Using the Computer to Prove the Correctness of Programs

Bengt Nordström
bengt@cs.chalmers.se

ChungAng University
on leave from Chalmers University, Göteborg, Sweden
Important properties of software:

- Number of features
- Performance
- Correctness
History of Program Correctness

- Turing 1949: Checking a Large Routine
- Robert Floyd, 1967: Assigning meanings to programs
- E.W.D. Dijkstra 1968: A Constructive Approach to the Problem of Program Correctness
- Tony Hoare, 1969: An Axiomatic Basis for Computer Programming
Different kinds of languages

- **Tacit**: To communicate with yourself
- **Informal**: To communicate with a human being
- **Formal**: To communicate with a computer
Languages involved in programming

- **Programming Language**: How to compute something?

 Begin with the first page and then continue with the next.

- **Specification Language**: What should the program compute?

 The phone number of a person.

- **Logic**: Why is the program computing what it should?

 All pages are gone through.
Degrees of precision

- **Programming Languages**: formal in academia around 1930, in industry around 1955.

- **Specification languages**: formal in academia around 1967. In industry today: mainly tacit/informal.

- **Logic**: formal in academia around 1967. Now in industry: mainly tacit.
Testing vs Proving

Testing: In testing you check whether the program is correct for a finite number of inputs. This relies on the assumption that it is easy to check whether a given output is correct.

Proving: In proving we prove that the program is correct for all inputs.
Two approaches to proving

- **Automatic Theorem Proving**: Give the program and the property it should have to the computer and wait for an answer:
 - yes, the program is correct
 - no, the program is not correct
 - no reply at all

- **Interactive Proof Checking**: The programmer builds interactively a formal proof and the computer checks all steps.
Type Theory

was developed 1970–1980 by Per Martin-Löf as a language for mathematics. His interest was foundational, he wanted to describe the language mathematicians are using in such a detail that nothing is left informal. In it, words like proof, proposition, true, equal have a precise meaning.

\[a \in A \]

- element
- set
- proof
- proposition
- program
- specification
Let’s look at the following example which is a specification of a sorting algorithm. The problem is to find a function which outputs a sorted permutation of its input.

\[Sort \equiv \Pi x \in List(N).\Sigma y \in List(N) \cdot \text{Perm}(x, y) \land \text{Sorted}(y) \]

where

\[\text{Perm}(x, y) \equiv \forall z \in N. \#z\text{inx} = \#z\text{iny} \]
Proof editors based on type theories:

- **Alf, Alfa, Agda** Chalmers University, Sweden
- **Coq** INRIA Rocquencourt, INRIA Futurs, France
- **Lego** Edinburgh University, UK
- **LF** Edinburgh University, UK
- **ELF** Carnegie Mellon, USA
- **NuPRL** Cornell University, USA

Other proof editors:

- **Isabelle** Cambridge
- **HOL** Cambridge
Important research issues:

Correctness of Computer Systems execution platform for JavaCard, IEEE 754 standard for floating point operations, correctness of computer algebra algorithms.

Proof Technology: proof libraries, unification, user interfaces, tactic languages, proofs on the web.

Formal mathematics: Extension of computer algebra systems.

Mathematics education: Logic courses, analysis.

Foundational research: extensionality, correctness of languages.