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ABSTRACT

Feature models are recognized as a de facto standard for variability
modeling. Presented almost three decades ago, dozens of different
variations and extensions to the original feature-modeling notation
have been proposed, together with hundreds of variability mana-
gement techniques building upon feature models. Unfortunately,
despite several attempts to establish a unified language, there is still
no emerging consensus on a feature-modeling language that is both
intuitive and simple, but also expressive enough to cover a range
of important usage scenarios. There is not even a documented and
commonly agreed set of such scenarios.

Following an initiative among product-line engineering resear-
chers in September 2018, we present 14 usage scenarios together
with examples and requirements detailing each scenario. The sce-
nario descriptions are the result of a systematic process, where
members of the initiative authored original descriptions, which
received feedback via a survey, and which we then refined and
extended based on the survey results, reviewers’ comments, and
our own expertise. We also report the relevance of supporting each
usage scenario for the language, as perceived by the initiative’s
members, prioritizing each scenario. We present a roadmap to build
and implement a first version of the envisaged common language.
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1 INTRODUCTION

Feature models can arguably be seen as the most successful nota-
tion to model the common and variable characteristics of products
in a software product line [11]. Proposed almost three decades ago,
as part of the feature-oriented domain analyis (FODA) method [35],
hundreds of variability management methods and tools have been
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Figure 1: Feature model example (from [10])

built upon feature models. Of 91 variability management approa-
ches introduced until 2011 [19], 33 have used feature models to spe-
cify variability information. The reported use of feature-modeling
concepts in large commercial [9, 11] and open-source systems that
have to manage different forms of variability, such as the Linux
kernel [12, 13, 51] further witnesses their relevance. As an illustra-
tion, Fig. 1 shows an excerpt of the Linux kernel’s model in a visual
feature-modeling notation (explained in more detail in Sec. 2).
Since the proposal of feature modeling in 1990, dozens of exten-
sions and modifications have been proposed for feature models,
often with the goal in mind to build a general feature modeling
language, gradually extending the expressiveness of feature models.
Examples are cardinality-based feature models [23], which support
the multiple instantiation of features; attributed (a.k.a., extended)
feature models [6], which allow features to have non-Boolean at-
tributes (carrying, for instance, non-functional properties); more
expressive (i.e., non-Boolean) constraint languages [46]; or even
more radical approaches that combine feature and class modeling
in one language [5]. Furthermore, while most academic feature-
modeling notations are visual, many languages exhibiting a textual
syntax have been developed for feature modeling [13, 14, 20, 27, 28].
Tooling or API-based support also emerged with the success of
feature modeling in practice and research. The commercial product-
line engineering tools pure::variants [17] and Gears [38], as well as
the open-source tool FeatureIDE [55], are built upon feature models.
In addition, many different feature-model analysis techniques and
tools have been proposed [6, 42, 57]. Recent work also addressed
the relative absence of processes for feature modeling by proposing
modeling principles for engineers creating feature models [44].
However, despite this recognition of feature modeling in research
and practice, there is still no emerging consensus on a language
that would enable variability modeling in a simple and common
way, while covering different possible usage scenarios. The attempt
to build a standard for a common variability language, namely
CVL [31], was dropped due to legal, patent-related issues. The lan-
guage and its infrastructure is still available, however [58]. Esta-
blishing a standard would facilitate the interoperability of tools
and would ease the sharing of feature models. Recognizing this
pressuring need, a recent initiative among product-line researchers,
driven by David Benavides, attempts to establish a common and
simple, yet reasonably expressive feature-modeling language.
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This paper summarizes one of the follow-up actions that were
discussed at a meeting during the Software Product Line Conference
(SPLC) in September 2018 in Gothenburg. There, after a brainstor-
ming, a set of general usage scenarios of the prospective language
was elicited. After a vote, 15 main scenarios of usage were extracted,
and typically two researchers, one writing, another proofreading,
were assigned to detail each scenario through a common template.
Each scenario has a name, a small description, an example, and
some additional notes with requirements or open questions related
to it. These scenarios were then described during a one-month pe-
riod from mid September to mid October 2018. A survey was then
built to evaluate both the clarity and the usefulness (i.e., priority)
of each scenario. It was distributed on the mailing list created for
the initiative at the end of October 2018. Analyzing the results, we
refined and extended the scenario descriptions according to the
results, as well as we removed and added a few scenarios.

2 BACKGROUND

We provide an introduction into feature-modeling concepts as well
as a brief recap on the history of feature-modeling languages.

2.1 Feature Models

Figure 1 shows a small feature model describing the configurable
filesystem JFFS (Journalling Flash File System) in the Linux kernel.
Feature models are tree-like structures of features organized in a
hierarchy together with constraints among the features. While the
feature hierarchy is one of the most important benefits of feature
models (called ontological semantics), allowing engineers to keep
an overview understanding of a product line, the primary semantics
(called configuration space semantics) of feature models is to re-
present the valid combinations and values of features in a concrete
product of a product line, restricted by constraints as follows.

In our example, the feature Debug Level is a mandatory feature
(filled circle) with the value type integer; Compress Data is an op-
tional feature (hollow circle) of type Boolean with the optional sub-
features Support ZLIB and Default Compression. The latter is a fe-
ature group of type XOR, allowing to select exactly one sub-feature.
Other typical kinds of feature groups are OR and MUTEX groups
(not shown). These constructs express constraints, in addition to
the hierarchy constraints (a sub-feature always implies its parent fe-
ature). Further constraints, named cross-tree constraints, can be ex-
pressed separately to fully capture the configuration space—shown
to the right of the diagram in our example (note that ZLIB Inflate
is a feature that is defined outside our excerpt of the Linux kernel
model, which has grown to around 15,000 features nowadays).

2.2 Feature Modeling Extensions

The original FODA feature models have been extended in many
ways. Partly inspired by a genealogy of feature-modeling successors
from Kang [34], the following major extensions have been proposed.

FORM feature models [36] were introduced as part of the feature-
oriented reuse method (FORM) and sub-divided models into four
layers, from abstract on top to very concrete implementation-orien-
ted features at the bottom.

Thorsten Berger and Philippe Collet

FeatuRSEB feature models [30] were introduced with the FeatuR-
SEB methodology, aiming at an integration with use case diagrams
and similar models. They are mostly equivalent to FODA models.

Hein et al. feature models [32] introduced typed relationships
and binding times for features, based on industrial experience that
FODA “does not provide the necessary expressiveness to represent
the different types of crosslinks” in their domain. Typed relation-
ships give rise to alternative hierarchical structures in one model,
so the diagram is a directed acyclic graph, not a tree anymore.

Generative Programming feature models [21] introduced the cur-
rent notation and OR groups. This notation was later extended
with typed attributes and feature cardinalities [25]. Furthermore,
Riebisch et al. [47] introduced arbitrary group cardinalities and
constraint notations. The most significant extension were feature
cardinalities [23, 24], where features, and their whole subtrees, can
have more than one instance in a configuration, which has consi-
derable impact on reasoning operations and tooling.

Clafer [5, 33] is one of the most expressive feature-modeling lan-
guages, unifying feature and class modeling. The notion of feature
and that of a class is unified into a Clafer, which has a name, ty-
pes, constraints, and perhaps attributes. Clafer supports multi-level
modeling [18] and has a well-sepcified semantics as well as rich
tooling, including instance generation, configuration, and visuali-
zation. In addition, as a textual language, it has one of the simplest
and most intuitive syntaxes. Developers can use a text editor and
define a feature by writing its name into a line. Hierarchy is realized
by indentation (similar to Haskell and Python). Making a feature
optional amounts to adding a ’?’ character. Feature types can also
be added in a simple way.

Kconfig and CDL [13, 14] are languages to describe the variability
of systems. They are developed fully independently of the research
community, by practitioners who were likely not aware of the ex-
isting feature-modeling languages from researchers. Kconfig and
CDL are two of the most successful languages, primarily used in the
systems software domain. Kconfig [51] is used in systems such as
the Linux kernel, the Busybox project, and embedded libraries (e.g.,
uClibc). CDL [12] is used in eCos (embedded configurable operating
system). The languages in fact use concepts known from feature
modeling, including Boolean, int, and string features; a hierarchy;
feature groups; and cross-tree constraints. However, the languages
also bring additional concepts, mainly to scale feature modeling.
Specifically, they provide: visibility conditions, modularization con-
cepts, derived defaults / derived features, and hierarchy manipu-
lation. In addition, they provide expressive constraint languages
with three-state logics for binding modes, as well as comparison,
arithmetic, and string operators. Finally, all use domain-specific vo-
cabulary, enhancing their comprehension for the developers of the
systems. Details are found in Berger et al. [13, 14]. Extracted models
and an infrastructure to analyze them is also available online.!

In addition to extensions brought by these languages (e.g., di-
agram shapes, layers, binding modes, expressive constraints, car-
dinalities, and typed edges) we find some further concepts in the
literature. Among these are defaults [21, 48] and visibility conditi-
ons [26]. The latter are usually part of decision modeling languages,
which share many commonalities with feature models [22].

Uhttps://bitbucket.org/tberger/variability-models
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Table 1: Refined scenarios descriptions: modified slightly (O) or substantially (©) by us; or is completely new (@).

description

example

details

Christoph Seidl

The language should support the bidi-
rectional exchange of feature models be-
tween different tools. Tool vendors use
the language documentation and/or ex-
isting serializers/deserializers to create
important and expert functionality. Users
of the tools can then leverage this functi-
onality to export a feature model from
one tool and import it in the other tool.

A feature model is created in the
source tool FeatureIDE [55] and
then exported into a file with the
concrete syntax of the language.
The file can then be imported into
the FAMA framework [57] for spe-
cialized feature-model analyses.

Requirements:

e The language should have a serializable concrete syntax.

e The language should come with sufficient documentation about its ab-
stract and concrete syntax to realize importers and exporters.

o Ideally, serializers and deserializers are provided for the language in the

form of a library (in common programming languages, especially Java)

that can be used by tool vendors.

The language may be extensible and an instance may describe the level

of extensions that is used.

e The language may provide concepts to store tool-specific data.

e Storing tool-specific data should not require changing the language or
provided serializers and deserializers.

Open questions:

e Should tool-specific data be kept in specific language concepts or should
there be tool-independent concepts to store any kind of tool-specific data?
Finding a middle ground might be necessary.

Thorsten Berger

The language should allow tools to ef-
ficiently store and load feature models.
Tools can use the language and its con-
crete syntax as the primary means to
store models. Tool vendors leverage the
language specification to realize fast
storage and loading of models. Two sub-
scenarios are possible: (i) the model is
stored in a database, and (ii) the model is
stored in a textual representation.

Consider a new product line tool
that needs to store feature models.
The tool vendor can develop its per-
sistence layer by creating levera-
ging the language specification (i.e.,
the abstract syntax definition) to de-
rive a database schema and generate
CRUD functionality as well as initi-
alize the database.

Requirements:

e The language should come with an abstract syntax definition in a meta-
modeling notation that can be used for automated processing (e.g., gene-
rate database schemas).

o The language should come with a concise and succinct [49] textual syntax.

o The textual syntax should be defined in a common technology for defining
concrete syntaxes, such as an ANTLR or an Xtext grammar, both of which
can be used for automated processing.

Open questions:

o Select a language workbench (e.g., Xtext [16], MPS [15], EMF [53]) or a
parser-generator technology (e.g., ANTLR [45])?

Klaus Schmid,
Rick Rabiser

The language should be easily usable for
teaching. Specifically, it should be possi-
ble to describe the language within a few
slides, using concepts typically taught
in computer science education (e.g., ty-
pes, grammars, meta-modeling). Further-
more, the language’s concepts should
align well with the typical and establis-
hed concepts (cf. Sec. 2) that have been in-
troduced in the product-line community
and are typically taught in SPL courses
(features, attributes, constraints).

The teacher describes the language
with fewer than a dozen slides, and
the students are able to read and
write simple examples afterwards.

Requirements:

e The language should have the typical visual concrete syntax of feature
models.

o The language should come with realistic examples (ideally extracted from

real-world models, such as the Linux kernel models [13], but toy models

can also be provided for simplicity, such as from SPLOT [39].

Ideally, the language also has a concrete textual notation to illustrate how

to scale models.

Open questions:

e Teach the textual or graphical notation?

How to keep the language simple, while being expressive?

There is a need to understand the specific examples to be provided.

Should there be different levels to be taught? (corresponding to different

levels in teaching)

e When teaching, can we easily relate the key concepts of the language
with standard concepts taught in computer science such as requirements,
components, modules (e.g., “a feature can represent a requirement”)

Rick Rabiser,
Philippe Collet

The language should support users in
writing, reading, and editing feature mo-
dels in a standard text editor, targeting
developers or modelers with basic pro-
gramming language knowlege. Tool ven-
dors should be able to use the language
specification with automated tooling to
generate an infrastructure for using the
language, with typical software language
engineering or transformation techno-
logy (e.g., XText, XTend or Coco/R [41]).

The user opens an editor and, gi-
ven some basic knowledge about
the key constructs of the language,
she can instantly start writing fea-
ture models. A domain expert can
easily edit feature models inside the
same kind of editor.

The generated language infrastruc-
ture contains a modern editor
with syntax formatting, highlig-
hting, code completion, and syntax
checking.

Requirements:

e The language should provide a simple and human-readable textual con-
crete syntax.

o The language definition should be independent of a particular generation

technology.

The language should allow the use of standard text editors.

o Instances should be editable in standard IDEs, such as Eclipse, Intelli]

IDEA or Microsoft Visual Studio.

The language’s parser should be easy to integrate in other tool chains.

Ideally, the requirements of the scenario Domain modeling apply.

David Benavides,
José Galindo

Model generation (a.k.a., instance genera-
tion) automatically creates instances (mo-
dels) of the language, typically aiming at
instances with certain properties, such as
size, coverage of language concepts, or ot-
her structural characteristics (e.g., cross-
tree constraints ratio [8, 40, 50]). Tool de-
velopers can use it to generate a set of
models, useful for functional testing and
performance testing of the different tools
supporting the language.

A tool developer launches the in-
stance generation tool, inputs the
desired properties of the model to
be generated, and obtains the desi-
red model(s).

Requirements:

o The language specification (syntax and semantics) should allow for a
translation of the complete semantics into a representation in a formal
language.

o The formal language should allow instance generation (e.g., Alloy), with

instances that can be expressed in the original language’s syntax (so,

instantiated model in the formal lanugage should be structurally similar
to the target model in the new feature-modeling language).

Ideally, the instance generation can be interactive, also showing con-

flicting constraints and counter-examples.
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description

example

details

Thorsten Berger

The language should support early and
creative software-engineering phases by
allowing concept/domain modeling in
terms of features. Specifically, it should
allow creating features in a hierarchy,
without having to specify feature value
types, feature kinds (mandatory, optio-
nal), feature cross-tree relationships, or
whether they belong to a feature group.
The model can be gradually refined with
those concepts later. Furthermore, if ty-
ped relationships are supported, hard and
soft (e.g., recommends) constraints could
be distinguished, the latter can be defined
for each model.

A user creates an empty model and
in parallel adds features (that are
simply characterized by their na-
mes) and organizes them in a hier-
archy. She adds cross-tree relation-
ships if she finds it useful and
quickly re-organizes the hierar-
chy when the domain model be-
comes more clear. Later, when the
structure is more stable, she defi-
nes which features are mandatory,
which optional, as well as she defi-
nes the other concepts.

Requirements:

e The language should provide a simple and human-readable textual con-

crete syntax.

The language should have a concise and succinct textual syntax.

The language should rely on conventions and defaults that allow omitting

the explicit instantiation of concepts (e.g., when not specific, the default

feature type should be Boolean).

e The textual syntax could be inspired by Clafer (cf. Sec. 2).

Open questions:

e Domain/concept modeling might require: multiple feature instantiation
(cardinality-based feature modeling, cf. Sec. 2) as well as multi-level mo-
deling and ontological instantiation [18]. However, supporting these con-
cepts (as is supported by Clafer), could complicate the language.

e Support typed relationships?

Christoph Seidl,
Klaus Schmid

The language should support the confi-
guration activities of a feature model. It
should include respective constructs for
selection, de-selection, un-selection of fe-
atures in an feature model under confi-
guration. Resolution of the resulting con-
figuration space after such configuration
operations should be supported by the
language.

The language should also support partial
configuration management.

The language should support default va-
lues as in product configurators. This
could be directly supported in the fea-
ture model (e.g., for alternatives).

A previously created feature model
is used to determine functionality
of a particular variant by selecting
individual features.

A partial configuration of a feature
model is done by several selections
and unselections. The resulting set
of configurations is available in the
language.

The absence of any resulting con-
figuration is detected after a con-
flicting set of selections (e.g., with
a cross-tree constraint being viola-
ted).

Requirements:

e Provide adequate syntax for configuration by non-technical stakeholders.

e A configuration comprises selected features but, with more elaborate
language constructs (e.g., attributes), should also include value selection.

o Default configurations or exemplary configurations may be sensible as
suggestions (e.g., “portfolios/profiles”).

e Support partial configuration.

e Support by inference engine requires different types of constraints: those
that can be violated temporarily and those that cannot—a typical dis-
tinction in practical languages used for configuration.

Open questions:

e Should the configurations be persisted within a feature model or external
to it?

e Is there a unique name assumption so that features can be referenced

unambiguously by name?

Are configurations first-class entities in the language?

In the case of a partial configuration, should the resulting (refined) feature

model be available in the language together with the set of possible

configurations?

David Benavides,
Mathieu Acher

The language should be designed for tool
support, and several implementations are
expected to be available. There should be
a well-defined set of indicators to mea-
sure the performance of the most rele-
vant operations (e.g., analysis, refacto-
ring, configuration completion), so to be
able to compare them.

The benchmarking setup would allow to
compare tool support execution times of
these operations in isolation (e.g., wit-
hout taking into account file loading or
feature model parsing times when focu-
sing on a reasoning operation).

The user loads the model with
FAMA [57], Familiar [4] or Feature
IDE [55] and executes the operation
"dead features,” also measuring the
completion times. Then she knows
which is the best tool for that ope-
ration and model.

Each tool built upon the language
can run the common benchmark
and automatically produce an ex-
ploitable performance result.

Requirements:

o Well-engineered and specified syntax and semantics of the language.

o There should be an agreement on the specificatin of certain feature-model
operations.

The availability of realistic models is important. Potentially, real-world
models from the systems software domain can be used (cf. Sec. 2)

José Galindo

Feature models expressed in the lan-
guage should be usable as input for tes-
ting, specifically, for configuration sam-
pling. Features and especially their con-
straints should be extractable in a form
that allows reducing the search space for
sampling techniques. Another strategy
to support testing would be to express
full or partial configurations (e.g., pairs
of features that are critical to test).

A software engineer creates test ca-
ses that will run with configurations
that are recorded in the feature mo-
del. Furthermore, when an unwan-
ted feature interaction is detected,
the engineer will record the feature
pair, to be considered in future re-
gression testing.

Requirements:

e Language concepts to represent partial or complete configurations.

o Ideally, consistency checking by the language infrastructure for the confi-
guration information.

e Incorporating concepts capturing further testing-relevant information
(e.g., inputs for testing dedicated features) could be useful.

Open questions:

e Should testing-related configuration information be stored directly in the
model or in a separate kind of asset?

David Benavides,
Philippe Collet

The language can be used in automa-
ted analysis processes where the model
is used as input and an analysis result
is obtained. This can comprise analyses
confined to the feature model [6, 29] or
those that take other artifacts into ac-
count [42, 54].

Consider a Linux distribution, such
as Debian. Let us assume the packa-
ges (each representing a feature)
and their dependencies are descri-
bed using our language (or, more re-
alistically, are transformed from De-
bian’s manifests into a feature mo-
del). An off-the shelf analysis, such
as “dead features” can then be used
to detect packages that are not se-
lectable.

Requirements:

e Community agreement on a core set (or class) of relevant analyses.

e Consider different solver strategies depending on the kinds of analyses
and the constructs of the language. For instance, if we allow attributes,
then, specific solver capabilities are needed.

o Well-specified language syntax and semantics, also with semantic ab-
stractions into the different logical representations required by the sol-
vers.

Open questions:

o s the representation of correspondence (and maybe performance) of the
solving strategies to the different constructs and extensions part of the
language definition?

e Should analyses be confined to the feature model or also take other asset
types into account, such as the mapping to implementation assets?
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description

example

details

Thomas Thiim

Feature models are often not only consi-
dered in isolation. Instead, features are ty-
pically mapped to certain assets. Depen-
ding on the use case, features are map-
ped to requirements, architecture, design,
models, source code, tests, and documen-
tation, among others. While the actual
mapping is largely independent of the
feature modeling language, it should be
possible to distinguish features that are
supposed to be mapped to artifacts from
those purely used to structure the hier-
archy (e.g., to group certain features into
an alternative group) or features that are
not yet implemented. So, the scenario is
to support developers mapping features
to the implementation.

Suppose we implement a product
line incrementally. That is, we have
done a domain analysis in which we
created a feature model and now we
implement more and more of those
features over time. Assume we want
to derive a product or count the
number of possible products before
we are done with the implementa-
tion of all features. During confi-
guration, we do not want to make
decisions that do not influence the
actual product. For counting, we
are not interested in the total num-
ber of valid configurations, but only
in those that result in distinct pro-
ducts.

Requirements:

e A single modifier/keyword to be assigned to every feature could be suffi-
cient (e.g., abstract/concrete as in FeatureIDE)

o A well-defined mapping language might be necessary.

e Avoid common limitations. For instance, a simple language rule as applied

in GUIDSL, such that every feature without child features in concrete

and all others are abstract, would result in unintuitive editors and overly

complex feature models if a feature with child features is supposed to be

mapped to artifacts.

A challenge is that this property is not be supported in many tools. Fall-

back could always be to mark all features as concrete during import/export

(could be default).

Open questions:

e Should the mapping be part of the language or realized in a separate one?

Thomas Thiim

Industrial models tend to have thousands
of features. Clearly, those models are cre-
ated by numerous stakeholders that may
even originate from different divisions
or even institutions. Models can also be
built according to specific separated con-
cerns. The language should be able to
compose several feature models accor-
ding to different semantics (e.g., aggrega-
tion, configuration merging).

It is often necessary to decompose such
a large model into smaller pieces to im-
prove the overview and facilitate colla-
borative development.

The Linux kernel is defined in the
Kconfig [51] language but not in a
single file. The knowledge is distri-
buted over several files according
to the structure of the code base.
For analyses it is typically neces-
sary to compose them all prior to
feeding them into solvers. The lar-
gest known feature model (Automo-
tive2 [37]) was developed in terms
of 40 small models that have even
used different modeling languages.

Requirements:

e Prioritized list of composition mechanisms from the literature (e.g., ag-
gregation, inheritance, superimposition, configuration merging).

e Simple mechanism that is easy to implement.

e Perhaps dedicated support for interface feature models (cf. principle MO3
among common feature modeling principles [44])

Open questions:

e Should all the composition mechanisms that have been discussed in the
literature be supported in the language?

e How should the language handle the fact that depending on the composi-
tion operator, it could be possible or not to add the same model several
times within another model?

o s it sufficient to have support for composition in the language, whereas
decomposition is up to the users?

The language should be able to be ea-
sily integrated with other programming
languages for supporting variability mo-
deling at design and implementation le-
vels. Several integration levels could be
considered depending on the host lan-
guage’s capabilities and engineering nee-
ded to provide such integration in the
language. A shallow form of integration
could be a simple interpreter available
in the host language, exchanging input
and output as strings and basic types.
A deeper form of integration could be
an API enabling to manipulate the high-
level concepts of the language in the host
language (e.g., features, feature models,
configurations).

Currently there are different strate-
gies for imposing variability in ot-
her modeling formalisms such as bu-
siness processes or object-oriented
design. An ideal scenario would be
to use our language to integrate va-
riability in other languages, such as
BPMN.

Requirements:

e Depending on the depth of the integration, static design-time or dynamic
run-time model weaving might need to be considered.

e List of variability mechanisms from the literature.

o Understanding of the effort for realizing the mechanism for different
types of assets.

Open questions:

e Separation of concerns is an issue to consider (support developers to
separate problem and solution space).

o The necessary extent of embedding of information from the feature model
into other assets needs to be investigated, making realistic assumptions
about the actual need.

Mathieu Acher,
Tewfik Ziadi

It should be possible to use the language
to represent reverse-engineered or com-
posed feature models. The former can ori-
ginate from typical reverse-engineering
techniques that rely on extracted varia-
bility information [2, 3, 43, 52], the latter
can originate from multiple existing fea-
ture models.

Reverse-engineering  examples:
Synthesize a feature model from
command-line parameters and the
respective source-code in which
they are used, from configuration
files or from product comparison
matrices; re-engineer web confi-
gurators [1]; extraction of feature
models and reusable assets from
clone & own-based systems.
Composition examples: Combine
multiple product lines; or use of
composition and slicing operations
over feature models to build a spe-
cific viewpoint on the variability.

Requirements:

o The language should be sufficiently expressive to model real-world varia-
bility and configuration spaces that are reverse-engineered (these often
have non-Boolean and complex constraints).

e Perhaps some traceability (e.g., the artifacts from which certain con-
straints stem from) or debugging information (e.g., how the constraint
was calculated or whether it is abstracted by weakening a constraint to
make it processable).

Open questions:

e How to deal with constraints among features or other information extrac-

ted that is not expressible in the language (e.g., child features that exclude

their parents in the Linux kernel model [13].

As such, ground truth models may not be expressible in our language.

Empirical validation of the language: How to validate that our language

is sufficient for reverse-engineering variability, especially from legacy

systems?

o Could round-trip engineering (which is a hard problem) be supported?
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3 EMERGING USAGE SCENARIOS

As explained above (Sec. 1), the participants of the initiative’s first
meeting during SPLC 2018 in Gothenburg authored an original set
of usage scenarios, each of which having a name, a description, an
example, requirements, and potentially open questions for discus-
sion. These were then evaluated in an online survey, created by
David Benavides, targeting participants of the initiative—also those
who did not attend the Gothenburg meeting, but are registered on
the respective mailing list (featuremodellanguage@listas.us.es).

The survey elicited the perceived clarity of the scenario and the
perceived usefulness. The original formulations of the scenarios are
available in our online appendix [7], together with more detailed
survey data. Specifically, using Likert-scale questions, for each
scenario it asked:

(1) What is the clarity of the scenario? Either: 1 (not clear at all),
2 (not clear), 3 (more or less), 4 (clear), 5 (very clear).

(2) What is the usefulness/priority of the scenario? Either: 1 (not
useful at all), 2 (not useful), 3 (more or less), 4 (useful), 5
(very useful).

The survey was distributed among the mailing list of 25 inte-
rested persons in the building of the common language at the end
of October 2018 for a period of 7 weeks. 15 answers were collected.

3.1 Survey Analysis and Scenario Refinement

The results of the survey corresponded to 14 to 15 answers on each
scenario, as one participant did not evaluate all scenarios. With
respect to the clarity of each scenario, the results were very di-
verse, with some scenarios being mainly viewed as clear, while
some others were not considered as clear enough. Consequently,
we decided to improve the descriptions, as mentioned above (Sec. 1),
to provide a better set of descriptions. Table 1 shows our final set of
scenarios, refined and extended compared to those formulated after
the initiative’s first meeting. The table acknowledges the original
authors, but we indicate whether we have modified the scenario
only slightly (O), whether we did substantial changes (©), or whet-
her the scenario is completely anew (@). For the latter, the stated
authors are also those of the new formulation.

Specifically, compared to the original set (cf. appendix [7]), we
removed the scenarios Language-Specific Characteristics (since
it was a design recommendation instead of a usage scenario or a re-
quirement), Storage (since the text primarily described the sharing
of models, which is covered by scenario Exchange), and Transla-
tion to logics (since it is not a prime usage scenario performed by a
language user or tool developer as such, but represents a design deci-
sion and technicalities necessary to realize the majority of the other
scenarios). We added the scenario Reverse engineering and com-
position, which was not formulated out by the time of the survey.

Figure 2 shows violin plots about the survey’s answers with
respect to the usefulness, indicating the scenario’s relevance. A
similar violin plot for clarity is available in our appendix [7]. Given
the change, the result for Storage should be taken with care.

3.2 Design Recommendations

To some extent, the original usage scenario descriptions contained
information about the realization of the language, which was out
of the scope of this early phase of collecting usage scenarios for
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Figure 2: Perceived usefulness of the scenarios (without sce-
nario reverse engineering and composition, cf. Sec. 3.1)

users and tool developers. The removed scenario Translation to
logics is such a case, which provides valuable implementation re-
commendations by Thomas Thiim and Maurice ter Beek, further
detailed in a separate paper [56]. Specifically, they argue that a key
enabling technology for feature modeling is the ability to translate
the semantics of feature models to a logical representation that can
serve as an input to off-the-shelf constraint solvers. To this end, the
expressiveness of the language should ideally align with relevant
solvers, such as SAT, BDD, SMT or CSP solvers. To remain flexible,
the language could offer different levels that classify the language
concepts into different levels of expressiveness, each of which alig-
ning with a specific class of solvers. Specifically, levels representing
higher expressiveness allow more language concepts, but limit
which solvers are applicable. For instance, if the language would
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have a level that allows specifying non-Boolean feature attributes
(representing, for instance, cost or performance properties) and
quantitative constraints among them, this would exclude the use of
solvers relying on propositional logics (e.g., SAT and BDD solvers).

To obtain language levels, Thiim and ter Beek propose mapping
language concepts to levels of expressiveness, followed by iden-
tifying the priority of supporting each level based on the usage
scenarios. For instance, a language level that allows quantitative
modeling could support modeling (at least parts) of continuous be-
havior in cyber-physical systems. Thiim and ter Beek also note that
language concepts might interact with respect to expressiveness,
which needs to be taken into account when designing the language.

4 A PRELIMINARY ROADMAP

Our results suggest the following aspects to be considered in speci-
fying the future language and in the workshop.

As we believe that we need to incrementally build the language
features to make progress, a first set of features can be devised from
the scenarios that are perceived primarily useful. According to the
median value of the distribution shown in Fig. 2, this set would then
comprise the following scenarios: Exchange, Storage, Domain
Modeling, Teaching and Learning, Mapping to implementa-
tion, Model generation, Benchmarking, and Analyses.

From these scenarios, we can imagine some design decisions to
be discussed and validated to get to a first version of the language:

o A simple textual language seems to meet the challenges from
the scenario Exchange.

e Realization of the language’s abstract and concrete syntax
using a common language workbench (e.g., Eclipse EMF with
Xtext) can support the scenario Storage.

o Incremental and partial creation of a feature model is needed
for Domain Modeling. It directly affects the scope of what
we could put inside the first set of functionalities.

e For a first set of functionalities meeting Teaching and Le-
arning, simplicity of the language for writing, editing, and
configuring, should be kept in mind.

o The scenarios Model generation, Benchmarking, and Ana-
lyses could be easy to meet in a first version if propositional
feature models are chosen as a first level of expressiveness.

e Mapping to implementation is not an easy scenario to meet,
as it is an open problem depending on the artifacts and
variability realization technique.

Considering the current set of feature-modeling languages that
are available, Clafer appears to meet most of the requirements. As
described in Sec. 2, it is one of the most expressive languages while
having a concise and succinct textual syntax, accompanied with
formally defined semantics, and coming with substantial tooling.
On the negative side, however, is the complexity and richness of the
language, which might be problematic, but could be addressed by
specifying a subset language level to accommodate certain subsets
of usage scenarios.

With these aspects in mind, some open questions arise, as a basis
for discussion during the workshop:

o Would the first kernel of functionalities of the language be de-
signed and implemented at the same time? Implementation
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would enable to validate scenarios automatically through a
continuous integration pipeline.

e Once the implementation subject is raised, the textual lan-
guage implementation choices are raising at well: it could
be a fluent API, an external or internal DSL, or a clever com-
bination.

e Could the scenario Analyses be used with its first example,
i.e., running a dead-feature analysis, as a validation scena-
rio for the implementation part of the language? Still, what
analyses are useful and how their scenarios should be made
clearer must be discussed. Similarly, could the Benchmar-
king scenario be also added in the same way, as its first
example is a benchmark over the dead-feature computation?

e Could the language Clafer provide a reasonable basis for
realizing the desired language, potentially by introducing
language levels into Clafer, reducing its complexity for many
scenarios?

For the workshop, we suggest to conduct a second evaluation
of the refined and extended usage scenarios we presented in this
paper. We plan to update our appendix [7] with the new results. The
survey should again elicit clarity and usefulness, to increase our
confidence in the scenarios. It should also re-open the discussion
about further scenarios that need to be realized. For instance, a
scenario that was briefly discussed during the first workshop was
the collaborative creation of feature models, but not formulated
out. Collaborative creation of feature models might be relevant for
domain modeling; however, common wisdom on the processes and
organizational aspects of feature modeling suggests that the distri-
bution of the brittle variability information, and the maintenance of
feature models by more than a small core group, is not feasible [10].

5 CONCLUSION

In this paper we contributed 14 usage scenarios for a simple and
common feature-modeling language, to be finally established as a
standard for feature modeling. We refined and extended formula-
tions for a set of scenarios originally formulated by members of
the initiative—experienced researchers from the product-line com-
munity that have some expertise in several facets of the creation
and maintenance of important functionalities of such a language.
We relied on a survey that was created for eliciting the clarity and
relevance (i.e., usefulness or priority) of each scenario. We reported
the survey results, presented the scenarios, and proposed a roadmap
to support the next steps of the initiative. From these results, we
observed the emergence of a smaller set of scenarios, seen as clearer
and most useful, which could make a first kernel of the targeted
language. We expect these insights to help in driving discussions
and making decisions during the workshop.
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