Background:

o -

In an undergraduate course called Models of Computation
we studied a small language with functions, labelled prod-
ucts and labelled unions. This was a very minimal language,
one of the purposes was to express a self interpreter for the

language.
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A first small language

e1 €9 application

AL —e abstraction

ce constructor application
case e of {c; : €1, ...} case-expression

L =ep; ... structure

e.l projection

rec xr = ¢ end recursion

x variable
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Computation rules

5

The value of d ¢’ is obtained by first computing the value of d. |
this is on the form \Ax—e, then we compute the value of the
expression obtained by substituting ¢’ for all free occurrences
of z In e.

The value of case e of {c; : e1; ...} is obtained by first
computing the value of e. If this is on the form ¢; e then we
compute the value of ¢; e.

The program e.l; is computed by first computing the value of e.
If this is on the form [I; = ey; ...] then we compute the value of

€;.

The program rec = = e end IS computed by computing the
value of the expression obtained by substituting rec x = e endJ
for all free occurrences of x in e.
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Syntax for case expressions

-

A case expression which is usually written as

case e of {cy x1... 21 : e;

Ch T1...2]: €n}

can be expressed as:

case e of {c1: Axy...A\xp.eq;

Cn: AT1...A\Tj.€n}

.
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Reduction rules for projection and case

o .

c1= e1;...¢hn = eypl.cp — e

casecp ay ... apof {c1: e1;...cn: ept —epar ... an

If we change the syntax of the case a little:

c1=e1;...Ch = ep].cp — eg

ci=e1;...cn=¢€n|O(ckar ... an) — e ay ... an

The second rule is more general.

o -
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Reduction rules for the general projectior

o .

The rule
[il :61;...in :en] .ik ap ... p — €L A1 ... ap
can be expressed by the following:

].i — error
i =a;bl.i — a
i =a;bl.j — b.j If i £ 4
r.(ab) — (r.a) b If (a b) IS @ constructor application

We compute r.e by fi rst computing the value of » and the value

LOf €. J
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Summary

o .

We can reduce the ordinary record projection and the
case-expression to a generalized projection

r.e

where the type of r is a labelled product and the type of ¢ Is

a labelled union.
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Another view of records

-

We can look at a record T

[ilzel;...inzen]

as a list of defi nitions. We then have to defi ne a new kind of

projection operator (called ||) which should work like a local
let. The expression

i1 =e1;...in=¢ep] || €
should express a local defi nition:
let [ii =e1;...ihb =¢y] ine

The constructors in e are now looked as defi ned constants.

o -
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-

Reduction rules for |

=

We now need to formulate reduction rules for the
|-operator:

|.: — error | ||i—
i =a;bl.i — a i=a;bl. ||t — a
i=a;bl.j — b i=abl||j— bl
r.(ab) — (r.a)b r |l (ab) — (ra) (D)

But we also have to express what happens when we com-
pute an expression of the shape r || e where the computation

of » and e has got stuck in an identifi er which is to be defi ned.

-

Trying to understand records, projections and constructors ... — p.10/1



The syntax of a small language

o .

r  variable i constructor
e1 eo application e1 || e2  projection
Ax.e abstraction 1 void defi nition

i = e1;eo] definition



-

Semantics

=

The following expressions are computed to themselves:
#® A constructor z.

#® A lambda-expression A\zx.e

® |

9 [Z = e1; 62]

We never compute open expressions, so there is no need to
explain how to compute a variable. It remains to explain how

an application and a projection is computed.

-
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How to compute an application a b

o .

We fi rst compute the value of «.

constructor If the value of ¢ Is a constructor : then we return
the value 7 b.

application If the value of a Is an application (¢ d) then we
compute the value ¢’ of b and return the value (¢ d) bv'.

abstraction [f the value of a Is an abstraction \z.c then we
perform the g-reduction (Ax.c) b — c|x < b] and
continue the computation.

record If the value of a Is a defi nition list then there is an
error.

projection If the value of a IS a projection ¢ || d then we return
the value (¢ || d) ».

o -
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How to compute a projection r || b?

o .

# When we compute the projection we fi rst compute the
value of b.

# The general structure of a value is the same as for an
expression, except that variables cannot occur.

o |If the value of b Is an expression e which is not a
constructor, then we project along the parts of e (since
we want the defi nitions in r to hold in the entire
expression ¢) and continue the computation.

# |If the value of b Is a constructor ¢, then we compute the
value of r.
s If this computes to a record [i; = c1;...; i, = ¢, then
we perform the projection.

L o If the constructor 7 Is not defi ned, then we return the
Identifl er ; as the result.
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How to compute a projection r || b?

-

b.

To compute a projection r || b we fi rst compute the value of

=

constructor If the value of b Is a constructor ; then we
compute the value of r. If » computes to a record then
we can use the following reductions and continue to
compute the result of the reduction.

i = ¢ d]
J = ¢ d]

|

1 —— C
7,—>d|\z If i # 4

1 — 1

If the value v of r Is not a record, then we fi nish the
computation and return the value v || <.

-

Trying to understand records, projections and constructors ... — p.15/1



=

application If the value of b Is an application (¢ d) then we
perform the following reduction

rll(cd) —(r|crld)

and continue the computation.
abstraction If the value of b is an abstraction A\zx.c:

r || (Ax.c) — Az.(r || ¢

record If the value of b is a defi nition list then we perform the
reductions

[ —1

rlli=cd—li=rler|d B
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=

projection If the value of b Is a projection ¢ || d then we
perform the reduction

(el d) — (rlle) || (r [ d)

and continue the computation.

-
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