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ABSTRACT
In Model-Driven Software Development, models are automatically
processed to support the creation, build, and execution of systems.
A large variety of dedicated model-transformation languages exists,
promising to efficiently realize the automated processing of models.
To investigate the actual benefit of using such specialized languages,
we performed a large-scale controlled experiment in which over 78
subjects solve 231 individual tasks using three languages. The expe-
riment sheds light on commonalities and differences betweenmodel
transformation languages (ATL, QVT-O) and on benefits of using
them in common development tasks (comprehension, change, and
creation) against a modern general-purpose language (Xtend). Our
results show no statistically significant benefit of using a dedicated
transformation language over a modern general-purpose language.
However, we were able to identify several aspects of transformation
programming where domain-specific transformation languages do
appear to help, including copying objects, context identification,
and conditioning the computation on types.
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Figure 1: Syntax model for source code

1 INTRODUCTION
In Model-Driven Software Development (MDSD) [9, 35, 38] models
are automatically processed to support creation, build and execution
of systems. Transformations are, among others, used to compute
views on models, to validate models [25], to refactor models [43], to
interpret or otherwise execute models [28, 30], to implement model
debuggers [24], to transform models to lower-level models [31], and
to implement model-management operations such as versioning [2].

To support the multitude of processing tasks, many specialized
model-transformation languages have been developed as a result
of a substantial research effort [12, 26]. Outside MDSD, the trans-
formation languages are also gaining importance; in the program-
ming-language [10, 11, 19, 36] and the data-processing community
(see for example http://www.cloveretl.com).

Transformation languages come with an implicit promise to be
easier to use and more efficient for specifying transformations than
general-purpose programming languages (GPLs). However, does
this promise hold? We heard this question multiple times in inte-
ractions with industrial software teams. Unfortunately, little syste-
matic knowledge exists to respond, besides experience reports from
case studies [16]. This hampers choosing between a GPL, which
can solve many tasks, and a specialized language that promises
efficiency gains, but requires highly specialized programmers.

As the automation of software-engineering tasks is a growing
trend, and as software projects mix increasingly many languages
and formats, we can only expect that the time spent by developers
on creating transformation programs will be growing, and so will
the amount and importance of transformations. The transformation
languages promise to positively contribute to this effort. It is, thus,
key that we develop understanding on how programmers use trans-
formation languages, what problems they face, and what aspects
of these languages emerge as particularly useful or problematic.

https://doi.org/10.1145/3236024.3236046
https://doi.org/10.1145/3236024.3236046
http://www.cloveretl.com
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We settled to answer some of these questions in a controlled
experiment with three establishedmodel transformation languages,
employed in program-comprehension, program-modification, and
program-creation tasks. We recruited 78 graduate students from
Chalmers | University of Gothenburg and Technische Universität
Braunschweig, and observed how they cope with the languages:
ATL [17], QVT-O [23], and Xtend [8]—the first two dedicated and
established model transformation languages, the third a high-level
GPL. Analyzing solutions of 231 tasks, we found that:

• Handling multi-valued features (collections), recursion, and
designing logical branching conditions are among the most
difficult skills to master for the developers.

• Even well qualified subjects struggle to evolve transformati-
ons optimally, producing changes of widely diverse sizes.

• Implicit object creation, implicit structure copying, and sup-
port for type-driven computation and explicit computation
context do appear to reduce the amount of errors.

• There is no sufficient (statistically significant) evidence of
a general advantage of specialized model transformation
languages (ATL, QVT-O) over a modern GPL (Xtend).

This work aims at the interest of researchers and practitioners
working with transformation languages, and building new tools
in the modeling, DSL, and programming-languages communities.
It can also be of interest to software architects considering using
GPLs or dedicated languages for a transformation task.

2 BACKGROUND
We are concerned with model-to-model (M2M) transformations, so
programs transforming instances of a source model to instances of
a target model (structured data to structured data)—in contrast to
model-to-text (M2T) transformations, which are typically imple-
mented in template languages and used for code generation. To
represent the abstract syntax of model instances, we use instance
specifications (object diagrams), where objects represent model
elements, and the links between them represent the relationships
between model elements. All three languages considered in this
experiment are integrated with the Eclipse Modeling Framework
(EMF), which offers a variety of tools and technologies for MDSD
based on a simple class diagram language notation called Ecore [39].

Figure 1 shows an example Ecore model1 of program code, used
to implement a refactoring transformation commonly seen in IDEs.
Figure 2 shows an example instance specification for this model. The
model of Fig. 1 contains classes (called types in the remainder), such
as Project or Class, together with class attributes and class rela-
tionships. The latter are either generalizations (e.g., Structural-
Element is a generalization of Method), containment (e.g., Project.
packages), or association relationships. Containments and associa-
tions carry cardinalities, determining how many objects of the type
can be in a relationship with the object of the other type (e.g., an
object of type Project can have 0 or more objects of type Package).
The instance specification of Fig. 2 contains objects whose struc-
ture adheres to the model: links are correct instantiations of the
relationships between the objects’ types, and each object attribute
has a value adhering to the respective class attribute’s signature.

1In the MDSD community, such an Ecore model is typically called a meta-model.

:Attribute
name = "age"
modifiers = {PUBLIC, STATIC}

:Attribute
name = "date"
modifiers = {PUBLIC}

:Class
name = "Order"

:Class
name = "Customer"

:Package
name = "p2"

:Package
name = "p1"

:Project
name = "CustomerManagement"

:Method
name = "confirm"
modifiers = {PUBLIC}

:Attribute
name = "name"
modifiers = {PUBLIC}

:Attribute
name = "membershipNo"
modifiers = {PUBLIC, FINAL}

:Method
name = "getAge"
modifiers = {PUBLIC}

packages

classesclasses

elements

elements

elements

elements

elements

elements

subpackages

Figure 2: An instance of the model shown in Fig. 1

We focus on three languages used for M2M: The Atlas Trans-
formation Language (ATL) is a mostly declarative domain-specific
M2M language.2 Listing 3a shows an example of ATL: The keyword
rule defines a named transformation for model elements of the
source type (from) to those of the specified target type (to). The
first specified rule implicitly designates the entry point for the trans-
formation specification. The invocation order of rules is implicit:
The transformation engine processes source instances according to
the containment hierarchy specified in the respective model and
automatically involves a matching rule for the encountered element
of the source instance. The rules marked lazy may be invoked ma-
nually, in which case the call has to be qualified with the implicit
thisModule variable. The result of a rule is created by an implicit
instantiation of the target type. Then the values are assigned to the
fields (object attributes and links) of the instantiated element. In
ATL, <- serves as the assignment operator. ATL provides various
operations on collections: For instance, exists checks if at least
one collection member satisfies a predicate, select creates a deri-
ved set with only those members that satisfy a given condition and
collect (called map in many other languages) applies a mapping
function to every element of a collection, creating a new collection.

Query-View-Transformation Operational (QVT-O) is an impera-
tive domain-specific M2M language.3 Listing 3b shows an example
in QVT-O: The keyword main marks the entry-point for the trans-
formation. The keyword mapping defines a named transformation
from elements of a source type (specified before the mapping name)
to those of a target type (specified after the mapping name). By
default, the target type is instantiated automatically when invo-
king the mapping and the respective element is available via the
implicitly initialized variable result. Alternatively, it is possible to
use the keyword object to explicitly instantiate a return type and
then assign it to result manually. As QVT-O is imperative, the
mappings are invoked according to the user-specified control flow.
In particular, the map operation on collections invokes a specified
mapping for each of the source collection’s values and stores each
transformation result at a similar position in the target collection.
In the mapping’s body, values are assigned to the fields (object at-
tributes and links) of result, which is the implicit context for the

2Note that we are aware of ATL’s hybrid character due to the imperative nature of its
do block in called rules but focus on the commonly used declarative matched rules.
3QVT-R is declarative, but we focus on the imperative portion of QVT here.
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left-hand side of each assignment. In QVT-O, := is the assignment
operator for fields, and += allows to add to collections. QVT-O also
has collection operations with similar syntax and semantics as ATL.

Xtend is a GPL with a syntax largely inspired by Java. Unlike
ATL and QVT-O, Xtend has no specific language constructs for
writing model transformations—additional boilerplate code is used
for loading and saving instances. However, thanks to the rich va-
riety of GPL constructs, the language lends itself well to creating
model transformations. Listing 3c shows an example of Xtend: The
method main of an Xtend program constitutes the entry point of
a transformation. Further transformation rules can be specified as
(usually static) methods. The source type that the transformation
operates on is specified as the first parameter so that the method
may be called as an extension (as if it was defined in the source
type). The target is the return type of the method and has to be
instantiated manually by calling the respective factory method ge-
nerated by EMF Ecore. The with-operator => binds the left operand
to the implicit context for the sequence of assignments within the
lambda expression given in the right operand. Similar to QVT-O,
Xtend defines the map operation to call a method on all members
of a source collection and store the results in a target collection,
which is used for explicitly calling transformation methods.

3 PREPARATORY STUDY
We performed a pre-study [33] in collaboration with a Danish in-
dustrial partner—a company that consolidates multiple commercial
and government data sources to provide support services for trade
and taxation in Denmark. The project investigated suitability of mo-
del transformation technology in the context of data aggregation.
The task involved reading many real-time sources, and correlating
transactions in these sources in order to join related records, clean,
and normalize the data. The structure of the input and output data
has been described in Ecore models. The source model comprised
nine classes, 241 attributes and 15 relationships. The target model
consisted of two classes, 25 attributes, and one relationship. Crea-
ting the output instance required flattening and correlating pieces
of information with a complex structure.

The study was performed by a single programmer, the author of
the original C# transformation used in the production system and
fourth author of this paper, who is a very experienced developer, but
new to the transformation languages. At the time, he held nine years
of full-time professional programming experience with C#, learned
transformation languages in an open university course aboutMDSD
at IT University of Copenhagen, and obtained operational command
of them for the purpose of this pre-study.

Two tasks were considered: Create (to study writing a trans-
formation from scratch) and Change (to study evolution of the
transformation). For the Create task, the C# transformation has
been re-implemented in four languages: ETL [20], the declarative
fragment of ATL, Xtend, and Java. As far as possible, the idiomatic
style of each language was followed, not the style of the original
C# code (except for Java). In the Change task, the transformations
have been modified to accept another version of the input model.
To ensure that the evolution step was realistic, we used an actual
legacy version of the model, slightly older than the one used for
the Create task. This ensured that the evolution step was realistic.

Although the step was executed ’backwards’ from the chronological
perspective, the created difference should likely be the same as if it
was executed forwards. The difference between the models affected
about half of the classes, including dropping classes. The extent of
necessary transformation changes was not obvious on the outset.

We performed a qualitative analysis of the created transforma-
tions. This list has contributed to the selection of language use
dimensions in the design of the actual experiment (Sec. 4).

Observation 1. The pre-study programs exhibit aspects such as
creating objects, populating attributes and other properties with input
data, checking logical conditions, filtering and other collection opera-
tions involving predicates, ranking and sorting data elements (using
standard functions). The Change task involved both restructuring the
algorithm of the transformation and performing local modifications
such as: renaming of elements, adjusting navigation expressions, etc.

We counted the sizes of the transformations (see Table 1) after for-
matting them using rules inspired by the work of Nguyen et al. [29].
Besides the actual transformation, all four languages required im-
plementing startup code, so that they can be executed automatically.
The size is included in the table after the plus sign; in Xtend for the
Xtend transformation and in Java for the other languages.

Observation 2. The pre-study transformations implemented in
dedicated rule-based languages (ETL, ATL) were up to 48% smaller
than the Java4 variants. For a single nontrivial transformation, the
need for startup code reduces the conciseness benefit noticeably.

We also measured the size of the required change in each of the
Change task implementations, see the bottom of Table 1. (The star-
tup code was not modified, so it does not affect the numbers.) Inte-
restingly, the sizes of edits in all languages were extremely close.
The size benefit when creating transformations is primarily due to
reduction in boilerplate. This boilerplate is relatively robust with re-
spect to changes, and the size benefit disappears in the Change task.
This is interesting given that code evolution is commonly accepted
as similarly costly, or even more expensive than code creation. For
example, Sommerville [37] reports that 65% of effort in software
engineering is spend on maintenance and evolution.

Observation 3. We observed that the size of changes in the pre-
study transformations in all involved languages were similar, and the
changes almost did not affect boilerplate code.

Obviously, observations from a single-person single-case experi-
ment are not generalizable due to idiosyncrasy of the case, of the
4Java 8 was released only after we had conducted the pre-experiment. Its stream API
might reduce the SLOC count of the Java transformation code.

Table 1: Sizes of the pre-study transformations and changes

ETL ATL Xtend Java

Create
trafo+startup [loc] 176+82=258 197+79=276 214+71=285 339+73=412
gain vs Java 48% 42% 37% 0%
incl. startup 37% 33% 31% 0%

Change
diff size [loc] 99 111 103 102
gain vs Java 3% −9% 0% 0%
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1 module RefactoringTrafoATL;

2 create OUT : MM from IN : MM;

3

4

5

6 rule Project2Project {

7 from s : MM!Project

8 to t : MM!Project(

9 name <− s.name,

10 packages <− s.packages−>collect(p |

11 thisModule.Package2Package(p)))
12 }

13

14 −−...

15

16 lazy rule Method2Method {

17 from sm : MM!Method

18 to tm : MM!Method(

19 name<−sm.name,

20 modifiers<−sm.modifiers)

21 }

22

23 lazy rule Attribute2Attribute {

24 from sa : MM!Attribute

25 to ta : MM!Attribute(

26 name<−sa.name,

27 modifiers<−sa.modifiers)

28 }

(a) ATL

1 modeltype CM uses "ClassModel1MM";

2 transformation RefactoringTrafo

3 (in m1:CM, out m2:CM);

4

5 main() {

6 m1.rootObjects()[Project] −>

7 map copyProject();

8 }

9

10 mapping CM::Project::

11 copyProject():CM::Project {

12 name := self.name;
13 packages := self.packages −>

14 map copyPackage();

15 }

16 //...

17 mapping CM::StructuralElement::

18 copyElement():CM::StructuralElement {

19 init {

20 if (self.oclIsTypeOf(CM::Method)) {

21 result := object CM::Method{};

22 } else {

23 result := object CM::Attribute{};

24 }

25 }

26 name := self.name;
27 modifiers := self.modifiers;
28 }

(b) QVT-O

1 class RefactoringTrafo1 {

2 val private static factory =

3 ClassModel1MMFactory.eINSTANCE

4

5

6 def static void main (String[ ] args) {

7 // <code to load m1 and save m2 omitted>

8 val m2 = copyProject(m1)

9 }

10

11 def static Project copyProject(Project p) {

12 factory.createProject => [

13 name = p.name

14 packages + = p.packages.map[ copyPackage]

15 ]}

16 //...

17 def static StructuralElement copyElement(Method m) {

18 factory.createMethod => [

19 name = m.name;

20 modifiers + = m.modifiers

21 ]}

22

23 def static StructuralElement copyElement(Attribute a) {

24 factory.createAttribute => [

25 name = a.name;

26 modifiers + = a.modifiers

27 ]}

28 }

(c) Xtend

Figure 3: Excerpts of transformation specifications realizing a refactoring transformation on the source-code model in Fig. 1

programmer, and due to learning effects. Yet, they were sufficiently
interesting to motivate further exploration. We proceeded to design
a controlled experiment to investigate the matter in detail. We used
the pre-study to select the dimensions of interest and to generate
some hypotheses. We describe the resulting experiment below.

4 METHOD
We address the following research question: How effectively pro-
grammers use model transformation languages, what problems they
face, and what aspects of these languages emerge as particularly
useful or problematic in contrast to GPLs?

4.1 Experiment Design
The treatment in our experiment is the transformation language.
Due to their extensive use in education, research, and some indus-
trial applications, we selected ATL as a declarative domain-specific
transformation language, QVT-O as an imperative domain-specific
transformation language, and Xtend as an imperative GPL. They
are all supported by official Eclipse Foundation projects. Finally, we
could secure a substantial number of trained subjects for them.

We have decided to not include any pure GPLs. While it would
be highly desirable to evaluate functional programming languages
in the transformation context (say Haskell), it would also make the
experiment considerably more complex, as it is hard to guarantee
that students would reach a comparable level of training. Haskell is
not well integrated with major modeling tool chains, which would
require significant modification of the considered development sce-
narios, introducing new uncontrolled factors. It would also require
substantial extension of the participant base, which is difficult to at-
tain, especially that it is hard to identify a homogeneous population
of subjects that know both Haskell and the model transformation
languages (functional languages are typically taught in CS degrees,
transformation languages in Software Engineering degrees).

The dependent variables are solution completeness and mista-
kes done by the participants. We further split these into detailed
dimensions of analysis arranged by transformation programming
skills required for the tasks: create object, initialize single-valued
fields, initialize collection-valued fields, use/interpret value conditions,
use/interpret type conditions, navigate the model, place computations
in correct context (Table 3, cf. Obs. 1).

The experiment follows a between-subjects design, where each
participant learns and works with one of the three languages. We
consider three development tasks: transformation comprehension,
transformation creation, and transformation changing. These are
selected as key activities in code development and evolution. As
comprehension is a prerequisite for change, we introduce an explicit
dependency (ordering) between the two. The subjects first solve a
comprehension task, then they approach a change task for the same
code. To avoid learning bias they solve the creation task for another
problem. We use two domain scenarios to allow this cross-over.
Subjects starting with the first scenario (feature modeling) cross to
the second scenario (refactoring) and vice-versa, as Fig. 4 shows:

scenario FM:

scenario RE:

Comprehend FM

Comprehend RE

Change FM

Change RE

Create FM

Create RE

Figure 4: Task execution paths in the cross-over design

Scenarios. The feature model (FM) scenario is a transformation be-
tween two different representation formats of feature models [18].
FMs are tree-like structures that capture features of a software
product line (a portfolio of software variants). As many different
variations of the FM notation exist, and even the same notation
can be represented differently, creating a transformation to convert
between two representations is a realistic scenario [6, 7]. The trans-
formation reorganizes instance objects among the containment
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hierarchy differently. Note that we taught feature models in the
course to give our subjects sufficient exposition.

The refactoring (RE) scenario is the implementation of an attri-
bute refactoring for simple object-oriented syntax model (Fig. 1), a
task common in IDEs with support for properties. The source and
target models are the same. The task is to create getters and setters
for each non-public attribute, depending on the absence of static
and final modifiers. A fragment of this transformation is shown
in Fig. 3 for all considered languages.
Tasks. In the comprehension task, the subject attempts to under-
stand what a transformation does, e.g., whether parts of a model are
copied, modified or new parts created. The subjects get the source
and target models and an implementation of a transformation for
one scenario in one language (we prepared the implementation of
both scenarios in all three languages, in total six programs). We
then provide a source instance diagram, and ask to draw the output
instance. We assess the correctness of the produced output with
respect to the dimensions of analysis listed above (also see Table 3).
For instance, if the wrong model elements are modified, we assume
that the subject does not command the skill of use/interpret value
conditions, or the skill of use/interpret type conditions (depending
on whether the type or logical condition was missed).

The change task investigates whether a subject can identify
where in the code a change is needed, what information needs
to be accessed, and whether she can actually implement the change.
We provide the same transformation as for the comprehension
task. For the FM scenario, we ask the participants to adapt the
transformation to use cardinalities instead of the class hierarchy to
represent feature groups (a new target model is provided). For the
RE scenario, we ask to amend the transformation to set the visibility
modifier of an attribute to private if a getter or setter exists (still
the same target model). We assess the correctness of the change
with respect to the same dimensions. For instance, if the changed
expressions do not follow the types of the target model, we assess
that the skill navigating the model has not been demonstrated.

Finally, in the create task each subject attempts to construct a new
transformation from scratch in her language. We provide the rele-
vant source and target models, a description of the requirements in
English, as well as stubs for the transformation headers and boiler-
plate code in the appropriate language (this helps to disambiguate
the task). We then ask the subject to produce the transformation.
Again, we assess the result using the same dimensions of analysis.
For instance, if the produced code places the main computation in
a context of a type, from which some relevant information is not
accessible, we assess the subject does not demonstrate the skill of
placing computations in a correct context.

The scenarios, models, transformations, stubs, expected soluti-
ons, and task definitions are available in our online appendix [14].
Subject Selection. The subjects are graduate students at the Eu-
ropean universities Chalmers | University of Gothenburg (GU) and
TU Braunschweig, who just completed a course on MDSD during
which they had learned the transformation languages used in this
experiment. All had several years of prior experience with program-
ming, but had not worked with transformation languages before the
course. Each of the transformation languages was introduced in a
separate lecture addressing all participants. Then, each participant

Table 2: Distribution of subjects across runs and languages

Chalmers | GU
(spring 2016)

TU Braunschw.
(fall 2016)

Chalmers | GU
(spring 2017)

total

ATL 9 10 7 26
QVT-O 12 8 6 26
Xtend 8 9 9 26

total 29 27 22 78

implemented three transformations in the transformation language
(randomly) assigned to them in the beginning (and later used in
the experiment). This included solving and formative assessment
of transformations, supported by learning material, examples, and
supervision. At the point of the experiment they have been acquain-
ted with the languages for at least one month. Table 2 shows the
distribution of participants across project partners.

These subjects are a reasonable representation for programmers,
who are considering using transformation languages in a professio-
nal setting (are evaluating or starting to use the technology). This is
an important target group, as the MDSD technology is in the adop-
tion phase. Results might not transfer to experienced developers
using these languages for an extended period.
Controlled Variables. All languages (assigned randomly) are re-
presented in similar proportions in all three runs of the experiment
(Table 2). Among others, this avoided an impact of country, teachers,
and university on the results. Tasks were assigned randomly: 38
subject have followed the top path in Fig. 4, and 40 subjects have
followed the bottom one. Each subject has been asked to attempt
all three tasks. Only three participants did not attempt the 3rd task,
as they left the experiment early. This resulted in 231 answers, 111
for the first path and 120 for the second path.

4.2 Execution and Data Collection
The participation in the experiment was voluntary and had no
impact on the students’ grades. We incentivized the participation
by emphasizing that the experiment conditions are similar to exam
conditions, so it can be used as training. Students were aware of the
experiment situation. We briefed the subjects after the experiment
to discuss their challenges, with the goal of reducing negative self-
perception due to failure in the more challenging tasks.

The tasks were solved on paper, which eliminates the factor of
familiarity with the programming environment. It also allows us to
investigate the very languages, not the quality of the error reporting
from (say) a type checker. The models and transformations were
distributed as printouts. The models were small enough to each
fit one page. For the change tasks we printed the transformations
with increased interline space. For the create tasks we printed stubs
with white gaps. To compensate for the fact that subjects work on
paper, we provided cheat-sheets that summarized main language
features and concepts that participants might want to look up.

The experiment was performed in three runs at two technical
universities in two European countries (as summarized in Table 2).
Each run of the experiment was performed in a lecture room, where
participants had enough space to work. We distributed the tasks
in such a way that participants sitting next to each other would
solve different tasks. The time limit for the experiment was set to 1
hour and 10 minutes. The subjects were allowed to leave early. We
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suggested to use the first 20 minutes for the comprehension task,
the next 20 minutes for the change task, and the last 30 minutes
for the create task. We announced the current time at the 20 and
30 minute marks. Not all subjects succeeded in completing all the
tasks in the allotted time, and some have left early.

We eliminated two entries: one of a student following the course
a year earlier, and one of a student with a writing handicap.

4.3 Data Analysis
Scoring. After we collected the data, we graded the points against
the dimensions of analysis. Not each dimension is applicable to
every task/scenario combination, as not all language elements are
always used. Table 3 summarizes the dimensions, and their compati-
bility with tasks. The dimensions correspond to operational skills to
facilitate assessment. Yet, assessing the score of a student’s solution
does differ somewhat from an exam grading process. For example,
for the comprehension task severe syntax problems would, in an
exam, lead to no points. We were forgiving to syntax problems if
the intention was clear.

We prepared a criterion description for each dimension of analy-
sis in the context of each task. For example for the skill navigate
the model, for the comprehension task, the description said Correct
overall structure, links, and objects with correct attributes [in the out-
put instance]. In total 23 such descriptions were created,ranging
from 10 to 100 words (see online appendix). These descriptions
were used to perform the scoring possibly uniformly.

We score each dimension on a three step scale: 0 (no demonstra-
tion of the skill), 1 (clear demonstration). The step 0.5 was used
when some demonstration of the skill was observed, but we could
not agree on assigning 0 or 1. The scoring happened in three phases:

(1) Pair scoring: To enable alignment of the scoring styles, three
authors have scored a hand-in each (3 tasks) in a think-aloud
mode, in pair with another author. Each of the three sessions
lasted 90minutes. The observing author acted as a consultant,
asking and answering questions.

(2) Scoring by language: The three authors performed the first
scoring of all the tasks in one language each. This cost about
2.5 days per person. Besides recording the scores, we anno-
tated the records with qualitative justifications of assigned
points, observed mistakes and other points of interest.

(3) Scoring by task: Another author (not involved in phase 2)
revised all the scores in the by-task direction, to ensure con-
sistency of scoring across languages. This resulted in several
corrections in scoring. This allowed to control for different
reactions of graders to unexpected mistakes.

None of the authors is involved with the development, or otherwise
heavy use of the languages that were subject to this experiment. In
the grading, we attempted to be objective as much as possible.
Hypothesis testing. Declarative languages have a lower spread
than imperative languages. Therefore, most programmers are rat-
her familiar with the imperative way of thinking. Therefore, we
formulate the following hypotheses including null hypotheses:
H1: Subjects comprehending a QVT-O or Xtend transformation per-
form better than those who comprehend a transformation in ATL.
H10: Subjects comprehending a QVT-O or Xtend transformation per-
formworse or equal to those comprehending an ATL transformation.

H2: Subjects who change a transformation written in QVT-O or Xtend
perform better than those who change a transformation in ATL.
H20: Subjects changeing a transformation written in QVT-O or Xtend
perform worse or equal to those who change an ATL transformation.

H3: Subjects who create a model transformation in QVT-O or Xtend
perform better than those who create a transformation in ATL.
H30: Subjects who create a model transformation in QVT-O or Xtend
perform worse or equal to those who create a transformation in ATL.

As the main purpose of domain specific languages it is to make task
solving in a domain easier or more efficient. Thus, we formulate
the following hypotheses including null hypotheses:
H4: Subjects who comprehend a transformation in QVT-O perform
better than those comprehending a transformation in Xtend.
H40: Subjects who comprehend a transformation written in QVT-O
perform worse or equal to those comprehending it in Xtend.

H5: Subjects changing a transformation written in QVT-O perform
better than the subjects who change an Xtend transformation.
H50: Subjects changing a transformation in QVT-O perform worse
or equal than the subjects who change an Xtend transformation.

H6: Subjects who create a model transformation in QVT-O perform
better than those who create a transformation in Xtend.
H60: Subjects who create a model transformation in QVT-O perform
worse or equal to those who create a transformation in Xtend.

Analysis. For the quantitative analysis, we compared the average
scores and standard deviation for the three languages per task and
scenario, using the comprehension tasks for hypotheses 1 and 4,
the change tasks for hypotheses 2 and 5, and the creation tasks
for hypotheses 3 and 6. We used a Shapiro normality test on each
data set (i.e. each set of student’s scores for one task and language),
which showed that we cannot assume normal distribution for some
of the data sets. Therefore, we decided to use the non-parametric
Wilcoxon signed-rank sum test. We tested each task to compare the
scores reach with the three different languages, using the standard
confidence level 0.95. Due to the setup, we test every combination
of languages 6 times (two scenarios for each task, comprehend,
change, and create). Therefore, we apply a Bonferroni correction
[1] to the threshold for the confidence levels, by dividing 0.05 by
6, leading to a threshold of 0.0083. To ensure also relevance, we
assessed effect size using Vargha and Delaney’s A (VDA), following
their interpretation[42]: A ≈ 0.56 = small; A ≈ 0.64 = medium; and
A ≈ 0.71 = large. All test were executed with R.

Furthermore, we analyzed the statistics for the individual dimen-
sions of analysis and analyzed (comparing solutions and language
constructs) the cases were strong interesting effects were visible.

5 EXPERIMENT RESULTS
Table 4 summarizes the average scores awarded to subjects by task
and language. In the following, we elaborate on some of these.

5.1 Analysis of Typing Errors
In the comprehension task, many subjects created instances that
are invalid (violate model types). This could be an indicator of
insufficient competence of the subjects. In order to ensure that we
assess success in applying model transformation skills (as opposed
to modeling skills), we wanted to eliminate the subjects who do
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Table 3: Applicability of dimensions of analysis among tasks

dimension description Comprehend Change Create
FM RE FM RE FM RE

basic constructs
initialize single-valued fields correctly interprets or creates value assignments to single-valued object attributes

or links (ATL: <-, QVT-O: :=, Xtend: =)
u u u

N/A
u u

initialize collection-valued fields correctly interprets or creates value assignments to single-valued object attributes
or links (ATL: <-, QVT-O: += or :=, Xtend: += or =)

u u
N/A

u u u

use/interpret value conditions correctly interprets or uses value conditions u u
N/A

u u u

use/interpret type conditions correctly interprets or uses conditions on types u u u
N/A

u u

navigate the model correctly interprets or uses object traversal (follow links/access object attributes) u u
N/A

u u u

compound constructs
create object correctly interprets or uses object creation u u u

N/A
u u

copy complex elements correctly interprets or creates rules that copy multiple objects with all their attri-
butes and links

u u
N/A

u u u

transformation decomposition
place computations in correct context places computation into the correct context N/A N/A

u u u u

u Used as grading criteria N/A Not applicable

not demonstrate understanding of the class diagram language. We
used navigate the model score of the comprehension task to identify
qualified subjects, interpreting it as a proxy for the skill of modeling.
We assume that only subjects with a positive (1 or 0.5) score for
this dimension in their comprehension task solution are qualified.
So, for this particular analysis in this subsection, we projected the
other subjects out of the data set to consider typing errors specific
to transformations. This left us with data for 60 subjects (75% of the
original sample). As expected, the subjects are still well distributed
across all the buckets, at least 8, and at most 12 subjects taking each
path in Fig. 4 for each language.

We begin by summarizing the typical type-related mistakes seen:

• Objects are created on the wrong abstraction level, e.g., we
found instances of instances.

• Source and target models are merged, e.g., the output in-
stance contained instances of classes from both models.

• Elements from the transformation, e.g., variable names from
the transformation program, occur as data in the output

• Associations in the instance do not conform to the model
• Objects are contained by multiple containers, violating the
no-sharing constraint of class diagrams

• Instances of non-existing types are created.
• Abstract classes are instantiated

These problems could be observed throughout the three languages
with similar intensity (11 times for ATL, 7 for QVT-O, 11 for Xtend).
As educators, we find this list useful, as a specification of what
training material for teaching transformations shall be created.

5.2 Creating and Copying Objects
Creating objects and understanding what objects are created is a
basic, but crucial skill. Interestingly, >80% of the qualified subjects
using QVT-O demonstrate the create object skill (score 1), while
only ca. 60% do this for ATL and Xtend. A reason might be that
object creation happens implicitly in QVT-O, with special language
support. In Xtend, complex factory methods need to be called ex-
plicitly. In ATL, not all blocks can create objects (rules can, but not
helpers). This lack of orthogonality may cause some errors.

Observation 4. Qualified subjects programming QVT-O correctly
use and reason about object creation more often (80% of cases) than
subjects using ATL and Xtend (60% of cases), across all three tasks.

Most subjects correctly identify that a transformation copies struc-
tures of multiple connected objects. Similarly, most subjects are
able to create such copying when writing transformations. Yet, the
average score of qualified subjects using our two domain-specific
languages is higher (> 0.8) than for our GPL Xtend (0.71).

Observation 5. Subjects copy complex structures, and reason
about copying, more effectively with the domain-specific transforma-
tion languages ATL and QVT-O than with the GPL Xtend.

Copying complex structures does play an important role in model
transformations. The experiment confirms, that dedicated support
for this in the domain-specific languages is paying well. In contrast,
Xtend requires using recursion for the task, which is notoriously
difficult. We remark that, in situations that were not handled with
automatic copying, so when explicit recursion was required, we
observed the same difficulties across all three languages. This in-
dicates that further support for hiding recursion might be useful
(for example, the Rascal language [19] has first-class rich visitors
to build sophisticated traversals without recursion).

We also investigated how collection-valued fields are handled. In
models and transformations, the boundary between simple values
and collections is blurred. Simple values are often seen as singleton
collections. The GPLs distinguish these firmly. Approximately 66%
of qualified subjects master the skill of initializing collection-valued
fields. This proportion is lower for ATL (54%) and Xtend (58%). It
does appear that this performance is low for all three languages,
and there is space for improving collection support in them.

5.3 Identifying the Correct Context
In transformations it is key to identify the location in the model
(the type), where the computations are being placed. The context
determines which information and operations are reachable via na-
vigation, how far, and also which information is accessible implicitly
(via the this reference). We record an advantage of subjects wor-
king with our domain-specific languages QVT-O and ATL (>60%
average score) over those with the GPL Xtend (41% average score).
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Table 4: Average scores of subjects per task/language normalized to 1 (includes both qualified and not qualified subjects)

Comprehend FM Comprehend RE Change FM Change RE Create FM Create RE
ATL QVT-O Xtend ATL QVT-O Xtend ATL QVT-O Xtend ATL QVT-O Xtend ATL QVT-O Xtend ATL QVT-O Xtend

Average 0.63 0.82 0.62 0.42 0.55 0.41 0.55 0.96 0.63 0.23 0.33 0.42 0.59 0.62 0.55 0.53 0.70 0.41
Std.Ḋev. 0.35 0.29 0.41 0.33 0.32 0.36 0.47 0.10 0.42 0.27 0.26 0.27 0.17 0.26 0.26 0.28 0.31 0.37

Observation 6. Context selection is easier for the subjects working
with the domain-specific transformation languages ATL and QVT-O
than with the GPL Xtend.

Given that only 48% of task solutions score maximum (1) in this
dimension, better support for context selection might be a focus
for future research and innovation (e.g., opportunities of detecting
bad context as smell, and providing automatic refactoring support).

We speculate that an advantage of our domain-specific languages
QVT-O and ATL is their encouragement of a better decomposition
of the transformation into rules, enhancing comprehension. Spe-
cifically, they require to explicitly declare the input and output
types instead of resorting to (not even immutable) parameters of
a method call in Xtend. Programmers in Xtend might approach
the decomposition less consciously. Investigating this aspect in a
separate study constitutes valuable future work.

5.4 Branching on Values and Types
Most subjects had difficulty with interpretation or writing bran-
ching, selection, or filtering conditions. Remarkably, this skill scored
the lowest amongst all: the average score of qualified subjects was
0.32 (with all the other dimensions scoring on average above 0.5).

Observation 7. Creating correct conditions for branching and
object selection (as well as understanding them correctly) is by far the
most difficult skill among those we analyzed.

This observation is both interesting and expected. Expected, as
creating the right branching structure for any program is the very
essence of the computer programming art, but also one of its key
difficulties. Interesting, because this is an aspect to which the trans-
formation language designer community traditionally attaches little
attention. The expression sublanguages used within transforma-
tion languages tend to be imported from elsewhere (OCL, Java,
JavaScript), and little transformation-specific innovation happens.
Perhaps, this low score is a pointer for the designers to try again.

There is a notable exception to stagnation in expression langua-
ges for transformations: type-dependent branching. Transformation
languages have specialized facilities for scheduling computations
based on types (usually a form of pattern matching). This is true
for all three considered languages. For this reason, we have tracked
the use of type conditions separately from predicates on values in
the analysis. The average score for using type conditions across
all languages and tasks is 0.54 for qualified subjects; substantially
more than using value conditions (0.32). This is a good indication
that the investment in the language design may pay off.

Observation 8. Subjects are much more likely to create correct
branching conditions based on types than based on values in the
transformation specifications.

5.5 Size of Change Edits (Evolution)
Let us get back to Obs. 3 from the pre-study where we found that
the change sizes were similar across the languages. To expand on
this observation, we investigated differences in the size of edits that
the subjects perform for the change tasks. Working on paper, the
subjects did not follow common line breaking conventions, so we
measured size differences unambiguously in tokens, not lines.

First, we created specimen solutions to the change tasks. We
observed that they had similar diff sizes in all three languages, cor-
roborating Obs. 3. The edit required removal/addition/modification
of 20 tokens in ATL, 25 tokens in Xtend, and 19 tokens in QVT-O
(cf. task descriptions and example solutions in the online appendix).
These numbers are likely close to the optimal minimal change.

For the subject solutions, we manually counted the size of diffs in
tokens for all correct solutions. We only considered this problem for
the Change FM task, as the results of Change RE did not contain
sufficiently many correct answers. We assumed that a solution is
correct if scored at least 90% of the maximum score summed over
all dimensions; 18 subjects have met this condition. We removed
two outliers: one with 55 (QVT) and one with 97 tokens (Xtend).

Table 5 summarizes the results. It appears that, even though the
specimen solutions do seem to confirm Obs. 3, the average perfor-
mance of our subjects does not. Also, even if the specimen solution
for QVT-O was the smallest, the average subject solution for QVT-
O is the largest, and the QVT-O sample is characterized by the
largest standard deviation. This might be yet another confirmation
of the fact that even if the language expert can present a perfect use
of the language constructs, the users may struggle to exploit the
opportunities in the language to the same extent. Only for ATL the
optimal solution is well approximated (but this has to be interpreted
with care, as we are down to only 4 data points in this case).

Observation 9. Sizes of the change edits performed by subjects
differ widely across the population and are most often far from the
optimal solutions, not exploiting fully the potential of the languages.

A possible explanation for the phenomenon is that the specimen
and the pre-study solutions were implemented bymore experienced
programmers than our subjects are. This topic requires a deeper in-
vestigation. It would be interesting to study productivity differences
between programmers using GPLs and specialized transformation
languages, and between senior and junior developers in the context
of transformation. Otherwise, it is difficult to convince larger parts
of the industry to adopt these technologies.

Table 5: Size of the change edit for Create FM task

ATL QVT-O Xtend

average diff size [tokens] 18.5 ± 1.0 28.1 ± 8.6 26.3 ± 5.7
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5.6 Hypothesis Testing
We now return to our hypotheses, investigating whether the overall
differences in scoring between languages are statistically significant.
Table 6 summarizes the test results. We split the tests by task and
scenario to reflect the differences in the scenarios.

After the Bonferroni correction no statistically significant diffe-
rence can be found after the Bonferroni correction. Most differences
seem to be of small to negligible effect size.

Consequently, we cannot reject the null-hypotheses that ATL is
leading to a similar or better performance than QVTO and Xtend
(H1, H2, and H3 for each task respectively). More interestingly, we
cannot reject the null-hypothesis that the domain-specific language
QVTO perform equal or worse than the general purpose language
Xtend (H4, H5, and H6 for each task respectively). Which leads us
to the following controversial observation:

Observation 10. There is no sufficient (statistically significant)
evidence of general advantage of the specialized model transformation
language QVTO over the modern GPL Xtend for the tasks, scenarios,
and analysis dimensions considered in this paper.

This is clearly concerning, given the amount of work that has been
invested in model transformation technology.We do emphasize that
this conclusion is made under narrow conditions, and encourage
others to corroborate or reject our observation via further studies.

6 THREATS TO VALIDITY
Construct Validity. We conceived the tasks carefully and ensured
that they are solvable with similar effort in all languages. The ATL
tasks were limited to the declarative part of ATL; imperative con-
cepts were neither used nor taught. We scored measurable skills
instead of the pure completeness of solutions, clearly defining sco-
ring criteria measuring the most general aspects of the languages.
While we could conceive the comprehension and creation tasks to
cover all general aspects, this was difficult for the change tasks. So,
we designed the latter differently for the two scenarios, so that they
together cover all aspects.

We admit the limitations of a pen-and-paper experiment. Whet-
her to study pure concepts or concepts embedded in tooling is a
standard problem in designing experiments. The former allows to
control the conditions better, the latter provides a more realistic set-
ting, but also many confounding factors: familiarity with tools and
IDE, stability, ad hoc influences such as screen size, etc. Ideally, both
kinds of experiments are needed to obtain a complete picture. In this
paper, we decided to study the ability to comprehend and express
transformations as a function of the concepts of transformation
languages. This has the advantage of producing more fundamental
durable findings (languages and language groups change much slo-
wer than tools). However, this means that our conclusions should
not be generalized to tools. We did mitigate this limitation somew-
hat by ignoring simple errors, such as typos and minor syntactic
problems, which would be detected by tools.
InternalValidity. The perception of a teacher being (dis)passionate
about a language may influence subject’s performance. To mitigate
this we used two locations with different teachers. Differences cau-
sed by the university, local culture, and the teacher were controlled
by enforcing an equal distribution of the treatments in both sites.

Table 6:Wilcoxon rank sum test (significance level: 0.5%, cor-
rected threshold for p-values: 0.0083)

x y h0 p-value result VD.A

Comprehend FM
QVTO ATL x ≤ y 0.036 h0 not rejected 0.70 medium
QVTO Xtend x ≤ y 0.074 h0 not rejected 0.66 small
Xtend ATL x ≤ y 0.489 h0 not rejected 0.49 neg.
Comprehend RE
QVTO ATL x ≤ y 0.15 h0 not rejected 0.62 small
QVTO Xtend x ≤ y 0.121 h0 not rejected 0.63 small
Xtend ATL x ≤ y 0.422 h0 not rejected 0.52 neg.

Change FM
QVTO ATL x ≤ y 0.017 h0 not rejected 0.71 medium
QVTO Xtend x ≤ y 0.032 h0 not rejected 0.69 medium
Xtend ATL x ≤ y 0.376 h0 not rejected 0.46 neg.
Change RE
QVTO ATL x ≤ y 0.283 h0 not rejected 0.62 small
QVTO Xtend x ≤ y 0.361 h0 not rejected 0.39 small
Xtend ATL x ≤ y 0.029 h0 not rejected 0.28 medium

Create FM
QVTO ATL x ≤ y 0.241 h0 not rejected 0.58 small
QVTO Xtend x ≤ y 0.203 h0 not rejected 0.59 small
Xtend ATL x ≤ y 0.441 h0 not rejected 0.51 neg.
Create RE
QVTO ATL x ≤ y 0.038 h0 not rejected 0.71 medium
QVTO Xtend x ≤ y 0.060 h0 not rejected 0.69 medium
Xtend ATL x ≤ y 0.177 h0 not rejected 0.61 small

The imbalance in the number of data-points between the universi-
ties could be problematic if the results were differed. Fortunately,
no big difference were observed.

Wemitigated selection bias by randomizing the student-treatment
assignment early in the courses. Yet, some students left before the
experiment (late in the course), but the mortality rate was low and
affected all languages similarly. We did not count these cases as
failed attempts. We prohibited communication and assigned tasks
with different scenarios to adjacent participants.

The tasks were ordered in increasing cognitive difficulty for all
subjects and treatments (comprehend, change, create). Thus, results
of the create task are affected by learning effects and fatigue. This
is acceptable, as all data points are affected similarly, and because
we did not compare performance between tasks. This order also
reflects the working situation of developers in practice.

For the comprehension tasks, we traced our observations from
the target instance back to the participant’s understanding of lan-
guage concepts. For instance, if no new objects are created, we
attributed this to a misunderstanding of the language’s concepts for
creating objects (e.g., in QVT-O via mapping rules or the object
keyword). It could be that the participant understood the concept,
but assumed it is not used due to misunderstanding control flow.
We mitigated this threat by making sure that multiple observations
in the target model map to a language concept.

ATL and QVT-O use OCL as an expression language that is
known to be complex. We did treat this complexity as an inherent
part of both languages. Yet, understanding the impact of this lan-
guage design choice and comparing OCL to another expression
language, would be a valuable future experiment.
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External Validity. Naturally, experienced developers working in
industry differ from students, even if both have to learn a language
completely anew. More experienced developers might reach profi-
ciency faster than students. Yet, they would likely have less time
available to learn a language. So, we think that the mistakes and
successes of our students are representative for challenges to be
expected from developers who learn a transformation language.

Students might differ due to their demography. All students had
at least 3.5 years of university experience including object-oriented
programming in Java and programming projects. While the body
is relatively uniform, deviations are possible. Our results do not
indicate corresponding biases. However, future studies will have to
show whether the distribution in experience impacts the results.

The challenges posed in the two devised scenarios may influence
the results. To mitigate this, we selected two scenarios representa-
tive of common transformations. Still there is substantial risk that
some of the observations characterize the scenarios just as much as
the languages (especially observations 7–9). Overcoming this risk
requires creating even larger studies with more scenarios.

Finally, our observations are stated solely for ATL, QVT-O, and
Xtend.We hesitate to generalize them to other languages. Cognition
of large non-trivial languages and complex problems is subtle. More
studies are needed to establish whether our results pertain to other
languages, including GPLs (functional programming languages)
and other transformation languages, including grammar [4, 11] and
graph-grammar based languages [3, 5, 40]. Our insights about indi-
vidual language concepts are likely transferable across languages.
ConclusionValidity. A larger samplewould strengthen the power
of tests and the ability to draw statistically significant conclusions.
Yet, it is unlikely to considerably change the effect size. The ob-
served effects are mostly small, with no constancy of medium and
large sizes across the tasks and scenarios. For example, there is a
large effect for the change task between QVT-O and Xtend in the
FM scenario, but only a small one for the RE scenario.

7 RELATEDWORK
Hutchinson et al. [15] present results of a twelve-month long em-
pirical study on the application of MDSD in industry. They find
that using transformations might increase development time signi-
ficantly, while decreasing maintenance time due to the possibility
of applying transformations multiple times. This acknowledges the
relevance of studying transformations languages.

Prior surveys [12, 27] propose taxonomies of model transforma-
tions. We selected the subject languages with these taxonomies
in mind, sampling over the key dimensions language paradigm
(declarative vs. imperative) and application domain (DSL vs. GPL).

Van Amstel and Van Den Brand [41] introduce and evaluate three
analysis techniques for transformation specifications. They suggest
that a common understanding of the quality of transformations is
missing, which challenges the design of M2M languages. We ad-
dress this challenge and contribute details about difficult language
concepts and challenging transformation skills.

Kosar et al. [21] compare program comprehension between (non-
transformation) GPLs and DSLs in three controlled experiments.
They find that subjects are more accurate and more efficient in
program comprehension when using DSLs. Interestingly, we do

not observe the general advantage of transformation DSLs in our
experiment, not even just for the comprehension task.

Kramer et al. [22] describe the design of a planned experiment
on the comprehension (only) of M2M languages versus GPLs. Un-
fortunately, no actual experiment is conducted. The scope of our
experiment is broader: we also investigate how developers change
and create transformations and also compare dedicated M2M lan-
guages with each other (not just with a GPL).

Grønmo and Oldevik [13] propose desired properties of M2M
languages and use them to compare the UMLModel Transformation
Tool (UMT) with other languages (including ATL). They solely
transform UML, whereas we inspect different model transformation
languages irrespective of the transformed language.

Rose et al. [34] report on the model transformation contest5
where participants perform transformation tasks with various tools.
They compare nine different transformation but focus on model
migration, so their observations do not easily generalize.

Paige et al. [32] describe state-of-the-art of model evolution. They
acknowledge the suitability of M2M languages for this task and
name it as a future research direction. Our experiment may help in
guiding the search for an ultimate M2M language.

Iosif-Lazar et al. [16] report on implementing and debugging a
non-trivial software modernization transformation. They discuss
different errors than us, since we observe early stage errors, and
they observe errors surviving after a thorough testing process.

8 CONCLUSION
How effectively do programmers use model transformation languages,
what problems do they face, and what aspects of these languages
emerge as particularly useful or problematic in contrast to GPLs?

All studied languages, declarative, imperative, domain-specific,
or general purpose, appear to help users in complex tasks, such as
the copying of model parts. The domain-specific languages support
subjects better in identifying the starting point and context for
changes compared to Xtend (GPL). Still, we did identify a potential
for improvement for all studied languages. Most subjects struggled
to correctly create and change value conditions, to initialize multi-
valued properties, and to use recursion. The future language and
tool design research can address some of these problems.

Importantly, we were unable to statistically confirm an anticipa-
ted advantage of transformation DSLs over Xtend, or of ATL over
the imperative languages. This is a concerning finding: It means
that migrating from a GPL to a dedicated transformation language
might not bring substantial benefits, especially if size and number
of transformations is small (the benefits seen in the experiment
are not significant, with small effect sizes). At the same time, ex-
pert users of GPLs are much easier to hire than transformation
language experts, so productivity with a modern GPL may well be
higher. Model transformation researchers, should consider these
results, as an indication that further improvements are needed in
this technology to warrant strong benefits.
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