
ConfigFix: Interactive Configuration
Conflict Resolution for the Linux Kernel

Experiences from a Decade of Reverse-Engineering the Semantics from
the Linux Kernel Configurator and Realizing Intelligent Configuration Support

Patrick Franz∗, Thorsten Berger†∗, Ibrahim Fayaz‡, Sarah Nadi§, Evgeny Groshev∗
∗Chalmers |University of Gothenburg †Ruhr University Bochum ‡VecScan AB (Vector Sweden) §University of Alberta

Abstract—Highly configurable systems are highly complex
systems, with the Linux kernel arguably being one of the most
well-known ones. Since 2007, it has been a frequent target
of the research community, conducting empirical studies and
building dedicated methods and tools for analyzing, configuring,
testing, optimizing, and maintaining the kernel in the light of
its vast configuration space. However, despite a large body of
work, mainly bug fixes that were the result of such research
made it back into the kernel’s source tree. Unfortunately, Linux
users still struggle with kernel configuration and resolving
configuration conflicts, since the kernel largely lacks automated
support. Additionally, there are technical and community
requirements for supporting automated conflict resolution in
the kernel, such as, for example, using a pure C-based solution
that uses only compatible third-party libraries (if any).

With the aim of contributing back to the Linux community, we
present CONFIGFIX, a tooling that we integrated with the kernel
configurator, that is purely implemented in C, and that is finally a
working solution able to produce fixes for configuration conflicts.
In this experience report, we describe our experiences ranging
over a decade of building upon the large body of work from
research on the Linux kernel configuration mechanisms as well as
how we designed and realized CONFIGFIX while adhering to the
Linux kernel’s community requirements and standards. While
CONFIGFIX helps Linux kernel users obtaining their desired
configuration, the sound semantic abstraction we implement
provides the basis for many of the above techniques supporting
kernel configuration, helping researchers and kernel developers.

Index Terms—software configuration, semantic abstraction,
conflict resolution, Linux kernel

I. INTRODUCTION

The Linux kernel is the world’s largest software development
project [19] by the number of its contributors. Being highly
versatile, the kernel operates in a diversity of environments,
ranging from Android phones to large supercomputer clusters.
As such, it is not only a highly successful operating-system
kernel, but also a highly configurable system [72]—nowadays
boasting 28 million lines of code [49] and over 15,000
configuration options (a.k.a., features [9], [61]). To this end,
the kernel relies on mechanisms known from the fields of
software product lines [6], [17], model-driven engineering
[24], and software configuration [11]. Specifically, the Linux
kernel includes a configurable build system [14], preprocessor-
enabled variation points, a model-based representation of
configuration options and their constraints (a.k.a., variability
model) [16], [55], and an interactive configurator tool [72].

Being completely open source, with a vast evolution history
available, researchers have studied many different aspects
of it, including software evolution [5], [36], [61], [80] and
software maintenance [3], [35], [37], [77] aspects, as well
as its configuration mechanisms—the focus of this paper.

Studies of the Linux kernel’s configuration mechanisms
started back in 2007 [71], [72], [76], followed in 2010 by
our and other researchers’ studies of its variability modeling
language Kconfig and its variability model [15], [16], [69].
Examples include the evolution of this model [52], the
co-evolution and consistency of variation points [41], [56],
[57], [61], [62], [75], as well as the synthesis of variability
models from code [54], [55], [70]. Despite all the above
research efforts related to configuration, users of the kernel
did not benefit directly yet. They still struggle with creating
their desired configuration [34], given the huge configuration
space and intricate constraints among features. Beyond a
simple and very limited support for choice propagation,
the configurator does not offer any intelligent support for
resolving configuration conflicts—for instance, enabling a
feature requires transitively changing many other features. As
such, achieving the desired configuration can be laborious and
error-prone, which is unfortunate given all the work in the
research community, which never made it back into the kernel.

To the best of our knowledge, only few contributions
originating from research made it back into the kernel, and
mainly in the form of bug fixes [56], [60], [75]. While there are
tools such as Coccinelle [50] and Undertaker [74] that become
known and often individually adopted among kernel developers,
none were formally integrated into the kernel codebase or are
listed as a necessary kernel tool. In 2015, the situation was
about to change with the Kconfig-sat initiative [42], where
kernel developers recognized the need and got in touch with
researchers working on kernel configuration studies, including
us. Given our experience with studying the Linux kernel’s
configuration information and developing tools to analyze it, we
decided it was time to give back to the Linux community and try
to practically integrate these techniques into the official Linux
kernel configurator. In fact, implementing a sound translation
of the variability model to propositional logics (which is a
semantic abstraction) given the expressiveness and intricate
semantics of the the Kconfig language (explained shortly),
has long been an open problem, with multiple translations

Fig. 1. The kernel configurator extended with CONFIGFIX

proposed [1], [40], [68], each with its own shortcomings [28].
We describe experiences covering more than a decade of

different efforts on reverse-engineering the formal semantics
from the Linux kernel configurator and implementing sound
semantic abstractions. These are the prerequisite for many
techniques and use cases supporting software configuration.
After providing an overview on the Linux kernel’s configuration
tooling, research efforts on it, and their historical perspective,
we introduce our tool CONFIGFIX, which offers intelligent con-
figuration support for the Linux kernel configurator and realizes
an evaluated, pure-C implementation of a semantic abstraction
and a technique to resolve configuration conflicts. CONFIGFIX
takes a current configuration (i.e., a selection of features with
concrete values), a set of configuration constraints declared in
the kernel’s variability model, and a set of configuration options
whose values the user wants to change, in order to calculate
a set of fixes to reach the desired configuration. We built on
our and others’ prior work in the field to realize a translation
of the kernel’s variability model into propositional logics, to
implement a configuration-conflict resolution algorithm relying
on SAT solving, and to integrate both into the graphical config-
urator tool xconfig. Our work led to finally obtaining a viable
solution integratable in the kernel’s source tree. CONFIGFIX is
freely available [2], together with details about its evaluation.

II. SOFTWARE CONFIGURATION AND THE LINUX KERNEL

We briefly introduce the field of software configuration, the
Linux kernel’s configuration facilities, and the notion of
configuration conflict.

A. Software Configuration

Software configuration is concerned with methods and tools
to configure software, originally stemming from the field of
product configuration, a subfield of AI [33], [63]. The challenge
is to obtain a configuration that meets end-user requirements,
considering all constraints among the configuration options

(i.e., features). The configuration process is typically supported
with an interactive configurator tool, offering support for
propagating choices and resolving configuration conflicts.
Software configurators [7], [8] have been studied in many
domains [12], [17], [81], including configurable systems
software (e.g., Linux kernel, eCos embedded operating system
or 3D printer firmware [13], [16], [47], [68], [71]), automotive
[31], avionics [51], [66], and telecommunication systems [73],
embedded and safety-critical software [10], [45], [65], [78],
as well as web-based configuration [4].

B. The Linux Kernel and its Configurator

The Linux kernel’s configurability aims at customizing the
kernel beyond its core functionality of CPU & memory
management towards many different hardware architectures
(ranging from embedded devices to supercomputer
architectures) and including optional functionality, such
as device or filesystem drivers. Currently, over 15,000
configuration options (henceforth called features [9], [61]),
which come with intricate constraints among them, control
variation points in C source files using conditional compilation
directives (e.g., #if) of the C preprocessor, as well as they
control the inclusion of individual files in the build process. In
addition to this static mechanism, many features also control
loadable kernel modules (e.g., network or USB drivers) that
can be loaded dynamically at runtime.

Users configure the kernel interactively via its configurator,
which exists in three variants. Figure 1 shows the graphical con-
figurator xconfig. The other two variants target shell users. All
features come with default values, and users can then assign val-
ues to the individual features according to their types and con-
straints, establishing a configuration. The features, their organi-
zation in a hierarchy, and their constraints are declared in files
using the Kconfig language, which are input to the configurator.

Xconfig supports basic validity checking of configuration
choices (to prevent some constraint violation) as well as
simple imperative choice propagation. The latter, given the
absence of an intelligent reasoner, needs to be encoded with
a dedicated imperative mechanism in Kconfig, which is
error-prone and, given its imperative nature, cannot be used to
resolve configuration conflicts. In contrast, various open-source
(e.g., FeatureIDE [53], Dopler [27], eCos’ configtool [13])
and commercial configurators (e.g., pure::variants [18], Gears
[46]), come with a reasoner.

C. The Kconfig Language

At the core of the Linux kernel configurator is the language
Kconfig—a domain-specific language for variability modeling.
Originally created for the Linux kernel, it has since been
adopted by at least ten other open-source projects, such as
BusyBox [16]. A core challenge in the community was
obtaining a sound logical representation of the main semantics
of Kconfig as a prerequisite to develop analysis and config-
uration techniques. However, as we will illustrate, Kconfig is
surprisingly expressive with exceptionally intricate semantics.

Language Concepts. Kconfig comes with a textual syntax
and concepts known from feature modeling (a popular kind
of variability modeling language) [26], [39], [58]: a hierarchy
of features, different feature types, feature groups (e.g., OR,
XOR or MUTEX groups), and cross-tree constraints [16]. A
feature model describes the set of all possible configurations
as its main semantics. Since feature modeling languages
are typically limited to Boolean features and propositional
constraints, they can easily be converted into propositional
logics by implementing their semantics.

Kconfig’s syntax and semantics go well beyond feature
modeling. For scaling the variability model and configuration
process, Kconfig incorporates concepts such as visibility con-
ditions (to conditionally show whole subtrees), modularization
concepts, derived defaults / derived features, hierarchy manipu-
lation), and an expressive constraint language including compar-
ison, arithmetic, and String operators. Interestingly, features can
also inherit constraints of their parents in non-transparent ways.
Furthermore, Kconfig has a domain-specific vocabulary (main
keywords) that fosters comprehension among Linux developers.

These concepts substantially complicate Kconfig’s syntax
and semantics. In fact, many intricate semantic interactions
between different language elements exist—most notably
between seven (sic!) language constructs to express constraints
(prompt, default, depends on, select, imply,
visible if, and range). For instance, a default value
becomes a constraint when the feature is not visible, as
determined by other constraints. For further details, we refer
to Kconfig’s official documentation [85] and our prior work
[16], [68], which includes seven pages of reverse-engineered
denotational semantics for Kconfig. Finally, Kconfig is
continuously extended with language constructs, such as
recently with the statement imply1 as a special case of the
select statement used for imperative choice propagation.

A frequent issue driving the complexity of the Kconfig seman-
tics is that the developers incorporated imperative choice
propagation—mainly through the select statement, which
interacts with other Kconfig elements in intricate ways. This
issue frequently complicated our and others’ efforts realizing
a sound semantic abstraction. It would have been better to
keep the language cleaner and separately implement choice
propagation via a reasoner, as CONFIGFIX does, but now
accounting for the imperative choice propagation.

Imperative Choice Propagation

Features can be of different types: bool, tristate,
string, hex, and int. Tristate features are used to control
the binding mode of features and can have three values: y (yes,
compile feature into kernel), n (no, do not compile feature) or
m (mod, compile as loadable kernel module). Kconfig offers
this feature type together with three-state logics that follows
Kleene’s rules for three-state logics [44]. Intuitively, the value
of a tristate feature is encoded as the number 0, 1 or 2. The

1https://gitlab.freedesktop.org/panfrost/linux/commit/
237e3ad0f195d8fd34f1299e45f04793832a16fc

logical operators are then defined over numbers: && returns
the minimum and || the maximum of the two operands, and
! returns 2 minus the operand.

In our experience, the complexity of Kconfig is a result of
the design of its configurator tooling. Instead of performing
expensive language engineering [23], [25], [29], [48], [64]
and adopting a configurator that comes with more intelligent
reasoning capabilities [7], we learned that the community
prefers transparent and easily scriptable solutions as opposed
to heavy machinery, such as off-the-shelf reasoners that are
difficult to understand. We learned this preference from the
discussion on the kernel mailing list preceding the introduction
of Kconfig and its tooling. An alternative candidate was a a
configurator tool and language with built-in conflict-resolution
support, which the community explicitly decided against,
expressing these reasons.

Kconfig is a popular language, but surprisingly expressive,
coming with intricate syntax and semantics. We learned
that the kernel community preferred the script-style xconfig
and Kconfig over more systematically engineered tooling,
mainly to be able to fully control and evolve the tooling.

Kconfig Language and Configurator Design

Language Semantics and Abstractions. Motivated by the
prospect of interesting empirical insights and being able
to evaluate configuration- and variability-related research
prototypes, researchers started looking into Kconfig and its
tooling back in 2007 [71], [72], [76]. This was followed up
with holistic studies of Kconfig, its tooling, and its models
in 2010 [15], [16], [69]. For instance, we were the first to
formally describe the semantics of Kconfig, which allowed
its translation into propositional logic both by ourselves and
other researchers [68], which resulted in the first translation
tool called LVAT [67] (Linux Variability Analysis Tools),
a tool suite written in Scala for analyzing Kconfig models.
Around the same time, Zengler and Küchlin also provided
a translation of Kconfig into propositional logics [28], [84].
Furthermore, the tool Undertaker [1] analyzes #ifdef code
in the Linux kernel to identify dead code blocks—variation
points whose constraints conflict with the variability model. To
this end, Undertaker came with a translation into propositional
logics. As part of the TypeChef infrastructure [41], Kästner
implemented Kconfigreader [40] in Scala. Most recently,
Fernandez-Amoros et al. also proposed yet another translation
of Kconfig into propositional logic [30] which, however, omits
its three-state logic and, therefore, a large part of the semantics.

A translation into an SMT representation was created by
Xiong et al. [83], who presented RangeFix—a technique
to generate configuration conflict fixes specifically for non-
propositional configuration spaces. For non-propositional fea-
tures, it provides ranges to which the value needs to be
changed by the user to resolve a conflict. Our fix generation is
conceptually based on RangeFix, but through simplifications
since we do not need all of its computation steps.

A translation not originating from researchers exist as

https://gitlab.freedesktop.org/panfrost/linux/commit/237e3ad0f195d8fd34f1299e45f04793832a16fc
https://gitlab.freedesktop.org/panfrost/linux/commit/237e3ad0f195d8fd34f1299e45f04793832a16fc

well. As part of a Google Summer of Code project, Vegard
Nossum contributed Satconfig [59], which comes with a
translation implemented in C and allows reasoning via the SAT
solver PicoSAT [22], for instance, completing a configuration
based on an initial, partial configuration. We investigated the
translation of Satconfig as well [38], but found shortcomings
in the handling of tristate features, leading to incorrect fixes;
there was also limited documentation for the translation and
implementation. Despite the limitations, Satconfig was fast,
indicating that a C-based solution can be scaled to the size
of the kernel’s varibility model. It also showed the advantages
of running a SAT solver directly in the configurator tool, as
well as the feasibility of implementing the translation into
propositional logics in C. Its design inspired our data structures.

With the exception of one tool [30], all produce propositional
formulas in conjunctive normal form (CNF), a prerequisite for
SAT solvers, and typically apply a Tseitin transformation [79],
which introduces auxiliary variables to avoid formula explosion.

A systematic comparison by ElSharkawy et al. [28] of
LVAT [67], Undertaker [1], and KconfigReader [40] showed
that all three tools had shortcomings in their sound encoding
and abstraction of the Kconfig semantics. Notably, they found
that KconfigReader could correctly handle the majority of
the current Kconfig semantics, which steered our decision
to re-implement KconfigReader’s translation in C with some
deviations (explained shortly).

Over the last decade, multiple researchers and one practi-
tioner implemented propositional abstractions for Kconfig—
to provide the basis for SAT-based reasoning, system
analysis techniques, and guiding users configuring the
kernel. None of these abstractions was fully sound and
complete, given the complexity of the Kconfig language.

Kconfig Semantic Abstraction

The Kconfig-SAT Initiative. In October 2015, the Kernel
developer Luis R. Rodriguez contacted some researchers
including us who have worked on SAT-based configuration
support for the Linux kernel and Linux package management.
After discussing configuration issues related to Kconfig, and
after being made aware of our research, he launched the
Kconfig-SAT initiative, among others, with a project wiki
page [42] and a mailing list [32]. Kconfig-SAT is now also
described in the Kconfig documentation [43].

Among the kernel community, the awareness for needing
intelligent configuration support rose, despite some skepticism
about SAT solvers in general by Linus Torvalds: “The SAT
solver will only hurt, because it will bring in all those irrelevant
people who are interested in SAT solving, not in making things
easy for users.”2 Nevertheless, our interaction via the mailing
list was insightful, as it helped us understanding the kernel
community, as well as it provided requirements for a solution.
For instance, in addition to providing sound fixes, a solution
should be fast for user acceptance [38].

2https://lists.linuxfoundation.org/pipermail/ksummit-discuss/2017-June/
004499.html

Fig. 2. A configuration conflict in xconfig

For researchers, it is not clear how the Linux community
works and how to effectively interact with it. While we were
approached by a kernel developer, for other disseminations,
we encourage the community to provide guidelines and
requirements for solutions to eventually be integrated, as
well as to actively approach researchers for mutual benefit.

Interacting with the Linux Kernel Community

III. CONFIGFIX

We first introduce the notion of configuration conflict, then give
a practical introduction into our tool CONFIGFIX, followed by
discussing its architecture and major design decisions.

A. Configuration Conflicts

A conflict arises when changing the value of one or multiple
features violates a constraint. To resolve conflicts, users need
to (transitively) follow the dependencies, which is laborious
and error-prone. A survey [34] found that users are commonly
challenged with conflict resolution in the kernel configurator,
with 20 % of the survey respondents needing roughly “a few
dozen minutes” to resolve a conflict. The feature descriptions
only provide incomplete and sometimes hard to understand (or
even incorrect) advice, leading to users blindly choosing default
or recommended values without grasping the consequences. Fur-
thermore, default values sometimes contradict with the advice,
for instance, when the description recommends enabling a fea-
ture, but the default value is “no” (disabled). As such, resolving
conflicts can be particularly challenging and frustrating for inex-
perienced users, who lack the experience and resort to guessing.

Let us illustrate configuration conflicts with a feature that
has particularly complex constraints. Figure 2 shows the

https://lists.linuxfoundation.org/pipermail/ksummit-discuss/2017-June/004499.html
https://lists.linuxfoundation.org/pipermail/ksummit-discuss/2017-June/004499.html

feature “QorIQ DPAA2 fsl-mc bus driver” (a bus infrastructure
driver) in xconfig. Currently, it cannot be enabled (checkbox
not selectable, indicated by missing underscores in columns
“M” and “Y”) due to the unmet constraint (current values of
those features shown at the bottom of Fig. 2):

depends on OF && (ARCH_LAYERSCAPE ||
(COMPILE_TEST && (ARM || ARM64 ||
X86_LOCAL_APIC || PPC)))

Xconfig does not even show which parts of the constraint
are unmet. The user needs to manually resolve the conflict
by transitively looking at the features’ dependencies, taking
the full richness of its constraint language into account, which
might mean needing to enable and disable a set of many
features at the same time. Doing so, however, might have ripple
effects by triggering the imperative choice propagation (select
statement) in xconfig, which might in turn invalidate the user’s
resolution. The user might not even realize what other features
the imperative choice propagation is enabling or disabling. De-
pending on constraints, the respective feature might not even be
visible to the users in the configurator, further challenging the
configuration process. The goal of CONFIGFIX is to facilitate
this conflict resolution process by automatically finding the
needed feature values to reach a desired configuration.

B. CONFIGFIX Overview

Workflow. Figure 3 shows the overall workflow of CONFIGFIX

from the end user’s perspective. 1 shows the view the user
sees once they launch xconfig and have chosen “show all
options” from the Options menu. This option shows features
that would have normally been hidden, because they have
unmet dependencies. The user can then identify the features
they wish to enable, and click on “Add Symbol” which will
add the feature to the bottom left pane, as shown in 2 . At that
point, the user can change the value of the feature to “Y”, “N”
or “M”—since the feature can be compiled as a loadable kernel
module (“M”=module), otherwise only compiled directly into
the kernel binary (“Y”=yes) or not at all (“N”=no). Once the
user has added all the features they would like to change the
values for, they can click on “Calculate Fixes,” which will call
CONFIGFIX’s internal conflict resolution algorithm with the
list of features specified in the bottom left pane. The returned
solutions will be displayed in the bottom right pane as shown
in 3 . Each solution is a set of feature values that need to
be made in order to set the wanted value(s) for the feature(s)
indicated in 2 . As there can be multiple ways to satisfy
the user constraints, each specific solution can be viewed by
selecting it from the Solutions combobox. In later versions,
we might add feature drag and drop. The user can then apply
any of the solutions, which would allow them to change the
values of their desired feature(s).

DIMACS Export. Given the demand for accurate translations
of variability models expressed in the Kconfig language,
CONFIGFIX offers an export into a DIMACS file. DIMACS is

Fig. 3. User’s workflow using CONFIGFIX inside xconfig

a common format accepted by many SAT solvers.3 The export
is launched via make cfoutconfig.

3http://www.satcompetition.org/2009/format-benchmarks2009.html

http://www.satcompetition.org/2009/format-benchmarks2009.html

C. Solution Overview

Figure 4 illustrates CONFIGFIX’s fix calculation. First, CONFIG-
FIX translates the Kconfig model into a propositional formula
according to the Kconfig semantics we reverse-engineered and
re-implemented (and discuss shortly in Sec. IV-A). It then trans-
lates this formula into conjunctive normal form (CNF) to be
able to later process it with a SAT solver. The formula encoding
the Kconfig variability model represents the hard constraints
that must always be satisfied. In other words, CONFIGFIX
cannot violate any of these constraints during its fix generation.
As input, CONFIGFIX also takes in the current configuration (a
list of features and their corresponding values) and the user’s
configuration goal (a list of features to change and their desired
values). CONFIGFIX considers the current configuration as soft
constraints, since some of the current feature values in the
configuration will need to change. As the next step, CONFIGFIX
creates a single formula that is a conjunction of all hard and
soft constraints and then queries the SAT solver for satisfiability.
If it is satisfiable, then there is nothing to find fixes for, and the
desired values can be applied. Otherwise, CONFIGFIX triggers
our C-based RangeFix implementation to calculate fixes.

D. Fix Generation

Given a conflict, we want to find a fix that requires a minimal
number of changes to the configuration. In the literature, various
conflict-resolution algorithms exist [33], but many are not
applicable here. They either produce only one fix, a long list of
fixes (challenging users to identify/apply the most suitable one),
or they only offer limited support for non-Boolean constraints.
We selected RangeFix [83], which was designed to mitigate
these shortcomings. Its fixes offer a range of values for certain
features, and it supports non-Boolean features and constraints.

Rangefix’s fixes adhere to three main properties:
• correctness: any configuration resulting from a fix must

be correct, i.e. satisfy the violated constraints;
• maximality of ranges: when ranges overlap, the fix shall

contain a maximum range;
• minimality of changes: the number of features that need to

be changed should be reasonably minimal (realized using
heuristics we defined) to avoid unnecessarily breaking
features values set by the user before.

RangeFix generates fixes in three stages. Its input is an
abstraction of a variability model (e.g., CNF formula), where
features are represented by variables. In the first stage, all
minimal sets of variables, which have to be changed, are
generated. These sets are called diagnoses. In stages 2 and 3,
the new values for each variable in a diagnosis are calculated.

We now explain the algorithm using an example. Let us
define the tuple (V, e, c) as a constraint violation, where V is
a set of variables, e a configuration with a value defined for
each variable and c a set of constraints which is violated. The
goal is to find a new configuration e′, such that c is satisfied.
We define our set of variables V as:

{m : Boolean, a : Integer, b : Integer}

Fig. 4. Overview of ConfigFix’s components

We define a set of constraints as:

(m → a > 10) ∧ (¬m → b > 10) ∧ (a < b)

Finally, a configuration e with values for the three variables
is required: {m := True, a := 6, b := 5}. This configuration
violates first and the third constraint.

RangeFix generates the diagnoses during the first stage by
using the constraint solver’s ability to find unsatisfiable cores.
During each iteration in the first step, a constraint from an
unsatisfiable core is removed and the diagnoses are extended
until no more unsatisfiable core is found. Applying this to our
example yields the following two diagnoses: {m, b} and {a, b}.
At this point, we know that we need to change either {m, b}
or {a, b} to resolve the conflict.

The stages 2 and 3 are subsequently performed together
for each diagnosis. First, all unchanged variables are replaced
by their current values during stage 2. Finally, in stage 3,
the violated constraints are minimized via heuristic rules we
defined and split into minimal clauses to generate the fixes.
This leads to the following two fixes for the conflict:
• [m := False, b : b > 10]
• [(a, b) : a > 10 ∧ a < b]

If any of these two fixes is applied, all previously violated
constraints will be satisfied again. If the first fix is chosen, then
m needs to be set to False and b simply to any value larger

than 10. If the second fix is chosen, then a needs to be set to a
value larger than 10, and b must simply be larger than a. This
illustrates the advantages of RangeFix compared to existing
conflict-resolution algorithms. While there are infinitely many
possible solutions, the user is presented with only the minimal
set. Other approaches might have presented only one of the
two solutions or a very long list of possible solutions, since
there are infinitely many possible combinations that satisfy a
being smaller than b in the second fix. As such, CONFIGFIX
returns a maximum of three fixes for each conflict even if
more fixes exist. In most cases, presenting three fixes for a
user is sufficient to choose a suitable fix and generating more
fixes can take significantly more time.

E. Example Fix

We now demonstrate how CONFIGFIX finds different
fixes for a conflict, and how it deals with the intricacies
of Kconfig’s semantics, especially its various language
constructs to define constraints (cf. Sec. II-C). Given a default
configuration, assume a user wants to enable the feature
MEDIA_TUNER_SIMPLE, which provides support for various
media tuners. The feature has dependencies, and its parent
feature depends on other features as it has visibility constraints.
In the default configuration, the parent is hidden and the
dependencies are not met, so it is not configurable by the user.

For this conflict, eight possible fixes exist and, each fix
changes the values of five features, although some values
change implicitly through Kconfig’s imperative choice prop-
agation (select statements). Generally, the feature can be
enabled through two different means: The parent feature can
be made visible and then the user can explicitly set a value for
MEDIA_TUNER_SIMPLE after its dependencies have been
met. The other possibility is to enable the module through a
select statement while keeping the module invisible.

In the first case, the following fix first makes the feature
visible, and then the user can set an explicit value:

• MEDIA_SUPPORT => yes
• MEDIA_DIGITAL_TV_SUPPORT => yes
• MEDIA_SUBDRV_AUTOSELECT => no
• MEDIA_TUNER_SIMPLE => yes

In the latter case, the following fix ensures that the module
is selected and, therefore, enabled:

• MEDIA_SUPPORT => yes
• MEDIA_ANALOG_TV_SUPPORT => yes

The feature is invisible, though, and it might not be
obvious to the user why the feature has been enabled.
In the end, all eight fixes calculated are able to enable
MEDIA_TUNER_SIMPLE in one way or another.

IV. EXPERIENCES AND CHALLENGES

We now discuss experiences and challenges faced when
realizing CONFIGFIX. Overall, our first attempt [38] was much
closer to the RangeFix implementation. We experimented
with the C-based translation by Vegard Nossum (cf. Sec. II-C)
and an existing Scala-based RangeFix implementation
prototypically integrated into xconfig, but which only covered
the first of the three stages of RangeFix. We surveyed kernel

developers and Kconfig-SAT members about the user interface
we implemented, and provided screencasts illustrating the
solution [38]. The results contributed to the present attempt,
where we focused on a purely C-based translation and fix
generation, the C-based SAT solver Picosat [21], and an
improved integration into xconfig.

A. Semantic Abstractor

The largest challenge was obtaining a sound and stable logical
abstraction of Kconfig. To obtain requirements, we interacted
with the community, specifically via the kconfig-sat mailing
list. We recognized a strong preference for SAT solvers, as
opposed to more expressive solvers, such as SMT. Even
though, the latter could support a larger part of the semantics,
it was pointed out that integrating a SAT solver could also
help at other places in the kernel, especially CPU scheduling
support. Furthermore, SMT solvers are typically slower, and
not many come with a GPL-compatible license, as required for
integration into the kernel’s codebase. For practical matters,
we learned it should be possible to use or compile the SAT
solver with the tools needed to compile the Linux kernel, such
as gcc. This requirement excluded some modern and very fast
solvers, including CaDiCaL [20].

In general, our options for realizing a propositional semantic
abstraction for a SAT solver were to (i) develop a new
translation from scratch, to (ii) build on Satconfig (cf. Sec. II-C)
or to (iii) investigate other existing alternatives. Strategy (i) has
the disadvantage of lacking a reference, when the translation
is checked for correctness. Since correctness was essential,
we disregarded this strategy. As explained above, Satconfig
showed deficiencies in handling tristate features and in
code documentation. Based on others’ systematic comparison of
translations [28] (also cf. Sec. II-C), we chose to re-implement
and extend the Scala-based KconfigReader [40].

Our overall strategy was to inspect the translation in Kconfig-
Reader, to re-implement it freely in C, being inspired by data
structures from Satconfig, and to test the translation incremen-
tally with smaller, hand-crafted models, thereby also debugging
and fixing our implementation as well as remaining deficiencies
of KconfigReader. Finally, we tested with example conflicts in
the full kernel model (one of these conflicts we described
in Sec. III-E). KconfigReader works accurately for bool
and tristate features, as well as for many non-Boolean
properties, but with some remaining smaller limitations.

Adapting and re-implementing KconfigReader in C allowed
the direct integration into the kernel configurator in the kernel
source tree. It also allowed us to use the configurator’s parser to
parse the variability model. In fact, parsing Kconfig is another
general challenge acknowledged by the researchers who pro-
duced translation. So, relying on the maintained parser provides
robustness. We traversed the internal, AST-based representation
and stored intermediate results in our own C data structures.
A specific challenge was to implement scalable representations
of the propositional formula in C, in a way that it can be easily
traversed and transformed into conjunctive normal form by
applying the typical logical laws and a Tseitin transformation.

As a consequence, some parts of the translation had to be imple-
mented in a completely different way than in KconfigReader.

C was not ideal to model propositional logic formulas. An
OO language, especially one with functional-programming
constructs, would have likely led to much cleaner code.

Propositional Transformation in C

To account for limitations, we needed to deviate from the
semantics realized in KconfigReader. One example was the
translation of the imperative choice propagation—over 10,000
select statements exist in the whole variability model.
So, how to model this type of constraint has substantial
impact on the performance. KConfigReader models the
select-constraints under the constraints for the selected
feature and not the selecting feature. An advantage of this
behavior is the number of constraints, since there will only be
one constraint for each selected feature independently by how
many other features it is selected. The disadvantage is that the
constraints can potentially become very large formulas, when
a feature is selected by many other features and depending
on how many constraints these features have.

As known for over a decade, the Kconfig syntax and
semantics are intricate. Especially, the semantics are more
expressive than logical representations of off-the-shelf
reasoners, including SMT and of course SAT. In addition, the
continuous evolution of Kconfig, lack in documentation, and
non-obvious semantic abstractions, challenged providing a
sound abstraction. The kernel configurator’s code is also
not well documented, only some of its data structures, no
functions. Furthermore, a naive CNF translation explodes
without Tseitin transformation and incorporating domain/-
expert knowledge for effectively splitting clauses.

Challenges of Achieving a Sound Semantic Abstraction

B. Choosing a SAT Solver

Choosing PicoSAT [21] was inspired by Satconfig (cf.
Sec. II-C), which showed that PicoSAT can be easily integrated
into the kernel. More importantly, it: (i) is written in C and
can be compiled with gcc; (ii) has a C-API, so can be called
called directly within xconfig without needing external calls;
(iii) has a Linux-compatible license (MIT); (iv) can identify
and return unsatisfiable cores; and (v) is reasonably fast [22].
This made PicoSAT our best candidate. However, a downside
was that the solver is outdated and not actively maintained
anymore, despite still being use in industry.

While faster SAT solvers exist, the need to use a pure C-
based SAT solver with a C API and Linux-kernel-compatible
license, restricted our options to PicoSAT. While it is
not actively maintained anymore, it has a well-structured
implementation and turned out to be fast enough for
interactive fix generation in CONFIGFIX.

Choice of SAT Solver

C. GUI Integration

We extended the graphical configurator xconfig to provide an
intuitive interface for entering the desired feature values, for
observing the proposed fixes, and for applying the desired ones.
We decided on having the conflict resolution integrated within
the same window to follow conflict resolution interfaces found
in other configurators, specifically that of ECOS [15], [34], [82].
We added a new pane at the bottom of xconfig to collect the
features desired by the user. The view is divided into two parts:
(i) the collected feature list and (ii) the solutions obtained from
CONFIGFIX. We initially planned to support drag and drop, left
it for later in favor of obtaining a working solution for now.

After realizing the initial UI, we started realizing the
interfaces between the UI, our RangeFix implementation, and
the SAT solver PicoSAT via its C API. xconfig is written in
C++ with the Qt toolkit, while we implemented CONFIGFIX
in pure C and call it within xconfig. The Glib library is used
in CONFIGFIX and xconfig for its variety of available data
structures resulting.

The challenge with implementing and integrating the user
interface was in understanding the libraries Glib and Qt,
specifically Qt slots and signals, and the type-checked event
signalling mechanism in Qt. Furthermore, we needed to figure
out how to interface C++ with C code (name unmangling),
and how to pass data around between user interface elements
(parent-child and sibling in the interface hierarchy).

D. Scalability and Performance Improvements

The main challenge was translating the huge formulas of the
full kernel variability model with over 15,000 features into CNF.
Notably, the encoding of certain Kconfig aspects had a substan-
tial impact on the resulting CNF and SAT solver performance.

To improve the performance of the SAT solver, we changed
the encoding of the select statement by splitting up the
various statements. Instead of a single constraint for a selected
feature, each select statement now creates constraints on
its own. But, since this also had an affect on we encoded
the dependencies of a feature, introducing a new variable was
needed, which indicates whether a feature has been selected.
This significantly simplified the constraint encoding.

While we have increased the number of constraints in total
by several thousand constraints, we were able to reduce the
number of CNF clauses and auxiliary variables significantly As
a consequence, a single run of PicoSAT became more than 65 %
faster than it was before. A disadvantage of this decision is,
that we lost the ability to syntactically check our constraints for
equivalence against the constraints produced by KConfigReader.
Still, the gain in performance justified this decision, and we
conceived an alternative evaluation, explained shortly.

We achieved a final translation time of the entire Linux
kernel variability model into a CNF formula of around 1.5
seconds on an Intel i7 laptop. The initial run of PicoSAT
to check for satisfiability takes about 2.5 to 3 seconds.
Finally, finding fixes for a conflict can be achieved in as
little as 1 second in some cases, although the number
depends heavily on the conflict and the number of enabled
features. The most impact on improving the performance
came from incorporating our domain/expert knowledge into
the translation, including effective formula splitting and
using a Tseitin transformation.

Achieved Performance

V. EVALUATION

We now briefly discuss our evaluation of CONFIGFIX.

A. Conflict and Fix Generation

With over 15,000 features, the configuration space for the
Linux kernel is huge and, therefore, crafting a small number
of examples to be evaluated is not sufficient. Instead, a more
systematic approach is needed. We made use of the kernel’s
ability to randomly sample a configuration and then we
created random conflicts (that are definitely resolvable, see
below) for each sampled configuration.

To obtain sufficiently diverse configurations, we used the
kernel’s randconfig tool to generate configuration samples
for three of the more popular available architectures in the
kernel: x86_64, arm64, and openrisc. Randconfig allows
to skew the probabilities for features of type bool and
tristate to be enabled. Our probabilities ranged from 10 %
to 90 % for a feature to be set to no. This setting affects the
number of enabled features and, consequently, the fix sizes
(number of features to be changed), since a low number of
enabled features tends to lead to larger fixes regardless of the
conflict size. This way, we can evaluate the performance of
CONFIGFIX for varying fix sizes.

For each random configuration we then introduce conflicts
by randomly choosing target features that: (i) have a prompt
(i.e., are not completely invisible, like derived features [16]),
(ii) are of type bool or tristate, (iii) are not a choice
group, and (iv) have at least one other possible value different
from its current value that cannot be selected at the moment.
In the case of tristate options with two values that cannot
be selected at the moment, the target value is randomly chosen
from these two values.

While finding fixes, CONFIGFIX may not return results for
two reasons. The first is that a fix may not exist. Some features
depend on other architecture-specific options; therefore,
they can only be configured for certain architectures. Thus,
including such architecture-dependent features into conflicts to
be resolved on a different architecture by definition has no fix.
In this case, CONFIGFIX not returning a fix is the expected
behavior. On the other hand, CONFIGFIX may also not return
fixes due to bugs in our implementation or design. In order
to objectively evaluate CONFIGFIX, we, therefore, want to

ensure that our chosen target features can be configured (i.e.,
the conflict can be resolved) for the used architecture to
rule out the first possibility. Therefore, we generate a base
configuration for each architecture using randconfig with
the probability of 100% for a feature to be enabled. Such base
configuration will have as many enabled features as possible.
Before including a feature in a conflict, we compare its target
value with the base configuration to see whether this value
can indeed be obtained for that architecture.

For each configuration sample, we restrict the selection of
conflicting features to those that can receive their target values
on the chosen architecture, as witnessed by the base configura-
tion. We create such resolvable conflicts containing between 1–
10 features and let CONFIGFIX generate fixes for each conflict.

B. Analysis

When applying each produced fix for a given conflict, we
analyze whether (i) the fix resolves the conflict, i.e. whether
our randomly chosen features obtain their target values and
whether (ii) every feature in a fix obtains its target value if the
fix resolves the conflict after applying the fix. This results in
three possible outcomes for each fix:
• Applicable and Resolves Conflict: The fix is fully

applicable (i.e., we can apply all the specified values
in the fix) and resolves the conflict. This is the optimal
outcome.

• Not Applicable, but Resolves Conflict: The fix is not
fully applicable (i.e., some of the values specified in the fix
cannot be applied), but it resolves the conflict nonetheless.
While the fix is not optimal, since it contains invalid or
redundant feature values, it is an acceptable outcome,
since the conflict is resolved. Specifically, the features to
change, which are part of the fix, can be changed.

• Does Not Resolve Conflict: The proposed fix does not
resolve the conflict, since the target features cannot be
changed by applying the conflict.

C. Results

We generated a total of 27 random sample configurations
with a varying number of enabled features for the three target
architectures (x86_64, arm64, and openrisc). For each
configuration, we created 50 conflicts containing between 1–
10 features to change. This resulted in 1350 conflicts for
CONFIGFIX to solve. We summarize the results in Table I.

Out of the 1,350 conflicts, CONFIGFIX returned at least one
fix for 1,055 (78.2 %) conflicts, of which 723 (53.6%) were
resolved. The remaining 295 conflicts did not receive any fixes,
mostly due to a limit on the CONFIGFIX running time, which
we used to make testing feasible. For the 1,055 conflicts that
received at least one fix, a total of 2,482 fixes were returned
(recall our intentional limitation to a maximum of three fixes
per conflict, as discussed in Sec. III-D).

As seen in Fig. 5, the obtained fixes comprise 2–175 features
that need to be changed, although the typical range is much
smaller. The distribution is left-skewed, with an average fix size
of 23 features, and the majority of the fixes lying around the

Fig. 5. Distribution of fix sizes (number of features that need to be changed to resolve the conflict)

1 2 3 4 5 6 7 8 9 10
Conflict size

0

25

50

75

100

125

150

175

Fi
x

siz
e

Fig. 6. Distribution of fix sizes (number of features that need to be changed)
by conflict size (number of unchangeable features that a user wants to change)

median of 20 features. Figure 6 shows that outliers are common
for all conflict sizes, but in general, fix sizes demonstrate a
seemingly linear dependence on the conflict size. This indicates
that CONFIGFIX can be used for resolving conflicts of varying
sizes without the risk of fix size explosion.

We also investigated the outcome of each fix, summarized
in Table I. The optimal outcome (Applicable and Resolves
Conflict) was achieved for 1,317 of these fixes (53 %), while
292 fixes (12 %) still resolved the conflict despite not being fully
applicable (Not Applicable, but Resolves Conflict). Finally,
868 (35 %) returned fixes that did not resolve the conflict
(Does Not Resolve Conflict). So, in summary, 65 % of the

fixes returned by CONFIGFIX resolved the conflict.

We evaluated CONFIGFIX with 1,350 conflicts of different
sizes that were randomly generated for 27 configuration
samples on three hardware architectures. 65 % of the fixes
generated by CONFIGFIX resolved the conflict.

Evaluation Summary

While the ideal outcome would have been to resolve all
conflicts, we believe that this percentage is still acceptable given
that the semantic abstraction is sound, but cannot be complete.
While perhaps an encoding into SMT could yield a slightly
better result, recall that there was a strong preference amongst
the Linux community for SAT solving using a C-based solver.

TABLE I
CONFIGFIX EVALUATION RESULTS FOR RANDOM CONFIGURATIONS AND

CONFLICTS

metric value

number of sampled configurations 27
conflict sizes 1–10
generated conflicts 1,3501 (100.0 %)

conflicts with at least one generated fix 1,055 (78.2 %)
number of resolved conflicts 723 (53.6 %)
total number of generated fixes 2,482 (100.0 %)
fixes that resolve the conflict 1,609 (65.0 %)

fully applicable and resolve the conflict 1,317 (53.0 %)
not fully applicable, but resolve the conflict 292 (12.0 %)
do not resolve the conflict 868 (35.0 %)

1 For each configuration sample, five conflicts of each size.

VI. CONCLUSION

We reported our experience of leveraging results from 13 years
of academic research. We created the tool CONFIGFIX, which
we integrated in the Linux kernel configurator by adhering
to all requirements coming from the Linux community in
the context of the Kconfig-SAT initiative [42]. CONFIGFIX
realizes a stable and sound transformation of the configurator’s
underlying variability-modeling language Kconfig into a
propositional abstraction, as well as it provides a tested

configuration-conflict resolution technique that can guide users
achieving their desired Linux kernel configuration. We believe
that our tool [2] helps the Linux kernel community not only
supporting the configuration process, but also conduct further
analyses or support based on the stable translation. Likewise,
we invite researchers evaluating their own and novel techniques
upon the translation, as well as to improve the fixes, for instance,
providing optimization support based on quality attributes.

REFERENCES

[1] “The VAMOS project, undertaker,” https://vamos.informatik.uni-erlangen.
de/trac/undertaker.

[2] “ConfigFix,” https://bitbucket.org/easelab/configfix, 2020.
[3] I. Abal, C. Brabrand, and A. Wasowski, “42 variability bugs in the linux

kernel: A qualitative analysis,” in ASE, 2014.
[4] E. Abbasi, A. Hubaux, M. Acher, Q. Boucher, P. Heymans, A. Heymans,

F. FSR, and W. Region, “What’s in a web configurator? empirical results
from 111 cases,” University of Namur, Tech. Rep. P-CS-TR CONF-
000001, 2012.

[5] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta, “Analyzing cloning
evolution in the linux kernel,” Information and Software Technology,
vol. 44, no. 13, pp. 755–765, 2002.

[6] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines. Springer, 2013.

[7] R. Bashroush, M. Garba, R. Rabiser, I. Groher, and G. Botterweck, “Case
tool support for variability management in software product lines,” ACM
Comput. Surv., vol. 50, no. 1, Mar. 2017.

[8] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, no. 6, pp. 615–636, 2010.

[9] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature? a qualitative study
of features in industrial software product lines,” in SPLC, 2015.

[10] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wa-
sowski, “Three cases of feature-based variability modeling in industry,”
in International Conference Model-Driven Engineering Languages and
Systems (MODELS), 2014, pp. 302–319.

[11] T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wasowski,
and S. She, “Variability mechanisms in software ecosystems,” Information
and Software Technology, vol. 56, no. 11, pp. 1520–1535, 2014.

[12] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and
A. Wasowski, “A survey of variability modeling in industrial practice,”
in VaMoS, 2013.

[13] T. Berger and S. She, “Formal semantics of the CDL language,” 2010,
technical Note. Available at http://thorsten-berger.net/cdl semantics.pdf.

[14] T. Berger, S. She, R. Lotufo, K. Czarnecki, and A. Wasowski, “Feature-
to-code mapping in two large product lines,” in SPLC, 2010.

[15] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “Variability
modeling in the real: A perspective from the operating systems domain,”
in ASE, 2010.

[16] ——, “A Study of Variability Models and Languages in the Systems
Software Domain,” IEEE Trans. Softw. Eng., vol. 39, no. 12, pp. 1611–
1640, Dec. 2013.

[17] T. Berger, J.-P. Steghöfer, T. Ziadi, J. Robin, and J. Martinez, “The state
of adoption and the challenges of systematic variability management
in industry,” Empirical Software Engineering, vol. 25, pp. 1755–1797,
2020.

[18] D. Beuche, “Variants and variability management with pure::variants,”
in SPLC, 2004.

[19] S. Bhartiya, “Linux is the largest software development project on the
planet: Greg Kroah-Hartman,” http://cio.com/article/3069529.

[20] A. Biere, “CaDiCaL Simplified Satisfiability Solver,” http://fmv.jku.at/
cadical.

[21] ——, “PicoSAT,” http://fmv.jku.at/picosat.
[22] ——, “Adaptive Restart Strategies for Conflict Driven SAT Solvers,” in

SAT, 2008.
[23] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software

Engineering in Practice. Morgan & Claypool Publishers, 2012.
[24] ——, Model-driven software engineering in practice. Morgan &

Claypool, 2017.

[25] B. Combemale, R. France, J.-M. Jézéquel, B. Rumpe, J. Steel, and
D. Vojtisek, Engineering modeling languages: Turning domain knowledge
into tools. CRC Press, 2016.

[26] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications, 2000.

[27] D. Dhungana, P. Grünbacher, and R. Rabiser, “The DOPLER Meta-Tool
for Decision-Oriented Variability Modeling: a Multiple Case Study,” J.
ASE, vol. 18, no. 1, pp. 77–114, Mar. 2011.

[28] S. El-Sharkawy, A. Krafczyk, and K. Schmid, “Analysing the kconfig
semantics and its analysis tools,” in GPCE, 2015.

[29] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh et al., “The State of
the Art in Language Workbenches,” in Software Language Engineering.
Springer, 2013.

[30] D. Fernandez-Amoros, R. Heradio, C. Mayr-Dorn, and A. Egyed, “A
kconfig translation to logic with one-way validation system,” in SPLC,
2019.

[31] R. Flores, C. Krueger, and P. Clements, “Mega-Scale Product Line
Engineering at General Motors,” in Proc. SPLC, 2012.

[32] Google Groups, “kconfig-sat,” https://groups.google.com/forum/#!forum/
kconfig-sat.

[33] A. Hubaux, D. Jannach, C. Drescher, L. Murta, T. Männistö, K. Czarnecki,
P. Heymans, T. Nguyen, and M. Zanker, “Unifying software and product
configuration: A research roadmap,” in ConfWS, 2012.

[34] A. Hubaux, Y. Xiong, and K. Czarnecki, “A User Survey of Configuration
Challenges in Linux and eCos,” in VaMoS, 2012.

[35] A. Israeli and D. G. Feitelson, “Characterizing software maintenance
categories using the linux kernel,” The Hebrew University of Jerusalem,
Tech. Rep. 2009–10, 2009.

[36] ——, “The linux kernel as a case study in software evolution,” Journal
of Systems and Software, vol. 83, no. 3, pp. 485–501, 2010.

[37] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it? and
how fast? case study on the linux kernel,” in MSR, 2013.

[38] D. Jonsson, “A case study of interactive conflict-resolution support
in software configuration,” Master’s thesis, Chalmers University of
Technology, 2016. [Online]. Available: https://hdl.handle.net/20.500.
12380/238168

[39] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Carnegie-Mellon
University, Pittsburgh, PA, USA, Tech. Rep., 1990.

[40] C. Kästner, “KConfig Reader,” https://github.com/ckaestne/kconfigreader.
[41] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and

T. Berger, “Variability-aware parsing in the presence of lexical macros
and conditional compilation,” in OOPSLA, 2011.

[42] Kernelnewbies, “Linux kconfig SAT integration,” https://kernelnewbies.
org/KernelProjects/kconfig-sat, accessed: 2019-12-05.

[43] Kernel.org, “Kconfig language,” https://www.kernel.org/doc/
Documentation/kbuild/kconfig-language.txt, accessed: 2019-12-05.

[44] S. C. Kleene, “On notation for ordinal numbers,” The Journal of Symbolic
Logic, vol. 3, no. 4, pp. 150–155, 1938.

[45] C. W. Krueger, D. Churchett, and R. Buhrdorf, “Homeaway’s transition
to software product line practice: Engineering and business results in 60
days,” in SPLC, 2008.

[46] C. W. Krueger and P. C. Clements, “Systems and software product line
engineering with biglever software gears,” in SPLC, 2013.

[47] J. Krueger, W. Gu, H. Shen, M. Mukelabai, R. Hebig, and T. Berger, “To-
wards a better understanding of software features and their characteristics:
A case study of marlin,” in VaMoS, 2018.

[48] R. Lämmel, Software languages: Syntax, semantics, and metaprogram-
ming. Springer, 2018.

[49] M. Larabel, “The Linux Kernel Enters 2020 At 27.8 Million Lines In
Git But With Less Developers For 2019,” https://www.phoronix.com/
scan.php?page=news item&px=Linux-Git-Stats-EOY2019.

[50] J. Lawall and G. Muller, “Coccinelle: 10 years of automated evolution
in the linux kernel,” in USENIX ATC, 2018.

[51] R. Lindohf, J. Krueger, E. Herzog, and T. Berger, “Software product-line
evaluation in the large,” Empirical Software Engineering, 2020, preprint.

[52] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski, “Evolution
of the Linux Kernel Variability Model,” in SPLC, 2010.

[53] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich, and G. Saake,
Mastering Software Variability with FeatureIDE. Springer, 2017.

[54] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Mining configuration
constraints: Static analyses and empirical results,” in ICSE, 2014.

https://vamos.informatik.uni-erlangen.de/trac/undertaker
https://vamos.informatik.uni-erlangen.de/trac/undertaker
https://bitbucket.org/easelab/configfix
http://thorsten-berger.net/cdl_semantics.pdf
http://cio.com/article/3069529
http://fmv.jku.at/cadical
http://fmv.jku.at/cadical
http://fmv.jku.at/picosat
https://groups.google.com/forum/#!forum/kconfig-sat
https://groups.google.com/forum/#!forum/kconfig-sat
https://hdl.handle.net/20.500.12380/238168
https://hdl.handle.net/20.500.12380/238168
https://github.com/ckaestne/kconfigreader
https://kernelnewbies.org/KernelProjects/kconfig-sat
https://kernelnewbies.org/KernelProjects/kconfig-sat
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019

[55] ——, “Where do configuration constraints stem from? an extraction
approach and an empirical study,” IEEE Trans. Softw. Eng., vol. 41,
no. 8, pp. 820–841, 2015.

[56] S. Nadi and R. C. Holt, “Make it or break it: Mining anomalies from
linux kbuild,” in WCRE, 2011, pp. 315–324.

[57] ——, “Mining kbuild to detect variability anomalies in linux,” in CSMR,
2012.

[58] D. Nešić, J. Krüger, S. Stănciulescu, and T. Berger, “Principles of Feature
Modeling,” in FSE, 2019.

[59] V. Nossum, “satconfig,” https://github.com/vegard/linux-2.6/tree/v4.7+
kconfig-sat, accessed: 2019-12-05.

[60] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting
and automating collateral evolutions in linux device drivers,” SIGOPS
Oper. Syst. Rev., vol. 42, no. 4, p. 247–260, Apr. 2008.

[61] L. Passos, R. Queiroz, M. Mukelabai, T. Berger, S. Apel, K. Czarnecki,
and J. Padilla, “A study of feature scattering in the linux kernel,” IEEE
Trans. Softw. Eng., 2018, preprint.

[62] L. Passos, L. Teixeira, N. Dintzner, S. Apel, A. Wasowski, K. Czarnecki,
P. Borba, and J. Guo, “Coevolution of variability models and related
software artifacts,” Empirical Softw. Engg., vol. 21, no. 4, pp. 1744–1793,
Aug. 2016.

[63] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed., ser. Series in Artificial Intelligence. Upper Saddle River, NJ:
Prentice Hall, 2010. [Online]. Available: http://aima.cs.berkeley.edu/

[64] S. Schauss, R. Lämmel, J. Härtel, M. Heinz, K. Klein, L. Härtel, and
T. Berger, “A chrestomathy of dsl implementations,” in International
Conference on Software Language Engineering (SLE). ACM, 2017.

[65] K. Schmid, I. John, R. Kolb, and G. Meier, “Introducing the pulse
approach to an embedded system population at testo ag,” in ICSE, 2005.

[66] D. C. Sharp, “Reducing avionics software cost through component based
product line development,” in 17th DASC. AIAA/IEEE/SAE. Digital
Avionics Systems Conference. Proceedings (Cat. No. 98CH36267), 1998.

[67] S. She, “LVAT,” https://code.google.com/archive/p/
linux-variability-analysis-tools/, 2013.

[68] S. She and T. Berger, “Formal semantics of the kconfig language,”
2010, technical Note. Available at http://www.eng.uwaterloo.ca/∼shshe/
kconfig semantics.pdf.

[69] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “The
variability model of the linux kernel,” in VaMoS, 2010.

[70] ——, “Reverse engineering feature models,” in ICSE, 2011.
[71] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk, “Is

The Linux Kernel a Software Product Line?” in SPLC-OSSPL, 2007.
[72] J. Sincero and W. Schröder-Preikschat, “The linux kernel configurator

as a feature modeling tool,” in ASPL, 2008.
[73] M. Svahnberg and J. Bosch, “Evolution in software product lines: Two

cases,” Journal of Software Maintenance, vol. 11, no. 6, pp. 391–422,
Nov. 1999.

[74] R. Tartler, C. Dietrich, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann, “Static analysis of variability in system software: The
90,000 #ifdefs issue,” in USENIX ATC, 2014.

[75] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat, “Feature
consistency in compile-time-configurable system software: Facing the
linux 10,000 feature problem,” in EuroSys, 2011.

[76] R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann, “Dead
or alive: Finding zombie features in the linux kernel,” in FOSD, 2009.

[77] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,” in
ICSE, 2012.

[78] P. Toft, D. Coleman, and J. Ohta, “A cooperative model for cross-
divisional product development for a software product line,” in SPLC,
2000.

[79] G. Tseitin, “On the complexity of derivation in propositional calculus,”
Zapiski Nauchnykh Seminarov LOMI, vol. 8, 01 1983.

[80] Q. Tu and M. W. Godfrey, “Evolution in open source software: A case
study,” in ICSM, 2000.

[81] F. J. van der Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering,
2007.

[82] B. Veer and J. Dallaway, “The eCos component writer’s guide,” the
eCos component writer’s guide, Available from http://ecos.sourceware.
org/docs-2.0/cdl-guide/cdl-guide.html.

[83] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and K. Czarnecki,
“Range fixes: Interactive error resolution for software configuration,” IEEE
Trans. Softw. Eng., vol. 41, no. 6, pp. 603–619, June 2015.

[84] C. Zengler and W. Küchlin, “Encoding the linux kernel configuration in
propositional logic,” in ECAI, 2010.

[85] R. Zippel and contributors, “kconfig-language.txt,” available in the kernel
tree at kernel.org.

https://github.com/vegard/linux-2.6/tree/v4.7+kconfig-sat
https://github.com/vegard/linux-2.6/tree/v4.7+kconfig-sat
http://aima.cs.berkeley.edu/
https://code.google.com/ archive/p/linux-variability-analysis-tools/
https://code.google.com/ archive/p/linux-variability-analysis-tools/
http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
http://ecos.sourceware.org/docs-2.0/cdl-guide/cdl-guide.html
http://ecos.sourceware.org/docs-2.0/cdl-guide/cdl-guide.html
kernel.org

	Introduction
	Software Configuration and the Linux Kernel
	Software Configuration
	The Linux Kernel and its Configurator
	The Kconfig Language

	ConfigFix
	Configuration Conflicts
	ConfigFix Overview
	Solution Overview
	Fix Generation
	Example Fix

	Experiences and Challenges
	Semantic Abstractor
	Choosing a SAT Solver
	GUI Integration
	Scalability and Performance Improvements

	Evaluation
	Conflict and Fix Generation
	Analysis
	Results

	Conclusion
	References

