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ABSTRACT
Service robots, a type of robots that perform useful tasks for
humans, are foreseen to be broadly used in the near future
in both social and industrial scenarios. Those robots will be
required to operate in dynamic environments, collaborating
among them or with users. Specifying the list of requested
tasks to be achieved by a robotic team is far from being triv-
ial. Therefore, mission specification languages and tools need
to be expressive enough to allow the specification of complex
missions (e.g., detailing recovery actions), while being reach-
able by domain experts who might not be knowledgeable of
programming languages. To support domain experts, we de-
veloped PROMISE, a Domain-Specific Language that allows
mission specification for multiple robots in a user-friendly,
yet rigorous manner. PROMISE is built as an Eclipse plugin
that provides a textual and a graphical interface for mission
specification. Our tool is in turn integrated into a software
framework, which provides functionalities as: (1) automatic
generation from specification, (2) sending of missions to the
robotic team; and (3) interpretation and management of mis-
sions during execution time. PROMISE and its framework
implementation have been validated through simulation and
real-world experiments with four different robotic models.

Video: https://youtu.be/RMtqwY2GOlQ

1 INTRODUCTION
It is envisioned the increase of investment and inclusion of
service robots in several market sectors (e.g., logistics, med-
ical, or farming) in the next few years.1 As the number of
deployed service robots deployed increases, humans will likely
have to interact with robots in their everyday life. Imagine for
instance a near-future social or industrial environment (e.g.,
a hotel, a hospital, or a warehouse) where teams of service
robots are deployed to achieve tasks collaboratively. Those
tasks will be configured and specified by domain experts and
end-users who may not be knowledgeable on programming
languages, according to the H2020 Robotics Multi-Annual

1www.ifr.org

Roadmap (MAR).2 According to this roadmap, this will re-
quire: (1) that robots “need to become intuitively integrated
with human operators”, (2) “highly abstracted mission def-
inition [...] algorithms for interaction and operation with
untrained users.” In fact, these requirements are confirmed by
two recent studies [9, 10], whose authors claim that precisely
specifying missions and transforming them for automatic
processing are one of the main challenges in robotics software
engineering. Therefore, the current state of robot mission
specification methods and tools must become friendlier in
their usage to the user. We aim to promote the simplicity of
our tool while keeping its expressiveness. At the same time,
we strive to enable a rigorous specification that describes
precisely and unambiguously the mission the robot must per-
form. As explained in a recent study [8], existing solutions
fail at providing a trade-off of those qualities.

In this paper, we present a framework that supports users
in mission specification for multi-robot applications. The
framework integrates PROMISE (simPle RObot MIssion
SpEcification), a language integrated as a DSL. The DSL
permits the specification of complex missions (i.e., complex
behaviors, including recovery actions) while being accessi-
ble for users not knowledgeable of programming languages.
Moreover, PROMISE builds upon a catalog of mission spec-
ification LTL-based patterns [10], ensuring the correctness of
the semantics and therefore the rigor of the tool. The frame-
work also integrates software components for the automatic
mission generation, sending, and interpretation and manage-
ment. We detail the framework implementation, workflow,
and evaluation of PROMISE through experimentation.
Running example. We use an example inspired by a mile-
stone experiment from a European project3 with which our
DSL’s development is involved to illustrate different aspects
throughout the paper. The example represents two robots
collaboratively working in an industrial warehouse. A mobile
platform 𝑟1 patrols a set of locations (assembly stations).
Users may use the robot to deliver items to other stations

2https://eu-robotics.net
3http://www.co4robots.eu/
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and can stop the patrolling using a specific gesture. 𝑟1 con-
tinuously evaluates if station 2 (𝑙2) has assembled a product
(which is recognizable by the robot). If 𝑟1 detects such a prod-
uct, it requests help to 𝑟2. The mobile manipulator 𝑟2 has
been waiting in an idle state now moves to 𝑙2 and loads the
object on top of 𝑟1. If the loading task fails, 𝑟2 communicates
the failure through its speakers.
Users. We now categorize the users of our framework.

Domain expert. User characterized as a worker from one of
the scenarios previously described referring to the MAR. This
user might be knowledgeable of robotics but not of program-
ming languages. Their main interaction with PROMISE is to
specify missions (as the one shown in Fig. 1) by instantiating
actions that were previously implemented by developers.

Developer. User with programming knowledge in charge of
developing new robotic skills and actions to the tool. Referring
to the running example, a possible use case for the developer
is to develop and implement robotic actions, as the ones that
permit the robots recognize specific gestures from a human.

Maintainer. This user is in charge of performing mainte-
nance services over the whole framework and its implementa-
tion. We envision a use case for the maintainer: to assure the
correct functioning of the framework and its implementation
with other solutions that may provide robotic functionalities
as planning or motion control.

2 RELATED WORK
Petri Nets [14] and Statecharts [1] are solutions for mission
specification. As opposed to our goal, these solutions rely on
an imperative, step-by-step description of a robot’s mission.
DSLs are a great approach to solve domain-specific prob-
lems [12], such as mission specification in robotics. Various
DSLs have been proposed for modeling robotic systems and
their missions [11]. However, most of the effort has been
made for the domain of industrial robots, a field where users
are often specialized and where robots work in controlled
environments not populated by humans. On the contrary,
human-populated environments are typically dynamic and
unconstrained, enforcing robotic systems to be able to react
to events to provide some level of robustness and adaptation.

Many robotic companies have developed mission specifica-
tion mechanisms, which are made available for their robots
as IDEs4 and frameworks [11]. Yet, those mechanisms are
often platform- and robot-dependent. Among the existing
mission specification proposals that are not developed or are
constrained to a specific robot, many require programming
skills from the user [6, 13]. Contrarily, our goal is to pro-
mote the simplicity of our language to make it accessible by
end-users and domain experts. Some works also aimed at
providing user-friendly solutions, like the one proposed by
Bozhinoski et al. [2]—extended by Di Ruscio et al. [4]. Their
tool allows non-technical users to define high-level specifica-
tions of missions for teams of multi-copters. However, the
user is required to precisely detail the robots’ behavior while
we aim to provide a declarative specification where the user

4What is Choregraphe?

needs only to specify a high-level goal instead of the interme-
diate steps required to achieve it. Finally, Doherty et al. [5]
propose a high-level mission-specification language for collab-
orative multi-robot applications that supports abstract yet
complex and declarative mission specification by composing
tasks using operators. However, their catalog of composition
operators is limited and their application targets multi-copter
vehicles, while we focus on ground service robots.

3 PROMISE
PROMISE allows the definition of global missions to be
achieved by a team of robots and its manual decomposition
into local missions, i.e., robot-specific missions [7]. Our lan-
guage builds upon a recently proposed catalog of mission
specification LTL-based patterns [10]. These patterns are
used as atomic tasks that may be composed utilizing a set
of operators we proposed in our previous work [8] and which
are inspired on behavior tree operators [3]. We conceived
two types of operators: (1) composition operators allow the
definition of complex missions by combining other operators
and managing events that may occur in the environment;
(2) delegate operators make a robot perform a specific task
instantiated with parameters as locations or actions. In turn,
each task translates to an LTL formula (e.g., from the running
example, the task Sequenced patrolling 𝑙1, 𝑙2, 𝑙3 performed
by 𝑟1 translates to 𝒢

(︀
ℱ

(︀
𝑙1 ∧ ℱ

(︀
𝑙2 ∧ ℱ 𝑙3

)︀ )︀)︀
.

This specific task makes the robot visit infinitely often
a set of locations one after the other. These formulas are
used by an underlying planner, which uses a model of the
environment and of the robots to compute a plan—a set of
low-level actions that, if performed, allows the achievement
of the given mission.

PROMISE provides a graphical and a textual syntax, each
of which is supported by a dedicated editor. The graphi-
cal syntax maps mission specification concerns to graphical
elements that can be understood by users not knowledge-
able on programming languages. Using this syntax, operators
and tasks can be just dragged&dropped from a palette and
interconnected accordingly or specified textually.

Our DSL defines missions that can react to external events,
permitted by the semantics of certain operators. Figure 1
shows the graphical definition of a mission, the circled num-
bers were added to improve readability.

Node 1 decomposes the global mission into two local
missions, 2 for 𝑟1 and 5 for 𝑟2. Note that the ordering
of every operator is textually represented in its label (i.e.,
default and 𝑜𝑖). Node 2 represents an operator event handler,
which takes as input a set of operators and events. Operators
and events are associated with other operators in a parent-
child structure through edges—represented in Fig. 1 with gray
arrows. When executed, the operator starts by performing its
default mission, that is, the operator labeled as default. The
execution of the event handler will not end until the execution
of the default mission is finished (either succeeding or failing).
In the example, the default mission of 𝑟1 is to sequentially
patrol 𝑙1, 𝑙2, and 𝑙3 ( 3 ). PROMISE also allows the definition

2
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Figure 1: Mission specification using the graphical syntax (running example).

of events that if detected, will stop the execution of a task. If
a delegate operator is configured with such an event, it will
display in its label the string “Stop if: event”. In this case, if 𝑟1
detects a specific gesture from a user it will stop its patrolling
( 3 ), which otherwise would go on forever. The event handler
also is associated with behaviors that are triggered by events
represented as gray ellipses. Thus, if object detected occurs
and it is sensed by 𝑟1 during its default mission ( 3 ), 4 is
triggered and 𝑟1 will perform the action request help. This
specific action sends a message requesting help to a specific
robot (𝑟2). The default mission of an event handler is resumed
as soon as the execution of one of its event-triggered behaviors
is finished. An excerpt from the mission specification using
the textual syntax is shown in Fig. 2, and it corresponds to
the instantiation of the event handler 2 and its children.

Meanwhile, 𝑟2 waits by default in 𝑙4 ( 5 and 6 ), and if
during this idle state the robot receives a request of help,
it will perform a set of tasks in a sequential manner ( 7 ),
starting from moving to 𝑙2 ( 8 ). Then, the operator fallback
( 9 ) starts by executing its first child ( 10 ), i.e., load the
mobile platform 𝑟1 with a target object. If this task fails
(e.g., the object falls from the robot’s gripper), the operator
fallback dictates that the following child ( 11 ) is executed,
and so on. With 11 , the robot must communicate that a
failure has occurred and then resume its waiting state in 𝑙4.

4 SOFTWARE FRAMEWORK
The software framework (Fig. 3) into which PROMISE is
integrated consists of four elements distributed into two units.
The unit Central station provides an interface to the user
(typically deployed into a computer) and integrates elements
a , b , and c .

Figure 2: Textual syntax excerpt.

PROMISE a
Compiler b

robot[o1, o2]
eh_event1[o3]
eh_event1[o4]

…

Intermediate 
Language c Interpreter d

Central Station

Robot

Figure 3: PROMISE and its software framework.

The unit Robot represents what is deployed and executed at
run-time within each robot. Our framework builds upon an ex-
isting robotic platform and architecture, SERA [7]. This plat-
form’s current implementation relies on ROS5 and provides
a set of functionalities, including motion control, collision
avoidance, image recognition, self-localization, and planning.
Nevertheless, PROMISE is developed as a standalone tool and
could be integrated with various robotic tools and platforms.

In Fig. 3, the component a encapsulates the language and
DSL of PROMISE, realized as a plugin for Eclipse, using
Xtext6 for the textual interface and Sirius7 for the graphical
one. The compiler (component b ) contains a script that
automatically generates the local missions to be sent to
each robot. This component also generates a description of
the specified mission using natural English, which might
help users while specifying missions to evaluate whether the
description corresponds to what they wanted to express.

The intermediate language (component c ) describes the
set of tasks to be performed by each robot. The used soft-
ware platform currently implements an LTL-based planner,
so PROMISE’s intermediate language is composed of a set
of LTL formulae with the addition of the used operators’
semantics. The intermediate language permits decoupling
the mission specification from the robotic platform and the
development of interpreter tools [8]. Finally, an interpreter
( d ) is deployed within each robot. This interpreter receives
the robot-specific local mission and communicates the tasks
to the local planner appropriately. In this way, PROMISE
becomes robot-agnostic since only the robot-specific inter-
faces of the interpreter with the lower-level components of
the platform must be adapted when using a new robot.

5 PROMISE IN ACTION
In this section, we present the workflow of PROMISE. The
first steps correspond with the specification of the mission.
The seamless integration of Sirius with Xtext allows the mis-
sion specification using the previously explained syntaxes in
parallel. The typical workflow begins by using a wizard that
supports users creating the basic structure of the mission,
i.e., names of the used robots, locations, and conditions of
the mission. Once finished with the wizard, a basic structure
of the mission will spawn in the textual syntax. The user
may continue using the textual syntax (writing the mission
specification in a Java-like fashion), or using the graphical

5https://www.ros.org
6https://www.eclipse.org/Xtext/
7https://www.eclipse.org/sirius/
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syntax dragging and dropping elements from the provided
palette, or using both seamlessly. We put special emphasis on
the development of the graphical syntax, since our goal is to
support users and domain experts without deep programming
skills. This syntax displays helpful messages in the labels of
the operators and interconnecting edges. For instance, labels
display the order of children operators and their configura-
tions (i.e., actions or locations set as properties to them). The
labels may also warn the user when operators have not been
configured or remain unlinked. All these mission specification
mechanisms are encapsulated in component a of Fig. 3.

Whenever the user saves a mission specification, the com-
piler (component b of Fig. 3) automatically generates two
files for each used robot. One file encodes the set of LTL
formulae that describe the tasks of each local mission as an
intermediate language ( c ). The second file contains a descrip-
tion of the local mission in natural English. This description
has proved to be useful for users to evaluate whether their
concerns have been properly specified [8].

Once the user is satisfied with the specification they shall
proceed to send it to the robots. We provide a Java script
compiled into a jar file, which encodes the local missions and
forwards them using services to the target robots (the IP of
each robot must be specified). An interpreter ( d ) is deployed
into each robot of the team. The interpreter receives the local
mission and parses it. Finally, the interpreter uses the ROS
environment to feed the underlying planner with tasks as
requested. For instance, the interpreter of 𝑟1 firstly feeds its
planner with the task patrol 𝑙1, 𝑙2, and 𝑙3. If the robot detects
a recognizable object, this task is stopped and a new task is
sent to the planner (in this case, perform action request help).
Once the task is finished, the interpreter requests the planner
to resume the stopped default mission. The interpreter dis-
plays useful information for the user through a terminal, for
instance, the mission it has been received, the task which is
being executed by the robot, the state of such task, detected
events and whether they trigger any task of the local mission.

6 EXPERIMENTATION
We evaluate our DSL and implementation framework through
experimentation, and with this aim, we integrated them into
an existing platform that provides different robotic func-
tionalities (e.g., planning, motion control, self-localization).
The experimentation serves us to evaluate the workflow de-
scribed in Sec. 5 and the components shown in Fig. 3. We
provide videos of our experiments with different robots and
environments in a dedicated website.8

We replicated missions which are available on literature,
specifically from the RoboCup@Home 2018 competition.9
The restaurant-management scenario was performed first in
simulation and then in real environments. The robots we used
for the experimentation of this scenario were a Turtlebot210 in
the offices of the University of Gothenburg and a TIAGo robot

8https://sites.google.com/view/promise-dsl/home
9http://www.robocupathome.org/rules

10https://www.turtlebot.com/turtlebot2/

in the facilities of PAL Robotics11. The repository with the
implementation of our DSL12 contains also the specification
of two other missions from that edition of RoboCup@Home:
the dishwasher challenge and the tour guide.

We evaluated our language simulating two other missions.
The first is used as a running example in our previous work [8],
and the second is represented in Fig. 1. Both comprise two
robots performing collaborative and reactive tasks.

Finally, it is worth to mention that we validated the simplic-
ity and expressiveness of PROMISE and its implementation
through two user studies (more details are available in our
previous publication [8]).

7 CONCLUSION
In this paper, we present a software framework that supports
end-users and domain experts in multi-robot mission spec-
ification and execution. The framework integrates different
software components, including a language realized as a DSL,
a compiler, and an interpreter. We strive to keep the balance
between simplicity and expressiveness in our language. We re-
port the usage of the framework and its components by listing
the possible stakeholders that may use it and illustrating use
cases. We also introduce a running example, which is specified
using PROMISE’s graphical syntax. Finally, we show real
examples of mission specification and execution in real and
simulated environments using PROMISE and its framework.
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