
Computability and
Self-interpretation

Bengt Nordström

bengt@cs.chalmers.se

ChungAng University, Seoul, Korea

on leave from Chalmers University, Göteborg, Sweden

Computability and Self-interpretation – p.1/30

The world

Computability and Self-interpretation – p.2/30

Sweden and Korea

Computability and Self-interpretation – p.3/30

The arctic region

Computability and Self-interpretation – p.4/30

What is a function?

Functions in mathematics: The function

f(x, y) =
4 ∗ cos

√

2 ∗ x2 + y2
√

x2 + y2

and in a programming language:
f(x,y) = 4*cos(sqrt(2*xˆ2+yˆ2))/sqrt(xˆ2+yˆ2)

Computability and Self-interpretation – p.5/30

Deterministic functions

Functions in programming languages are in general not
deterministic (not the same output for the same input)

A function in mathematics is always deterministic (since
we want f(n) = f(n))

Is this the only difference?

Computability and Self-interpretation – p.6/30

Definition

We say that f is a (mathematical) function if it is a set of
pairs

{(n1, m1), . . . , (ni, mi), . . . }

such that the first component uniquely decides the
second component, i.e. if both (n, m) and (n, k) are in f

then m = k.

A program (function in a programming language) is a
method which when given an object a either terminates
with an object b or does not terminate.

Are these function concepts the same?

Computability and Self-interpretation – p.7/30

There are more functions than programs

There are more functions taking natural numbers as input
and output then program taking natural numbers as input
and output.
What does this mean?

Computability and Self-interpretation – p.8/30

Hilbert’s Hotel

Computability and Self-interpretation – p.9/30

Not all functions can be implemented

The set of programs fit in Hilbert’s hotel.

The set of functions from N to N does not.

Why?

Computability and Self-interpretation – p.10/30

Examples of noncomputable functions:

It is an open mathematical problem whether Goldbach’s
conjecture is true.
Conjecture 1 (Goldbach) Every even number greater than
2 can be written as a sum of two prime numbers
We can then ask ourselves if the constant function
g ∈ N→ N defined by

g n =

{

1 if Goldbach’s conjecture is true,

0 otherwise
(1)

is computable?

Computability and Self-interpretation – p.11/30

Another example

Your friend claims that he has written a program halts such
that

halts x =

{

true if the computation of x terminates,

false otherwise

Do you believe him? Let’s write down this program:

T x = if halts x then loop else true

The program loop is a program which never terminates. We
now see that the program T reverses the termination
behaviour of its argument, i.e.

T a terminates if and only if a does not terminate.

Computability and Self-interpretation – p.12/30

Another example, contd.

So, if your friend succeeded to write the program halts,
then you have been able to construct a program T such that

T a terminates if and only if a does not terminate.

And this holds for all boolean values a! In particular for the
boolean value s defined recursively by

s = T s

Does s terminate? From the definition of s it terminates if T s

terminates. But this terminates if the argument s does not
terminate. So s terminates if s does not terminate. We have
a contradiction, so your friend must be lying when he said
that he had written the halts program.

Computability and Self-interpretation – p.13/30

Conclusion:

It is impossible to write a program halts such that

halts x =

{

true if the computation of x terminates,

false otherwise

This is a typical result in the scientific field Computability,
a field which started around 70 years ago by people like
Church, Turing, von Neuman, Markov, Curry and Kleene.
They were interested in what mathematical problems can-
not be solved by computers. It is interesting to note that this
was before the computer age. In fact, their results stimulated
the building of the first computers.

Computability and Self-interpretation – p.14/30

To represent a program as data

We can represent a program as data. For instance as a text
string (source code) or as a tree (abstract syntax tree).
A self-interpreter for a language L is a program in L which
can interpret an arbitrary L-program. So, it takes a represen-
tation of a program p as input and outputs a representation
of the result of executing the program p.

Computability and Self-interpretation – p.15/30

Can we make a simple self-interpreter?

This is not simple: the language must be simple so that the
interpreter is simple. But it must also be powerful so that a
simple program can express its interpreter.
Think about making a self-interpreter for Java!

Computability and Self-interpretation – p.16/30

Description of a Programming Language

A precise description of a programming language consists
of the following parts:

Concrete syntax (for instance using BNF)

Abstract syntax

Semantics (informal and formal)

Syntactic conventions

Computability and Self-interpretation – p.17/30

Concrete syntax of χ

“any character string“ string
e1 e2 application
λx→e abstraction
C e constructor application
case e of {C1 : e1, . . .} case-expression
{l1 = e1; . . .} structure
e.l projection
rec x = e end recursion
x variable

Constructors are identifiers starting with a capital letter. Vari-
ables and labels starts with small letters. The variable e

stands for an expression in χ, x ranges over variables, C

over constructors and l over labels.
Computability and Self-interpretation – p.18/30

Abstract syntax

We assume that e ∈ χ, i ∈ Id, t ∈ T(Id, χ). The set χ is
defined by the following inductive definition:

string(i) ∈ Exp if i ∈ Id

apply(e1, e2) ∈ χ

lambda(i, e) ∈ χ

constr(i, e) ∈ χ

case(e, t) ∈ χ

struct(t) ∈ χ

proj((, e), i) ∈ χ

rec(i, e) ∈ χ

var(i) ∈ χ

Computability and Self-interpretation – p.19/30

Informal semantics

The simplest program is a string “abc · · · “, it computes to itself.

The program λx→e is a value, it cannot be further computed.

The program e e′ is computed by first computing the value of e. If this is λx→e

then we continue by computing the value of the expression obtained by
substituting e′ for all free occurrences of x in e.

The program (c e) is a value, it cannot be further computed.

The program case e of {C1 : e1, . . .} is computed by first computing the value
of e. If this is on the form Ci e then we continue by computing the value of
(ei e).

The program {l1 = e1; . . .} is a value.

The program e.l is computed by first computing the value of e. If this is on the
form {l1 = e1; . . .} then we continue by computing the value of ei.

Finally, the program rec i = e end is computed by computing the value of the
expression obtained by substituting rec i = e end for all free occurrences of
the identifier i in the expression e.

Computability and Self-interpretation – p.20/30

Operational semantics

e1 −→ lambda(i, e3) e3[i←e2] −→ d

apply(e1, e2) −→ d

e −→ constr(i, e′) lookup(t, i, e′′) apply(e′′

, e
′) −→ d

case(e, t) −→ d

e −→ struct(t) lookup(t, i, e′) e
′ −→ d

proj((, e), i) −→ d

e[i←rec(i, e)] −→ d

rec(i, e) −→ d

lambda(i, e) −→ lambda(i, e)

constr(i, e) −→ constr(i, e)

struct(t) −→ struct(t) Computability and Self-interpretation – p.21/30

The substitution operation

apply(e1, e2)[i←e] = apply(e1[i←e], e2[i←e])

lambda(i, e′)[i←e] = lambda(i, e′)

lambda(j, e′)[i←e] = lambda(j, e′[i←e]) if i 6= j

constr(j, e′)[i←e] = constr(j, e′[i←e]) constructors are not substituted

case(e′

, t)[i←e] = case(e′[i←e], t[i←e]T)

struct(t)[i←e] = struct(t[i←e]T)

proj((, e)′

, i)[i←e] = proj((,)[e′← i]e, i) labels are not substituted

rec(i, e′)[i←e] = rec(i, e′)

rec(j, e′)[i←e] = rec(j, e′[i←e]) if i 6= j

var(i)[i←e] = e

var(j)[i←e] = var(j) if i 6= j

We assume that e, e′ ∈ χ, e is closed and i ∈ Id. The expression e′[i← e] stands

for the expression obtained by substituting e for all free occurences of the variable

var(i) in e′.

Computability and Self-interpretation – p.22/30

Substitution on tables

φ[i←e]T = φ

(t, j : e′)[i←e]T = (t[i←e]T , j : e′[i←e])

An ordinary substitution on each entry in the table.

Computability and Self-interpretation – p.23/30

Examples of syntactic conventions

Local definitions
The expression let x = e1 in e stands for the expression
(λx→e e1). The expression let x1 = e1, x2 = e2 in e stands
for let x1 = e1 in (let x2 = e2 in e) and so on.
Tuples
The expression 〈e1, . . . , en〉, where n ≥ 0 stands for the ex-
pression {arg1 = e1; . . . ; argn = en}, so 〈〉 is another way of
writing {} and 〈a, b〉 stands for {arg1 = a; arg2 = b}, etc.

Computability and Self-interpretation – p.24/30

Examples of syntactic conventions, cont’d

Pattern-matching on tuples
The expression λ〈x1, . . . , xn〉→e stands for the expression
λx→let x1 = x.arg1, . . . , xn = x.argn in e

Pattern-matching
Inside a case-expression case e of {c1 : e1, . . .} the
expression c1 : e1 is called a case-branch.
There will be certain convenient ways of writing
case-branches:
A case-branch of the form C p : e will stand for C : λp→e,
where the pattern p is either a variable or a pattern of the
form 〈x1, . . . , xn〉.

Computability and Self-interpretation – p.25/30

Examples of syntactic conventions, cont’d

These abbreviations are made so that we can use a more
traditional style of writing case-expressions, for instance the
program

case C a of {C x : e}

computes to the value of e[x← a], the expression obtained
by substituting a for all free occurrences of the variable x in
e. etc.

Computability and Self-interpretation – p.26/30

The self-evaluator for χ

Application:

e1 −→ lambda(i, e3) e3[i←e2] −→ d

apply(e1, e2) −→ d

eval apply〈e1, e2〉 =case eval e1 of {

lambda〈i, e3〉 : eval (subst e3 i e2)}

Computability and Self-interpretation – p.27/30

self-evaluator, cont’d

Pattern-matching:

e −→ constr(i, e′) lookup(t, i, e′′) apply(e′′, e′) −→ d

case(e, t) −→ d

eval case〈e, t〉 =case eval e of {

constr〈i, e′〉 : let e′′ = lookup t i in eval apply〈e′′, e′〉}

Computability and Self-interpretation – p.28/30

self-evaluator, cont’d

Projection:

e −→ struct(t) lookup(t, i, e′) e′ −→ d

proj((, e), i) −→ d

eval proj〈e, i〉 =case eval e of {

struct〈t〉 : let e′ = lookup t i in eval e′}

Recursion

e[i←rec(i, e)] −→ d

rec(i, e) −→ d

eval rec〈i, e〉 = eval (subst e i (rec〈i, e〉))

Computability and Self-interpretation – p.29/30

self-evaluator, cont’d

String:

string(i) −→ string(i)

eval string〈i〉 = string〈i〉

Abstraction:

lambda(i, e) −→ lambda(i, e)

eval lambda〈i, e〉 = lambda〈i, e〉

Constructor application:

constr(i, e) −→ constr(i, e)

eval constr〈i, e〉 = constr〈i, e〉

Structure:

struct(t) −→ struct(t)

eval struct〈t〉 = struct〈t〉

Computability and Self-interpretation – p.30/30

Putting the equations together:

rec eval = λp→case p of {

apply〈e1, e2〉 : case eval e1 of {

lambda〈i, e3〉 : eval (subst e3 i e2)}

case〈e, t〉 : case eval e of {

constr〈i, e′〉 : let e′′ = lookup t i in eval apply〈e′′, e′〉}

proj〈e, i〉 : case eval e of {struct〈t〉 : let e′ = lookup t i in eval e′}

rec〈i, e〉 : eval (subst e i (rec〈i, e〉))

string〈i〉 : string〈i〉

lambda〈i, e〉 : lambda〈i, e〉

constr〈i, e〉 : constr〈i, e〉

struct〈t〉 : struct〈t〉}

end

Computability and Self-interpretation – p.31/30

	The world
	Sweden and Korea
	The arctic region
	What is a function?
	Deterministic functions
	Definition
	There are more functions than programs
	Hilbert's Hotel
	Not all functions can be implemented
	Examples of noncomputable functions:
	Another example
	Another example, contd.
	Conclusion:
	To represent a program as data
	Can we make a simple self-interpreter?
	Description of a Programming Language
	Concrete syntax of $chi $
	Abstract syntax
	Informal semantics
	Operational semantics
	The substitution operation
	Substitution on tables
	Examples of syntactic conventions
	Examples of syntactic conventions, cont'd
	Examples of syntactic conventions, cont'd
	The self-evaluator for $chi $
	self-evaluator, cont'd
	self-evaluator, cont'd
	self-evaluator, cont'd
	Putting the equations together:

