-time over a week

A2 Monitoring Test monitoring of progress using
metrics defined in the test plan.

- Performed periodically and on demand by P01

A3 Control Actions taken to meet the (revised)
test objectives

- Performed periodically and on demand by P01

A4 Analysis Analysis of the test basis to iden-
tify test conditions

- Test performance, reliability and compliance
based on experience and risk analysis.

A5 Design Definition of test cases, identifica-
tion of test data and design of test
environment

No formal test cases defined. Partici-
pants sometimes use existing test cases
from endurance tests.

Equivalence partition is used to minimize test
case explosion. Test data includes maps and
task definitions but mostly consists of real-
world inputs.

A6 Implementation Creation of testware, e.g. test pro-
cedures or scripts, test environ-
ments, preparation of data, etc.

Modifying existing task definitions with
challenging waypoints.

Definition of new disinfection routes. Setup
of real-world environment, e.g. obstacles po-
sitions, sensor placement for ground truth.

A7 Execution Running the test suite and record-
ing their results.

P02 tries to find ways to break the robot. All participants run tests. Results are recorded
on a variety of tools and formats.

A8 Completion Data collection for reporting and
future tests

Adding relevant edge cases to field
endurance test cases.

Selecting test cases to reuse for testing the
person detection DNN.

and hazard identification is performed according to ISO
12100:2010, ISO/TR 14121-2:2012, and ISO 13482:2014.
Similarly, FMEA is used to systematically analyze and
document failure modes of both hardware and software
components. The hazard identification and FMEA worksheets
record estimates about the severity and likelihood of
occurrence of events; the former also includes estimates
about the frequency and probability of the hazard occurring;
while FMEA worksheets also estimate the likelihood of
detecting such a defect. Overall, this leads to tests that focus
on two main aspects of the system: safety and reliability, i.e.
measuring that the failure rates of components are acceptable
according to standards and the risk assessment of the robot.

We identified three test conditions in their test procedures:
person detection, navigation, and the disinfection workflow.
The document is mostly written in natural language and
is divided in three main sections corresponding to each of
the test conditions. Each of these sections contains logical
test cases targeting more specific test conditions, e.g. person
detection with occlusions, which are then further refined into
concrete test cases with specific values, such as occlusions
from a desk or a wall. Logical test cases were used by
developers to group concrete test cases according to their
difficulty, e.g. by accounting for the interaction between
components and how this influences the performance of the

SUT. We classify these test cases according to their test levels
and the TRL scale, as shown in Fig. 4. In this classification,
TRL is a proxy for the complexities introduced by the
operational environment, while the test levels are related
to the complexity of the (sub)system under test. For example,
TPerc01 (A and B) and TPerc04 focus solely on the person
detection component while the robot is static; environmental
complexities for TPerc01B are occlusions and for TPerc04
is the movement of the person being detected; and in TPerc02
and TPerc03 the robot movement’s affect the performance
of the person detection. The TNav01 specifies tests for the
wall following component, obstacle avoidance, and lamp
management; while both TDisinf test cases are system-
integration level tests with the objective of testing the full
disinfection workflow, combining the disinfection task with
its safe operation based on the people detection component.

Obs. 4: The design of test cases that gradually
introduce interactions between components helped
handle system complexity. Similarly, environmental
complexity can be tackled by introducing real-world
inputs in a controlled manner.

TPerc and TNav evaluate the performance of the
people detection and navigation components, respectively.
TDisinf are mainly performance tests where they measure
how efficient the system is at disinfecting. In addition



to performance, these tests also serve to stress-test both
software and hardware components, identifying operational
limits and which components and failure modes happen
due to the stress; to verify safety requirements, i.e., that no
overexposure occurs; and to collect data about the reliability
of the components based on the risk assessment metrics, i.e.,
the mean time to failure of the system.
Test Case Design. Test procedures document most of the
information for the logical test cases. Table IV summarizes
the test case properties identified in the test procedures,
along with examples from sampled concrete test cases.

Obs. 5: Early on in the development process, focusing
on collecting data about the performance of the
system was useful to define pass/fail criteria based on
acceptable thresholds.

Because there is a high number of possible combinations for
these properties, engineers use equivalence partitioning to min-
imize test case explosion and target those use cases where they
would gain the most (new) information. Equivalence Partition-
ing is a test design technique that treats inputs within “classes”
as equivalent[2], i.e. test cases are grouped by how they handle
valid or invalid input data. In field endurance tests, possible
variations of test pre-conditions and inputs are divided into
equivalent classes, taking into account information from safety
risks identified during the FMEA and their own experience.
The criteria for the equivalence classes of the test cases are
summarized on Table V. All test cases have criteria that cap-
ture the complexity of the test based on the specification of the
position and motion of the robot and any obstacles in the envi-
ronment. These criteria capture not only interactions between
the robot and the environment, but also between components,
e.g. for the people detection component whether the robot is
static, if it rotates in-place, or whether it is performing a navi-
gation task concurrently introduces different types of failures.

Discrete variables, such as the presence of occlusions, or
the standing/sitting position are straightforward to identify
as partitions. Continuous variables are partitioned with
information from the FMEA, component specifications (e.g.
UVC lamps and sensors), and engineers’ experiences. Let
us use the person detection tests to illustrate how engineers
identify the partitions of a continuous variable. To identify
partitions in the distance between robot and person for person
detection tests, engineers created a table that listed possible
sensor configurations as rows and the distance to people as
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columns. Fig. 5 illustrates a simplified table for this analysis
with two types of objects and five safety-related sensor
configurations; the original table also includes information
about the number of sensors, their configuration, and where
they are mounted on the robot. The increments are based
on their experience and the boundaries at which the sensor
could detect a person, as well as the range at which UVC
light is no longer dangerous. Based on this information, cells
were classified into (a) high confidence of detection or no
danger (green), (b) uncertain about detection (yellow), and
(c) high confidence of failure to detect people (red). Cells
for (b) and their boundaries to (a) and (c) are the main focus
of the test cases, since they provide information about the
boundaries at which the robot could operate safely.

Obs. 6: Test design techniques that minimize test case
explosion, such as equivalence partitioning, were use-
ful to minimize environmental and system complexity.

We analyze which partitions are being tested using the
TPerc test cases since they contain the most concrete test

TABLE IV: Test case elements

Concept Definition Examples

Pre-
conditions

State of the robot
and environment be-
fore tests start.

“The robot is placed at a given
distance from a poster or a real
person, with one camera facing the
person,. . . ”

Inputs Data used by the robot
to execute the test

Occupancy grid and/or YAML file
with task specification

Actions Actions by the testers
during test execution

The motion of the person is limited
to natural movements of the head
and extremities.

Expected
results

Usually the pass/fail
criteria for a test, but
can be “None” for per-
formance tests [2]

Ground-truth positions of the per-
son relative to the robot, false
positives and false negatives of
the people detection module, robot
battery level, route length, etc.



TABLE V: Criteria for equivalence classes

Criteria TPerc TNav TDisinf

Robot motion ✓
Disinfection route ✓ ✓
Person motion ✓
Person distance ✓
Person angle ✓
Person posture ✓ ✓
Person position ✓
Occlusions ✓ ✓
Obstacle positions ✓
Sensor network placement ✓ ✓

cases and variations. We exclude TPerc04 which has a
single test case defined; in all the other test cases, the person
is usually static. Fig. 7 shows the number of test cases found
on the test procedures with respect to the main criteria used
for equivalent classes in the person detection test cases:
posture, distance and angle of the person being detected,
and presence of occlusions. Note that test cases define other
variables implicitly, e.g. all TPerc experiments use natural
light only, are conducted in the same room, and only involve
a single person being detected. Similar observations can be
made for TNav and TDisinf cases about the obstacles in
the disinfection route, the position of the sensors, and the
motion of the persons. Fig. 6 shows the number of concrete
test cases defined in the test procedures.
Test Data Specification. Most of the inputs and preconditions
are defined in the test procedures and are real-world inputs.
For TNav and TDisinf tests, additional test data includes the
task specification and the occupancy grid used by the robot
for localization. Depending on the test cases, the complexity
of the environment can be gradually increased. In addition
to the static and in-place motion of the robot, the robot can
execute different disinfection routes shown in Fig. 8.
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Obs. 7: Partitioning the environment was another
way to handle environmental complexity for spatially-
defined tasks. Characteristics of each area or room,
allowed developers to deliberately control the difficulty
of the system load, i.e., the task to be validated.

VI. POST-MORTEM ANALYSIS OF TEST EXECUTION

We now analyze the test execution based on the resulting test
artifacts. As a preliminary step, we examined the artifacts
from Table II to ensure they are within our scope. We started
by examining the bag files and merged those that were
recorded using the --split flag, i.e., those that had a
suffix and contiguous start and end timestamps. Similarly, we
exclude 4 TRL2 reports that do not have any runs and analyze
the remaining 37 reports that cover a total of 238 runs.
Figure 9 shows the test runs recorded between June 16th,
2020 and April 28th, 2021. Note that this timeline includes
bags from the file list even if they are not available. Because,
by default, the rosbag tool produces files using ISO 8601
as their file names, we can use them as indications of when
tests took place even if we do not know what was tested. For
each day, we considered the number of runs as the number
of files with the lowest suffix in the time series of that day.

The tracing between test reports and log files is done
manually by developers. Developers usually match bag files
to test reports based on the date and start time of each test
run, and the file name of the bag file, which defaults to the
date as mentioned before. Once the files are copied from the
robot to a developer’s laptop for analysis, they are merged
and renamed following a naming convention that includes
the test case, date, and time of the test. We use the naming
convention on the list of bag files to extract information
about the testing activities on 132 of the unavailable bag
files. A total of 116 bag files were mentioned by name in 6
test reports, and matched 117 test runs. Note that this means
that not all reports have corresponding bag files, and a large
number of bag files do not have an associated report. We
categorize the remaining 35 test reports and their 119 test
runs with the help of developers, and exclude the remaining
238 bag files without explicit relationships.
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Obs. 8: Traceability of requirements to test cases was
paramount to determine the progress according to the
test plan. Manual traceability between test cases and
test artifacts was error-prone and effort intensive.

We also analyze the test execution to identify when and
how often each test case was carried out. TPerc tests were
conducted regularly during the campaign, and TNav was
stress-tested towards the start of the campaign. We identified
additional test runs for TDisinf and TNav in the TRL
reports of early July and August, and examine the TDisinf
reports to understand why they seemingly deviate from the
pattern of increasing complexity. Upon closer inspection,
these are early system integration tests defined in the field
where perception and navigation components were tested in
parallel. Figure 10 shows the number of executed test cases,
including those defined in the field but not documented
on the test procedures (including additional variations of
specified test cases). Perception tests were the focus of this
test campaign due to their impact on the safe operation of
the robot and represent the largest proportion of the number
of tests and variations to be tested. Note that there is a higher
number of concrete test cases found on test artifacts than
on the specifications, suggesting that developers tested more
variations than those expected or documented at design time.
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Fig. 11: Test failures reported in test incidents or as test
observations in TRL2

Obs. 9: Exploratory testing techniques were useful
to define new test cases based on reactions to what
happened in other tests, allowing to define test cases in
the field as a response to some unexpected event. Such
techniques have little or no documentation, but with
good data collection, automating the documentation
of additional variations should be possible.

Several types of failures were reported during the testing
campaign. Fig. 11 summarizes the failures reported as test
incidents and in the TRL2 reports. A total of 16 field test
incidents were recorded on their git server for tests over a
span of 10 months. Test incident reports were overwhelmingly
related to hardware failures, while test reports focused on the
failures of software components. Out of those test incidents,
3 hardware incidents were related to 4 TRL2 reports.

Obs. 10: On systems of systems, establishing a single
pass/fail criteria might not correctly describe the
outcome of the test. Interactions between components
and individual pass/fail criteria need to be considered
as well but are difficult to specify and effort-intensive
to document.

VII. DISCUSSION

In this section we discuss our observations from sections IV
to VI. Our contributions focus on improving the empirical
understanding of testing practices for service robots, but
more case studies and experience reports are needed to build
theories and make generalizations. Although this experience
report describes context- and robot-specific test processes,
it shares many commonalities with other applications and
systems, and our insights into the testing practices of the
Kelo AD could be of use to others. Thus, we also identify
open challenges and derive research directions combining
our observations and state-of-the-art practices.

The field testing approach partially tackles some testing
challenges discussed in Sect. I. First, it bridges the
development and deployment gap by using real-world inputs
early on in the testing process, giving developers a better
idea of the expected performance in the deployment envi-
ronment (observations O1 and O3). Second, it manages the
system complexity by designing tests to gradually increase the
effects of the interactions between components by targeting
test conditions at different test levels (observations O4
and O6); similarly, it handles the environmental complexity at
design time by introducing real-world inputs in a controlled



manner (e.g. occlusions and dynamic obstacles), and using
test design techniques to minimize test case explosion (O7).
Third, keeping in mind the safety-critical aspect of the
system, it intentionally seeks defects caused by the variability
in real-world inputs to identify corner cases that could have
been missed by its risk assessment, and adds elements of
stress, load, reliability, and compliance testing early in the
development process, making the return on investment of the
tests bigger by maximizing the information gained given the
limited number of testers available (observations O1 and O2).
Finally, focusing on the data collection of the robot’s
performance at early iterations will make the definition of
pass/fail criteria based on thresholds easier in the future (O5).

Even so, some open challenges remain due to the manual
nature of the tests (O8 to O10). Manual system testing is
expensive and does not scale well; it is constrained by the
available resources, including the time and effort for setup and
execution; and tend to be brittle, particularly if lower-level
components and subsystems do not have tests of their own.
Even if resources were not a constraint, engineers lack the abil-
ity or resources to manufacture real-world scenarios that cause
corner-cases and environment variations beyond what their
test environment offers. Lastly, the large state space of the real
world makes it difficult to identify how much testing is suf-
ficient, particularly when testing safety-critical features [26].

To tackle those challenges, the design of a field testing
strategy should: (i) Facilitate the definition of new test cases
in the field, thus enabling developers to react to unexpected
behaviors and effects of the SUT in the real world and support
exploratory testing techniques (O9). (ii) Apply suitable test
design techniques to handle the large state space inherent to
real-world environments. (iii) Automate the data collection
from field tests, including data provenance and traceability of
requirements and test cases, particularly in cases where testing
is being used to document safety assurances (observations O8
and O9). Although rosbag is a common tool mentioned in the
literature for data collection and commonly used for playing
back data [3], in-house tools are often required to record
and manage logged data, configuration files, and run-time
parameters [7], [8], [27]. This was part of the original goal for
the TRL2 tool; however, most of the data is entered manually,
making the traceability between test cases and test artifacts
error-prone and effort intensive. And (iv) reuse data from past
field tests in other automated test types, similar to [28], [8].

VIII. CONCLUSION

We presented an experience report on testing an industrial-
strength service robot, discussing the field-testing techniques
and practices in-depth. The testing processes employed at
low TRLs focus on exposing the robot to real-world inputs,
to identify and mitigate defects, failures, and risks required
for the safe operation once ready for deployment. We hope
to contribute to the improvement of software engineering
practices of autonomous systems by reporting detailed
empirical data and experiences of a substantial case. We
modeled the field testing processes, described test design and

testing activities with details about artifacts, and reported
challenges and solutions.
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