
An Architecture for Decentralized, Collaborative, and Autonomous Robots

Sergio Garcı́a∗, Claudio Menghi∗, Patrizio Pelliccione∗, Thorsten Berger∗, Rebekka Wohlrab∗†
∗Chalmers | University of Gothenburg, Gothenburg (Sweden)

† Systemite AB, Gothenburg (Sweden)
Email: [sergio.garcia, claudio.menghi, patrizio.pelliccione, thorsten.berger]@gu.se, wohlrab@chalmers.se

Abstract—Robotic applications are typically realized using ad
hoc and domain-specific solutions, which challenges the engi-
neering and cross-project reuse of such applications. Especially
in complex scenarios, where self-adaptive robots collaborate
among themselves or with humans, the effective and systema-
tic engineering of such applications is becoming increasingly
important. Such scenarios require decentralized software archi-
tectures that foster fault-tolerant ways of managing large teams
of (possibly) heterogeneous robots. To the best of our know-
ledge, no existing architecture for robot applications supports
decentralized and self-adaptive collaboration. To address this
gap, we conducted a design science study with 21 practitioners
and experts in the field of robotics to develop an architecture
fulfilling these requirements through several iterations. We pre-
sent SERA, an architecture for robot applications that supports
human-robot collaboration, as well as adaptation and coordi-
nation of single- and multi-robot systems in a decentralized
fashion. SERA is based on layers that contain components that
manage the adaptation at different levels of abstraction and
communicate through well-defined interfaces. We successfully
validated SERA by considering a set of real scenarios, by both
using simulators and real robots, by involving robotic experts,
and by benchmarking it with state-of-the-art solutions.

1. Introduction

Robotic systems are increasingly integrated in our lives.
Robots are used in a huge variety of contexts [1], such as
service, industrial, military, or space robots, each of which
target specific tasks. Such robots are used for replacing
humans in repetitive, laborious or potentially dangerous
activities. The World Robotic Survey [2] estimated 35 million
indoor service robots to be sold by 2018, accumulating a
sales value of $12 billion since 2015. The global sales of
household and personal robots is expected to grow by 23.5%
per year [3]. This increase is accompanied with huge progress
in robot technology, especially in image processing, planning,
control, and collaboration.

A robot typically performs specialized tasks; however,
some tasks are highly complex and require a team of
robots, whose capabilities (e.g., perception, manipulation,
and actuation) are coordinated and supervised, potentially
in direct interaction with humans. Such tasks are typically

defined in terms of a high-level mission—a description of
the goals that the robots shall achieve.

Such robot collaboration scenarios substantially increase
the complexity of robot control software and demand ap-
propriate software architectures. While many architectures,
including layered [4], [5], component- or service-based
architectures have been proposed [6], to the best of our
knowledge, no architecture has explicitly focused on such
multi-robot and robot-human decentralized collaboration. The
closest approach to this result is the work of Kaupp et al. [7]
who developed an architecture for performing an information-
gathering task with human-robot teams. However, their work
is limited to such tasks where robots and human do not
physically interact.

In general, creating architectures for robotic applications
is challenging. As we will show—through our literature
study, experience, and expert opinions collected from ro-
botic experts—the current architectural challenges faced by
engineers can be classified into three main problems:
P1: Robotic framework. The lack of architectural models
and methods in the production of software for robotic
systems. Robotic systems development—instead of relying on
established engineering processes—requires a craftsmanship
for assembling and developing robotic software [8]. This
also negatively impacts modularity and reusability of robotic
applications and their components.
P2: Collaboration of heterogeneous teams. The absence of
a common approach or strategy that might allow vendors to
produce their own robots and deploy them within a team.
These teams may also be formed by heterogeneous robots
produced by different companies. The lack of a standard,
decentralized architecture for robotic applications that is
able to abstract the hardware of each robot prevents the
usage of robotic applications developed by different vendors.
Furthermore, it impedes the management, coordination, and
collaboration of a robotic team (or a human-robot team)
based on communication and information fusion.
P3: Self-adaptation. A lack of systematic support for adap-
tations of robot teams. Often, adaptations performed by a
single robot are not sufficient to accomplish a specified
mission. Tasks may need to be reassigned to other robots,
or whole teams need to be reconfigured. Causes can be
failures or changes in the mission or operational environment.
Even though substantial research has been conducted on
self-adaptive systems, including reference architectures for

1

self-adaptive robotic applications [4]–[6], [9], systematic
engineering support for adaptation mechanisms for collabo-
rating robots is needed [9].

To address these problems, we present SERA, a Self-
adaptive dEcentralized Robotic Architecture. SERA is defi-
ned as a three-layered and distributed architecture defining
core components (e.g., adaptation manager, mission mana-
ger), their relationships, and interfaces needed to control
collaborating and potentially heterogeneous robots. As such,
SERA also promotes engineering and integration of robotic
applications developed by different vendors. Decentralization
(i) allows managing large teams of robots, (ii) facilitates—
through loose coupling—the addition, substitution, and re-
moval of robots, (iii) minimizes the cost of changes since
the responsibility of every action is within single robot that
observes its environment and acts on events autonomously,
(iv) facilitates data-centric workflows since data are passed
directly to where they are required, at the next robot in the
workflow, and (v) increases robustness and decreases system
vulnerability (e.g., reducing single points of failure) [10].

Finally, SERA promotes the development of applica-
tions that embed self-* features—that is, “systems which
are capable of self-configuration, self-adaptation and self-
healing, self-monitoring and self-tuning” [5]. SERA has been
proposed according with the Kramer et. al. [5] reference
architecture to facilitate the development of self-* features.
Existing self-adaptive architectures do neither directly sup-
port teams of robots nor decentralized adaptation techniques
and algorithms. Our architecture will be able to self-adapt
at two levels: at a local level (by individual robots) and at a
global level (by a team of robots in a collaborative way).

To conceive SERA, we conducted a literature study of
existing architectures (extending an existing mapping study
[6]), held four focus groups with four industrial and 17
academic experts in robotics. We showed the feasibility
of implementing SERA by realizing a prototype building
upon the middleware ROS [11]. We evaluated SERA both
in a simulation and a real-world scenario where a human
guides a mobile robot to carry a payload. The evaluation
is conducted with industrial partners participating in an EU
H2020 project1 on software systems engineering for teams
of robots that collaborate to achieve complex missions. We
discuss how SERA addresses the challenges identified in our
literature survey. We provide an online appendix with the
architecture, its documentation, and example implementations
in [?]. Additional videos are available on the project website.

We proceed by describing our literature survey in Sec. 2
and our research method in Sec. 3. We then present SERA
in detail in Sec. 4, together with its implementation in Sec. 5.
We discuss its validation in Sec. 6 and conclude in Sec. 7.

2. Literature Review

To evaluate the state of the art of software architectures for
robot applications and their suitability to address the three
main problems, we systematically study related literature. We

1. http://www.co4robots.eu/

used and extended the mapping study of Ahmad et al. [6],
who identified and analyzed 56 peer-reviewed papers on
software architectures for robotic systems.
Architectural Challenges. Ahmad et al. [6] provide a brief
discussion of eight challenges that architectures for robot
applications need to address and guidelines based on the
literature for tackling the challenges. Interestingly, their
literature evaluation does not show whether existing architec-
tures provide specific support for decentralized, collaborating
robots, especially fault-tolerant interactions between multiple
robots and between robots and humans or not. To this end,
we extended their list of architectural challenges. First, multi-
robot collaboration (Ch7, see below) must be addressed,
which refers to an architecture’s ability to manage teams
of robots. A single robot can perform tasks, but some of
them may be too complex for it to perform [10]—e.g.,
spatially separate tasks. Second, decentralized operations
(Ch8, see below), which indicates architectural support for
decentralized planning and collaboration, must be supported
(as explained in Sec. 1). Third, human-robot interaction (Ch9)
is an architectural challenge, which is pivotal since the
presence of robots in environments shared with humans
will be increased in the next years [2]. Consequently, SERA
needs to address the following challenges, organized into
our main problems P1–P3 from above (Sec. 1):
P1 - Robotic framework
Ch1 - Distributed Resources Access: How to enable
access and utilization of distributed resources (hardware
components—often virtualized) to develop robots? [6]
Ch2 - Re-engineering: How to support re-engineering or
evolution of existing robots to satisfy new requirements? [6]
Ch3 - Modelling: How to exploit high-level models that raise
abstraction from code to models in robotic systems? [6]
Ch4 - Design: How to abstract code components and their
interconnections as architectural components to support the
notion of component-based robotics? [6]
Ch5 - Programming: How to engineer a framework that
enables reuse and modularity for robotic programming? [6]
P2 - Collaboration of heterogeneous teams
Ch6 - Information Fusion: How to support the collection,
processing, and sharing of information that is fused into a
team of robots to support their operations? [6]
Ch7 - Multi-robot: How to support the communication and
coordination for managing a team of robots?
Ch8 - Decentralized: How to exploit decentralized architec-
tures in order to manage the communication between robots
without the need of a coordinating central control unit?
Ch9 - Human-robot collaboration: How to support the coope-
ration between robots and humans for realizing complex
missions?
P3 - Self-adaptation
Ch10 - Reconfiguration: How to equip robots with self-
reconfiguration facilities to allow them to operate optimally
with available resources and evolving requirements? [6]
Ch11 - Fault Tolerance: How to enable robots to continue
operations despite the presence of failures? [6]
Review Methodology. We evaluated the most significant
works according to these challenges. From Ahmad et al.’s

2

http://www.co4robots.eu/

mapping study [6] we selected eight papers out of the 56
that are studied. We selected them based on our inclusion
and exclusion criteria, which are listed in Table 1.

Since the time range of Ahmad et al.’s work ends in 2016,
we extended the mapping study searching and identifying
works that where accepted between 2016 and 2017. To
perform the extension we followed Ahmad et al.’s approach
using the following search string: Software AND (Architecture
OR Component OR Design OR Framework) AND (Robot
OR Robotic OR Robotics OR Humanoid). We searched for
suitable publications in the following digital libraries: Google
scholar, IEEE Xplore, ACM DL, Springer Link, Science
Direct, and Scopus. We screened many publications, but only
six fulfilled the criteria and were evaluated by us [12]–[18].
Review Results. Table 2 describes the list of the identified
architectures and which of the challenges each addresses.

The mapping study differentiates between four types
of architecture models, namely: Object-Oriented Robotics
(OO-R), Component-Based Robotics (CB-R), Service-Driven
Robotics (SD-R), and Cloud robotics. We evaluated the work
of Baier et al. [19], that focuses on the robotics development
activity and is part of the OO-R model. Their approach
relies in a OO-R architectural model, which, contrary to the
other models, is not able to tackle most of the challenges.
Most of the extracted papers belong to the CB-R category,
since this architectural model has been broadly used. As
shown in the table, most of these works are able to tackle
the problems of Design (Ch4), Programming (Ch5), and
Reconfiguration (Ch10). Nevertheless, these architectures
neither rely on decentralized approaches (Ch8) nor support a
distributed access to the resources (Ch1). For example, Tajalli
et al. [22] proposed a three-layered architecture intended
for self-adaptation. It was implemented by Medvidovic et
al. citemedvidovic, and put to use to orchestrate a hete-
rogeneous team of robots. However, their implementation
has the same limitations that PLASMA [22] has. On the
contrary, SERA is able to deal with decentralization and
collaboration between robots and humans. Another example
is AEROSTACK [16], a novel software architecture for
swarms of aerial robots that only fails at solving the modeling
challenge (Ch3) and not supporting a decentralized way of
managing robotic teams (Ch8). However, this architecture
and its framework are only focused in the usage of aerial
robots. Within the SD-R category, SORA [23] is able to

TABLE 1. INCLUSION AND EXCLUSION CRITERIA.

Inclusion criteria

1. Primary studies
2. Studies (i.e. papers) that present new reference software architectu-

res for robotic applications.
3. Studies that present instantiations of already existing reference

software architectures within the field of robotics.

Exclusion criteria

1. Studies written in any language other than the English language.
2. Short publications and posters (< 3 pages).
3. Publications that were unavailable through the search engine.
4. Studies that focus on software frameworks, toolchains or platforms.

TABLE 2. SOFTWARE ARCHITECTURES PRE-STUDY

P1 P2 P3

C
h1

C
h2

C
h3

C
h4

C
h5

C
h6

C
h7

C
h8

C
h9

C
h1

0

C
h1

1

OO-R
Roblet [19] • • • • • •
CB-R
BRICS [20] • • • • •
SAW [21] • • • • • •
PLASMA [22] • • • • • • •
SAFECASS [13] • • • • •
AEROSTACK [16] • • • • • • • • •
ArchGenTool [17] • • • • •
MORPH [12] • • • • • •
SD-R
SORA [23] • • • • • • • • • •
NUclear [15] • • • • • •
Cloud robotics
Hu et al. [24] • • • • * • •
RAPP [18] • • • • • • • •

SERA * • • • • • • • • •

tackle most of the challenges described above, but it lacks
the ability of controlling a team of robots in a decentralized
fashion. Unlike SERA, SORA heavily relies on a specific
middleware. In contrast, we strive to make SERA supporting
a wide variety of middleware. The work of Hu et al. [24] falls
in the category of cloud computing since this work allows
the most computing expensive tasks to be performed in the
cloud instead of locally in each robot. Their architecture
supports a decentralized way of communication between
robots, except, indeed the communication with the cloud.
Moreover, the control is decentralized.
Study Conclusion. In summary, while a large body of works
exists on software architecture for robotic applications, most
of these works do neither cope with decentralization nor
with human-robot collaboration. Especially, none of them
solves both challenges at the same time.

3. Research Method

Method. We followed the Design Science research approach
[25] to conceive and implement SERA. The research method
consists of three phases for iteratively creating an artifact
(which is SERA): knowledge base, development, and justifica-
tion and evaluation. The environment represents the problem
space of our research field. It comprises people, organizations,
and their technology. The research is addressed through
development and justification and evaluation in an iterative
way. Based on the input from the environment and the
knowledge base, we developed our architecture and evaluated
it. We realized this phase through meetings, both internal and
external, with the rest of the project consortium, collecting
feedback from them and improving SERA based on it. Finally,
the knowledge base consists of the raw materials and already

3

TABLE 3. MEETINGS SPECIFICATION

Expertise Role Experience Participation
1 RTP PL 23 years 4
2 RTP AP 10 years 1
3-5 RTP PDR 5-9 years 4
6 RTP PhD 2 years 5
7 RMC FP 30 years 2
8-9 RMC PDR 5-9 years 4
10 RMC PhD 2 years 4
11 RP FP 39 years 2
12-13 RP PDR 5-9 years 2
14 SE AP 19 years 4
15 SE AP 10 years 1
16 SE PDR 9 years 4
17 SE PhD 2 years 5
18 B SM 10 years 2
19 B SD 5 years 4
20 P CEO 10 years 2
21 P SD 15 years 2

Roles: Project Leader (PL); Full Professor (FP); Associate
Professor (AP); Post-doc researcher (PDR); PhD student (PhD);
Company’s chief executive officer (CEO); Senior Manager (SM);
and Software developer (SD).
Expertise: Real-time planning (RTP); Robotic motion and
control (RMC); Robotic perception (RP); Software Engin. (SE);
Industrial partners: Bosch (B) and PAL Robotics (P). The field
of expertise of participants 18 and 19 (B) is Artificial Intelligence.
Number 20’s (P) fields of expertise are Event Planning and
Artificial Intelligence. Partner number 21 (P) is specialized in
Computer Vision, Robotics, and Artificial Intelligence.

known research. We contribute both to the environment and
to the knowledge base with our research outcome (SERA).

A central part of our research method is focus groups
[26]. For this reason, we held several focus-group meetings
with our partners while developing SERA. Specifically,
in the meetings, we gave a presentation of the current
work, discussed open questions and the next steps. Each
discussion helped refining the main architectural decisions.
We discussed, validated, and implemented/declined each of
the points collected from every focus group, depending their
agreed priority (i.e., whether requirement or suggestion).
Participants. Table 3 shows our focus-group participants
along with their affiliations, roles, experience, and partici-
pation quantified in the number of meetings they attended.
Regarding our industrial partners, Bosch2 is a multinational,
large-size company that mainly works in the field of engi-
neering and electronics. Apart from the integration process
within the project, they provide their own mobile robotic
platforms and their facilities for real-world experiments. PAL
Robotics3 is a multinational, medium-size company that
manufactures humanoid robots. Within the project they also
provide a mobile manipulator, a stationary manipulator,
and their facilities for real-world experiments. Also, both
companies provided models of their robot and facilities for
simulating purposes. The rest of the stakeholders have the
role of developers and are in charge of developing component
code for implementing SERA. The heterogeneity of our
participants and the differences between the academic and the

2. https://www.bosch.com/
3. http://www.pal-robotics.com/en/home/

Knowledge base Develop/build Justify/evaluate

Kramer et al.
reference

architecture

Identification of
components

Identification of
connections

First single-robot
version

Informal survey
by email

Focus group
(kick-off meeting)

Design of the
inter-robot

communication

First multi-robot
version

Focus group (CM1)
Architecture

documentation

Current version

Integration with
platform

(Integration week)

Validation through
real-world

experiments

Continuous
improvement

Focus group
(internal meetings)

Focus group (CM2)

Definition of
interfaces

(1)

(2)(3)

(4)(5)
(6)

(7)

(8)
(9)

(10)(11)(12)

(13)

(15)

(14)

(16)
(17)

Figure 1. Process followed for defining SERA.

industrial partners allow the project to have different scopes
and points of view when planning and tackling problems.
Process. The process followed for developing our archi-
tecture is depicted in Fig. 1; this figure represents how we
performed the three phases of the Design Science research
approach framework. Our starting point is the well-known
three-layer reference architecture described by Kramer et al.
[5] (1) and others [4]. At the beginning of the project, we
identified our stakeholders’ expectations for SERA in a first
focus group (2). For example, a discussion was held to define
what are the possible solutions for efficiently and effectively
managing a robotic team in a decentralized way. This way,
we identified the main functionalities that our architecture
was required to support. Then, we defined them in the form
of components (3). The refinement was conducted in eight
internal focus groups (4) where only subjects from the SE
group (i.e., the authors) participated. Each meeting consisted
of a short presentation of the already identified functionalities
and suggestions of new components. When the components
were defined we identified the connections between them
(5), achieving the first version of SERA (6). At this point it
was only able to support a single-robot application, but it
was used as a first release to be extended and refined. Then,
we improved SERA and upgraded its version by adding the
multi-robot functionality (7), i.e., enabling the inter-robot
communication. We validated this functionality by getting
feedback from stakeholders and practitioners of the project
(8) through a set of informal surveys (one of them specific
for industrial ones). In the surveys we inquired technical
questions regarding the interfaces that each partner planned
to provide and request (https://goo.gl/oPCHxV). The new

4

https://www.bosch.com/
http://www.pal-robotics.com/en/home/
https://goo.gl/oPCHxV

multi-robot version of SERA was shared in a collaborative
workspace where our partners could give us feedback in a
more agile way (9).

The project held two consortium meetings (CM in the
following), which had the same purpose: present the current
state of our work and receive appropriate feedback from
the rest of the consortium. During the first CM (CM1),
participants were asked about the interfaces they require
from, or provide to, other partners during the developing
and integration processes (10). These questions and further
discussion were continued afterwards via email to clearly
define the interfaces (11). After documenting SERA (12),
the second CM (CM2) was held (13) in order to discuss our
progress before testing the software in a real robot. After
CM2, the next steps were the integration within the software
platform and testing. To test the work we had so far, the
project also organized an integration week (IW), where all
developed packages were first simulated and then deployed
within a robot (14). In this context, we demonstrated through
experiments in real-world scenarios that SERA can support
the performance of a robot achieving complex missions (15)—
i.e., collaborative transportation and autonomous navigation
in a dynamic environment. After the validation, we performed
minor improvements (16) to arrive at the current version
of our architecture (17). Our architecture achieved a stable
status; however, its design facilitates SERA’s maintenance
and continuous improvement in the future.

4. Architectural Design of SERA

SERA is inspired by and extends concepts of existing
proposals for robot software architectures from the literature,
as identified in the survey (cf. Sec. 2). We now present
SERA and an example instantiation aimed at four real-world
scenarios (explained shortly) by discussing the main design
decisions, describing SERA’s three layers, main components,
and the functionalities they encapsulate. Our instantiation is
depicted in Fig. 2, which guides our description.

The main stakeholders of SERA are: developers who
instantiate SERA by implementing its components or reusing
the already developed ones stored in a components repository,
and non-technical end-users (without expertise in robotic
and/or ICT), who will use the instance to specify missions for
multi-robots using the so-called central station. The central
station decomposes the global mission into local (robot-
specific) missions before mission execution (adaptations
during execution are performed in a decentralized way).

Our example instantiation of SERA (Fig. 2) is inspired by
the following four scenarios of robot collaboration, whereas
the first is used in our evaluation with real robots.

Case A, Physical Guidance: A human physically guides
a robot to carry an object;

Case B, Collaborative Grasping: A mobile manipula-
tor and a stationary manipulator collaboratively grasp and
manipulate an object;

Case C, Collaborative Loading/Unloading: A mobile
platform and a stationary manipulator collaborate to load
and unload objects onto a mobile robotic platform; and

Case D, Information Exchange: Information exchange
between a human giving orders and a robotic agent.

4.1. Main Architectural Units

The components of SERA are defined and allocated into two
main units, the central station and the robot.
Central station. The central station interprets high-level
mission specifications, comprising a hierarchy of three
components. On top, the High-level specification manager
provides an interface (a graphical one in our SERA instance)
to specify high-level missions of the application in the
component. The global mission—i.e., the mission to be
achieved by the whole team in a collaborative manner—
is processed by the Global mission manager, which checks
the feasibility of the mission and forwards it to the Global
mission decomposer. Global missions can only be altered
by the user manually. The latter splits the global mission
into local missions to be accomplished by each single robot.
Decomposing temporal logic formulas into a set of formulas
is a hard problem and cannot be solved in general. Therefore,
our strategy is to specify missions through a Domain Specific
Language (DSL) that has been conceived to enable non-
technical users to specify missions for multiple robots. The
decomposition of a global mission into local missions is
based on the semantics of the operators of the DSL. Further
information will be be found in Deliverable 4.1, available
on the webpage of the project.

For example, the collaborative mission to be achieved in
case C is split into “load the item on top of the mobile
platform” and “receive the item”. These local missions
are transferred to the mobile platform and the stationary
manipulator, respectively. Once the local missions are trans-
ferred (before execution), the central station ends its role
and the mission execution and possible adaptations and
reconfigurations are performed in a decentralized way.
Robot. This unit represents a framework targeting a single,
deployed robot, aiming at controlling its run-time. It contains
a set of components to achieve the local mission received
from the central station. In SERA, each robot is realized
as a service that communicates with other robots, loosely
following the Service-Oriented Architecture (SOA) paradigm.

4.2. Architectural Layers in the Robots

The architecture of the robots follows the architectural
guidelines of Kramer et al. [5] for self-adaptive systems
and organizes the components in a three-layer architecture
with the layers Mission management, Change management,
and Component control.
Mission management layer. The local mission specificati-
ons, which typically incorporate real-time constraints, are
provided to each robot of the team by means of timed
temporal logic formulae. The formulae are built upon a
discrete symbolic model (or abstraction) of the robots’ motion
capabilities, which is compliant with their dynamic behavior,
and enables the synthesis of high-level plans.

5

local mission[robot1]
Global mission manager

Global mission decomposer
global mission

Mission
Management
Layer

Local mission manager
local mission

high level specification

High level
specification manager

Change
Management
Layer

Component
Control
Layer

local mission[robot1]

Adaptation manager

Plan executor
plan

Motion planning & control
call

[gestures
robot state
environment]

method
call

Legend

component unit

Central
station

Robot

robot status
local mission
shared map

sharing

loca
l m

iss
ion[ro

bot4]

Gestures recognition

Detection executor

SLAM

Robot interface Sensors interface

Hardware & drivers

[robot state, mission status
environment] Communication &

collaboration manager

Information manager

[call status]
[plan status]

notify

Figure 2. Instance of the SERA architecture

This layer manages the local missions of each robot and
is in charge of communicating and synchronizing with the
other robots in order to perform the collective adaptation.
For example, in case C, in the event that a mobile robot
transporting a load communicates a failure to the other robots,
each robot synchronizes with other robots and computes a
new set of local missions that allow achieving the global
mission. The Communication and collaboration manager is
the component in charge of establishing this communication
between robots. This component shares required information
from the local robot (info from the sensors, its position,
etc. received from the middle and lower layers) and also
reads the feedback provided by the rest of the team so that
the adaptation, synchronization, and collaboration can be
achieved. The Local mission manager checks the feasibility
of the mission to be achieved by the robot. If accepted, it
forwards the mission to the Adaptation Manager.
Change management layer. This layer manages the adap-
tation performed or requested by the upper and lower layers.
This adaptation can be triggered by changes in the context
and/or by mission infeasibility. It is responsible for the
employment of reconfiguration strategies at a local level
and the refinement of the discrete abstractions. When a
satisfying plan cannot be found with the initial discretization
of the dynamics, the symbolic models are refined accordingly
with specific discrete paths. This permits to obtain finer
discretizations and increases the possibility of finding a
satisfying plan. The Adaptation manager receives the local
mission, and produces a plan that specifies how the robot
performs that mission. For example, in case C, the mission
“load an item on top of the mobile platform” is converted into
a plan including tasks such as “grasp the target item”. If there
is an unexpected event (e.g., an obstacle in the environment)
this component adapts to it (e.g., replanning the path to
follow). If adaptation at local level is not feasible (e.g., the
gripper of a robot results broken), it is forwarded to the upper
level to perform the global adaptation (e.g., replace the robot
with an idle one). Then, the computed plan is forwarded to
the Plan executor, which exploits the lower-level component

Motion Planning and Control. The Information manager
is defined for managing the communication between the
upper and lower layers; it performs an asynchronous message
passing to decouple the layers.
Component control layer. This layer focuses on the design
of the control actions that are required for the implementation
of the discrete paths that are generated by a high-level planner
(performed by the Adaptation manager). This layer receives
calls from the Plan executor and notifies the Adaptation
manager about changes that are detected in the robot mission,
environment, or current state.

The component Motion Planning and Control contains
all the necessary packages needed for the correct perfor-
mance of the robot’s motion. It is responsible for the
autonomous motion of the robots while simultaneously
performing obstacle and collision avoidance (i.e., low-level
planning). It receives information from the components SLAM
(Simultaneous Localization and Mapping) and Detection
executor to perform the motion planning. Motion Planning
and Control receives calls from the Plan executor. It also
maintains a bidirectional connection with the Robot Interface
for communicating with the robot’s actuators. Moreover,
the Gestures recognition reads the information given by
the algorithms from the Detection executor and recognizes
different gestures from a human user. Then, it sends the
collected information to the Adaptation manager in the
change management layer above. Local missions can be
changed dynamically through specific gestures from a human
(e.g., stop the mission, follow me, etc.). The Detection
executor is the component that perceives other agents (which
could be humans or other robots) and objects of interest in the
environment. It uses the feed from the visual sensors. It also
publishes information regarding the state of other agents, as
other robots or humans. The component SLAM receives the
data from the Sensors interface (it is depicted as one interface,
but the communication represents several interfaces from
several robotic sensors) and also from the rest of the robots
that compose the team. The SLAM algorithm then computes
the current position of the robot in the environment and builds

6

the map of that environment; then, it shares both with the
middle and upper layers. The interface for the robot, which
represents the structures of each robot (we implemented the
three robots mentioned in Sec. 3 in the current instantiation),
is represented as the Robot interface component. In the same
way, the Sensors interface component contains the interface
for all the available sensors existing in the robots. Finally,
the component Hardware and Drivers actually represents
several components, one for each of the drivers implemented
to control the real robot hardware.

5. Implementation

SERA can be implemented within a broad range of projects
(can be realized using different middlewares and component
frameworks) related with robotics. The instance we imple-
mented [?] using Python and C++ relies on the middleware
ROS [11], which provides a communication layer upon
the Linux operating system, supporting the execution of
components in a distributed system. ROS offers a message-
based peer-to-peer communication infrastructure supporting
the integration of independently developed software compo-
nents called ROS nodes. To realize SOA-like communication
among components in SERA, we developed a connector
that treats every robot as a REST service and provides com-
munication features. We developed the connector following
the guidelines of previous examples, as ROStful4. Then, an
instantiation of ROS with the Robot unit framework explained
in Sec. 4 is deployed within each robot. The interface between
REST and ROS is realized in SERA via the Communication
and collaboration manager.

TABLE 4. ADAPTATION MANAGER INTERFACES

Interface
name

I/O Message type

/map I nav msgs/OccupancyGrid
/action/result I roseus/StringStamped
/move base/result I move base msgs/MoveBaseActionResult
/tracked humans I Humans
/tracked robots I Robots
/robot pose I geometry msgs/PoseWithCovarianceStamped
/robot status I roseus/StringStamped
/mission update I roseus/StringStamped
/local mission I roseus/StringStamped
/action/id O roseus/StringStamped
/move base/goal O roseus/StringStamped

As stated in the sections above, SERA is developed with
the intention of facilitating the process of developing and
deploying software into a robot. For this reason, we defined
clear components that compose the architecture and the
interfaces between them. Each instance of our architecture
implements the components, whose interfaces are defined
by SERA. We also created a framework that contains an
abstract class for each of the SERA’s components. Each
of these classes encapsulates all the information regarding
the communication code in ROS. It can be understood as a
template method that can be filled in by developers.

4. https://goo.gl/1RVW54

On one hand, the template method approach takes
some flexibility from the developer, disallowing developers
to create or modify component interfaces. On the other
hand, it simplifies the development or modification of the
components for SERA. So, we let developers focus on
component logic, alleviating the need to care about inter-
component communication, such as defining message names
that are provided or requested by components, as would be
necessary with plain ROS. Consequently, instantiating a new
component amounts to creating a new class that calls the
abstract method contained in the abstract class belonging
to the component in our framework. This decouples inter-
component communication (i.e., message passing) from the
component logic and reduces the complexity of the latter.

In the following, we exemplify how we implemented an
instantiation of the Adaptation manager in SERA. Most of
the components implemented in the current instance of SERA
were developed (or migrated) by our partners, except the High
level specification manager and the Communication & colla-
boration manager, which were developed by us. Due to space
limitations, we detail only one component. A white paper
with detailed explanation, diagrams, and an interfaces map is
provided in the project’s webpage (Deliverables 5.1, 5.2). The
version of the Adaptation manager component built outside
of the framework has 227 lines of code (LOC), while its
version that is compliant to the framework has only 58 lines;
therefore the reduction is valuable.

1 c l a s s LTLAdaptat ionManager (Adap ta t i onManage r) :
2 d e f p l a n (s e l f , cu r r en tmap , mis s ion , r o b o t p o s e ,

r o b o t s t a t u s , t r acked humans) :
3 [r o bo t mo t io n , i n i t p o s e , r o b o t a c t i o n ,

r o b o t m i s s i o n] = robo t mode l
4 f u l l m o d e l = MotActModel (rob o t mo t io n ,

r o b o t a c t i o n)
5 p l a n n e r = l t l p l a n n e r (f u l l m o d e l , ’ t r u e ’ , m i s s i o n)
6 p l a n n e r . o p t i m a l (1 0)
7 movement plan=MovementPlan (p l a n n e r . run . p r e p l a n ,

p l a n n e r . run . s u f p l a n)
8 r e t p l a n = P lan (’PLAN ’ , ’ ’ , movement plan)
9 r e t u r n r e t p l a n

Listing 1. Adaptation manager instantiation

The instantiation of the Adaptation manager is shown
in Listing 1, contained in ltladaptationmanager.py
in the repository. The concrete class extends the abstract
class AdaptationManager (Line 1), which contains the logic
of the component and calls to the abstract method (Lis-
ting 3), as shown in Listing 2. Listing 2 and Listing 3
represent pieces of code from the component, contained
in adaptationmanager.py in the repository. Our goal
with the template method is to allow the instantiation of a
component by just defining some features defined by the
abstract method (see Listing 1, line 2).

1 r e t p l a n = s e l f . p l a n (s e l f . s t a t u s . map , t a s k , s e l f . s t a t u s .
r o b o t p o s e , s e l f . s t a t u s . r o b o t s t a t u s , s e l f . s t a t u s .
t r acked humans)

Listing 2. Call to the abstract class

1 @abs t r ac tme thod
2 d e f p l a n (s e l f , cu r r en tmap , t a s k , r o b o t p o s e , r o b o t s t a t u s

, t r acked humans) :

Listing 3. Adaptation manager abstract class

7

https://goo.gl/1RVW54

Table 4 presents information about all the interfaces that
are provided and requested in the Adaptation manager.
For the current implementation of SERA, we use ROS
as the middleware according to which the interfaces are
build. For this reason, our interfaces are realized as ROS
topics (named buses over which nodes exchange messages),
which are specified in the Interface name column. The I/O
column expresses whether an interface provides or requires
information. The last column presents the message type (data
description of each message) for each of our interfaces.

6. Validation

The validation of SERA was performed with respect to
the challenges discussed in Sec. 2. This permitted us to
benchmark SERA and its implementation with state-of-the-
art solutions. In Sec. 6.1, we introduce the strategy we defined
and followed in order to validate SERA before describing
the validation results in Sec. 6.2.

6.1. Validation Strategy

The validation is performed through three main means:
Human experts. We performed the validation with the help
of experts and practitioners in the field of robotics. Refer to
Sec. 3 for a description of the stakeholders involved in this
validation. This validation with human experts included three
steps: (i) internal validation performed through focus groups
involving only SE experts; (ii) presentation of preliminary
and final results to all stakeholders and collection of feedback
by means of focus groups; and (iii) further discussion via
email and informal surveys.
Simulation environment. We use Gazebo (http://gazebosim.
org/) as a simulator, a tool that allows us to easily simulate
robots in various scenarios and that is well-integrated with
ROS. Both of our industrial partners provided repositories
(https://github.com/pal-robotics) that they used for internal
testing in their everyday work. Specifically, in this study we
used the models of the robots and of the company’s facilities
provided by the companies.
Real robots. We validated SERA with a real robot in a real-
world scenario that has been conceived in order to validate the
code and artifacts developed in this study, i.e., the case A in
Sec. 4. Concretely, we tested SERA with an experiment that
involved a mobile manipulator from PAL Robotics interacting
and working together with a human being in PAL Robotics’
facilities. Refer to the website of the project for demonstration
videos. The experiment was performed during the IW, in
which we focused on the realization of an experiment for
case A. The scenario involves a human that has to guide a
robot while performing collaborative transportation. In this
case, a robot must achieve several tasks: (i) It should be
able to autonomously navigate in a known but changing and
dynamic environment shared with humans; (ii) When the
robot reaches a certain predefined location the robot looks
for a human being, the user; (iii) Once detected, the user
points to the target object to be transported so the robot can

detect and track it; (iv) Then, the collaborative transportation
starts, where both human and robot transport an object in a
collaborative manner; the human acts as the master and the
robot as the slave; (v) The transportation goes on until the
user indicates the end of the action via gestures.

6.2. Validation Results

We now discuss the results of our evaluation of SERA with
respect to the challenges identified in Sec. 2. The validation
made use of the validation means described in the previous
section. The results of our evaluation are depicted in Table 2,
where SERA is benchmarked with the other approaches
discussed in this paper.
P1 Robotic Framework.
Ch1 - Distributed Resources Access: This challenge is
addressed by exploiting loosely coupled services that can
be dynamically discovered and invoked. Within SERA each
robot is considered a service with limited knowledge of the
configuration and status of other robots. This is scalable
and enables an easy substitution of robots or addition of
new ones. SERA implements both the SOA-like and the
publish-subscribe paradigms for the communication among
and within robots, respectively.
Ch2 - Re-engineering: For validating Ch2 we made use of
two metrics: flexibility and efficiency. Regarding flexibility,
the metric checks the number of architectural changes needed
to deploy new software components and to manage different
types of robots. This has been validated in the simulation
environment and with real robots. Efficiency is defined in
terms of amount and type of errors occurred when deploying
new instantiations of components. Thanks to the well-defined
interfaces of the architecture, different instantiations of
software components (e.g., different high-level planners were
used depending of the environment where the robot operates)
were used during the IW without struggles.
Ch3 - Modeling: Although SERA has been defined to support
this challenge, it has not been directly addressed yet. In fact,
we plan to automatically generate the skeleton code that
implements the architecture and that provides integration
and communication facilities, as explained in Sec. 5.
Ch4 - Design: SERA encapsulates functionalities of the
robotic system in reusable, modular, and exchangeable com-
ponents, so each each component of the architecture could be
developed in isolation and in parallel. We validated Ch4 by
measuring the changes needed to integrate each component,
and the number and type of errors. In the IW, the components
integration (twelve components implemented) was straight-
forward, since interfaces could be defined beforehand in the
iterative and interactive design process. No errors occurred
during deployment, even for critical components such as
the Adaptation manager, which shares many interfaces with
other components.
Ch5 - Programming: The simulated team of robots (formed
by three robots) is deployed in two different simulated
environments: the facilities of both companies. The real-
world scenario consisted of one robot performing different
missions in the facilities of PAL Robotics. The instantiations

8

http://gazebosim.org/
http://gazebosim.org/
https://github.com/pal-robotics

of each of SERA’s components are defined by abstract classes
that assure a correct implementation of communication
between components. Recall that we also counted the number
of lines of code necessary to implement an instantiation of
a component with and without our approach (cf. Sec. 5). For
instance, the lines of code for the implementation of the
component Adaptation manager reduced from 227 to 58.
P2 Multi and heterogeneous collaborating robots.
Ch6 - Information Fusion: Information fusion is considered
at two different levels: Information fusion of (i) data coming
from different sensors of the same robot; and (ii) data coming
from other sources that are external to the robot (e.g., other
robots). The first level of information fusion is performed by
the SLAM component. It fuses the raw feed from different
sensors (e.g., laser, RGB-D camera, IMU). We validated the
first level via the three main means. The second level is
performed by means of the component Communication &
collaboration manager. This level has been validated through
the Human experts means. We performed an initial validation
through simulation in order to validate the interaction of the
component with the remaining part of the system.
Ch7 - Multi-robot: SERA uses the Communication and colla-
boration manager as an interface between the REST pattern
and the ROS internal communication protocol for enabling
inter-robot communication. The approach and components to
be implemented in order to support the multi-robot feature
were validated through the mean Human experts. Then,
the ability of a team of robots for performing a mission
in a collaborative way were tested through the Simulation
environment. We performed 12 experiments with a team
of three robots with different combinations of the three
robots models provided by Bosch and PAL Robotics. The
experiments were conducted in the two main scenarios
(facilities of both companies).
Ch8 - Decentralized: As explained in Sec. 4, SERA works
in a decentralized way during the mission execution. Ch8
was validated through the Human experts means during the
CMs (cf. Sec. 3). Specifically, we used the means Simulation
environment, where a robotic team was able to achieve a
mission without receiving instructions from a central unit
at run-time. The experiments simulated a robotic team of
three robotic agents (different combinations of robot models
provided by both companies) in the two main scenarios
(facilities of both companies).
Ch9 - Human-robot collaboration: Robotic applications
developed with SERA are able to interact with humans, which
is validated in three steps: (i) strategies and functionalities to
be encapsulated in components were discussed and defined
through the Human experts mean; (ii) specific tasks related
with this challenge were simulated (even though, we did not
simulate human being models but human-shaped objects),
e.g., grasping an object that is held by a human; and (iii)
the experiment realized with a real robot in a real-world
scenario involved a mobile manipulator transporting an item
in a collaborative way with a human (cf. Sec. 6.1).
P3 Reconfigurability and adaptability.
Ch10 - Reconfiguration: The validation of the reconfigura-
bility is performed through the three means, but our robots

are not yet completely self-adaptive since we have not
been able to validate the entire MAPE-K loop [27]. For
illustrating it, we refer to a case that happened during the
IW, where there was a human in the loop that triggered the
activation and deactivation of specific features that were too
computationally expensive—e.g., the gestures recognition.
Thus, the loop lacks the Monitor step. For this reason, a
desirable feature for robots is to be able to automatically
enable and disable components at run-time under certain
conditions. Nevertheless, SERA tackles Ch10 by other means,
as is the case of the re-planning and the collision avoidance
and is validated through the three means. Re-planning from a
high-level planner is performed by the Adaptation manager.
A low-level planning allows the avoidance of (dynamic)
obstacles by means of the Motion planning & control. Gazebo
(the Simulated environment) allows the user to dynamically
manipulate the environment, so the robot has to adapt its
path and/or mission accordingly. The validation through
real robots consists in the execution of two missions (i.e.
autonomous navigation and collaborative transportation) in
a changing environment with the presence of humans.
Ch11 - Fault Tolerance: To classify and evaluate different
categories of faults, we use Steinbauer’s taxonomy [28],
who classifies fault types into: (i) interaction, i.e. problems
perceiving and acting with with other agents as robots
or human beings; (ii) algorithms, i.e. badly implemented
algorithms and shortcomings of the algorithm itself; (iii)
software, i.e. faults related with design and implementation
of robot’s software systems; and (iv) hardware, i.e physical
faults in robot’s equipment. We evaluated Ch11 in terms
of these categories and based on the three main means.
The validation through the Simulation environment allowed
us to evaluate the algorithms, software, hardware, and
collaboration between robots (not humans, since we did
not simulate them) types of faults. The validation through
Real robots allowed us to evaluate various types of faults.
For instance, we evaluated (i) cases in which the robot is
not able to perceive other agents due to the lack of onboard
computational capabilities; (ii) cases in which the design
of the components and their interfaces was not correct and
therefore the integration was not straight-forward; or (iii)
cases in which the gripper of the robot did not work properly
and then the mission was not achievable.

6.3. Threats to Validity

Internal validity. A potential threat to the internal validity
of our work is that the experts who contributed and were
interviewed are part of the same research project, which
might have biased results. Furthermore, only two companies
were part of the contributing group of experts. Yet, the project
has further stakeholders with a heterogeneous background,
who were informed and commented on SERA. Collaborating
with more companies, such as via interviews and surveys, is
valuable future work.
External validity. Our experiments include only small groups
of three robots, which is not a sizable number regarding
multi-robot coordination. These teams of robots just include

9

three robotic models, while we aim to support a heteroge-
neous team of robots. However, the three types of robots
we considered differ substantially in their functionalities.
Moreover, some of the experiments were only validated by
simulation. Performing experiments with other real robots
apart from the ones provided by our industrial partners is
subject to our future work.

7. Conclusion

In this paper, we presented SERA, a decentralized archi-
tecture for teams of self-adaptive robots. We motivated
it with four case studies. In a design-science approach
to develop SERA, we collaborated with 21 experts and
practitioners with heterogeneous background. This allowed
us to conceive, improve, and validate our architecture based
on expert robotics knowledge. We validated SERA through
three different means, including experiments involving a real
robot in a real-word scenario.

SERA supports robot-application developers, who instan-
tiate it to their needs. They can use defined interfaces to
implement specific components or reuse implemented compo-
nents from our framework. Inter-component communication
is provided by the framework—low-level message-passing
(from ROS or another middleware) is abstracted.

As future work, we plan various extensions and refine-
ments of SERA. We plan to automatize the instantiation of the
architecture considering different contexts and to automate
the code generation for the framework that supports the
architecture. Furthermore, we will investigate an extension
of the components’ interfaces to enable a description of
the behavior of each component; specifically, the extended
interfaces will specify when and how a component can
be used (assumptions on its environment) and what the
component ensures when operating in such an environment
(guarantees). SERA should also consider behavioral concerns
and not just (syntactic) compliance to APIs—e.g., to detect
whether new components can be effectively plugged into the
system or a component can be substituted.

References

[1] H. H. Poole, Fundamentals of robotics engineering. Springer, 2012.

[2] IFR, “World Robotic Survey,” https://ifr.org/ifr-press-releases/news/
world-robotics-survey-service-robots-are-conquering-the-world-, 2016.

[3] C. Sheng, “Global dom. serv. robots market - size and trends to 2020,”
https://www.alliedmarketresearch.com/robotics-technology-market, 2016.

[4] E. Gat et al., “On three-layer architectures,” Artificial intelligence and
mobile robots, vol. 195, p. 210, 1998.

[5] J. Kramer and J. Magee, “Self-managed systems: an architectural
challenge,” in Future of Software Engineering, 2007.

[6] A. Ahmad and M. A. Babar, “Software architectures for robotic
systems: A systematic mapping study,” Journ. of Syst. and Soft., 2016.

[7] T. Kaupp, A. Brooks, B. Upcroft, and A. Makarenko, “Building
a software architecture for a human-robot team using the orca
framework,” in Int. Conference on Robotics and Automation, 2007.

[8] EU, “Robotics 2020 Multi-Annual Roadmap For Robotic
in Europe,” http://sparc-robotics.eu/wp-content/uploads/2014/05/
H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf-, 2016.

[9] R. de Lemos, H. Giese et al., “Software engineering for self-adaptive
systems: A second research roadmap,” in Software Engineering for
Self-Adaptive Systems II. Springer Berlin Heidelberg, 2013, pp. 1–32.

[10] Z. Yan, N. Jouandeau, and A. Cherif, “A survey and analysis of multi-
robot coordination,” Journal of Advanced Robotic Systems, 2013.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Mg, “ROS: an open-source robot
operating system,” 2009.

[12] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel,
“Morph: A reference architecture for configuration and behaviour
self-adaptation,” in CTSE, 2015.

[13] M. Y. Jung and P. Kazanzides, “An architectural approach to safety
of component-based robotic systems,” ICRA, pp. 3360–3366, 2016.

[14] S. Yang, X. Mao, S. Yang, and Z. Liu, “Towards a hybrid software
architecture and multi-agent approach for autonomous robot software,”
International Journal of Advanced Robotic Systems, 2017.

[15] T. Houliston, J. Fountain, Y. Lin, A. Mendes, M. Metcalfe, J. Walker,
and S. K. Chalup, “Nuclear: A loosely coupled software architecture
for humanoid robot systems,” Frontiers in Robotics and AI, 2016.

[16] J. L. Sanchez-Lopez, R. Fernndez, H. Bavle, C. Sampedro, M. Molina,
J. Pestana, and P. Campoy, “Aerostack: An architecture and open-
source software framework for aerial robotics,” in ICUAS, 2016.

[17] E. Ruffaldi, I. Kostavelis, D. Giakoumis, and D. Tzovaras, “Archgen-
tool: A system-independent collaborative tool for robotic architecture
design,” in MMAR, 2016.

[18] E. G. Tsardoulias and et al., “Towards an integrated robotics archi-
tecture for social inclusion – the rapp paradigm,” Cognitive Systems
Research, 2017.

[19] T. Baier, M. Huser, D. Westhoff, and J. Zhang, “A flexible software
architecture for multi-modal service robots,” in Multiconference on
Computational Engineering in Systems Applications, 2006.

[20] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraetzsch-
mar, L. Gherardi, and D. Brugali, “The BRICS component model: a
model-based development paradigm for complex robotics software
systems,” 28th Annual ACM Symposium on Applied Computing, 2013.

[21] M. Y. Jung, A. Deguet, and P. Kazanzides, “A component-based
architecture for flexible integration of robotic systems,” in 2010
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2010.

[22] H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic, “Plasma: A plan-
based layered architecture for software model-driven adaptation,” in
International Conference on Automated Software Engineering, 2010.

[23] L. Fluckiger and H. Utz, “Service oriented robotic architecture for
space robotics: Design, testing, and lessons learned,” Journal of Field
Robotics, 2014.

[24] G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture, challenges
and applications,” IEEE Network, 2012.

[25] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Q., 2004.

[26] J. Kitzinger, “Qualitative research: Introducing focus groups,” BMJ,
vol. 311, no. 7000, pp. 299–302, 1995.

[27] “An architectural blueprint for autonomic computing,” IBM, Tech.
Rep., 2005.

[28] G. Steinbauer, “A survey about faults of robots used in robocup,” in
RoboCup 2012: Robot Soccer World Cup XVI, 2013.

10

https://ifr.org/ifr-press-releases/news/world-robotics-survey-service-robots-are-conquering-the-world-
https://ifr.org/ifr-press-releases/news/world-robotics-survey-service-robots-are-conquering-the-world-
https://www.alliedmarketresearch.com/robotics-technology-market
http://sparc-robotics.eu/wp-content/uploads/2014/05/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf-
http://sparc-robotics.eu/wp-content/uploads/2014/05/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf-

