
Background:

In an undergraduate course called Models of Computation

we studied a small language with functions, labelled prod-

ucts and labelled unions. This was a very minimal language,

one of the purposes was to express a self interpreter for the

language.
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Trying to understand records, projections and constructors . . . – p.2/18



A first small language

e1 e2 application
λx→e abstraction
c e constructor application
case e of {c1 : e1, . . .} case-expression
[l1 = e1; . . .] structure
e.l projection
rec x = e end recursion
x variable
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Computation rules

The value of d e
′ is obtained by first computing the value of d. If

this is on the form λx→e, then we compute the value of the

expression obtained by substituting e
′ for all free occurrences

of x in e.

The value of case e of {c1 : e1; . . .} is obtained by first

computing the value of e. If this is on the form ci e then we

compute the value of ei e.

The program e.li is computed by first computing the value of e.

If this is on the form [l1 = e1; . . .] then we compute the value of

ei.

The program rec x = e end is computed by computing the

value of the expression obtained by substituting rec x = e end

for all free occurrences of x in e.
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Syntax for case expressions

A case expression which is usually written as

case e of {c1 x1 . . . xk : e1;

...

cn x1 . . . xl : en}

can be expressed as:

case e of {c1 : λx1 . . . λxk.e1;

...

cn : λx1 . . . λxl.en}
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Reduction rules for projection and case

[c1 = e1; . . . cn = en].ck −→ ek

case ck a1 . . . an of {c1 : e1; . . . cn : en} −→ ek a1 . . . an

if we change the syntax of the case a little:

[c1 = e1; . . . cn = en].ck −→ ek

[c1 = e1; . . . cn = en]� (ck a1 . . . an) −→ ek a1 . . . an

The second rule is more general.
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Reduction rules for the general projection

The rule

[i1 = e1; . . . in = en] . ik a1 . . . an −→ ek a1 . . . an

can be expressed by the following:

[].i −→ error

[i = a; b].i −→ a

[i = a; b].j −→ b.j if i 6= j

r.(a b) −→ (r.a) b if (a b) is a constructor application

We compute r.e by first computing the value of r and the value

of e.
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Summary

We can reduce the ordinary record projection and the
case-expression to a generalized projection

r.e

where the type of r is a labelled product and the type of e is

a labelled union.
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Another view of records

We can look at a record

[i1 = e1; . . . in = en]

as a list of definitions. We then have to define a new kind of
projection operator (called ‖) which should work like a local
let. The expression

[i1 = e1; . . . in = en] ‖ e

should express a local definition:

let [i1 = e1; . . . in = en] in e

The constructors in e are now looked as defined constants.
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Reduction rules for ‖

We now need to formulate reduction rules for the
‖-operator:

[].i −→ error [] ‖ i −→ i

[i = a; b].i −→ a [i = a; b]. ‖ i −→ a

[i = a; b].j −→ b.j [i = a; b] ‖ j −→ b ‖ j

r.(a b) −→ (r.a) b r ‖ (a b) −→ (r ‖ a) (r ‖ b)

But we also have to express what happens when we com-

pute an expression of the shape r ‖ e where the computation

of r and e has got stuck in an identifier which is to be defined.
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The syntax of a small language

x variable i constructor
e1 e2 application e1 ‖ e2 projection
λx.e abstraction [] void definition

[i = e1; e2] definition
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Semantics

The following expressions are computed to themselves:

A constructor i.

A lambda-expression λx.e

[]

[i = e1; e2]

We never compute open expressions, so there is no need to

explain how to compute a variable. It remains to explain how

an application and a projection is computed.

Trying to understand records, projections and constructors . . . – p.12/18



How to compute an application a b

We first compute the value of a.

constructor If the value of a is a constructor i then we return
the value i b.

application If the value of a is an application (c d) then we
compute the value b′ of b and return the value (c d) b′.

abstraction If the value of a is an abstraction λx.c then we
perform the β-reduction (λx.c) b −→ c[x←b] and
continue the computation.

record If the value of a is a definition list then there is an
error.

projection If the value of a is a projection c ‖ d then we return
the value (c ‖ d) b.
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How to compute a projection r ‖ b?

When we compute the projection we first compute the
value of b.

The general structure of a value is the same as for an
expression, except that variables cannot occur.

If the value of b is an expression e which is not a
constructor, then we project along the parts of e (since
we want the definitions in r to hold in the entire
expression e) and continue the computation.

If the value of b is a constructor i, then we compute the
value of r.

If this computes to a record [i1 = c1; . . . ; in = cn], then
we perform the projection.
If the constructor i is not defined, then we return the
identifier i as the result.
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How to compute a projection r ‖ b?

To compute a projection r ‖ b we first compute the value of
b.

constructor If the value of b is a constructor i then we
compute the value of r. If r computes to a record then
we can use the following reductions and continue to
compute the result of the reduction.

[i = c; d] ‖ i −→ c

[j = c; d] ‖ i −→ d ‖ i if i 6= j

[] ‖ i −→ i

If the value v of r is not a record, then we finish the
computation and return the value v ‖ i.
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application If the value of b is an application (c d) then we
perform the following reduction

r ‖ (c d) −→ (r ‖ c r ‖ d)

and continue the computation.

abstraction If the value of b is an abstraction λx.c :

r ‖ (λx.c) −→ λx.(r ‖ c)

record If the value of b is a definition list then we perform the
reductions

r ‖ [] −→ []

r ‖ [i = c; d] −→ [i = r ‖ c; r ‖ d]

Trying to understand records, projections and constructors . . . – p.16/18



projection If the value of b is a projection c ‖ d then we
perform the reduction

r ‖ (c ‖ d) −→ (r ‖ c) ‖ (r ‖ d)

and continue the computation.
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