An Empirical Analysis of the Costs of Clone- and
Platform-Oriented Software Reuse

Jacob Kriiger
University of Toronto, Canada
Otto-von-Guericke University Magdeburg, Germany
jkrueger@ovgu.de

ABSTRACT

Software reuse lowers development costs and improves the qual-
ity of software systems. Two strategies are common: clone & own
(copying and adapting a system) and platform-oriented reuse (build-
ing a configurable platform). The former is readily available, flexible,
and initially cheap, but does not scale with the frequency of reuse,
imposing high maintenance costs. The latter scales, but imposes
high upfront investments for building the platform, and reduces
flexibility. As such, each strategy has distinctive advantages and
disadvantages, imposing different development activities and soft-
ware architectures. Deciding for one strategy is a core decision
with long-term impact on an organization’s software development.
Unfortunately, the strategies’ costs are not well-understood—not
surprisingly, given the lack of systematically elicited empirical data,
which is difficult to collect. We present an empirical study of the de-
velopment activities, costs, cost factors, and benefits associated with
either reuse strategy. For this purpose, we combine quantitative and
qualitative data that we triangulated from 26 interviews at a large
organization and a systematic literature review covering 57 publi-
cations. Our study both confirms and refutes common hypotheses
on software reuse. For instance, we confirm that developing for
platform-oriented reuse is more expensive, but simultaneously re-
duces reuse costs; and that platform-orientation results in higher
code quality compared to clone & own. Surprisingly, refuting com-
mon hypotheses, we find that change propagation can be more
expensive in a platform, that platforms can facilitate the advance-
ment into innovative markets, and that there is no strict distinction
of clone & own and platform-oriented reuse in practice.

CCS CONCEPTS

« Software and its engineering — Reusability; Risk manage-
ment; Software design tradeoffs.

KEYWORDS

economics, software reuse, empirical study, clone & own, software
product line, platform engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11...$15.00
https://doi.org/10.1145/3368089.3409684

432

Thorsten Berger
Chalmers | University of Gothenburg, Sweden
bergert@chalmers.se

ACM Reference Format:

Jacob Kriiger and Thorsten Berger. 2020. An Empirical Analysis of the
Costs of Clone- and Platform-Oriented Software Reuse. In Proceedings of the
28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’20), November 8—
13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3368089.3409684

1 INTRODUCTION

Software reuse is one of the most important practices to save devel-
opment costs, increase the quality, and reduce the time-to-market of
software systems [62, 100]. The idea is to avoid re-implementing ex-
isting functionalities (a.k.a., features [1, 8, 91]), but instead to reuse
them for new systems (a.k.a., variants), which otherwise need to be
developed completely anew. Various reuse strategies exist [1, 62],
typically classified into copy & paste, clone & own, and platform-
orientation. Copy & paste reuses small code snippets to solve similar
or identical problems within the same or another system. In con-
trast, the other two strategies reuse a whole system or its parts (e.g.,
components, files, packages, or modules) to engineer a new, but
similar variant that is customized to individual stakeholder require-
ments, such as hardware, features, and runtime environments, or
non-functional aspects, such as cost, performance, regulations, or
energy consumption. We focus on reuse in the large and, therefore,
the latter two strategies.

In the clone & own strategy (a.k.a., ad hoc, opportunistic, or scav-
enging reuse; or cloning in the large), developers create a copy of an
existing system and adapt that copy to new requirements [1, 31, 99].
As a cheap and readily available strategy, organizations typically
start with clone & own, which is well-supported by version-control
systems, such as Git (branching and merging), and by software-
hosting platforms, such as GitHub (forking and pull requests) [39,
71, 99]. However, with an increasing number of cloned variants,
maintenance easily becomes a challenge, for instance, when devel-
opers need to propagate changes, bug fixes, or features. Developers
easily loose their overview understanding of the variants and are
challenged by substantial maintenance overheads 7, 10, 14, 90].

In the platform-oriented strategy, developers implement a sin-
gle code base from which they can derive individual variants, typ-
ically using methods and tools known from software product-line
engineering (SPLE) [1, 24, 29, 104]. A platform employs variabil-
ity mechanisms—techniques to implement variation points (e.g.,
preprocessors, components, or runtime parameters), typically con-
trolled by features. The features abstractly represent the variability
and are typically organized in a feature model [29, 56, 87]; a tree-
like structure of features and their constraints. Using, for instance,
configurator tools or dedicated build systems, developers derive
individual variants (i.e., reuse software) by enabling or disabling

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3368089.3409684

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

features. This strategy is usually advocated for systems with many
variants, including highly configurable systems, such as the Linux
kernel, which boasts over 15,000 configuration options today, al-
lowing it to run on a range of hardware environments, from small
embedded devices to large super-computer clusters. Unfortunately,
adopting a platform requires large initial investments into archi-
tecting and creating the platform, adopting SPLE methods and tools
(e.g., variability mechanisms, feature models, configurators), as well
as training and (re-)organizing development teams, before bene-
fits can be achieved, such as substantially reduced time-to-market
through the automated derivation of new variants as well as re-
duced maintenance efforts [60, 66, 67, 95, 104]. In case of migrating
from clone & own, an organization needs to re-engineer software
not intended for reuse into reusable features, impacting not only the
software architecture, but also the business strategy, organizational
structure, and development process [79].

Over the last decades, numerous studies focused on software
reuse [4, 5, 11, 16, 19-25, 33-37, 42, 50, 66, 72, 81-84, 97, 101, 103,
104], many of which also describe the migration from clone & own
towards a software platform as the most common way to adopt
platforms in practice [9, 31, 65]. Such studies indicate that the main-
tenance burden of clone & own becomes the main problem lead-
ing organizations to adopt a platform strategy. Still, to the best
of our knowledge, most studies discuss the advantages and dis-
advantages of either strategy based on personal experiences and
educated guesses. The fundamental question remains: What costs
are associated with either reuse strategy, and under what cir-
cumstances is which strategy preferable? Answering this ques-
tion based on empirical data provides a means for organizations to
reason more reliably on several practical decisions—for instance,
whether to adopt a platform for a new or existing set of variants.
Our long-term goal is to establish qualitative criteria, measurement
techniques, and decision models to support the decision making of
organizations developing many variants of a software system, as
well as to enhance their confidence in their decisions.

We present a study of the activities (e.g., bug fixing), costs (i.e.,
money or developers’ efforts spent [102]), cost factors (i.e., project
properties impacting costs), and benefits (i.e., savings) that are as-
sociated with the development process of new variants using either
strategy—clone & own and platform-oriented reuse. Specifically,
we conducted (1) an interview study with 28 practitioners from
a large organization (i.e., Axis) that employs both strategies, and
(2) a systematic literature review (SLR) [58, 59]. The SLR comple-
ments our interview data with an analysis of the insights and data
provided in case studies and experience reports. By triangulating
from both sources, we provide consolidated quantitative data, dis-
tributions (e.g., costs in per cent), and qualitative arguments on
development costs, cost factors, and benefits. We combined the two
sources to address the problem that costs in software engineering
are hard to quantify and assign to specific activities [43, 53, 55, 102].
In fact, few studies report quantitative data, and often only on a
subset of the relevant costs. Since expert estimations are a widely
used, reliable estimation method [13, 43, 52, 85], perform compa-
rable to or better than other cost estimation methods (e.g., cost
models) [52, 54, 85], and can be improved based on analogies to
historical data [13, 53, 54], our two sources provide a reasonable

433

Jacob Kriiger and Thorsten Berger

basis for eliciting data. Based on that data, we also discuss the evi-
dence we find for confirming or refuting common hypotheses about
software reuse. Our study is of the rare breed that addresses this
problem by providing evidence based on empirical data reported
for over 100 organizations. As a consequence, our study provides
novel insights on processes and costs, as well as a synthesis of
existing studies to confirm or refute common hypotheses. Both of
these aspects are novel and important, seeing that Axis spent a
significant amount of time and effort supporting our study. More-
over, other companies (e.g., Grundfos) initiated discussions with us
regarding this study, provided positive feedback indicating that the
data is reasonable, and have used our results to analyze their own
processes, adding evidence regarding the importance of our study.
In summary, we contribute:
e Empirical data on the costs and cost factors associated with the
activities of clone & own and platform-oriented software reuse.
o A discussion of evidence we find for confirming or refuting com-
mon hypotheses on software reuse.
o A replication package with our interview guide and the data we
analyzed as an open-source dataset.’
Our results show several differences in the activities and costs of
clone & own and platform-oriented software reuse that have not
been clearly described in the literature, yet. For instance, our results
confirm the common hypotheses that a platform improves quality
and reduces development costs even more than clone & own. Still,
our results also indicate that clone & own is more advantageous
than usually considered in research. Moreover, we identified find-
ings that contradict each other (i.e., are inconclusive) and refute
common hypotheses, such as cheaper change propagation in a plat-
form. So, our results help to reason about the costs associated with
development activities and compare these between the two strate-
gies, supporting organizations in their decision making. Finally, our
data can help researchers and tool vendors to focus their efforts
on developing new techniques tackling the most important activi-
ties, namely coordination, gaining knowledge about the reusable
system, solving ripple effects due to dependencies, and adopting
mixed processes for clone & own and platform-oriented reuse.
The remainder of this paper is structured as follows. In Section 2,
we describe the methodology we employed for our interviews and
our SLR, with Section 2.4 including the related work of this paper.
Within Section 3, we report and discuss the results we obtained for
each of our research objectives. Finally, we discuss the threats to
validity in Section 4 and conclude in Section 5.

2 METHODOLOGY

In this section, we describe our conceptual framework, research
objectives, and methods for eliciting data from our two source.

2.1 Conceptual Framework

We provide an overview of our conceptional framework in Figure 1,
relating the concepts we are concerned with to each other. A project
is the scope in which an organization develops a new software
variant. Based on a set of requirements, the organization defines the
reuse strategy it employs during the project: clone & own or a plat-
form. The reuse strategy determines a concrete development process

Thttps://doi.org/10.5281/zenodo.3993789

https://doi.org/10.5281/zenodo.3993789

An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse

project

1
: involves
a

requirements

(22

——————————— ‘—,—;-{, cost factors F

T, . impact
- - .
instantiates - ’ involve
[process |-“—| activities |— costs
implementsl comprises Tperform
| variant | | developers |— ————————————

Figure 1: Overview of our conceptual framework.

that ends with the delivery of the specified variant. A development
process comprises a number of activities, such as scoping the vari-
ant or bug fixing, performed by the organization’s developers. Each
activity involves costs, for which we consider monetary spendings
as well as developers’ effort (e.g., person hours) [102]. Finally, cost
factors (a.k.a., cost drivers) represent any project property that im-
pacts the costs of implementing the variant. These factors may be
related to, for example, the reuse strategy, specific activities, and
developers—and can impact each other (e.g., a higher modularity of
a platform may require fewer design adaptations for a new variant).

2.2 Research Objectives

We address three research objectives (RO) in our study:

RO Identify the process and its respective activities that practitioners
employ to reuse software for new variants.

During our collaborations with industrial practitioners [8, 10,
70, 87], we experienced that the idea of using either pure
clone & own or a full-fledged platform rarely applies. These
experiences motivated this objective of identifying the pro-
cesses and activities of software reuse in practice.

Identify the costs associated with the activities.

Based on our data, we aimed to identify the impact of either
reuse strategy on the costs of the activities identified. This
information can help to decide for a reuse strategy and to
determine activities that are more challenging to perform.
Analyze the cost factors that impact either reuse strategy.
Finally, we aimed to understand the cost factors impacting
the reuse strategies, which helps to identify those that are
important to consider for cost estimations and can potentially
be altered (e.g., involving more developers) to reduce costs.
So, we analyze cost factors also based on economical benefits
(i.e., reduced costs) that we identified.

Next, we describe how we elicited data to address these objectives.

RO,

RO3

2.3 Collecting Data with Interviews

We conducted interviews with practitioners to collect data regard-
ing our research objectives. In Table 1, we summarize our inter-
views, whose identifiers (column ID) we use as references.

Interviewees. Our interview study relied on a close collaboration
with a system architect and a product manager (i.e., interviews Ig
and Iy) at Axis Communications AB who have an overview of the
organization’s development practices and an interest in our study.
Axis develops network equipment, including network cameras,
print servers, camera servers, scanner servers, and storage servers.
Together with our contacts, we sampled 26 interviewees—who we
identified as knowledgeable experts during our discussions—with

434

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Table 1: Overview of the interviews we conducted.

ID Ph. h Subjects Strategy Data
I; EXP ~0.5 System architect P Qual.
I, EXP ~0.5 Software engineer C&0O Qual.
I3 EXP ~0.5 Release engineer P Qual.
I4 EXP ~0.5 Technical lead C&0O—P Qual.
Iz EXP ~0.5 Technical lead C&0O—P Qual.
I¢ EXP ~0.5 Project manager C&0O—P Qual.
I; EXP ~0.5 2 Software engineers C&O+P Qual
Is PD >3 Firmware architect C&O+P Qual.
Iy PD >3 Software engineer P Qual.
Iip PD ~1 System architect P Qual.
I;;7 PD ~1 Software engineer C&O+P Qual.
I, PD ~1 2 Software engineers C&O+P Qual.
I13 CA ~1 Firmware developer =~ C&O+P Qual. & Quan.
Iis CA ~1 Software developer C&O Qual. & Quan.
Ii5 CA ~1 Technical lead C&O+P Qual. & Quan.
Iis CA ~1 Technical lead C&O+P Qual. & Quan.
I;7 CA ~1 Software developer C&O+P Qual. & Quan.
I1is CA ~1 Technical lead P Qual. & Quan.
Iip CA ~1 System architect C&0O Qual. & Quan.
I,p CA ~1 Technical lead C&0O+P Qual. & Quan.
I,; CA ~1 Software developer P Qual. & Quan.
I, CA ~1 System architect C&O Qual. & Quan.
Ir,s CA ~1 Software developer C&O+P Qual. & Quan.
T4 CA ~1 Software developer C&0O+P Qual. & Quan.
Ip5 CA ~1 Firmware architect C&0O+P Qual.
I, CA ~1 Software architect C&0O—P Qual.

Phase: EXPloration; Process Definition; Cost Assessment
C&O: Clone & own; C&O—P: Clone & own migration to platform;
C&O+P: Clone & own and platform; P: Platform

various roles (e.g., software engineers, technical leads, firmware
architects) to obtain a broad perspective on their reuse practices.
The majority of our interviewees is involved in the development of
the organization’s large portfolio of network cameras. Our inter-
viewees reported between three to over 20 years of experiences in
one or both reuse strategies—considering solely their current posi-
tion, while several reported to also have experiences from previous
organizations. We usually interviewed one interviewee at a time,
but twice we involved two interviewees in one interview (i.e., I7,
I12), and regularly discussed our objectives with both of our two
main contact persons (i.e., Is, Iy) at Axis at the same time.
Interview Design. We structured our 26 interviews into three
different phases: exploration, process definition, and cost assess-
ment. During the first two phases, we conducted unstructured and
semi-structured interviews without fixed guidelines, but instead
had open discussions, taking notes in parallel. For the third phase,
we used our insights to construct a guide for semi-structured in-
terviews. During this phase, we recorded all but one interview
(personal preference of the interviewee) and transcribed them later.
In addition, we took notes during each interview. For all interviews,
we allowed our interviewees to look up actual data if they needed
or wanted to, enriching their knowledge with some concrete num-
bers, for instance, on variant sizes, development histories, or team
compositions. However, in most cases our interviewees relied on
their knowledge and experience.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

We started with seven exploratory interviews that took around
half an hour each. During this initial phase, we were interested in
understanding the general strategies and policies of reuse at Axis.
With our two main contacts, we scoped the remaining two phases
of our interview study, also considering previous works and our
experiences from collaborating with other organizations.

In the process definition phase, we conducted five semi-structured
interviews. Our goal was to refine our previous insights to construct
the reuse processes that are employed at Axis, and to identify cost
factors. Finally, we agreed on a consolidated reuse process (i.e.,
integrating clone & own and platform-oriented reuse) and a set
of 10 activities together with our contacts, which is why these
interviews took far longer than the intended one hour.

In the last phase, we aimed to quantitatively and qualitatively

assess the costs and cost factors associated with the activities we
identified. We constructed a semi-structured interview guide, which
we used for 14 interviews. In each interview, we asked our intervie-
wees to assess the costs of developing a new variant based on their
experiences, and to distribute these costs among the activities we
identified. Moreover, we asked them to assess the cost factors we
collected on a seven-point Likert scale, considering what impact ad-
justing them would have on costs (i.e., strongly reduces to strongly
increases). To this end, we were concerned with any of the two
reuse strategies the interviewee worked with, and asked especially
those who had experiences with both strategies to explain their
perceived differences between both.
Resulting Data. In the exploration and process definition phases,
we obtained qualitative data (i.e., natural language descriptions) of
the reuse processes employed at the organization and the related
cost factors (cf. Section 3.1). During the cost assessment phase, we
also obtained quantitative data, namely a dataset for each inter-
viewee and their employed reuse strategies—comprising, for each
reuse strategy employed, estimates (in percent) of the cost distribu-
tion among the 10 activities (cf. Section 3.2), assessments (Likert
scale) of the cost factors’ impact (cf. Section 3.3), or both. We could
not obtain all data we asked for:

o One interviewee (I3) joined running projects and, therefore, was
not confident in estimating the costs of activities.

e One interviewee (Iz4) was not confident in assessing the costs of
the first two activities (SV and DR in Table 3), so we miss these
values once for each, clone & own and platform-oriented reuse.

e Two interviewees (I5, Io¢) could not provide quantitative data,
as they are not involved in variant development, but platform
maintenance—for which they reported highly valuable insights.

Overall, we received eight and seven quantitative datasets for

clone & own and platform-oriented reuse, respectively. Considering

cost factors, we obtained one more dataset for each strategy (due
to I23). We miss three more values, as interviewees did not feel
confident to assess the impact of a cost factor (i.e., team size once
for each strategy and the number of teams once for clone & own).

2.4 Collecting Data from the Literature

Our SLR focused on qualitatively analyzing the publications identi-
fied, without computing or reporting statistics about the publica-
tions, which is typically part of SLRs [58, 59]. In Table 2, we show
an overview of all publications we selected.

435

Jacob Kriiger and Thorsten Berger

Table 2: Overview of the publications included in this study.

S Ref Venue RM Organizations (Subjects) Strategy
v [47] CMPSAC'90 MCS 5 C&O+P
K [16] AL92 ER IBM P
[78] IEEE Soft’94 MCS HP P
K [44] IEEE Soft’95 ER Matra Cap Systems C&O
R [17] Tech.Rep.96 CS CelsiusTech P
\% [38] ARES’98 ER ABB P
[93] JSS'98 IS 83 (109) P
R [4] Book’99 ERs Nokia, Cummins, HP, Deutsche P
Bank, US NRO, Philips
\% [75] SPLC’00 ER LG C&0O—P
KR [24] Book’01 ERs Cummins, US NRO, Market P
Maker, CelsiusTech
R [22] Tech.Rep.01 ER US NRO P
\% [36] Jss01 QE 4(4) C&O
R [37] Tech.Rep.01 ER Market Maker P
R [25] Tech.Rep/02 IS Salion P
R [27] Tech.Rep.02 ER DoD-NUWC P
R [18] PFE’03 ER Salion P
[33] ICSE’03 ER Alcatel C&O—P
[34] SPE’03 CS Deutsche Bank C&0O—P
v [11] Tech.Rep/04 ER Argon P
[101] APSEC’04 CS Dialect Solutions C&0O—-P
R [12] Tech.Rep/05 ER Engenio C&0O—P
R [21] Tech.Rep.05 ER TAPO, RCE C&O—P
K [91] Book’05 ERs HP, Lucent, Siemens C&0O—P, P
KR [45] OOPSLA’06 ER Engenio C&O—P
[61] SPLC’06 CS Testo AG C&0O—-P
[98] ISESE'06 IS Statoil ASA (16) P
v [49] SPLC’07 ER OTs C&O—P
R [51] SPLC’07 ER Danfoss C&0O—P
K [104] Book’07 ERs AKVAsmart, Bosch, DNV, Mar- P
ket Maker
[48] IEEESoft’08 MCS 2 C&0O
K [57] ESE’08 MCS Apache, Gnumeric C&O
R [63] SPLC’08 ER HomeAway P
[80] JSS'08 S 57 (57) P
[97] SEAA08 IS 1(11) P
[50] CrossTalk’09 ER Overwatch Systems C&0O—-P
R [76] ICSEC’09 ER FISCAN C&O—P
R [77] SPLC’11 ER FISCAN C&O—P
R [89] SPLC'11 ER Fujitsu ONET C&O—P
% [92] SPLC'11 ER ORisk P
R [109] ICSM’11 CS Alcatel-Lucent C&0O—P
K [31] CSMR'13 S 3(11) C&O+P
R [74] SPLC'13 ER USArmy P
K [103] Chapter’'13 ER Philips P
[6] SER&IP’14 IS Google (49) C&0
R [23] CrossTalk’14 ER Gen. Dyn., Lockheed P
R [30] SPLC’14 ER USAmry C&O—P
K [32] ESEM'14 IS Multiple (10) C&0O
R [41] SPLC'14 ER DoD C&O—P
R [40] SPLC'15 CS DoD C&O—P
M [7] JSS’16 1S Google, 1 (108) P, C&O+P
KM [14] ESEC/FSE’16 IS Eclipse, R, node.js (28) P
KMR [35] SPLC’16 ER Danfoss C&0O—P
M [86] SPLC’16 CS Mitsubishi P
K [106] Tech.Rep’16 IS Multiple (59) C&0O
KM [72] SPLC’18 ER TA, HCP C&O—P
KMR [83] SPLC’18 MCS 0SS (6) C&O—P
M [42] ICSE-SEIP’19 ER Samsung C&0O—P

Source: Knowledge; Resources; Manual search; Validation with related work
Research Method: Case Study; Experience Report; Interview Study;
Multi-Case Study; Survey; Quasi-Experiment

Search Strategy. Initially, we experimented with different search
strings for conducting an automated search. Unfortunately, estab-
lished search engines (e.g., ACM Digital Library, Google Scholar)
provided too many (irrelevant) results in unreliable orders, since
the economics of software reuse (i.e., costs and savings) are men-
tioned as motivation in many publications, but rarely investigated

An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse

in detail. Due to such issues of selecting suitable search strings and
the many additional problems of automated searches threatening
the reliability and a potential replication of our study [2, 59, 69, 96],
we relied on a manual search that encompassed five sources. All 38
publications we identified through the first three sources served as
a starting set for a snowballing search [107], and we validated our
results against related work (fifth source).

Sourcey: Knowledge. First, we analyzed publications that we
knew and that we deemed potentially relevant for our SLR. After
we applied our inclusion criteria (explained shortly), we selected
15 publications. These publications are marked with a K in Table 2.

Sourcey: Resources. Clone & own and platform-oriented reuse
are core research topics in the field of SPLE. Building on our experi-
ence in SPLE, we selected four resources that collect real-world case
studies and experience reports on adopting software platforms, usu-
ally originating from clone & own: (1) BigLever case-study reports;?
(2) SPLC Hall of Fame;? (3) SEI technical reports on software prod-
uct lines;* and (4) ESPLA catalog [82]. In Table 2, all 24 publications
from these sources are marked with an R.

Sources: Manual Search. Using a manual search, we aimed to
identify the most recent publications related to our research ob-
jectives. We analyzed the last three completed editions (as of July
2019) of relevant conferences (research and industry tracks) and
journals through DBLP, namely:

2016-18 ESE, ESEC/FSE, ICSME, IST,]SS, IEEE Software, SPE,

SPLC, TOSEM, and TSE.

2017-19 ICSE, ICSR, and VaMosS.

During this manual search, we found seven publications, marked
with an M in Table 2.

Sourcey: Backwards Snowballing. Using the 38 selected publi-
cations, we employed backwards snowballing to identify further
publications concerned with our research objectives. We did not
limit the snowballing to a specific number of iterations, but contin-
ued with any newly identified publication. Still, not all publications
were accessible, so we could not check a minority of publications
and excluded them from our search. As a result, we identified an-
other 12 relevant publications through backwards snowballing.

Sources: Validation against Related Work. In our SLR, we also
identified SLRs, mapping studies, and surveys that are related to
ours. We used these to validate the completeness of our SLR, check-
ing the publications included in the related work against our own
sample. We knew the books of Pohl et al. [91] and van der Linden et
al. [104], both describing the fundamentals of SPLE as well as provid-
ing 11 and 15 industrial case studies as examples, respectively. How-
ever, as these have often been published before, we first collected
the original publications. Similarly, the paper of Northrop [88] and
the book chapter of Krueger and Clements [64] are introductions to
SPLE providing nine and four case studies, respectively, that we al-
ready included. Barros-Justo et al. [3] report an SLR assessing what
benefits of software reuse have been transferred to industry. Simi-
larly, Bombonatti et al. [15] performed a mapping study to identify
how non-functional requirements are supported by software reuse
and how they influence each other. In their SLR, Mohagheghi and
Conradi [84] are concerned with reuse in general and investigate the
Zhttps://biglever.com/learn-more/customer-case-studies/

3https://splc.net/fame. html
4https://www.sei.cmu.edu/publications/technical-papers

436

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

economic benefits in the context of industrial case studies. Finally,
the Software Engineering Institute recently published a catalog of
SPLE publications against which we compared our sample [26].
Our study is complementary to these publications. While we
used all of them to validate the completeness of our own SLR, none
provides empirical evidence (especially not quantitative data) on the
costs associated with clone & own and platform-oriented software
reuse. From the related work, we included the seven publications
that are marked with a V in Table 2. We only included data directly
from the related work if we could not access an original publication,
if there was no original publication, or if the related work provided
updated data compared to the referenced publications. Note that
we employed snowballing also on these new publications.
Publication Selection. We selected publications for our study that
fulfill the following inclusion criteria (IC):
IC; Written in English.
IC, Describes empirical findings on costs of software reuse.
IC3 Concerned with clone & own, a platform, both, or the migration
between the two strategies.
IC4 Reports experiences regarding costs, not only estimations.
In addition, we employed two exclusion criteria (EC):
EC; Not possible to identify whether software was reused based
on clone & own or a platform.
EC; Only cites cost effects reported in previous publications, but
does not provide new data.
For EC1, we classified each publication based on keywords, for ex-
ample, components and the C preprocessor represent the platform
strategy, while copying of complete systems or modules represents
clone & own (not just copy & paste).
Quality Assessment. We analyzed the costs reported in each pub-
lication, which were often described as an outcome, insight, or
byproduct, for example, in experience reports. So, the data we were
interested in is often only reported to show the efficiency of employ-
ing a reuse strategy, driven by industrial experiences, not system-
atically elicited, and sometimes not peer reviewed (e.g., technical
reports). We decided to not perform a quality assessment, as the pub-
lications have different goals and research methods—challenging
a comparison; and the assessment would not add benefits to our
analysis—intentionally building on practical experiences [58, 59].
Data Extraction. For each publication, we extracted bibliographic
data, namely the authors, title, publication venue, and publication
year. We extracted further data that was relevant for addressing
our research objectives (cf. Table 2): the reuse strategies employed,
the research method, the organizations and/or subjects (e.g., for
interviews), mentioned cost factors, qualitative insights, and quan-
titative data. More precisely, we identified concrete statements
regarding the costs, benefits, and problems of either reuse strategy,
as well as quantified data that was backed up by experiences or
measurements. We collected the data in a semi-structured docu-
ment (provided in our dataset!) and used identifiers to trace the
data back to its source. To analyze our data, we used an open-card
sorting-like method [110] to connect findings on the same reuse
strategy and cost factors by identifying synonyms.
Resulting Data. We identified the sample of 57 publications we
show in Table 2. As expected, few publications (10) are concerned
with the costs or benefits of clone & own [48, 73]. In particular, only
four publications [36, 44, 47, 89] report five instances of quantified

https://biglever.com/learn-more/customer-case-studies/
https://splc.net/fame.html
https://www.sei.cmu.edu/publications/technical-papers

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

new variant
requirements

/N

scoping
SV/DR
NN
/
features 1) 2))
DF ~_~ ~N_~ ~N_~

implementing
PI/IF

platform

D potentially integrating

Figure 2: Axis’ development process with blue abbreviations
relating to Table 3 (CD affects all activities).

data on clone & own, while most only discuss the advantages and
disadvantages of either reuse strategy—illustrating the value of
our interview data. In fact, the migration towards a platform (23
publications) and the benefits of one (28 publications) are considered
much more frequently in our sample of publications.

3 RESULTS AND DISCUSSION

In this section, we analyze and discuss the results for each of our
research objectives individually. Within the discussion, we highlight
how our data relates to common hypotheses and assumptions (e.g.,
by Knauber et al. [60]) on clone & own and platform-oriented reuse.
We denote refutations as &), confirmations as £, and inconclusive
insights as <.

Note that we use median values from our elicited data (interviews
and SLR) to provide intuitive examples for the costs and savings that
have been reported for both reuse strategies. However, these have
to be considered with care, since actual costs depend heavily on an
organization’s and project’s properties. We can see this particularly
in the large ranges our data spans. However, as our data aligns
overall, we consider these examples to provide a good intuition
regarding what can be achieved with either reuse strategy.

3.1 RO;: Development Process

We categorized the activities (cf. Table 3) our interviewees reported
in the process-definition phase to design and refine the process
we show in Figure 2. This abstracted process represents the gen-
eral development process for new variants at Axis, integrating
clone & own and platform-oriented reuse.

Results. A major difference to the reuse processes assumed in re-
search is that neither pure clone & own nor pure platform-oriented
reuse is employed, but variations of both to varying extents. Usu-
ally, Axis scopes features according to new customer requirements
and derives a variant (or even the full platform) that is similar
to these requirements to separate it from the platform, which is
maintained and updated in parallel. On the separated variant, the
responsible developers implement the customer requests until the
variant can be released. At that point, the developers and platform
engineers have to make a decision: On the one hand, they can
keep the variant outside of the platform, which would result in
what they refer to as a long-living clone (i.e., clone & own) that may
never be reintegrated into the platform, due to its divergence. On
the other hand, and what is mostly done at Axis, the developers

437

Jacob Kriiger and Thorsten Berger

Table 3: Activities we elicited during our interviews.

ID Activity

SV Scoping the Variant according to customer requirements.

DR Defining the Requirements to specify what must be implemented.
FEV Finding an Existing Variant that is most similar to the requirements.
DF Designing the Features that implement the requirements.

PI Planning the Implementation of features.

IF Implementing the Features of the variant.

QA Quality Assuring the implemented variant.

BF Bug Fixing the variant.

PBF Propagating Bug Fixes to other variants and/or the platform.

CD Coordinating the Development between developers and teams.

can immediately integrate the changes of the variant back into
the platform to incorporate new features, wherefore the variant
was only a short-living clone (i.e., platform-oriented reuse). So, the
major difference between clone & own and platform-oriented reuse
at Axis is that the maintenance of long-living clones is done by the
development team, while short-living clones are maintained by the
platform maintainers. Despite the variations in their development
process, both reuse strategies essentially comprise the 10 activities
we show in Table 3. We use the identifiers to refer to these activities
throughout the remaining paper.

Discussion. The process we identified is similar to what we ex-
perienced [68, 70, 71] and what researchers recently reported for
other organizations [31, 105] and open-source communities [99].
However, researchers usually still consider the two reuse strategies
as completely separated: developers can either apply clone & own
or a platform K. In contrast, our analysis and such recent publica-
tions indicate that a combination of different strategies is regularly
used in practice. So, it is problematic to apply findings that are
reported, for example, on migrating from clone & own towards a
full-fledged software product line, to industry. This finding sup-
ports the argument that organizations with a set of similar variants
(should) strive towards a platform to some extent (e.g., they may
employ clone & own, but support it with automated change propa-
gation [90] or management frameworks [94]).

As aresult, the question may not be whether to adopt clone & own
or a platform, but for what variant should which strategy be em-
ployed? For instance, at Axis, short-living clones are rapidly inte-
grated, and thus represent platform-based reuse. They are quite
often separated and re-integrated before major changes on the plat-
form happen. Axis usually uses short-living clones to implement
well-defined features for established variants. In contrast, some
long-living clones are re-integrated only after years or potentially
not at all. During our interviews, we found that clone & own is
mostly used to advance independently to new markets or test com-
pletely new features. However, a problem of this strategy is that
new features or variants may be highly valuable and shall be re-
integrated into the platform, which becomes far more expensive,
due to the long period of co-evolution .

RO;: Development Process and Activities
We identified a process (cf. Figure 2) for variant development that
integrates clone & own and platform-oriented reuse, comprising
10 activities (cf. Table 3). While both strategies are employed in
parallel, they can be differentiated for individual variants.

An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse

ol c&0
.Platform
X
£ 40
-
c
Ry
g
(o] L]
© 20 ' ‘
w
2 s | e
o
()]
. i . I i . | 4 ‘ |
01 b >
SV DR FEV DF Pl IF QA BF PBF CD
Activities

Figure 3: Distribution of the costs for developing a variant
with clone & own (C&O) and a platform, elicited from our
interviews (activities relate to Table 3).

On a final note, we have consolidated our insights and expe-
riences regarding the development processes of clone & own and
platform orientation to derive promote-pl [70], a round-trip engi-
neering process model for reusing software.

3.2 RO,: Costs of Activities

Next, we describe the costs that are associated with clone & own
and platform-oriented reuse. Our analysis for this research objec-
tive builds on qualitative insights and relative, quantitative data,
for three reasons: First, it is problematic to identify precise data on
software costs, which we mitigated by using qualitative insights.
Second, absolute numbers are not representative, as they may be
completely out of order for different organizations (e.g., start ups
versus large organizations). To improve our quantification, we com-
bined the results of our interviews (cf. Figure 3) with those from
our SLR (cf. Figure 4). Finally, we avoid repetitions and can clarify
connections and discrepancies between the results.
Results. We asked our interviewees during the cost-assessment
phase to elicit on the distribution of costs among the development
activities for a concrete short-living and/or long-living clone based
on their experiences. In Figure 3, we display the resulting distribu-
tions. As not all interviewees ended up with a sum of 100 % (min
68 %, max 133 %, avg 99.6 %), we normalized their responses to con-
sider the total costs that went into developing a variant. To avoid
faulty data, we verified the normalized data and whether we forgot
any activity with each interviewee. However, only some of them
stated the integration as additional costs after delivering a variant,
and we asked them to exclude this activity from their assessment.
In our SLR, we identified numerous qualitative insights on the
benefits of employing a platform. We also extracted quantitative
data on the effects of platform-oriented reuse on activities, measur-
able benefits, and the total costs in the form of relative values, which
we display in Figure 4. The numbers below each entry correspond
to the number of quantitative values, and the dots represent medi-
ans. We only show results for which we found at least three values,
and did not consider the amount (i.e., in LOC) of reuse itself. So, we
display the effect of platform-oriented reuse on the three activities
(left side): feature development (FD), quality assurance (QA),

438

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

50 | |
® 01 ! ‘
£ : :
8 | |
&5 ‘ ‘
-50+ ‘ ‘
-100+ j j

FD QA VD | IB S T™ | Total

(5)) @ { ® 1) 12 i ©)

Activities ! Benefits ¢ Costs

Figure 4: Impact of platform-oriented reuse on activities’
costs (left, RO;), reuse benefits (middle, RO3), and total de-
velopment costs (right) that we elicited from our SLR for mi-
grating to or directly adopting a platform.

and variant development (VD). In the middle, we show the quan-
tified benefits of platform-oriented reuse, namely on identified
bugs (IB), staffing (S), and time-to-market (TM). To the right, we
show the total cost savings that have been reported for platform-
oriented reuse. For simplicity, we summarize values for migrations
(comparing to clone & own) and general values (comparing to stan-
dalone systems). However, we found that the reported costs and
benefits did not differ much for these two scenarios, which is why
this summarization does not threaten our analysis.
Discussion. We structure the following discussion according to
activities that are related (e.g., to set up development). To this end,
we refer to the abbreviations we define in Table 3 and the ones in
the previous paragraph.

SV, DR, FEV. One interviewee stated on selecting a variant (FEV)
for development from their platform:

“That’s something that you understand way in the beginning when
you get the requirement(s] for the project. You understand now,
it’s a derivative of this one, which will be very obvious [...]”

As we can see in Figure 3, this statement aligns to all activities
relating to setting up variant development: The costs for defining
requirements (DR) and finding a corresponding variant (FEV) are
lower and more narrow compared to clone & own, while the initial
scoping (SV) is similar for both €. This matches with qualitative
findings from our SLR, suggesting that platforms can actually im-
prove developers’ knowledge about variations [16, 24, 27, 34], that
such knowledge is elementary for clone & own [6, 30, 32, 34], and
that particularly scoping and selecting an existing variant poses
problems in clone & own [31, 34].

DF, PI, IF, FD, VD. Clone & own can considerably reduce the
costs for developing variants [7, 47, 57, 106] . For instance, Henry
and Faller [44] report a cost reduction of 35 %. However, in line
with common hypotheses, most data from our SLR indicates that
platform-oriented reuse reduces these costs even further [7, 11, 17,
18, 23-25, 27, 92, 97, 98, 103] €. In Figure 4, we can see that the

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

nine studies reporting quantitative data suggest median savings of
around 67 % for developing a platform variant (VD).

Despite the benefits for developing new variants, we could also
confirm that developing features for reuse (FD) is typically more
expensive than implementing them for single use [11, 78, 103, 103]
). Five studies indicate a median increase of roughly 20 %. We can
confirm this trend based on our interviews: In Figure 3, we can
see that the design (DF) and the implementation (IF) of features
are considered to be more expensive for platform-oriented reuse—
especially with drastic outliers towards high costs. This supports
the argument that platforms will only pay off if features are reused
several times. Arguably, we can best summarize this insight with
an interview quote on designing features for platform-oriented
reuse, highlighting the need to design features in alignment with
the platform architecture:

“For short-living clones, we have to design [...] it to be able to be
used by others. A long-lived clone, with that, we can ignore that”

We found five studies suggesting that organizations can develop
a larger number of features more efficiently with a platform, but
they do not provide costs for single features [12, 33, 45, 101] €.
For instance, Fogdal et al. [35] report that Danfoss could develop
over 2,500 features a year instead of under 300 before adopting
a platform. The origin of this benefit is unclear, but considering
that feature development is more expensive, it should be caused by
other cost factors (e.g., higher quality, more reuse, staffing).

BF, PBF, QA. The research community usually argues that propa-
gating bug fixes (PBF) between variants is one of the major draw-
backs of clone & own [31, 34, 72]. Indeed, most studies report that
bug fixing is a challenging aspect of clone & own [12, 30, 35, 45, 72,
76, 76], particularly as variants co-evolve, which is why fixes must
not only be propagated, but also adapted to the new variant €. In
contrast, platforms are challenging to test in their entirety [7, 14, 97],
but are argued to not require change propagation [33, 101].

Interestingly, our data contradicts this assumption: We can see
in Figure 3 that our interviewees consider bug fixing (BF) more
expensive in clone & own, but the propagation seems more prob-
lematic for a platform 3. One of our interviewees explained this
situation as follows:

“Propagate bug fixes, of course, is longer for the short-living clones

because we would actually have to do it. For long-living clones,
we don’t do it at all”

This indicates that bug propagation may be an important issue, but
it requires a re-evaluation by the research community. In particular,
it seems necessary to consider that change propagation between
clones may not be intended, and thus poses no problem—while
change propagation in platforms suffers from feature dependencies
(cf. Section 3.3). Still, our SLR (median: -60 %) and interview results
confirm that a platform can drastically reduce the costs for quality
assuring (QA) software).

CD. Coordinating the development is a core activity for which we
found contradicting reports, considering that researchers usually
assume that clone & own provides independence, whereas plat-
forms enforce clearly defined responsibilities and roles 3. Mostly,
coordination and responsibilities (e.g., who owns a feature or vari-
ant) are mentioned when problems appear in clone & own [7, 34]
or platform-oriented reuse [7, 30, 32, 104]. We identified only one

439

Jacob Kriiger and Thorsten Berger

study of Jepsen et al. [51] in which the authors report that a platform

facilitates coordination. Our interview data supports this ambiguity:

In Figure 3, we can see that coordination is considered as similarly

expensive during development for both reuse strategies at a median

of 5% for clone & own and 7 % for a platform.

Integration. Considering the integration (or migration) of cloned
variants into a platform, we received eight cost estimations from our
interviewees (four for either strategy), which align to the results of
our SLR. Not surprisingly, developers require considerably less time
to fully re-integrate a short-living clone into a platform compared
to integrating a long-living clone €. In particular, the costs heavily
depend on the co-evolution of a separated variant compared to the
platform, which we also identified as a major problem in our SLR [12,
30, 32, 45, 57, 72], and the extent of the variant’s delta compared
to the platform. Again, we can best summarize the problems and
costs of re-integrating variants with an interview quote, clearly
highlighting the preference of the interviewee towards platform-
oriented reuse:

“I think a lot of time is wasted on the long-living clones, because,
if you wait one-and-a-half years until you merge, everything [has]
changed, maybe. The new Linux kernel, a new version of some-
thing else, and then suddenly, your branch is just not working
anymore. The longer you wait, the more pain it is. I think you
waste a lot of time with those. It’s always better to be up-to-date
with master”

This statement also describes causes for the costs of integrating long-

living clones, such as understanding the co-evolution, updating old

features, as well as fixing outdated dependencies and bugs.

— RO,: Costs of Activities

Our findings support the argument that the success of reuse de-

pends heavily on platform-orientation [80, 93], with our SLR indi-

cating overall median savings of 52 %. The data shows:

o Setting up development is cheaper with a platform.

o Developing features for a platform is more expensive (+20 %), but
will pay off due to decreased variant-development costs (-67 %),
outperforming clone & own (-35 %).

o A platform increases the quality of the derived software, reduc-
ing the costs for quality assurance (-60 %).

e Longer co-evolution between variants (and the platform) in-
creases integration costs.

o Surprisingly, change propagation is more costly for a platform.

e Coordination costs are similar for both strategies.

3.3 ROs;: Cost Factors and Benefits

Finally, we investigated the cost factors impacting both reuse strate-
gies, and their relations. Again, we combined the results from our
SLR (cf. Figure 4) with those from our interviews.

Results. In Figure 5, we show the responses on the Likert-scale
ratings for cost factors that we elicited during our interviews. A
positive rating indicates that an increase of the factor (e.g., more
reuse for a new variant) is considered to have a positive impact on
the costs for a new variant (i.e., reduces costs). In contrast, negative
ratings (e.g., a larger delta for the new variant) indicate that our
interviewees experienced that an increase of that factor increases
costs. We display the assessment separately for clone & own and

An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse

platform-oriented reuse. For an easier comparison, we show the
average values of both strategies in the middle of each cost factor.
Discussion. Reuse & Delta. The first two cost factors we analyzed
in our interviews are the amount of reusable code and the delta of
newly required code for a variant. For both strategies, more reuse
reduces costs, while a larger delta increases costs . Interestingly,
the impact of reuse is similar for both strategies, with one particular
outlier for clone & own indicating a negative impact:

“Basically, for us it would be more of an effort to remove things,
stuff we don’t need compared to just having it there”

Change propagation and scalability issues have been well inves-
tigated for clone & own, in contrast to this problem of removing
unwanted features. Finally, it is interesting that a larger delta is
considered to have less impact on platform-oriented reuse, which
somewhat contradicts our findings that developing new features is
more expensive on a platform (cf. Section 3.2) <.

Developers & Staffing. A factor that we identified in our SLR and
interviews is the number of developers involved in development.
In Figure 4, we can see that ten publications report a decrease in
the staff (S) needed to develop a new variant from a platform with
a median reduction of 75 % [4, 22, 24, 28, 34, 35, 63, 76, 77, 91]. This
supports the established hypothesis that the same number of devel-
opers can develop a larger number of variants when using a (main-
tained) platform instead of clone & own). At the organization, we
experienced a situation similar to another report [61]:

“We had fewer products and fewer developers in the company,
the platform was in a horrible state, so you [couldn’t] really use
it to release. [It] got more stable, but also the products that were
using the platform increased exponentially. Instead of having 10
products on a lousy platform, you have a hundred products on a
good platform”

In both cases, the organization’s potential for growth was large
enough to require more staff to address additional customer de-
mands. Still, for developing a specific variant, our interviewees
generally consider having more developers (cf. Figure 5) as benefi-
cial. The outliers represent cases in which teams get too large and
coordination becomes an issue.

Knowledge. The knowledge software developers have about a
system is essential for their performance. For developing a set of
variants, additional challenges arise, as the developers have to also
comprehend variability mechanisms (platforms) or what variants
exist (clone & own). Missing knowledge seems to be a primary
problem of clone & own and may motivate switching towards a
platform. After such a migration, developers must only remember
a smaller, structured code base, which may explain this benefit.
Still, knowledge is also key to establishing a platform and missing
knowledge is a major problem raised in two publications [7, 98].
Our interviewees also highly value knowledge as the factor with
the most impact for both reuse strategies (cf. Figure 5). For this
reason, they also apply specific policies:

“[We are] growing, so we try to have teams with experienced
people together with new people”

Overall, our results show that knowledge is a primary factor that
heavily impacts the costs of software reuse. Unfortunately, we
are not aware of a hypothesis or research that is concerned with

440

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

] @& o1 @4 A A A A
Modularity 1, platform @ 2 @ 5 -
@3
A A
Quality 4 A
A A A
Bugs 4 AA
A A
Hand overs A AA
g
S A
& Teams A A A A A
7]
§]
A A
Knowledge é A
A A
Developers A A A A
Delta A A A
A
Reuse - A A A
2 0 2
(increased costs) Likert scale (reduced costs)

Figure 5: Ratings of cost factors elicited in interviews.

understanding the impact and differences of knowledge on the two
reuse strategies or migrations between them <.

Teams & Hand Owvers. Related to the previous cost factors, our
interviewees indicated that coordination is heavily impacted by
clearly defining the size and roles of teams as well as the required
hand overs between them:

“I think that the more people you have, it becomes a lot of coordi-
nation, and also responsibilities [are] not as clear. If you are three
people, it’s hard to hide”

In Figure 5, we can see that the number of teams with defined
responsibilities is considered to have a similar positive impact on
costs for both reuse strategies. However, the necessary hand overs
between teams (e.g., moving a variant from development to quality
assurance) is perceived as slightly negative. So, there seem to be no
larger differences between both reuse strategies for coordinating
in and between teams, aligning to our previous insights <.

Bugs & Quality. Software reuse is considered to improve the qual-
ity of software, and thus reduce the number of bugs. For clone & own,
we found three publications that support this argument [6, 36, 106]
and three that argue that quality is a problem [12, 45, 48] <». Still,
for platform-oriented reuse, numerous publications argued that it
improves the quality compared to other reuse strategies [24, 30, 33,
38,51, 61, 76-78, 92, 97, 98, 101, 103, 104], including clone & own
. Surprisingly, while the quality of a platform is known to be
important for successful reuse, we identified only one paper that
stated this as a costly challenge for platform-oriented reuse [61].

We can support both insights with our interview data. For in-
stance, one of our interviewees stated that the organization pushed
strongly against clone & own to avoid quality and compatibility
issues originating from long-living clones:

“I guess we tried to kill them off because it is a hassle to maintain.
[...] If it’s not tested every day, if it’s not daily rebuilt and checked,
[...] something is rotting in the code, it’s not being compatible
anymore with the platform.”

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

We can further underpin this with our results for RO3, indicating
that quality assurance is less costly with platform-oriented reuse.
Despite these benefits, several interviewees also stated that the
path towards this improvement was challenging. The platform was
initially of low quality and, therefore, not trusted. As our intervie-
wees’ assessment (cf. Figure 5) indicates, they consider the quality
of the reused system as one of the cost factors with most impact,
and it is even more important for platform-oriented reuse .

The improved quality of a platform is used as an argument that
fewer bugs must be fixed, further reducing costs. Indeed, as we
can see in Figure 4, several studies report that considerably fewer
bugs (median: -70 %) are identified in platforms [4, 22-24, 35, 78,
89, 92] . For clone & own, we also found two studies suggesting
that this strategy can reduce bugs by 35 % [44] to 66.7 % [89] (.
Our interviewees assessed that a change in the number of bugs
would have roughly the same effect on development costs for both
strategies, as we can see in Figure 5.

Modularity/Dependencies. One benefit that we already mentioned
is the independence of clone & own [30-32, 101, 106]. This indepen-
dence allows developers to test variants, implement innovative
features or reply faster to customer requests. For example, the or-
ganization employs clone & own especially to innovate:

“If it’s a new business, we don’t want it [in the platform] because
we don’t want to maintain it”

This is regularly considered to be the main reason to still employ
clone & own. In contrast, two publications report that platforms
allow to move easier to new markets [24, 61], which is quite sur-
prising. Kolb et al. [61] state that only the platform allowed them to
develop highly complex variants that emerged to new markets. We
received an identical response from one of our interviewees:

“I would not be able to have such a complex product if I would
not be able to reuse”
This opposes common hypotheses in research, and we need to
better understand what enables organizations to adapt to new and
changing markets faster L): independence or a reliable platform?
The independence of clone & own is also considered to free de-
velopers of dependencies, but the results of our SLR are quite con-
tradicting in this regard <. For instance, Bowen [16] argues that
platforms can help resolve dependencies between clones that are
reported as a problem in several publications [6, 7, 50, 106]. This op-
poses the hypothesis that platforms can pose dependency problems,
for which we found little evidence [7, 72]. The main problem may be
best explained with the analysis of open-source platforms by Bogart
et al. [14], aligning to a statement of one interviewee:

“Since we're not part of the platform [...], they can sometimes
break things they think [...] no one is using [...]. Then, we found
out they broke something that we actually use”

Missing knowledge, community policies or unintended side effects
can easily result in misbehaving or missing features, breaking some
variants. However, this does not only influence platforms, but also
clone & own, where clones are derived from the platform, but inten-
tionally co-evolved. To investigate this issue further, we asked our
interviewees about the importance of having a modular structure
in the cloned variants or platform. They consider modularity to
have a positive impact on costs with almost identical impact for
clone & own and platform-oriented reuse .

441

Jacob Kriiger and Thorsten Berger

Time to Market. Faster time to market is considered to be a main
benefit of software reuse and particularly platforms. Four publica-
tions confirm faster time to market for clone & own [6, 32, 48], for
example, of around 30 % [89] €. Still, platform-orientation can dras-
tically outperform clone & own [4, 11, 24, 27, 33, 38, 49, 50, 61, 76—
78, 89, 97, 98, 103, 104], as new variants can be delivered instantly,
if all required features have been implemented (median: 63 %) €.
— ROj3: Cost Factors & Benefits

Regarding cost factors, our data shows:

o Reusing more code reduces, while more new code increases costs,
with platform-orientation being affected more positively than
clone & own for both.

o The number of developers developing a variant is a challenging
factor to assess correctly for both reuse strategies, but platforms
allow to develop more features and variants with the same staff.

o Independent of the reuse strategy, knowledge about the system
is an essential cost factor.

o As coordination is challenging, having teams with defined roles
is beneficial for both reuse strategies. Still, our results are slightly
negative on the impact of hand overs between teams.

o The quality of a platform is essential for its success and results
in fewer bugs compared to individual systems (-70 %). Still, both
reuse strategies benefit similarly from quality.

o Independence favors clone & own, but can also be achieved with
a platform. Surprisingly, both strategies are vulnerable to depen-
dencies and rippling effects, and thus benefit from modularity.

e Clone & own can reduce the time to market (-30 %), but an es-
tablished platform can lead to a far larger reduction (-63 %).

4 THREATS TO VALIDITY

We now discuss threats to the construct, internal, external, and
conclusion validity, following established guidelines [58, 108].
Construct Validity. We conducted 26 interviews with practition-
ers who did not use the terminology that has been established in
research. To mitigate this threat, we used our exploratory interviews
to understand the terms and practices established at Axis. Together
with our two contacts, who are familiar with the research terminol-
ogy, we clarified and unified terms. We used the terms established
in the organization to conduct our interviews. Moreover, at least
one of the authors was present during all interviews to allow the in-
terviewees to ask about any unclear constructs, and each interview
started with an introduction into the purpose and terms of the study.
We extracted data from 57 publications that used different ter-
minology, based on the research focus, domain, and authors. To
tackle this issue, we carefully read each publication and extracted
keywords to categorize them into one of the two reuse strategies,
and to assign our data to the correct costs and cost factors. We
aimed to mitigate any threat of wrongly assigning publications or
data by using an open-card sorting-like method to unify synonyms.
Finally, we aligned this terminology to the one we established for
the organization to triangulate the data from both sources.
Internal Validity. It is challenging to precisely assign costs to
specific activities and cost factors in software engineering, due
to, for instance, the tangling of activities (e.g., bug fixing and bug
propagation) or cost factors (e.g., developers’ knowledge and team

An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse

composition). Moreover, the costs of developing and particularly
reusing software are hard to assign to a specific system, as just
copying software has close to zero costs, while the costs of devel-
oping features may be distributed among all variants using it. So,
costs in software engineering are far more challenging to quantify
than in manufacturing, where costs can usually be assigned to a
specific product. For those reasons, and because most organizations
do not track their costs on a detailed level (e.g., assigning costs to
complete projects), quantified data is hard to obtain. We addressed
this problem by adopting our research method, triangulating from
interviews with experienced software developers and an SLR.

To ensure that we could derive valid results, we used qualitative
and quantitative data from two different sources. We conducted the
SLR particularly to avoid threats that may be caused by conducting
interviews only at one organization. So, we aimed to improve the
internal validity of our results by incorporating the experiences
of skilled engineers with established research findings. Also, we
aimed to improve the completeness of our SLR, verifying our sam-
ple against related work. We discussed regularly with our contacts
to verify that our data and results were sensible. Finally, we dis-
cussed our findings with three practitioners from another large
organization (i.e., Grundfos) that employs platform-oriented reuse
to perform a sanity check based on their experiences. Nonetheless,
a potential threat to the internal validity remains that we may have
misinterpreted or collected false data that biases our results.
External Validity. An interview study at a single organization
is limited in its external validity. Still, many software platforms
exhibit similar characteristics, whether they originate from open-
source projects or industry [46]. Also, many industrial organiza-
tions employ similar reuse practices considering clone & own and
platform-oriented reuse [10, 31]. So, while we cannot fully over-
come this threat, our results are still important for organizations to
understand the costs of their reuse strategies.

We also conducted our SLR to improve the external validity of

our study, mitigating the limitations of conducting interviews at
a single organization. The SLR includes publications from various
domains, levels of maturity, programming languages, countries,
and over 100 organizations. So, we argue that the results of our
SLR improve the external validity of our study. As we found similar
results regarding reuse practices, costs, and cost factors in our
interviews, we argue that these are also reliable.
Conclusion Validity. We employed interviews and an SLR to
mitigate many of the aforementioned threats, and argue that this
methodology was appropriate to obtain reliable insights regard-
ing the costs of software reuse. For this reason, we argue that our
findings result in an extensive body of knowledge that provides
an intuition and guidance for organizations aiming to establish a
platform, and researchers to focus their research efforts. Due to
confidentially reasons, we cannot provide all of our data, for exam-
ple, on the interview results and the transcripts. Still, we described
our methodology in detail and provide a dataset with all artifacts
that allow other researchers to replicate our study.

5 CONCLUSION

In this paper, we reported the combined results of an interview
study conducted at a large organization and an SLR. We described

442

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

the development process and costs associated with the two main
reuse strategies for developing variants: clone & own and platform-
orientation. Our analysis is the first to provide systematically elicited
and substantial empirical data on these reuse strategies. As a result,
we found 18 pieces of evidence that confirm common hypotheses
on software reuse. The results suggest that platform-orientation
is preferable over clone & own, reducing overall costs, improving
quality, and allowing for more variants. Still, we also identified
seven inconclusive pieces of evidence, and three pieces of evidence
that refute established hypotheses on software reuse:

o Platform-orientation and clone & own are not strictly separated
practices, which is often assumed in the literature.

e Bug propagation is usually considered to be the main problem of
clone & own, but our findings indicate that it can be even more
challenging and expensive for a platform.

o Clone & own is usually argued to facilitate innovation compared
to a platform, but our findings suggest that platforms can actually
be essential to successfully advance into innovative markets.

Overall, besides providing the first substantial, evidence-based body-

of-knowledge on costs of the two reuse strategies, we obtained

important insights that are relevant for practitioners to consider in
their decisions, and for researchers to scope their work. For future
research, we are especially interested in detailed investigations of
our inconclusive and refuting pieces of evidence, and in deriving

a decision model for reuse strategies based on empirical evidence.

To this end, we also plan to conduct additional studies with more

organizations and other setups (e.g., surveys) to verify ou results.

ACKNOWLEDGMENTS

This work has been supported by the German Research Founda-
tion (LE 3382/2-1, SA 465/49-3), the Swedish Research Council
Vetenskapsradet (257822902), the Swedish Software Center, an IFI
fellowship of the German Academic Exchange Service, and the
Wallenberg Academy.

We thank Umut Tezduyar Lindskog and Fredrik Hugosson for the
support, discussions, and feedback. We thank all our interviewees at
Axis AB for their helpful insights. Finally, we thank the anonymous
reviewers of the research and artifact tracks for valuable feedback
that helped us fix smaller bugs and improve the paper.

REFERENCES
(1]

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines.

Muhammad Ali Babar and He Zhang. 2009. Systematic Literature Reviews in
Software Engineering: Preliminary Results from Interviews with Researchers.
In ESEM.

José Barros-Justo, Fernando Pinciroli, Santiago Matalonga, and Nelson Martinez-
Araujo. 2018. What Software Reuse Benefits have been Transferred to the
Industry? A Systematic Mapping Study. Information & Software Technology 103
(2018).

Leonard Bass, Paul Clements, and Rick Kazman. 1999. Software Architecture in
Practice.

Jonatas Bastos, Paulo da Mota Silveira Neto, Padraig O’Leary, Eduardo de
Almeida, and Silvio de Lemos Meira. 2017. Software Product Lines Adoption in
Small Organizations. Journal of Systems and Software 131 (2017).

Veronika Bauer, Jonas Eckhardt, Benedikt Hauptmann, and Manuel Klimek.
2014. An Exploratory Study on Reuse at Google. In SER&IP.

Veronika Bauer and Antonio Vetro. 2016. Comparing Reuse Practices in Two
Large Software-Producing Companies. Journal of Systems and Software 117
(2016).

Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Griinbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

=

[10

(11

=
)

(13

[14

(15

[16

(17

oy
&

(19

[20

[21

[22

[23

[29

[30

[31

(32]

@
&

[34

[35

[36

[37

(38

[39

Feature? A Qualitative Study of Features in Industrial Software Product Lines.
In SPLC.

Thorsten Berger, Ralf Rublack, Divya Nair, Joanne Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wasowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In VaMoS.

Thorsten Berger, Jan-Philipp Steghofer, Tewfik Ziadi, Jacques Robin, and Ja-
bier Martinez. 2020. The State of Adoption and the Challenges of Systematic
Variability Management in Industry. Empirical Software Engineering 25 (2020).
John Bergey, Sholom Cohen, Lawrence Jones, and Dennis Smith. 2004. Software
Product Lines: Experiences from the Sixth DoD Software Product Line Workshop.
Technical Report. Carnegie Melon University.

BigLever. 2005. BigLever Software Case Study: Engenio. Technical Report 2005-
06-14-1.

Barry W. Boehm. 1984. Software Engineering Economics. IEEE Transactions on
Software Engineering SE-10, 1 (1984).

Christopher Bogart, Christian Kastner, James Herbsleb, and Ferdian Thung.
2016. How to Break an API: Cost Negotiation and Community Values in Three
Software Ecosystems. In FSE.

Denise Bombonatti, Miguel Gouldo, and Ana Moreira. 2017. Synergies and
Tradeoffs in Software Reuse - A Systematic Mapping Study. Software, Practice
& Experience 47, 7 (2017).

Gregory Bowen. 1992. An Organized, Devoted, Project-Wide Reuse Effort. Ada
Letters XI1, 1 (1992).

Lisa Brownsword and Paul Clements. 1996. A Case Study in Successful Product
Line Development. Technical Report. Carnegie Mellon University.

Ross Buhrdorf, Dale Churchett, and Charles Krueger. 2003. Salion’s Experience
with a Reactive Software Product Line Approach. In PFE.

Lianping Chen and Muhammad Ali Babar. 2011. A Systematic Review of Evalu-
ation of Variability Management Approaches in Software Product Lines. Infor-
mation and Software Technology 53, 4 (2011).

Lianping Chen, Muhammad Ali Babar, and Nour Ali. 2009. Variability Manage-
ment in Software Product Lines: A Systematic Review. In SPLC.

Paul Clements and John Bergey. 2005. The U.S. Army’s Common Avionics Archi-
tecture System (CAAS) Product Line: A Case Study. Technical Report CMU/SEI-
2005-TR-019. Carnegie Mellon University.

Paul Clements, Sholom Cohen, Patrick Donohoe, and Linda Northrop. 2001.
Control Channel Toolkit: A Software Product Line Case Study. Technical Report
CMUY/SEI-2001-TR-030. Carnegie Mellon University.

Paul Clements, Susan Gregg, Charles Krueger, Jeremy Lanman, Jorge Rivera,
Rick Scharadin, James Shepherd, and Andrew Winkler. 2014. Second Generation
Product Line Engineering Takes Hold in the DoD. CrossTalk — The Journal of
Defense Software Engineering 27, 1 (2014).

Paul Clements and Linda Northrop. 2001. Software Product Lines - Practices and
Patterns.

Paul Clements and Linda Northrop. 2002. Salion, Inc.: A Software Product Line
Case Study. Technical Report. Carnegie-Mellon University.

CMU. 2018. SEI Product Line Bibliography. Technical Report REV-03.18.2016.0.
Sholom Cohen, Ed Dunn, and Albert Soule. 2002. Successful Product Line Devel-
opment and Sustainment: A DoD Case Study. Technical Report CMU/SEI-2002-
TN-018. Carnegie Mellon University.

Alejandro Cortiflas, Miguel Luaces, Oscar Pedreira, Angeles Places, and Jen-
nifer Pérez. 2017. Web-Based Geographic Information Systems SPLE: Domain
Analysis and Experience Report. In SPLC.

Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming:
Methods, Tools, and Applications.

Michael Dillon, Jorge Rivera, and Rowland Darbin. 2014. A Methodical Approach
to Product Line Adoption. In SPLC.

Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin
Becker, and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in
Industrial Software Product Lines. In CSMR.

Anh Duc, Audris Mockus, Randy Hackbarth, and John Palframan. 2014. Forking
and Coordination in Multi-Platform Development: A Case Study. In ESEM.
Christof Ebert and Michel Smouts. 2003. Tricks and Traps of Initiating a Product
Line Concept in Existing Product. In ICSE.

D. Faust and Chris Verhoef. 2003. Software Product Line Migration and Deploy-
ment. Software, Practice & Experience 33, 10 (2003).

Thomas Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker, and Bo Zhang.
2016. Ten Years of Product Line Engineering at Danfoss: Lessons Learned and
Way Ahead. In SPLC.

William Frakes and Giancarlo Succi. 2001. An Industrial Study of Reuse, Quality,
and Productivity. Journal of Systems and Software 57, 2 (2001).

Cristina Gacek, Peter Knauber, Klaus Schmid, and Paul Clements. 2001. Success-
ful Software Product Line Development in a Small Organization — A Case Study.
Technical Report 013.01/E. Fraunhofer IESE.

Christopher Ganz and Michael Layes. 1998. Modular Turbine Control Software:

A Control Software Architecture for the ABB Gas Turbine Family. In ARES.
Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory

Study of the Pull-based Software Development Model. In ICSE.

443

[40]

[41

[42]

[43

[44

[45

[46]

[47

[48

[49

[50

[51

[52

[53

[54

[55

[56

[57]

[58]

[59]

[60]

[61]

[62
[63

[64

[65]
[66]

[67]

[68]

[69]

[70]

Jacob Kriiger and Thorsten Berger

Susan Gregg, Rick Scharadin, and Paul Clements. 2015. The More You Do, the
More You Save: The Superlinear Cost Avoidance Effect of Systems Product Line
Engineering. In SPLC.

Susan Gregg, Rick Scharadin, Eric LeGore, and Paul Clements. 2014. Lessons
from AEGIS: Organizational and Governance Aspects of a Major Product Line
in a Multi-Program Environment. In SPLC.

MyungJoo Ham and Geunsik Lim. 2019. Making Configurable and Unified
Platform, Ready for Broader Future Devices. In ICSE.

Fred] Heemstra. 1992. Software Cost Estimation. Information and Software
Technology 34, 10 (1992).

Emmanuel Henry and Benoit Faller. 1995. Large-Scale Industrial Reuse to Reduce
Cost and Cycle Time. IEEE Software 12, 5 (1995).

William Hetrick, Charles Krueger, and Joseph Moore. 2006. Incremental Return
on Incremental Investment: Engenio’s Transition to Software Product Line
Practice. In OOPSLA.

Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kastner, Olaf Le8enich,
Martin Becker, and Sven Apel. 2016. Preprocessor-Based Variability in Open-
Source and Industrial Software Systems: An Empirical Study. Empirical Software
Engineering 21, 2 (2016).

Angelo Incorvaia, Alan Davis, and Richard Fairley. 1990. Case Studies in Soft-
ware Reuse. In COMPSAC.

Slinger Jansen, Sjaak Brinkkemper, Ivo Hunink, and Cetin Demir. 2008. Prag-
matic and Opportunistic Reuse in Innovative Start-Up Companies. IEEE Software
25, 6 (2008).

Paul Jensen. 2007. Experiences with Product Line Development of Multi-
Discipline Analysis Software at Overwatch Textron Systems. In SPLC.

Paul Jensen. 2009. Experiences with Software Product Line Development.
CrossTalk — The Journal of Defense Software Engineering 22, 1 (2009).

Hans Jepsen, Jan Dall, and Danilo Beuche. 2007. Minimally Invasive Migration
to Software Product Lines. In SPLC.

Magne Jorgensen. 2004. A Review of Studies on Expert Estimation of Software
Development Effort. Journal of Systems and Software 70, 1-2 (2004).

Magne Jorgensen. 2014. What We Do and Don’t Know about Software Develop-
ment Effort Estimation. IEEE Software 31, 2 (2014).

Magne Jorgensen and Barry W. Boehm. 2009. Software Development Effort
Estimation: Formal Models or Expert Judgment? IEEE Software 26, 2 (2009).
Magne Jorgensen and Kjetil Molekken-@stvold. 2004. Reasons for Software
Effort Estimation Error: Impact of Respondent Role, Information Collection
Approach, and Data Analysis Method. IEEE Transactions on Software Engineering
30, 12 (2004).

Kyo Kang, Sholom Cohen, James Hess, William Novak, and Spencer Peterson.
1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report. CMU/SEI-90-TR-21.

Cory Kapser and Michael Godfrey. 2008. “Cloning Considered Harmful” Consid-
ered Harmful: Patterns of Cloning in Software. Empirical Software Engineering
13, 6 (2008).

Barbara Kitchenham, David Budgen, and Pearl Brereton. 2015. Evidence-Based
Software Engineering and Systematic Reviews. Vol. 4. CRC.

Barbara Kitchenham and Stuart Charters. 2007. Guidelines for Performing System-
atic Literature Reviews in Software Engineering. Technical Report EBSE-2007-01.
Keele University.

Peter Knauber, Jesus Bermejo, Giinter Bockle, Julio do Prado Leite, Frank van der
Linden, Linda Northrop, Michael Stark, and David Weiss. 2001. Quantifying
Product Line Benefits. In PFE.

Ronny Kolb, Isabel John, Jens Knodel, Dirk Muthig, Uwe Haury, and Gerald
Meier. 2006. Experiences with Product Line Development of Embedded Systems
at Testo AG. In SPLC.

Charles Krueger. 1992. Software Reuse. ACM Computing Surveys 24, 2 (1992).
Charles Krueger, Dale Churchett, and Ross Buhrdorf. 2008. HomeAway’s Tran-
sition to Software Product Line Practice: Engineering and Business Results in
60 Days. In SPLC.

Charles Krueger and Paul Clements. 2013. Systems and Software Product Line
Engineering. In Encyclopedia of Software Engineering.

Jacob Kriiger. 2019. Are You Talking about Software Product Lines? An Analysis
of Developer Communities. In VaMoS.

Jacob Kriiger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering
Cloned Variants Into an Integrated Platform. In VaMoS.

Jacob Kriger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In
SPLC.

Jacob Kriiger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and
Thorsten Berger. 2018. Towards a Better Understanding of Software Features
and Their Characteristics: A Case Study of Marlin. In VaMoS.

Jacob Kriger, Christian Lausberger, Ivonne von Nostitz-Wallwitz, Gunter Saake,
and Thomas Leich. 2020. Search. Review. Repeat? An Empirical Study of Threats
to Replicating SLR Searches. Empirical Software Engineering 25, 1 (2020).
Jacob Kriiger, Wardah Mahmood, and Thorsten Berger. 2020. Promote-pl: A
Round-Trip Engineering Process Model for Adopting and Evolving Product

An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse

(71]

[72

[73

(74]

[75]

[76]

(7]
(78]

[79

(80

(81

(82]

(83]

(87

(8]

(89]

Lines. In SPLC.

Jacob Kriiger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my Feature and What is it About? A Case Study
on Recovering Feature Facets. Journal of Systems and Software 152 (2019).
Elias Kuiter, Jacob Kriiger, Sebastian Krieter, Thomas Leich, and Gunter Saake.
2018. Getting Rid of Clone-and-Own: Moving to a Software Product Line for
Temperature Monitoring. In SPLC.

Naveen Kulkarni and Vasudeva Varma. 2017. Perils of Opportunistically Reusing
Software Module. Software, Practice & Experience 47, 7 (2017).

Jeremy Lanman, Rowland Darbin, Jorge Rivera, Paul Clements, and Charles
Krueger. 2013. The Challenges of Applying Service Orientation to the U.S.
Army’s Live Training Software Product Line. In SPLC.

Kwanwoo Lee, Kyo Kang, Eunman Koh, Wonsuk Chae, Bokyoung Kim, and
Byoung Choi. 2000. Domain-Oriented Engineering of Elevator Control Software.
In SPLC.

Dong Li and Carl Chang. 2009. Initiating and Institutionalizing Software Prod-
uct Line Engineering: From Bottom-Up Approach to Top-Down Practice. In
COMPSAC.

Dong Li and David Weiss. 2011. Adding Value through Software Product Line
Engineering: The Evolution of the FISCAN Software Product Lines. In SPLC.
Wayne Lim. 1994. Effects of Reuse on Quality, Productivity, and Economics.
IEEE Software 11, 5 (1994).

Robert Lindohf, Jacob Kriiger, Erik Herzog, and Thorsten Berger. 2020. Software
Product-Line Evaluation in the Large. Empirical Software Engineering (2020).
Daniel Lucrédio, Kellyton dos Santos Brito, Alexandre Alvaro, Vinicius Garcia,
Eduardo de Almeida, Renata de Mattos Fortes, and Silvio de Lemos Meira. 2008.
Software Reuse: The Brazilian Industry Scenario. Journal of Systems and Software
81, 6 (2008).

C. Marimuthu and K. Chandrasekaran. 2017. Systematic Studies in Software
Product Lines: A Tertiary Study. In SPLC.

Jabier Martinez, Wesley Assuncao, and Tewfik Ziadi. 2017. ESPLA: A Catalog
of Extractive SPL Adoption Case Studies. In SPLC.

Jabier Martinez, Xhevahire Térnava, and Tewfik Ziadi. 2018. Software Product
Line Extraction from Variability-Rich Systems: The Robocode Case Study. In
SPLC.

Parastoo Mohagheghi and Reidar Conradi. 2007. Quality, Productivity and
Economic Benefits of Software Reuse: A Review of Industrial Studies. Empirical
Software Engineering 12, 5 (2007).

Kjetil Molgkken and Magne Jorgensen. 2003. A Review of Surveys on Software
Effort Estimation. In ESE.

Motoi Nagamine, Tsuyoshi Nakajima, and Noriyoshi Kuno. 2016. A Case Study
of Applying Software Product Line Engineering to the Air Conditioner Domain.
In SPLC.

Damir Nesi¢, Jacob Kriiger, Stefan Stanciulescu, and Thorsten Berger. 2019.
Principles of Feature Modeling. In ESEC/FSE.

Linda Northrop. 2002. SEI's Software Product Line Tenets. IEEE Software 19, 4
(2002).

Jun Otsuka, Kouichi Kawarabata, Takashi Iwasaki, Makoto Uchiba, Tsuneo
Nakanishi, and Kenji Hisazumi. 2011. Small Inexpensive Core Asset Construc-
tion for Large Gainful Product Line Development: Developing a Communication

444

[90

[91

[92

[93

[94]

[95

[96

[97

[98

[99

[100

[101

[102

[103

[104

[105

[106

[107

e
o o
2%

[110

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

System Firmware Product Line. In SPLC.

Tristan Pfofe, Thomas Thiim, Sandro Schulze, Wolfram Fenske, and Ina Schaefer.
2016. Synchronizing Software Variants with VariantSync. In SPLC.

Klaus Pohl, Giinter Bockle, and Frank van Der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques.

Gerard Quilty and Mel O Cinnéide. 2011. Experiences with Software Product
Line Development in Risk Management Software. In SPLC.

David Rine and Robert Sonnemann. 1998. Investments in Reusable Software. A
Study of Software Reuse Investment Success Factors. Journal of Systems and
Software 41, 1 (1998).

Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2015. Cloned Product
Variants: From Ad-Hoc to Managed Software Product Lines. International
Journal on Software Tools for Technology Transfer (2015).

Klaus Schmid and Martin Verlage. 2002. The Economic Impact of Product Line
Adoption and Evolution. IEEE Software 19, 4 (2002).

Yusra Shakeel, Jacob Kriiger, Ivonne von Nostitz-Wallwitz, Christian Lausberger,
Gabriel Campero Durand, Gunter Saake, and Thomas Leich. 2018. (Automated)
Literature Analysis - Threats and Experiences. In SE4Science.

Devesh Sharma, Aybuke Aurum, and Barbara Paech. 2008. Business Value
through Product Line Engineering — A Case Study. In SEAA.

Odd Slyngstad, Anita Gupta, Reidar Conradi, Parastoo Mohagheghi, Harald
Renneberg, and Einar Landre. 2006. An Empirical Study of Developers Views
on Software Reuse in Statoil ASA. In ISESE.

Stefan Stanciulescu, Sandro Schulze, and Andrzej Wasowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. In ICSME.

Thomas Standish. 1984. An Essay on Software Reuse. IEEE Transactions on

Software Engineering 5 (1984).
Mark Staples and Derrick Hill. 2004. Experiences Adopting Software Product

Line Development without a Product Line Architecture. In APSEC.

Adam Trendowicz. 2013. Software Cost Estimation, Benchmarking, and Risk
Assessment: The Software Decision-Makers’ Guide to Predictable Software Devel-
opment. Springer.

Frank van der Linden. 2013. Philips Healthcare Compositional Diversity Case.
In Systems and Software Variability Management.

Frank van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action - The Best Industrial Practice in Product Line Engineering.

Julia Varnell-Sarjeant, Anneliese Andrews, Joe Lucente, and Andreas Stefik.
2015. Comparing Development Approaches and Reuse Strategies: An Empirical
Evaluation of Developer Views from the Aerospace Industry. Information &
Software Technology 61 (2015).

Robert Walker and Rylan Cottrell. 2016. Pragmatic Software Reuse: A View from
the Trenches. Technical Report 2016-1088-07. University of Calgary.

Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering. In EASE.

Robert K Yin. 1998. Case Study Research: Design and Method. (1998).

Gang Zhang, Liwei Shen, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2011.
Incremental and Iterative Reengineering towards Software Product Line: An
Industrial Case Study. In ICSM.

Thomas Zimmermann. 2016. Card-Sorting: From Text to Themes. In Perspectives
on Data Science for Software Engineering. Elsevier.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Conceptual Framework
	2.2 Research Objectives
	2.3 Collecting Data with Interviews
	2.4 Collecting Data from the Literature

	3 Results and Discussion
	3.1 RO1: Development Process
	3.2 RO2: Costs of Activities
	3.3 RO3: Cost Factors and Benefits

	4 Threats to Validity
	5 Conclusion
	Acknowledgments
	References

