
Clone-Based Variability Management
in the Android Ecosystem

John Businge,∗ Moses Openja,∗ Sarah Nadi,† Engineer Bainomugisha,‡ and Thorsten Berger§
∗Mbarara University of Science and Technology, Mbarara, Uganda

†Makerere University, Kampala, Uganda
‡University of Alberta, Edmonton, Canada

§Chalmers | University of Gothenburg, Gothenburg, Sweden

Abstract—Mobile app developers often need to create variants
to account for different customer segments, payment models or
functionalities. A common strategy is to clone (or fork) an existing
app and then adapt it to new requirements. This form of reuse has
been enhanced with the advent of social-coding platforms such as
Github, cultivating a more systematic reuse. Different facilities,
such as forks, pull requests, and cross-project traceability support
clone-based development. Unfortunately, even though, many apps
are known to be maintained in many variants, little is known
about how practitioners manage variants of mobile apps.

We present a study that explores clone-based reuse practices
for open-source Android apps. We identified and analyzed
families of apps that are maintained together and that exist
both on the official app store (Google Play) as well as on
Github, allowing us to analyze reuse practices in depth. We
mined both repositories to identify app families and to study
their characteristics, including their variabilities as well as code-
propagation practices and maintainer relationships. We found
that, indeed, app families exist and that forked app variants
fall into the following categories: (i) re-branding and simple
customizations, (ii) feature extension, (iii) supporting of the
mainline app, and (iv) implementation of different, but related
features. Other notable characteristic of the app families we
discovered include: (i) 73 % of the app families did not perform
any form of code propagation, and (ii) 74 % of the app families
we studied do not have common maintainers.

Index Terms—software variants, mobile apps, app families,
Android, software ecosystems

I. INTRODUCTION

Software reuse is essential to keep up with the pervasiveness
of software in our everyday lives. The advent of social coding
platforms and version-control systems such as Github and
Bitbucket has made large-scale software reuse more systematic
by providing different facilities, such as pull requests and cross-
project traceability, to allow fork-based development [1]. In
the latter, developers realize new features or system variants by
forking a repository, making changes on their own fork, and
propagating changes back to the repository from which they
forked, via pull requests (known as “upstream” propagation).

Mobile apps often need to exist in different variants [2],
[3], accounting for different users and markets, or non-
functional requirements, such as hardware, power consumption,
performance or fidelity. As such, these variants typically
share common and variable features [4], [5], and need to
be maintained in parallel. Unfortunately, despite relatively
simple configuration mechanisms, the Android platform does

not offer more sophisticated variability management concepts,
including those from methodologies such as software product
line engineering [3], [6], which advocates integrating all
variants into a platform. Instead, when such concepts are
not available or applicable, a common form of variability
management, known as clone&own [7], is to copy and adapt
existing variants, and propagate changes (e.g., new features
or bug fixes) to maintain and evolve the variants. In fact, as
studies show, there is substantial software reuse in the Android
ecosystem [2], [8], [9] through cloning. These observations
suggest that, when variants of apps exist and need to be
maintained, that the majority is done using clone&own. Yet,
the practices applied by mobile-app developers are unknown—
hindering the improvement of such practices.

We address this gap with an exploratory study on variant
management practices in one of the largest app ecosystems
in existence today: Android apps. We focus on apps that
are available in the official app store, Google Play, and that
host their source code on Github. This allows identifying
app families as well as studying the variability management
practices in depth. We consider an app family as a collection of
apps on Github that are maintained together, typically consisting
of a mainline variant (MLV) and its forked variants (FVs),
representing existing variants of the mainline app.

Our study is guided by the following research questions:
RQ1 What are the characteristics of Android app families?

We investigate general characteristics of open-source
apps that belong to an app family, including the app
category they belong to and the pace of development and
maintenance of the FVs with respect to the MLV.

RQ2 How are app families maintained and co-evolved?
We strive to understand how code is propagated between
variants of the same family. For example, are pull requests
used as the main propagation technique? Is code only
propagated between the FVs and the MLV or are there
additional propagations between other FVs?

RQ3 How diverse are the contributors in Android app families?
We investigate whether the FVs are typically created and
controlled by new developers or whether they are still
governed by the MLV developers.

RQ4 What are the various types of variations or customizations
that lead to the creation of an app family?
Understanding the reasons behind creating a fork of

Number of Apps

9008007006005004003002001000

N
u

m
b

er
 o

f
A

ct
iv

e
F

o
rk

s
625

125

25

5

1

0

Mean = 6.54
Std. Dev. = 25.458
N = 1,890

Page 1

Fig. 1: Number of active forks across the considered 1,890
apps (y-axis in log scale)

another app can help us understand the types of reuse
that occur in the Android ecosystem. For example, does
an FV app typically add small functionality to the MLV
app or does the FV use the MLV as a building block for
an app with a completely different focus?

In our study, we found that app families actually exist, even
though, there is little code propagation using typical Github
facilities. When there is, then mainly from the MLV to the FVs.
To the best of our knowledge, our work is the first to explore
variability management practices and app-family characteristics
on a social-coding platform such as Github.

We proceed by presenting our study design—especially how
we identified app families—in Section II. We present our results
for the four research questions in Sections III to VI, first
providing the research-question-specific methodology, then the
respective results. We discuss threats to validity in Section VII,
related work in Section VIII, and conclude in Section IX.

II. STUDY DESIGN

Our aim is to identify Android app families in order to study
their characteristics and development practices.

A. Identification of App Families

Recall that we defined an Android app family as a collection of
apps on Github that are maintained together, typically consisting
of a MLV and its FVs. To identify all app families that exist
on Github and that are also published on Google Play, we first
mined the MLVs and their corresponding FVs on Github, then
we found the corresponding links of these MLVs and FVs on
Google Play. We identified app families as follows.

1) Using GitHub’s Rest API v3 we identified a total of
55,939 repositories with the following criteria: (1) contains
the word “Android” in repository name, description or
readme.md file; (2) is not a fork; (3) is written in a
programming language; (4) has been forked at least twice;
and (5) was created no later than 31-12-2017. We used the
criteria of having at least two forks to reduce the chance

Number of Forks

25002000150010005000

N
u

m
b

er
 o

f
U

n
iq

u
e

C
o

m
m

it
s

15,625

3,125

625

125

25

5

1

0

Mean = 9.85

Std. Dev. = 49.919

N = 12,355

Page 1

Fig. 2: Number of unique commits (compared to the mainline
app) in the 12,356 active forks (y-axis in log scale)

of finding student assignments, which could pollute our
results [10].

2) To assure that the repositories we identified are
indeed real Android apps, we searched for an
AndroidManifest.xml file in each repository and, if
it existed, we identified the package name indicated in
the file. We then looked up the app with the extracted
package name from Google Play. This step filtered out
more repositories from our list, since some repositories
may have no manifest file or might have no corresponding
app on Google Play. We obtained 5,865 repositories
representing an actual Google Play app.

3) Next, we manually looked at the list of the 5,865 apps
to identify any apps sharing the package name, which
would mean they are linked to the same app on Google
Play. We removed 330 apps that have duplicate package
names, leaving 5,535 apps. We speculate that duplicate
package names are a result of repositories cloning other
apps’ source code and including it in their own.

4) From the remaining 5,535, we eliminated apps with less
than six commits in their lifetime, according to the median
number of commits in GitHub projects found by prior
work [11]. After this preprocessing step, we were left
with 4,634 apps.

5) We then eliminated apps without active forks—that is,
forks that did not have one single commit after the fork
creation date. We were left with 2,423 apps, which have
18,446 active forks altogether. For each fork, we identified
commits that are unique to the fork versus those that were
pulled from the mainline app after the fork date. We will
explain how we identified the unique and pulled commits
in Section IV-A. We eliminated apps that did not have at
least one fork with a unique commit. This left us with
1,890 apps. Their distribution is shown in Fig. 1. Figure 2
shows the distribution of active forks and their unique
commits. The forks that did not have unique commits
meant that they only performed cherry-picking and did

TABLE I: Collected metrics that characterize Android app families and variant-management practices, arranged by research
question (some metrics used in multiple questions)

Dimension Metric Description

Family Size (RQ1) Variants Number of variants in an app family

Variant Duration Duration Number of weeks since the earliest commit of any variant (since the first fork date) to
latest commit of any variant (duration for an app family).

(RQ1) ForkVariantBacklog Number of weeks a given FV is behind its MLV (MLV’s last commit date minus the
FV’s last commit date).

Inactivity Number of weeks a given variant has spent without making a commit until the stopping
date (31-12-2017). We consider the median statistics to describe all the variants (inactivity
for a family).

Code Propagation PullRequestMLV-FV Number of closed pull requests from the MLV variant to a given FV in an app family.
(RQ2) PullRequestFV-MLV Number of merged pull requests from a given FV to the MLV in an app family.

PullRequestFV-FV Number of merged pull requests from one FV to another FV in an app family.
StartingCommits Number of common commits between a given FV and the MLV. Count of the MLV

commits from the first commit until the given fork date.
StartingCommitscdLOC Number of changed lines of code of the commits in StartingCommits. We use this

metrics to calculate the VariabilityPercentagecdLOC discussed later in this table.
DirectPullComMLV-FV Number of common commits between a given FV and the MLV after the fork date that are

not PullRequestFV-MLV, PullRequestFV-MLV or PullRequestFV-FV (c.f. Section IV-A
for detailed explanation).

PullRequestsComMLV-FV Number of commits associated with merged pull requests from the MLV to a given fork
(i.e., associated with PullRequestFV-MLV)

PullRequestsComFV-MLV Number of commits associated with merged pull requests from the MLV to the FV (i.e.,
associated with PullRequestFV-MLV)

UniqueCom For a given MLV–FV pair, these are the number of commits that are unique to a each
variant.

UniquecdLOC Changed lines of code of the commits in UniqueCom.
MergedCom Total number of common commits between the MLV and FV pair after the fork date

(i.e., common commits between MLV and FVs excluding StartingCommits).
MergedCdLOC Number of changed lines of code of the commits in MergedCom.
VariabilityPercentage Percentage of unique commits in a given FV with respect to the total number of commits

in the FV (i.e., UniqueCom / (UniqueCom +StartingCommits + MergedCom)*100%.
VariabilityPercentage is unique for all FVs.

VariabilityPercentagecdLOC Percentage of changed lines of code of the UniqueCom in a given FV with respect
to the total number of changed lines of code of the unique commits in the FV (i.e.,
UniquecdLOC / (UniquecdLOC + StartingCommitscdLOC + MergedCdLOC)*100%

Code Authorship TotalDevMLV Number of developers who contributed to a given MLV
(RQ3) TotalDevFV Number of developers who contributed to a given FV

TotalDevs TotalDevMLV + TotalDevFV.
CommonDevs Number of common developers between a given pair of MLV and FV in a family.
CommonDevs % Percentage of common developers between a given pair of MLV and FV with respect

to the TotalDevs.

Google Play metadata Category Google Play app category of a given variant
(RQ4) Description Google Play app description of a given variant

not make any modifications in the forked code.
6) One important criteria for an app family is that its

variants actually represent different apps. To consider only
repositories that have at least one fork with a different
package name and are on Google Play, we searched for
the AndroidManifest.xml in each fork repo like we
did for the mainline in Step-2 above. We then searched for
the extracted package names of the forks on Google Play
only if they were different from the mainline package
name. A fork having the same package name as the
mainline means that it did not make modifications to
the mainline package name, implying that it is not yet
been advertised on Google Play. After collecting the forks
that are advertised on Google Play, we also performed
a manual step to eliminate false positives i.e., two forks
advertising the same package names. This would mean

that one of the two forks, or both, have copied code that
contains a manifest file with a package name advertised
on Google Play. We would then look up the descriptions
of both forks on both Github and Google Play, and also
inspect other information, including the Github developer
name and the developer name on Google Play. In some
cases, the Google Play app description would have a
link to the Github repository. Based on this process, we
identified 88 apps that have at least one fork with a distinct
associated app on Google Play. The 88 apps have a total
of 127 forks. Since the 88 mainline apps and their forks
are maintained in parallel on Google Play, we consider
them as app families. This set of 88 app families is the
final data set we used to answer our RQs.

Variants

1086420

F
re

q
u

en
cy

125

25

5

1

0

Page 1

Fig. 3: Number of variants per family (y-axis in log scale)

B. Analysis of App Families

To answer the RQs we defined metrics that help answer each
question. Table I provides an overview of all metrics. When
reporting the results for each RQ in the remainder, we will
explain the respective metrics in detail.

We collected the metrics both from GitHub and from Google
Play using scripts we wrote. For the former, we utilized
GitHub’s REST API v3; for the latter, we directly mined
from the Google Play website by creating scripts using the
jsoup library, which helps parsing websites.

III. APP FAMILY CHARACTERISTICS (RQ1)

With RQ1, we investigated general characteristics of apps that
belong to an app family.

A. Methodology

To generally characterize the identified 88 app families, we
looked into the sizes of the families (Variants) and metadata
available on Google Play: the app category and the app
description. We were also interested in understanding how
up-to-date the FVs were with respect to their MLVs, for which
we defined the metric ForkVariantBacklog. For each forked
variant it determines the number of weeks it is behind its MLV
in terms of dates of the respective last commit. A positive
value means the FV is ahead of the MLV.

B. Results

The first step in our analysis consisted of examining various
descriptive statistics of the Android families we identified. The
88 mainline apps of the considered families are written in 4
programming languages with the majority being written in
Java (74), C (8), C++ (4), and Kotlin (2). The 88 mainline
apps have a total of 26 Google Play categories. The categories
with the highest number of mainline apps include: tools (19),
productivity (11), communication (9), education (7), finance
(7), and entertainment (5). The 127 fork variants of the 88
mainline apps had a total of 21 categories on Google Play that
are not necessarily a subset of the 26 categories of the mainline
apps. The highest frequency of fork variant categories include:
tools (27), finance (18), productivity (15), communication (14),
education (7), and health & fitness (6). From the statistics of

TABLE II: App family metrics (defined in Table I)

Metric Mean Min Median Max

Variants 2.4 2 2 10
Duration 505.6 0 158 2439
ForkVariantBacklog 45.1 -244 32.5 313
Inactivity 233.0 -1473 181 2191
PullRequestMLV-FV 0.2 0 0 10
PullRequestFV-MLV 0.2 0 0 4
PullRequestFV-FV 0.0 0 0 1
TotalDevMLV 30.2 1 7.5 270
TotalDevFV 3.1 1 1 43
TotalDevs 42.2 1 21 272
CommonDevs 1.0 0 0 14
CommonDevs % 6.3 0 0 86
StartingCommits 1411.5 0 463 28924
StartingCommitscdLOC 1.05M 0 201K 7117M
MergedCom 364.2 0 0 25758
MergedCdLOC 102K 0 0 4.8M
PullRequestsComMLV-FV 1.2 0 0 136
PullRequestsComFV-MLV 15.8 0 0 427
UniqueCom 85.7 1 13 2260
UniquecdLOC 114K 20 16K 1.66M
VariabilityPercentage 13.65 0.04 2.76 100
VariabilityPercentagecdLOC 20.58 0.00 9.21 100

the total number of categories presented (i.e., 26 for mainline
variants and 21 for fork variants), we observe that variants in
the same app family can be listed in different Google Play
categories.

Figure 3 shows the distribution of the number of variants
each app family has. We can observe that the figure is right-
skewed, meaning that the majority of the app families has two
variants. In Fig. 4, we present the FV backlog with respect to
the MLV. We observe that we have: (i) a few cases below the
zero line of the y-axis, that is, the FV is ahead of the MLV, (ii)
a few cases along the zero line, that is, there is no significant
difference between updates of the FVs and MLV, and (iii) the
majority of the cases above the zero line, that is, the updates
of MLVs are ahead of the FV on Github.

IV. CODE PROPAGATION IN APP FAMILIES (RQ2)

With RQ2, we determined how often code is propagated
between the variants in a family, using what common practices.

-300

-200

-100

0

100

200

300

400

1 11 21 31 41 51 61 71 81 91 101 111 121

Fo
rk

Va
ria

nt
Ba

ck
lo

g
(W

ee
ks

)

FV

Fig. 4: FV backlog with respect to the MLV: number of weeks
the FV is behind the MLV in terms of the last commit dates.

Time

MLV

FV

Fork Date

i

Stopping Date

MergedCom = PullRequestFV-MLV + PullRequestMLV-FV + DirectPullMLV-FV

2 3

iii d ivii c

a b e

StartingCommits MLV UniqueCom PullRequestComFV-MLV

PullRequestComMLV-FVFV UniqueComDirectPullComMLV-FV

1

2 31 i

ciii ed f

f

d1 d2

d1

Fig. 5: Illustration of the different types of commits present in
a FV and its corresponding MLV.

A. Methodology

In Table I, we outlined a number of metrics that relate to code
propagation. We now discuss them in detail. In any variant in
a family, there are two categories of commits: variant-specific
commits (UniqueCom) and common commits. The latter can be
further categorized as: (i) the starting commits between MLV
and FV that exist at the moment of forking (StartingCommits)
and (ii) the merged commits that appear since the fork date
until the last commit before the stopping date (MergedCom).

We now explain how we extracted the metrics UniqueCom,
StartingCommits, and MergedCom from GitHub. Figure 5 illus-
trates the mentioned kinds of commits (and others, explained
shortly) for MLV and FV. Recall that all metrics are summarized
in Table I.

• UniqueCom: In Fig. 5, the UniqueCom commits for the
MLV are a, b, and e, while those for the FV are ii and
iv. To extract these UniqueCom for MLV and FV, we
collected and compared sets of commits of the MLV and
the FV since the fork date to the last commit before the
stopping date.

• StartingCommits: In Fig. 5, the StartingCommits are 1,
2, and 3. These existed in the MLV at the time of the
fork creation, which means these are the commits the fork
starts with. To extract these commits, we collected all the
commits since the first commit on MLV until the fork
date.

• MergedCom: In Fig. 5, MLV and FV have the same
MergedCom: i, iii, c, d, and f . For a given FV and the
corresponding MLV, we considered a commit as merged
when it appears in both FV and MLV after the fork date.

Looking at MergedCom only is not enough, since we also
want to understand the direction of the code propagation. On a
social coding platform such as Github, there are two ways how
code can be propagated: merged pull request (PR) commits or
direct pull commits.

• Merged PR commits: In a family of app variants, pull
requests can be sent from any variant by a commit author
and received in another variant by a commit merger.

We can establish three directions from the sender of
the PR to its receiver: from the mainline to the fork
(PullRequestMLV-FV), from the fork to the mainline
(PullRequestFV-MLV), and from a fork to another fork
(PullRequestFV-FV). The former two directions are illus-
trated in Fig. 5. We can see in the figure that only one com-
mit c happens through PullRequestMLV-FV, while two
commits i and iii happen through PullRequestFV-MLV.

• DirectPullComMLV-FV: These are commits that were
merged into a variant by being pulled from one variant
and pushed into another variant. This can be achieved
in two ways: syncing a fork1 or merging an upstream
repository into a fork.2 In the latter case, only a subset
of commits may actually be merged (cherry picking).
Like the pull requests, direct commits may appear in two
directions. However, unlike pull requests, it is not possible
to identify which variant a direct pull commit came
from. This is because of the nature of distributed version-
control systems such as git: commits can be in multiple
repositories, but there is no central record identifying the
commits’ origin. Since it is common for commits to be
pulled from the mainline and pushed into the fork repo
as a result of the fork trying to keep in sync with the new
changes in the mainline, we made an assumption that all
the direct pull commits we find in a fork are pulled from
the mainline variant and pushed into the fork variant. Thus,
we defined DirectPullComMLV-FV. Looking at Fig. 5 we
can identify the two remaining common commits d and
f as DirectPullComMLV-FV.

• Fork variability percentage: Here we want to deter-
mine how different the FV is from the MLV in
terms of the commits/changed lines of code since the
fork date. We defined a fork variability percentage
for the fork commits as UniqueCom/(UniqueCom +
StartingCommitsMergedCom) × 100 and for the fork
changed lines of code as UniquecdLOC/(UniquecdLOC+
StartingCommitscdLOC + MergedCdLOC)× 100.

B. Results

The results for RQ2 are presented in Figures 6 to 9.
a) Direct pull commits: Figure 6 presents a boxplot

showing the distribution of the commits that are cherry-picked
from the MLV by the FVs. From the figure, we observe that
the median of the cherry-picked commits is at the mark zero.
This tells us that the majority of the FVs do not perform cherry
picking of commits from the MLV. More specifically, 80 of
the 127 FV did not perform any cherry picking of commits
since they have been created.

b) PullRequests: Figure 7 shows the distribution of the
merged pull requests from MLV to FV in the left histogram,
and from FV to MLV in the right histogram. The figure shows
that there are a few merged pull requests in both directions.
For MLV-FV, we observe a total of 15 merged PRs being sent

1https://help.github.com/articles/syncing-a-fork/
2https://help.github.com/articles/merging-an-upstream-repository-into-your-

fork/

DirectPullCom_MLV->FV

37

7

78,125

15,625

3,125

625

125

25

5

1
0

Page 1

Fig. 6: Distribution of the direct pull commits
(DirectPullComMLV-FV) that were cherry picked from
the MLV to the FVs (y-axis in log scale)

128 64 32 16 8 4 2 1 0 12864321684210

PullRequest_FV-MLVPullRequest_MLV-FV

F
re

q
u

en
cy

12

10

8

6

4

2

0

F
req

u
en

cy

12

10

8

6

4

2

0

Page 1

Fig. 7: Distributions of the number of pull requests (MLV-to-
FV and FV-to-MLV) that were merged between the FV and
the MLV (x-axis in log scale)

128

64 32 16 8 4 1 0

F
req

u
en

cy

400

300

200

100

0128

6432168410

PullRequestCom_FV->MLVPullRequestCom_MLV->FV

F
re

q
u

en
cy

400

300

200

100

0

Page 1

Fig. 8: Distributions of the number of pull request commits
(MLV-to-FV and FV-to-MLV) that were sent from the fork
variants to the mainline variant (x-axis in log scale)

P
ercen

tag
e

120

100

80

60

40

20

0

Group5

VariabilityPercentage_CdLOCVariabilityPercentage_Commits

P
er

ce
n

ta
g

e

120

100

80

60

40

20

0

80 60 40 20 0 806040200

Population Pyramid Frequency Variability by Group5

Page 1

Fig. 9: Distribution of the VariabilityPercentage (left histogram)
and the VariabilityPercentagecdLOC (right histogram)

from five of the 88 MLVs to five of the 125 FVs. For FV-MLV,
we observe a total of 16 merged PRs being sent from ten of
the 127 FVs to ten of the 88 MLVs.

We were surprised to see PRs being sent from the mainline
app to the fork variants, since typically the opposite direction
is the more expected route. We decided to investigate this
observation more closely. For a given pull request, we identified
the developer who initiated the PR and the developer who
merged it. In Fig. 5 and in Section V we illustrate how we
differentiated the developers in the MLV–FV pair of variants.
We discovered that all of the 15 PullRequestsComMLV-FV
were either initiated by a common developer (defined shortly,
in Section V), who contributes to both MLV and FV, or
by a developer who is only in the FV. In all the 15
PullRequestsComMLV-FV, we did not find any PR that was
initiated by a developer who had only authored commits in
the MLV. This means that the FV maintainers would go to the
MLVs and initiate a PR with the commits they are interested in
and send it to the FVs they maintain. The described scenario is
another form of cherry-picking we discovered where some
developers prefer to use PRs instead of direct pulling of
commits described above. For the results of merged PRs from
one FV to another FV, we only found one merged PR.

Looking at only the number of PRs does not give the whole
picture of the size of the code propagated between the variants.
To understand the size of the propagated changes, we also look
at the number of commits contained in the merged PRs. Fig. 8
shows the distribution of these commits. We observe that we
have large numbers of commits contained in the merged PR of
FV-MLV when compared to those of MLV-FV. For example
in the right histogram showing PullRequestComFV−MLV

in Fig. 8, we observe that there is one FV that propagated 427
commits to the MLV

c) Fork Variability Percentage: In Fig. 9, we present a
stacked histogram of the distribution of the variability indicies
of the FVs in relation to their corresponding MLV. The left
histogram shows the results of the percentage of FV variability
based on the commits and the right histogram shows the
corresponding changed lines of code (LOC) of the commits.
From the results presented in Fig. 9, we observe that both the
distributions are all right-skewed. This means that the majority
of the FVs do not differ so much from the MLV in terms of
the UniqueCom and their corresponding changed LOC. From
the statistics of MergedCom, we observe that 64 of 88 app
families (i.e., 72.7%) have values of zero meaning that the
variants in those families did not perform any form of code
propagation.

V. CONTRIBUTOR DIVERSITY IN APP FAMILIES (RQ3)

With RQ3, we investigated who contributes to app families,
for instance, whether the app variants are typically controlled
the MLV developers or by new developers.

A. Methodology

We now describe how we collected data to investigate the
commonality of the developers between a MLV and its FVs.

Given two variants in an app family, we define a common
developer as one who has authored at least one commit in each
of the two variants. Recall that in Section IV-A and Fig. 5, we
illustrated various types of commits that exist between MLV
and FV, and which may result from different code propagation
strategies. We can further identify in which variant a given
commit was authored. In Fig. 5 we illustrate the commits that
were authored in the FV and MLV can be divided as follows:

• FV Commits: In a MLV–FV pair, these are commits that
were authored in a FV. The FV commits are the sum FV-
UniqueCom and PullRequestsComFV-MLV. From Fig. 5,
the FV commits are i, ii, iii and iv.

• MLV Commits: In a MLV–FV pair, these are commits
that were authored in a MLV. The MLV commits are the
sum of MLV-UniqueCom, PullRequestsComFV-MLV, and
DirectPullComMLV-FV. From Fig. 5, the MLV Commits
are 1, 2, 3, 4, a, b, c, d, e, f .

For all app families, we collected the FV Commits and the
corresponding MLV commits. We then extracted the developers
from the commit details. The commit details we collected
included author name, e-mail, login name, and changed
lines of code. After collecting the commit details, through
manual inspection, we discovered that some contributors of
the applications use more than one account for their commits,
which causes them to appear as different contributors. To
address this issue, we performed name merging to ensure that
our data is not polluted with duplicate information that would
introduce noise. We merged the details of two contributors
into one using the heuristics employed by Businge et. al [12]
in a related study of code authorship and fault proneness.
Specifically, two contributors are merged into one if (a) they
possess the same login ID, (b) possess different login ID but
possess the same full names, or (c) possess both different login
ID and full names but have the same e-mail prefix (i.e., prior
to the email domain name).

In Table I, we outlined the five metrics TotalDevMLV,
TotalDevFV, TotalDevs, CommonDevs, and CommonDevs %),
which relate to code authorship. We used these metrics to
determine the commonality between the developers of MLV
and FV. We illustrate the methodology used to compute the
percentage of commonality of developers i.e., the value of
CommonDevs %, with an example in Fig. 5. The figure
comprises a total of three developers: FV.d1, who authored
commits i,ii,iii, and iv; MLV.d1, who authored commits 1,
2, 3, a, and b; and MLV.d2, who authored commits c,d,e and
f . So, TotalDevs = 3. Developers MLV.d1 and FV.d1 refer
to the same developer who has contributed commits in both
the MLV and the FV. This means that we have one common
developer but the number of times it appears in Fig. 5 is two
(i.e., count(CommonDevs) = 2).

In Fig. 5, the percentage of common
developers–CommonDevs % computed as the
count(CommonDevs)/TotalDevs × 100 would be
2/3× 100 = 66.7%.

TotalDevsMLV

300250200150100500

Fr
eq
ue
nc
y

60

50

40

30

20

10

0

Mean = 30.24

Std. Dev. = 53.037

N = 88

Page 1

Fig. 10: A histogram showing the distributions of the total
developers of the MLV–TotalDevMLV for the 88 MLV.

TotalDevsFV

50403020100
Fr
eq
ue
nc
y

60

40

20

0

Mean = 3.09

Std. Dev. = 5.263
N = 127

Page 1

Fig. 11: Distribution of the total numbers of developers of the
FV (TotalDevFV) for the 127 FVs

B. Results

Figure 10 andFig. 11 show the distribution of TotalDevMLV in
the 88 MLVs and TotalDevFV in the 127 FVs, respectively.
As can be seen from the figures, the number of developers in
both the MLV and FV are right-skewed (i.e., mean>median),
which means that most of the apps (whether MLVs or FVs)
are developed and maintained by a few developers. Looking at
Fig. 12, we also observe a left-skewed distribution of common
developers between the MLVs and the FVs. This indicates that

CommonDevs%

100806040200

of

 M
LV

-F
V

Pa
irs

120

100

80

60

40

20

0

Mean = 6.75
Std. Dev. = 17.475
N = 127

Page 1

Fig. 12: Distribution of common developers between the MLV
and the FVs for the 127 pairs of MLV–FV

there are many MLV-FV pairs that have no common developers.
In fact, 94 of the 127 MLV-FV pairs (74%) do not have any
common developers.

VI. TYPES OF REUSE IN APP FAMILIES (RQ4)

With RQ4, we wanted to understand the types of reuse that
occur and what kind of variations drive the forking of apps.

A. Methodology

We manually investigated a sample of our 88 identified families.
To sample, we first ordered the families by their sizes (number
of variants) and then used stratified sampling to select two
families from each variant frequency. For each frequency, if
more than two families existed, we randomly selected two. If
two or less families existed, we analyzed whatever existed.

We obtained eleven families. Specifically, our sample contai-
ned one family with ten variants, two families with six variants
each, two families with five variants each, two families with
four variants each, two families with three variants each, and
two families with two variants each.

For each app family, we qualitatively compared the FVs and
the MLV by looking at their app descriptions on Google Play
and Github, as well as their additions and customizations in
the new commits after the fork date on Github. We investigated
the app families along the following criteria:

• Criterion 1: Variant Domains: The different variants in
the app family belong to the same category listed on Gog-
gle Play. These categories comprise: tools, productivity,
health & fitness, and so on.

• Criterion 2: Cherry-picking: The different FVs in a
family perform cherry-picking of commits from the MLV.

• Criterion 3: Backward propagation: The FVs in an app
family performed backward code propagation to the MLV
through pull requests.

• Criterion 4: Shared developers: All pairs of MLV–FV
in an app family have common developers.

• Criterion 5: User Competition: Variants are competing
for the same users (explained shortly) on Google Play.

• Criterion 6: Significant Differences: The FVs ’signifi-
cantly’ added or changed functionality of the MLV. If
the UniqueCom commits are just simple customizations
of the MLV, then the answer is No. Otherwise, for
additions of new features, bug fixes, and so on, it is
Yes. We investigated this criterion by first looking at the
FV description on Google Play to determine the goal
and nature of the app, and then manually inspecting
the UniqueCom commits of the FV to identify the
development activities that occurred.

B. Results

Table III summarizes the results for RQ4, showing the findings
for the six criteria for each sampled app family.

We identified four categories of reuse, which we explain
in the following four subsections, referring to Table III for
additional criteria when needed. Note that some app families
fall into more than one category.

1) Re-branding & Customizations: In this category,
FVs make simple modifications to the MLV code
and are then published on Google Play. Modificati-
ons may include changing the user interface, XML/Java
package names, logos, server names, and so on. The
app families we identified in this category include the
MLVs: bitcoin-wallet/bitcoin-wallet, HashEngineering/dash-
wallet, opendatakit/collect, DigitalCampus/oppiamobile-
android, shadowsocks/shadowsocks-android, and own-
cloud/android.

In Table III, we see that all the four app families in this reuse
category do not have significant differences in the functionality
they provide (Criterion 6). On the other hand, there are some
differences with respect to Criterion 5 which looks at whether
the variants compete on the app store or not. We discuss this
aspect further:

• Competing variants: In Table III, column–(Criterion5) we
present seven families whose variants could possibly be
competing for the same users. For example, variants in the
app families of the MLVs bitcoin-wallet/bitcoin-wallet,
HashEngineering/dash-wallet, and owncloud/android,
the variants are possibly competing for the same
users on Google Play. For example, the customizati-
ons made in the FVs of bitcoin-wallet/bitcoin-wallet
and HashEngineering/dash-wallet include changes to
the transaction fees. Another example is the FV blau-
cloud/android of owncloud/android, which made cus-
tomizations to provide a free app on Google Play, since
the MLV is a paid app.

• Non-Competing variants: In Table III, column–(Criterion5)
we present five families whose variants may not be
competing for the same users. For example, in two
app families of the MLVs: opendatakit/collect and
DigitalCampus/oppiamobile-android, the variants are li-
kely not competing for the same users on Google Play. For
example, in one app family, the MLV targets specific user
needs in one country, and the FVs reuse the functionality
of the MLV by customizing the app to target related user
needs in other countries. In a specific example in an app
family, the MLV DigitalCampus/oppiamobile-android
is a mobile learning application for students of Wits Digi-
talCampus in South Africa to run training content, quizzes,
and video content offline, while the FV CCP-ICT/oppia-
mobile-android customized the MLV to deliver the same
content to health workers in Nepal. In another example, the
MLV opendatakit/collect is a generic data collection app,
while the FV anggabayu21/collect is a data-collection
app for customizing the MLV functionality to collect
specific data for disaster risk management. Another FV
kobotoolbox/collect customized the MLV to collect data
in humanitarian emergencies.

2) Implementation of Different, but Related Features: In this
reuse category, FVs in the app families implement different but
related features from the MLV. We identify two app families
with the MLVs shagr4th/droid48 and k9mail/k-9 in this

TABLE III: Summary of findings for RQ4

Family (MLV) Reuse Category Num. of Variants Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5 Criterion 6

bitcoin-wallet/bitcoin-wallet RC 10 Yes Yes & No Yes & No Yes & No Yes No
opendatakit/collect RC 6 No Yes & No Yes & No Yes & No No Yes
DigitalCampus/oppia-mobile-android RC 6 Yes & No Yes Yes Yes No No
owncloud/android SM, FE 5 Yes & No Yes & No Yes & No Yes & No Yes & No No
HashEngineering/dash-wallet RC 5 Yes No No Yes & No Yes No
mendhak/Google Playlogger FE 4 No Yes & No No No No Yes
k9mail/k-9 FE, DRF 4 Yes Yes & No No No Yes Yes & No
XCSoar/XCSoar SM, FE 3 Yes Yes No Yes Yes Yes & No
shadowsocks/shadowsocks-android FE, RC 3 Yes Yes No No Yes Yes & No
wordpress-mobile/WordPress-Android FE 2 No Yes Yes No No Yes
shagr4th/droid48 DRF 2 Yes No No No Yes No

Criterion1 Are the variants in the same domain (Google Play category)?
Criterion2 Have the FVs performed cherry-picking of commits?
Criterion3 Have the FVs performed backward code propagation?
Criterion4 Do the MLV and FVs have common developers?
Criterion5 Is there a possibility of variants competing for users on Google Play?
Criterion6 Are there any significant differences in functionality between MLV and FV?
Yes & No Yes for some variants, No for others
RC Re-branding & Customizations
DRF Implementation of different, but related features
FE Functionality extension
SM Support for MLV

category. A specific example, the FV czodroid/droid48sx
is an emulator for the HP 48 SX scientific calculator, which is
a modified version of the MLV shagr4th/droid48, an emulator
of the HP 48 scientific calculator.

As seen in Table III, all app family variants in this reuse
category are in the same domain and also all the variants are
likely competing for the same users on Google Play.

3) Functionality Extension: This category of reuse
involves FVs that extend the functionality of the
MLV. We identified the following app families in
this reuse category: mendhak/gpslogger, k9mail/k-9,
shadowsocks/shadowsocks, XCSoar/XCSoar, and
wordpress-mobile/WordPress-Android. For example, the
MLV mendhak/gpslogger is just a very basic GPS tracker
app with basic functionality. The FVs dkm/gpslogger
and itbeyond/EOTrackMe_Android reuse the MLV’s
functionality and extend it with additional functionality to
perform sophisticated tracking. Another example is the FV
micwallace/visualvoicemail, which implements a new visual
voice mail feature that is not offered in the MLV k9mail/k-9.

4) Supporting the MLV: We also found FVs that simply offer
additional support to the MLV. We identified two app families in
this reuse category: owncloud/android and XCSoar/XCSoar.
For example, the FV grogg/ownClient is a workaround app
to resolve a known bug in Android 4 devices that affects
the MLV owncloud/android. Another example is the FV
staylo/XCSoar, a testing app used by the developers of the
MLV XCSoar/XCSoar to test new features of the MLV. The
FV is not intended to be used by normal users.

VII. THREATS TO VALIDITY

Internal Validity. The major threat that could affect the
findings are the possible errors as a result of the few manual
steps we carried out during our app family data collection.
However, during our qualitative analysis of the 11 app families
having a total of 50 variants in Section VI, we did not find any

MLV or FV that were wrongly linked to Google Play. This
gives us confidence in our data collection steps.
Construct Validity. We defined various metrics. Threats to
the construct validity are that they are not suited to answer
our research questions; that they are not well-defined; or that
they are incorrectly calculated. We addressed these threats by:
first formulating relevant research questions and then defining
the metrics; cross-checking the metrics among the authors,
including refining and re-formulating them; and verifying the
resulting statistics among the authors. Especially the latter
revealed smaller inconsistencies we fixed. Also note that
the metrics are defined over different entities. For instance,
some metrics are calculated for entire families, while others
are calculated for all FVs or apps. We made sure that the
entities for which the metrics are calculated are clarified in
the definition, for instance, using the formulation “a given FV,”
which indicates calculation of the metric for individual FVs (so,
we provide summary statistics for the respective distribution
of the metric over all FVs).
External Validity. A threat is that our results may not
generalize to other app families on Google Play. In fact, our
scope was focused on open-source apps that are hosted on
GitHub. Likely, commercial closed-source app families may be
maintained differently, and a dedicated study of such families
would be valuable future work, complementing our findings.
Another threat is that our app families may be biased towards
specific app categories. However, as shown in Section III, our
mined apps are well-represented over different app categories.

VIII. RELATED WORK

Only few works study variability management in software
ecosystems. Berger et al. [3] study variability mechanisms
used in successful software ecosystems. Their focus is on
mechanisms that support variability in the whole ecosystem.
The authors analyze five ecosystems, including Android, and

identify a spectrum of different mechanisms, related to the
target users of the ecosystem. Interestingly, they do not look
into clone-based variability management, which, as we show,
occurs in ecosystems. In fact, such practices are done in small
subsets of the ecosystems, where developers do not use any
mechanism offered by the ecosystem platform, such as Android.

Schmid et al. [13] discuss variability (“customization”)
mechanisms in service platforms, based on a literature review
and an industry partner’s yard management system. They
describe various forms of variability occurring in the platform,
and identify static and dynamic variability mechanisms suited
for service-oriented platforms.

Seidl et al. [14] introduce an integrated approach to manage
variability in space and time in software families using a
Hyper Feature Model. The authors’ approach allows derivation
of concrete software systems from a software product lines or
software ecosystems configuring both functionality (features) as
well as versions. The authors’ goal is to handle the evolution of
individual variable assets of the software family by performing
the changes on realization assets.

Werber et al. [15] study the application and combination
of methods for uncovering variability models from software
ecosystems from multi-repository structures in the context of
a real-world industrial case study in the health care domain.

All the discussed studies consider ecosystems as collections
of individual software projects, managed within their own
source code repositories and having references to each. The
above authors also discuss variability in the ecosystems and
describe the variability forms occurring in those ecosystems.
Our study differs from the above work in that it explores clone-
based reuse within the Android ecosystem, where smaller app
families are developed and maintained in parallel as they cater
for different end user requirements or hardware specifications.

The study of Li et al. [2] is related to ours in that it mines
Android apps from different market places and presents a
vision of carrying out a large-scale, world-wide and time-
aware study of reuse practices for automatic assessment of
extractive SPL adoption in families of apps. The authors present
their initial prototype of app families clustering method. Yet,
Li et al.’s study classifies a large number of apps as family
members, orders of magnitude more than we actually found.
Even though, we were limited to apps hosted on GitHub, the
fact that we found only 88 families still indicates that actual
(fork-) relationships should be investigated before classifying
apps as members of a family.

Finally, Mojica et al. [8] crawl Google Play to study
software reuse in mobile apps, finding substantial reuse. Their
study indicates that, while these apps benefit from increased
productivity, they are also more dependent on the quality of the
apps and libraries that they reuse. In comparison, we studied
more detailed reuse practices with information mined from
both GitHub and Google Play.

IX. CONCLUSION

We presented an exploratory study of clone-based variability
management in the Android Ecosystem. Our main objective

was to investigate reuse practices of Android app families in
the Android ecosystem on GitHub. We focused on Android
app families whose apps appear on Google Play and are, thus,
used by end users in practice. We mined and analyzed different
properties of the 88 app families we identified from both
GitHub and Google Play repositories in order to determine the
families’ characteristics as well as code-propagation practices
and maintainer relationships. In the 88 app families we studied,
forked variants are created mainly for: (i) re-branding and
simple customizations, (ii) feature extension, (iii) supporting
of the mainline app, and (iv) implementation of different, but
related features. Surprisingly, we observed that 73 % of the
app families did not perform any form of code propagation,
and in 74 % there is no single common developer, all variants
are maintained by different developers.

ACKNOWLEDGMENT

Sida/BRIGHT (project 317) under the Makerere-Sweden bilate-
ral research programme 2015-2020, NSERC, Vinnova Sweden
(project 2016-02804), and the Swedish Research Council
Vetenskapsrådet (project 257822902).

REFERENCES

[1] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github:
Transparency and collaboration in an open software repository,” in CSCW,
2012.

[2] L. Li, J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon,
“Mining families of android applications for extractive spl adoption,” in
SPLC, 2016.

[3] T. Berger, R. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wasowski,
and S. She, “Variability mechanisms in software ecosystems,” Information
& Software Technology, vol. 56, no. 11, pp. 1520–1535, 2014.

[4] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature? a qualitative study
of features in industrial software product lines,” in SPLC, 2015.

[5] J. Krüger, W. Gu, H. Shen, M. Mukelabai, R. Hebig, and T. Berger, “To-
wards a better understanding of software features and their characteristics:
A case study of marlin,” in VaMoS, 2018.

[6] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines. Springer, 2013.

[7] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An exploratory study of cloning in industrial software
product lines,” in CSMR, 2013.

[8] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E.
Hassan, “A large scale empirical study on software reuse in mobile apps,”
IEEE Software, vol. 31, no. 2, pp. 78–86, Mar. 2014.

[9] F. Sattler, A. von Rhein, T. Berger, N. S. Johansson, M. M. Hardø,
and S. Apel, “Lifting inter-app data-flow analysis to large app sets,”
Automated Software Engineering, no. 25, pp. 315–346, Jun 2018.

[10] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, Dec 2017.

[11] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in MSR, 2014.

[12] J. Businge, S. Kawuma, E. Bainomugisha, F. Khomh, and E. Nabaasa,
“Code authorship and fault-proneness of open-source android applications:
An empirical study,” in PROMISE, 2017.

[13] K. Schmid, H. Eichelberger, and C. Kröher, “Domain-oriented custo-
mization of service platforms: Combining product line engineering and
service-oriented computing,” Journal of Universal Computer Science,
vol. 19, no. 2, pp. 233–253, jan 2013.

[14] C. Seidl, I. Schaefer, and U. Assmann, “Integrated management of
variability in space and time in software families,” in SPLC, 2014.

[15] J. H. Werber, A. Katahoire, and M. Price, “Uncovering variability models
for software ecosystems from multi-repository structures,” in VaMoS,
2015.

	Introduction
	Study Design
	Identification of App Families
	Analysis of App Families

	App Family Characteristics (RQ1)
	Methodology
	Results

	Code Propagation in App Families (RQ2)
	Methodology
	Results

	Contributor Diversity in App Families (RQ3)
	Methodology
	Results

	Types of Reuse in App Families (RQ4)
	Methodology
	Results
	Re-branding & Customizations
	Implementation of Different, but Related Features
	Functionality Extension
	Supporting the MLV

	Threats to validity
	Related Work
	Conclusion
	References

