Background:

In an undergraduate course called Models of Computation we studied a small language with functions, labelled products and labelled unions. This was a very minimal language, one of the purposes was to express a self interpreter for the language.

Trying to understand records, projections and constructors ...

Bengt Nordström

bengt@cs.chalmers.se

ChungAng University, Seoul, Korea on leave from Chalmers University, Göteborg, Sweden

A first small language

$e_1 e_2$	application
$\lambda x \rightarrow e$	abstraction
c <i>e</i>	constructor application
case e of $\{c_1 : e_1, \ldots\}$	case-expression
$[l_1 = e_1; \ldots]$	structure
e.	projection
$\mathbf{rec} \ x = e \ \mathbf{end}$	recursion
x	variable

Computation rules

- The value of d e' is obtained by first computing the value of d. If this is on the form $\lambda x \rightarrow e$, then we compute the value of the expression obtained by substituting e' for all free occurrences of x in e.
- The value of case e of {c₁ : e₁; ...} is obtained by first computing the value of e. If this is on the form c_i e then we compute the value of e_i e.
- The program $e.I_i$ is computed by first computing the value of e. If this is on the form $[I_1 = e_1; ...]$ then we compute the value of e_i .
- The program rec x = e end is computed by computing the value of the expression obtained by substituting rec x = e end for all free occurrences of x in e.

Syntax for case expressions

A case expression which is usually written as

case
$$e$$
 of $\{c_1 \ x_1 \dots x_k : e_1;$

$$c_n x_1 \dots x_l : e_n$$

can be expressed as:

$$case \ e \ of \ \{c_1 : \ \lambda x_1 \dots \lambda x_k . e_1; \\ \vdots \\ c_n : \ \lambda x_1 \dots \lambda x_l . e_n\}$$

Reduction rules for projection and case

$$[\mathbf{c}_1 = e_1; \dots \mathbf{c}_n = e_n] \cdot c_k \longrightarrow e_k$$

case $c_k a_1 \dots a_n$ of $\{\mathbf{c}_1 : e_1; \dots \mathbf{c}_n : e_n\} \longrightarrow e_k a_1 \dots a_n$

if we change the syntax of the case a little:

$$[\mathbf{c}_1 = e_1; \dots \mathbf{c}_n = e_n] \cdot c_k \longrightarrow e_k$$
$$[\mathbf{c}_1 = e_1; \dots \mathbf{c}_n = e_n] \odot (c_k \ a_1 \ \dots \ a_n) \longrightarrow e_k \ a_1 \ \dots \ a_n$$

The second rule is more general.

Reduction rules for the general projection

The rule

$$[\mathbf{i}_1 = e_1; \dots \mathbf{i}_n = e_n] \cdot i_k a_1 \dots a_n \longrightarrow e_k a_1 \dots a_n$$

can be expressed by the following:

$$\begin{split} [].i &\longrightarrow \text{error} \\ [i = a; b].i &\longrightarrow a \\ [i = a; b].j &\longrightarrow b.j & \text{if } i \neq j \\ r.(a \ b) &\longrightarrow (r.a) \ b & \text{if } (a \ b) \text{ is a constructor application} \end{split}$$

We compute r.e by first computing the value of r and the value of e.

We can reduce the ordinary record projection and the case-expression to a generalized projection

r.e

where the type of r is a labelled product and the type of e is a labelled union.

Another view of records

We can look at a record

$$[\mathbf{i}_1 = e_1; \dots \mathbf{i}_n = e_n]$$

as a list of definitions. We then have to define a new kind of projection operator (called \parallel) which should work like a local let. The expression

$$[\mathsf{i}_1 = e_1; \dots \mathsf{i}_\mathsf{n} = e_n] \parallel e$$

should express a local definition:

let
$$[i_1 = e_1; \dots i_n = e_n]$$
 in e

The constructors in e are now looked as defined constants.

Reduction rules for

We now need to formulate reduction rules for the ||-operator:

$$\begin{split} [].i &\longrightarrow \text{error} & [] \parallel i \longrightarrow i \\ [i = a; b].i &\longrightarrow a & [i = a; b]. \parallel i \longrightarrow a \\ [i = a; b].j &\longrightarrow b.j & [i = a; b] \parallel j \longrightarrow b \parallel j \\ r.(a \ b) &\longrightarrow (r.a) \ b & r \parallel (a \ b) \longrightarrow (r \parallel a) \ (r \parallel b) \end{split}$$

But we also have to express what happens when we compute an expression of the shape $r \parallel e$ where the computation of r and e has got stuck in an identifier which is to be defined.

The syntax of a small language

- *x* variable
- $e_1 e_2$ application
- $\lambda x.e$ abstraction

i constructor $e_1 \parallel e_2$ projection [] void definition $[i = e_1; e_2]$ definition

Semantics

The following expressions are computed to themselves:

- A constructor *i*.
- A lambda-expression $\lambda x.e$
- **9** []
- $[i = e_1; e_2]$

We never compute open expressions, so there is no need to explain how to compute a variable. It remains to explain how an application and a projection is computed.

How to compute an application *a b*

We first compute the value of a.

- **constructor** If the value of a is a constructor i then we return the value i b.
- application If the value of a is an application (c d) then we compute the value b' of b and return the value (c d) b'.
- abstraction If the value of *a* is an abstraction $\lambda x.c$ then we perform the β -reduction $(\lambda x.c) \ b \longrightarrow c[x \leftarrow b]$ and continue the computation.
- **record** If the value of *a* is a definition list then there is an error.
- projection If the value of a is a projection $c \parallel d$ then we return the value $(c \parallel d) b$.

How to compute a projection $r \parallel b$ **?**

- When we compute the projection we first compute the value of b.
- The general structure of a value is the same as for an expression, except that variables cannot occur.
- If the value of b is an expression e which is not a constructor, then we project along the parts of e (since we want the definitions in r to hold in the entire expression e) and continue the computation.
- If the value of b is a constructor i, then we compute the value of r.
 - If this computes to a record $[i_1 = c_1; ...; i_n = c_n]$, then we perform the projection.
 - If the constructor i is not defined, then we return the identifier i as the result.

How to compute a projection $r \parallel b$?

To compute a projection $r \parallel b$ we first compute the value of b.

constructor If the value of *b* is a constructor *i* then we compute the value of *r*. If *r* computes to a record then we can use the following reductions and continue to compute the result of the reduction.

$$\begin{split} [i = c; d] \parallel i \longrightarrow c \\ [j = c; d] \parallel i \longrightarrow d \parallel i \quad \text{if } i \neq j \\ [] \parallel i \longrightarrow i \end{split}$$

If the value v of r is not a record, then we finish the computation and return the value $v \parallel i$.

application If the value of b is an application (c d) then we perform the following reduction

$$r \parallel (c \ d) \longrightarrow (r \parallel c \ r \parallel d)$$

and continue the computation.

abstraction If the value of b is an abstraction $\lambda x.c$:

$$r \parallel (\lambda x.c) \longrightarrow \lambda x.(r \parallel c)$$

record If the value of *b* is a definition list then we perform the reductions

$$r \parallel [] \longrightarrow []$$
$$r \parallel [i = c; d] \longrightarrow [i = r \parallel c; r \parallel d]$$

projection If the value of *b* is a projection $c \parallel d$ then we perform the reduction

$$r \parallel (c \parallel d) \longrightarrow (r \parallel c) \parallel (r \parallel d)$$

and continue the computation.

Trying to understand records, projections and constructors ... - p.18/18