
Multi-View Editing of Software Product Lines with PEoPL
Mukelabai Mukelabai

Chalmers | University of Gothenburg
Sweden

Benjamin Behringer
htw saar
Germany

Moritz Fey
htw saar
Germany

Jochen Palz
htw saar
Germany

Jacob Krüger
Harz University & University of

Magdeburg, Germany

Thorsten Berger
Chalmers | University of Gothenburg

Sweden

ABSTRACT
A software product line is a portfolio of software variants in an
application domain. It relies on a platform integrating common
and variable features of the variants using variability mechanisms—
typically classified into annotative and compositional mechanisms.
Annotative mechanisms (e.g., using the C preprocessor) are easy to
apply, but annotations clutter source code and feature code is often
scattered across the platform, which hinders program comprehen-
sion and increases maintenance effort. Compositional mechanisms
(e.g., using feature modules) support program comprehension and
maintainability by modularizing feature code, but are difficult to
adopt. Most importantly, engineers need to choose one mechanism
and then stick to it for the whole life cycle of the platform. The
PEoPL (Projectional Editing of Product Lines) approach combines
the advantages of both kinds of mechanisms. In this paper, we
demonstrate the PEoPL IDE, which supports the approach by pro-
viding various kinds of editable views, each of which represents
the same software product line using annotative or compositional
variability mechanisms, or subsets of concrete variants. Software
engineers can seamlessly switch these views, or use multiple views
side-by-side, based on the current engineering task. A demo video
of PEoPL is available at Youtube: https://youtu.be/wByUxSPLoSY

KEYWORDS
Projectional Editing, Product Lines, Annotative, Modular
ACM Reference Format:
Mukelabai Mukelabai, Benjamin Behringer, Moritz Fey, Jochen Palz, Jacob
Krüger, and Thorsten Berger. 2018. Multi-View Editing of Software Product
Lines with PEoPL. In ICSE ’18 Companion: 40th International Conference on
Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3183440.3183499

1 INTRODUCTION
Software-product-line engineering (SPLE) is an approach to imple-
ment a portfolio of system variants in an application domain [1].
Instead of engineering variants separately, a software product line
(SPL) exploits commonalities and manages variabilities among the
variants as features, which are integrated into a common software

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3183499

platform. SPLE provides processes, principles, and mechanisms to
effectively engineer such platforms. By selecting the desired fea-
tures, individual variants can be derived from the platform using
an automated and tool-supported process.

To engineer such a platform, developers need to use variability
mechanisms—implementation techniques to implement variable
software artifacts. Many different variability mechanisms have been
proposed [1, 7], typically classified into annotative mechanisms—
such as the C preprocessor (CPP) [15] or templates—and into com-
positional mechanisms—such as feature modules (e.g., AHEAD [3]
and FeatureHouse [2]) or deltas [17]. A key difference between
these mechanisms is the way they represent features of the SPL.
Annotative mechanisms represent features in the source code by
wrapping them with variability annotations (e.g., #ifdef). While
they are relatively easy to apply, annotative mechanisms quickly
increase the maintenance effort of the platform [15]. Specifically,
they challenge code comprehension, since annotations obscure the
structure and the control flows of source code, and since feature
code is often scattered across the platform [14, 16]. In contrast,
compositional mechanisms represent all of a feature’s artifacts in
one module, thereby providing a clear code structure that eases
code comprehension and decreases maintenance effort. However,
decomposing a system into modules is challenging, as it relies on
the right decomposition strategy of a system into features, and
implementing modules imposes development overhead [1].

All existing SPLE approaches force developers to choose one
of these two mechanisms to represent a feature and its software
artifacts, and to adhere to this mechanism during evolution and
maintenance. While refactorings and combinations have been pro-
posed to switch between annotative and compositional representa-
tions [9, 10, 12], they are heavyweight and do not allow developers
to quickly switch between different representations of a feature,
or even to use representations side-by-side. Previously, we have
presented the PEoPL1 (Projectional Editing of Product Lines) ap-
proach [4, 5], which aims at providing developers with the flexibility
to exploit benefits of different feature representations on demand.
PEoPL relies on separating the internal representation of feature
artifacts from the external ones shown to the developer. The latter
are currently implemented as seven editable views among which
SPL engineers can flexibly switch or which they can even use side-
by-side. These views represent the feature artifacts using different
annotative and compositional mechanisms, or represent subsets of
the variants (hiding unnecessary variability).

1http://peopl.de

https://youtu.be/wByUxSPLoSY
https://doi.org/10.1145/3183440.3183499
https://doi.org/10.1145/3183440.3183499
http://peopl.de

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden M. Mukelabai et al.

In this paper, we demonstrate the PEoPL IDE targeting devel-
opers who engineer variant-rich systems, such as SPLs. Based on
a running example—an SPL of a simple text editor—we demon-
strate the use and advantages of PEoPL. We discuss the engineering
challenges PEoPL addresses, briefly introduce its concepts, then
exercise four of the seven editable views that engineers can use,
and finally discuss case studies and our evaluation.

2 BACKGROUND AND CHALLENGES
To motivate PEoPL, we discuss characteristics and shortcomings of
annotative and compositional variability mechanisms.

2.1 Background
Annotative representations. Perhaps the most commonly used
annotative mechanism is the CPP, which uses textual variability
annotations, such as #ifdef, to annotate code of variable features.
A similar mechanism can be found in CIDE [11], which relies on
graphical annotations (highlighting feature code using background
colors). Such annotations have presence conditions (PCs)—Boolean
expressions over features—determining the inclusion of respective
code by evaluating the PCs of a feature selection.
Compositional representations. Recognizing shortcomings of
annotative mechanisms, various compositional mechanisms have
been proposed, representing feature code as cohesive units. They
are typically called compositional units, feature modules, or delta
modules, depending on the concrete variability mechanism. Variant
features are defined by creating, in a step-wise fashion, more spe-
cific modules of a base module. During product derivation, these
modules are composed to derive the desired variant.

In contrast to annotative representations, compositional repre-
sentations avoid scattered feature code and thereby support com-
prehension: Developers can inspect one module to understand even
highly scattered features. However, compositional mechanisms
impose overhead—such as additional code to define a module or im-
plement module interactions—and finding the right decomposition
of a system is challenging. As such, they have found less adoption,
but their advantages, especially when evolving and maintaining
features, call for SPLE approaches that facilitate their adoption.

2.2 Engineering Challenges
Implementing a set of reusable systems as an SPL causes issues
related to variability. In particular, PEoPL addresses the following.

First, the complementary variability mechanisms—annotative
and compositional—have different pros and cons considering the
way they present an SPL’s code to the user [1, 9]. To utilize the
pros of both mechanisms, it is reasonable to combine or allow an
engineer to switch between them—allowing annotated and modular
views on the same code. This way, engineers can use the presenta-
tion they see most fit for a specific task or compare them in parallel.

Second, only combining the complementary variability mecha-
nisms breaks uniformity and, as a consequence, can cause incon-
sistencies and other problems in the source code [12, 13]. To avoid
such problems, despite allowing different presentations of the code
to the engineer, PEoPL relies on a uniform internal structure of the
source code based on an abstract-syntax-tree (AST). Thus, using dif-
ferent presentations for the engineer does not cause inconsistencies

in the code. In addition, the uniform internal structure facilitates
extending PEoPL.

Third, compositional presentations pose new challenges, such as
coarser granularity and missing context information [9, 13]. PEoPL
mitigates these, as engineers can integrate annotations intomodules
to enable fine-grained variability and modules can be blend in or
out of the base code. Due to the separation of internal structure
and external presentations, PEoPL allows engineers to customize
their views on the code to avoid granularity and context issues.

3 THE PEOPL APPROACH AND IDE
To illustrate the external representations of PEoPL, we use the
Simple-Text-Editor (STE) SPL shown in Figure 3. In STE, users can
choose variants of a text editor based on ten features, including, for
example, text highlighting, line wrapping, and specific program-
ming language support.

To provide developers with different representations of an SPL
on demand, we introduce the PEoPL IDE—a projectional editor
for SPLs. PEoPL is implemented upon the language workbench
JetBrains Meta Programming System (MPS) which enables pro-
jectional editing. Unlike text editing (a.k.a., parser-based editing),
where usersmodify concrete syntax, i.e., edit characters and a parser
builds an AST, in projectional editing user editing gestures directly
modify the AST of a program [6].

PEoPL uses projectional editing to enable engineers to choose
an external representation—which they interact with—for a fea-
ture artifact by separating it from the internal representation of
the SPL. Figure 1 illustrates this concept. Internally, the SPL is
represented as an AST whose nodes are annotated based on our
variability language CoreVar, which is language-independent. Ex-
ternally, developers are free to choose annotative or compositional
representations, or both in parallel for a software artifact. Any edit-
ing activity performed by engineers is directly applied on the AST.

PEoPL’s CoreVar can be tailored to any language, which allows
to even provide more advanced representations as the one shown
in Figure 2. As a result, the major benefits of PEoPL are:

• A uniform internal representation to support diverse exter-
nal representations, and a simple way to plug in new external
representations;

• the possibility for developers to switch between external
representations of an artifact on demand;

• the ability to edit an artifact using different representations
in parallel.

editing

Variability realization
projections

Developer

rendering
 Target language
+ Core-Variability language (CoreVar)
+ Target-language-specific
 CoreVar tailorings (e.g., JavaVar)

modular annotative blended variant ext..
.
.

 Rendering rules + editing operations...

Common variational AST
Internal representation

External representation

Figure 1: PEoPL separates internal and external variability
representations.

Multi-View Editing of Software Product Lines with PEoPL ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

Figure 2: PEoPL’s CoreVar language tailored to a mathemat-
ical language.

PEoPL supports seven external representations that developers
can use when engineering an SPL: Textual annotation projection, vi-
sual annotation projection, module projection, blending projections,
variant projection, fade-in module projection, and reuse projection.
We now focus on four projections and explain them in more detail.
Textual Annotation Projection.As it is the most commonly used
variability mechanism, the CPP representation is supported by
PEoPL. In Figure 3a we show this projection, in which the finer
granularity of annotations can be quicker achieved compared to us-
ing modular representations. PEoPL also supports both, disciplined
and undisciplined annotations of the source code. Undisciplined
annotations are those that do not align with the source code struc-
ture: They do not wrap entire classes, methods, or statement blocks.
While often considered problematic, they are still used in practice.
Visual Annotation Projection. Since textual annotations can
quickly clutter the code and make it hard to comprehend, a vi-
sual representation is provided in PEoPL. Similar to CIDE [11], this
representation uses coloring to represent parts of the code that im-
plement a particular feature. In Figure 3b, we show the same code
as in Figure 3a, but with colors on the left to separate features. For
instance, code implementing HighlightMode is highlighted purple
and code implementing Statistics is highlighted green, aiming
to improve visibility of features and readability of code.
Variant Projection. Often, engineers want to assess a specific
variant (e.g., for a customer) in detail. For this purpose, PEoPL
provides a variant projection, where artifacts that do not correspond
to the current feature selection are hidden. Figure 3c illustrates a
view of the base configuration.
Module Projection. It is often the case that engineers work on
source code for one particular feature during a task. For exam-
ple, if an engineer edits the feature Statistics, it is much more
convenient and simpler if the corresponding code is in one place
(physically or logically). Thus, the engineer does not have to scroll
through multiple lines of colored or annotated code. To this end,
PEoPL provides the module projection view of features, which we
display in Figure 3d. With this projection, developers can quickly
locate and edit code related to a feature of interest.

4 CASE STUDIES AND EVALUATION
As case studies, we migrated four annotative and three modular
SPLs, and developed one SPL (Jest) from scratch in PEoPL. Ta-
ble 1 summarizes their characteristics. These SPLs cover different

Table 1: Software product lines available in PEoPL.

SPL LOC CLA F FM Source Domain
Berkeley DB 19k 218 42 83 CIDE Database
GPL 1k 15 21 26 CIDE Graph
Java-Chat 0.6k 8 9 9 CIDE Chat
Jest 19k 144 22 22 - Web search
Lampiro 45k 140 19 19 CIDE Instant messaging
Prop4J 2k 6 14 14 FeatureHouse Propositional formula
STE 1k 9 10 10 DeltaJ Text editor
Vistex 2k 9 16 16 FeatureHouse Graph/text editor

LOC: Lines of code | CLA: Classes | F: Features | FM: Feature modules

domains, sizes, and original variability mechanisms. In a first eval-
uation, we analyzed three characteristics of these case studies and
compared them to the original variability mechanisms [5]. First,
we considered whether PEoPL can express the same variability as
the two variability mechanisms. This is the case, since we could
migrate all SPLs in Table 1 without workarounds. Second, we in-
vestigated the scalability of creating variants of an SPL. Here, we
found that PEoPL scales well for systems up to the size of Berkeley
DB—requiring 5.2 seconds on average for generating and writing
2,000 variants to the disk, compared to 18 seconds for the com-
positional FeatureHouse and 7 seconds for the annotative CIDE.
Third, we measured the overhead of a pure compositional mech-
anism, considering boilerplate code that is required to enable the
same variability of the CIDE SPLs with compositional mechanisms.
We found that relatively few methods require actual boilerplate
code (e.g., 13% in Berkeley DB). However, due to fine granular-
ity and feature interactions within method bodies, almost all of
these methods require boilerplate code—due to reliance on external
representations instead of changing the internal one.

In a second evaluation, we conducted a user study with seven
Master students, in which we analyzed the usability of PEoPL.
Despite the small sample size, we could already observe that all
participants have been capable of implementing SPLs with PEoPL.
The results indicate that our participants prefer visual annotations
to textual ones. Considering the different projections, we found
that two students solely used visual annotations, but the other five
stated that switching and parallelizing views is useful.

5 RELATEDWORK
Other development environments for SPLs, such as FeatureIDE [18],
enable different implementation techniques. However, only one
technique and its representation can be used at a time. To overcome
this problem, some approaches aim to combine, integrate, ormigrate
between annotations and modules [8, 10, 12, 13]. In contrast to
PEoPL, none of these allows to use different external representations
in parallel—especially as tool support is missing—and can cause
several problems due to non-uniform mechanisms.

Projectional editing for SPLs has been proposed before [19]. This
led to the development of the mbeddr [20] language family, which
also uses MPS to apply CPP concepts on an AST. To our knowledge,
this is the only other approach for projectional editing on SPLs but
does not allow for multiple external representations.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden M. Mukelabai et al.

}

▶ Base : VP_818562206220845104
public class SimpleTextEditor {

public static final string TITEL = "SimpleTextEditor";

private Display display = new Display();
private Shell shell = new Shell(this.display);
private string lastDirectory;
private Menu menu = new Menu(this.getShell(), SWT.BAR);
private TextField text;

public SimpleTextEditor() { }

private void addFeatures() {
▶ LineWrap : VP_4588962373395255314
this.addLineWrap();
// the base code adds no features
▶ HighlightCurrentLine : VP_9011147280120852059
this.addHighlightCurrentLine();
▶ Statistics : VP_9011147280121700089
this.addStatistics();
▶ HighlightMode : VP_2375270840097069091
this.addLanguageHighlight();

c) Variant Projection
▶︎ Base : VP_818562206220845104
public class SimpleTextEditor {

refines public class SimpleTextEditor {
private Label status;
refines private void addFeatures() {

original();
this.addStatistics(); }

public void addStatistics() {
this.status = new Label(this.shell, SWT.BORDER);...

addListener(ste);
}
this.text.addEventListener(new LoadEventListener() {

@Override
public void load(EventObject e) {

StyledTextExtended ste = (...; addListener(ste);
updateStatus();

} }); }

}

d) Module Projection
module Statistics

a) Textual Annotative Projection
#ifdef Base
public class SimpleTextEditor {

b) Visual Annotation Projection

#ifdef LineWrap
this.addLineWrap();

#endif
// the base code adds no features

#ifdef HighlightCurrentLine
this.addHighlightCurrentLine();

#endif
#ifdef Statistics

this.addStatistics();
#endif
#ifdef HighlightMode

this.addLanguageHighlight();
#endif

public static final string TITEL = "SimpleTextEditor";
private Display display = new Display();
private Shell shell = new Shell(this.display);
private string lastDirectory;
private Menu menu = new Menu(this.getShell(), SWT.BAR);
private TextField text;

public SimpleTextEditor() { ... }

private void addFeatures() {

public static final string TITEL = "SimpleTextEditor";
private Display display = new Display();
private Shell shell = new Shell(this.display);
private string lastDirectory;
private Menu menu = new Menu(this.getShell(), SWT.BAR);
private TextField text;

public SimpleTextEditor() { ...}

private void addFeatures() {

 // the base code adds no features }

private Label status;

Figure 3: Excerpt of the Simple Text Editor SPL with different external presentations.

6 CONCLUSION
In this paper, we presented the PEoPL IDE for multi-view editing of
SPLs. Using a unified internal representation that is separated from
external representations, PEoPL combines advantages of annotative
and compositional variability mechanisms—allowing to use both in
parallel and on-demand for the same software artifact. Currently,
we provide seven complementing external representations in PEoPL
and a full IDE based on the projectional language workbench MPS.

ACKNOWLEDGMENTS
Supported by the ITEA project REVaMP2 funded by Vinnova Swe-
den (2016-02804), by the Swedish Research Council Vetenskapsrådet
(257822902), and the German Research Council DFG (3382/2-1).

REFERENCES
[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines. Springer.
[2] Sven Apel, Christian Kästner, and Christian Lengauer. 2013. Language-

Independent and Automated Software Composition: The FeatureHouse Experi-
ence. IEEE Transactions on Software Engineering 39, 1 (2013), 63–79.

[3] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. 2004. Scaling Step-Wise
Refinement. IEEE Transactions on Software Engineering 30, 6 (2004), 355–371.

[4] Benjamin Behringer. 2017. Projectional Editing of Software Product Lines - The
PEoPL Approach. Ph.D. Dissertation.

[5] Benjamin Behringer, Jochen Palz, and Thorsten Berger. 2017. PEoPL: Projectional
Editing of Product Lines. In ICSE.

[6] Thorsten Berger, Markus Völter, Hans Peter Jensen, Taweesap Dangprasert, and
Janet Siegmund. 2016. Efficiency of Projectional Editing: A Controlled Experiment.
In FSE.

[7] Cristina Gacek and Michalis Anastasopoules. 2001. Implementing Product Line
Variabilities. ACM SIGSOFT Software Engineering Notes 26, 3 (2001), 109–117.

[8] Stan Jarzabek, Paul Bassett, Hongyu Zhang, and Weishan Zhang. 2003. XVCL:
XML-Based Variant Configuration Language. In ICSE.

[9] Christian Kästner and SvenApel. 2008. Integrating Compositional andAnnotative
Approaches for Product Line Engineering. In McGPLE.

[10] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2009. A Model of Refac-
toring Physically and Virtually Separated Geatures. In GPCE.

[11] Christian Kästner, Salvador Trujillo, and Sven Apel. 2008. Visualizing Software
Product Line Variabilities in Source Code. In ViSPLE.

[12] Jacob Krüger, Marcus Pinnecke, Andy Kenner, Christopher Kruczek, Fabian
Benduhn, Thomas Leich, and Gunter Saake. 2018. Composing Annotations
Without Regret? Practical Experiences Using FeatureC. Software: Practice and
Experience 48, 3 (2018), 402–427.

[13] Jacob Krüger, Ivonne Schröter, Andy Kenner, Christopher Kruczek, and Thomas
Leich. 2016. FeatureCoPP: Compositional Annotations. In FOSD.

[14] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-Based Soft-
ware Product Lines. In ICSE.

[15] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi.
2015. The Love/Hate Relationship with the C Preprocessor - An Interview Study..
In ECOOP.

[16] Leonardo Passos, Jesus Padilla, Thorsten Berger, Sven Apel, Krzysztof Czarnecki,
and Marco Tulio Valente. 2015. Feature Scattering in the Large: A Longitudinal
Study of Linux Kernel Device Drivers. In MODULARITY.

[17] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. 2010. Delta-Oriented Programming of Software Product Lines. In SPLC.

[18] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE - An Extensible Framework for Feature-
Oriented Software Development. Science of Computer Programming 79 (2014),
70–85.

[19] Markus Völter. 2010. Implementing Feature Variability for Models and Code with
Projectional Language Workbenches. In FOSD.

[20] Markus Völter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb. 2012. mbeddr:
An Extensible C-Based Programming Language and IDE for Embedded Systems.
In SPLASH.

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Background
	2.2 Engineering Challenges

	3 The PEoPL Approach and IDE
	4 Case Studies and Evaluation
	5 Related Work
	6 Conclusion
	References

