Computability and
Self-interpretation

Bengt Nordstrom

bengt @s. chal ners. se

ChungAng University, Seoul, Korea

on leave from Chalmers University, Goteborg, Sweden

-

Computability and Self-interpretation — p.1/3

The world

~Kobinson Frojection
standand paralkes 387 and 35S

NORTH
PACIFIE
NORTH
OCEAN
¢ ATLANTIC

OCEAN

Arablan

Sea

< SOWTH
SOUTH' PACIFIC 3 A i y . ATLANTIC
OCEAN i "

OCEAN

Bight

ANV ILy-
nnlaor Coos
5 g

SOUTHERN OCEAN SOUTHERN OCEAN

SOUTHERN OGEAN

Computability and Self-interpretation — p.2/3

Sweden and Korea

Q 50 400 km

e
a 80 400 mi

NORWAY

Tateborg

Halmstad*
“Helsingborg

C *Malme

PENMARK

GERMAN Y

Sundsvall ;- -
Hudiksvall,.
JGavle

Uppsala,
. Karlstad

Norrképing -~
Linképing*
Jonkdping.

Kalmar,

Karshamn | /Oland

. oKarskrona
 Sblvesborg

Bombolm
{DENMARK)

St e
*Grebro ~ ® STOCKHOLM

/ éoﬂ&nd

POLAND

Lulea,!"

i FINLAND

““Aland Is.
{FINLARD)

ESTONJA

LATVIA

: Jf”‘ﬁ

LITH.

RUSSIA

.ron NORTH KOREA -r ;

:.l‘.’ —
bl sgouL Kenenma
Inchtin® | Janju
r Suwdn
Pukpiyangdong’
fiow '-._-'.- _Taﬁpn
] Poh
’Mmﬂ Ta,agu_u mﬂ"
: *Chonju Utsan, |
Masan, chinhae
*Hwa P s
Mokp'o ng'u)" Fuman

Liftting e

Fhrssaz

Computability and Self-interpretation — p.3/3

iC region

The arct

chr Pacific

\\Onnm:

-0 W.

| ’

Hudson 4

Bay ‘ s ;

L et ol

! ; Baffin o
- : Bay :
) “ G

Davis Strait 3 A T

Labrador
Sea

Reykjavik
R

N, North Atlantic Ocean~__

Azimuthal Equal-Area Profection

a 500 Kilometers
e g i |

o 500 Miles

o %
The Arctic reglon Is often defined as that area where the
average temperature for the warmest month is below 10°C.

»

/ \ B
Scale 1:39,000,000

Arctic . N = 3.0«%,.4 isotherm, (|
Qcean B 4 .\.._w_.a\

l .
/ ..
! T SEVERNAKA @.\f

ZEMUYA | AN
North 3
Pole
e = .
| Sy
et

_ ° wﬂ.ﬂo__.
Kara

RUSSIA
f T

L

North
Sea

"~ 802698A1 (R02112) 4-00

Computability and Self-interpretation — p.4/3

What i1s a function?

-

® Functions in mathematics: The function
4 % cosr/2 x 22 + 1)
Va2 +

flz,y) =

g

L e
LR T

[Tl

LTI Tl | N N
'y,

NS

LI =

= %
P e i RO RN S S
P e

and in a programming language:

T(X,y) = 4*cos(sqrt(2*x 2+y 2))/sqrt(x 2+y 2

.

-

Computability and Self-interpretation — p.5/3

Deterministic functions

f: Functions in programming languages are in general not T
deterministic (not the same output for the same input)

A function in mathematics is always deterministic (since
we want f(n) = f(n))

Is this the only difference?

o -

Computability and Self-interpretation — p.6/3

Definition

-

We say that f Is a (mathematical) function ifitis a set o
pairs

.

{(n1,m1),..., (N, ms),...}
such that the first component uniquely decides the
second component, i.e. if both (n,m) and (n, k) are in f
then m = k.
A program (function in a programming language) Is a
method which when given an object a either terminates
with an object b or does not terminate.

Are these function concepts the same?

o -

Computability and Self-interpretation — p.7/3

There are more functions than programs

o .

There are more functions taking natural numbers as input

and output then program taking natural numbers as input
and output.

What does this mean?

o -

Computability and Self-interpretation — p.8/3

Hilbert’s Hotel

@200l
CaRoL
LAY

"WiLBERTS HoTeL”

THE INFINITE HoTEL WAS ALWAYS
FILLED To CAPACITY.

'h—\\

THIS PARAPOX ASSUMEP THAT
MANAGEMENT CoullP ALWAYS
APDP oNE O MoEE To INFINITY.

Ao W ot A
1 .
1, THEN ASK

EYERYoME To
SHIFT aVER-

YET, IF A NEW GUEST ARRIVED,
SHE WAS ALWAYS GIVEN A RooM.

AFTER ALL, THERE WERE AN
INFINITE NUMBER oF KooMS.
ReoM 8437229486, 14392645,
U36538698652,T32Z
| NEEDS FRESH ToWELS.

THE BRAIN-BRUISING HoTEL
ATTEACTEP A Lol ofF MATHE-
MATICIANS ANP PHILoSoPHEES.

THEY LIKEP To ARGUE INTo
THE WEE HoursS AE{:% THE
NITY.

"
.
W,
.I-
L
gt
- Il.

Computability and Self-interpretation — p.9/3

Not all functions can be implemented

-

#® The set of programs fit in Hilbert’s hotel.

=

® The set of functions from N to N does not.

Why?

Examples of noncomputable functions:

fIt IS an open mathematical problem whether Goldbach’s T

conjecture is true.
Conjecture 1 (Goldbach) Every even number greater than
2 can be written as a sum of two prime numbers

We can then ask ourselves if the constant function
g € N — N defined by

(1)

{1 If Goldbach’s conjecture is true,
gn=

0 otherwise

IS computable?

o -

Computability and Self-interpretation — p.11/3(

Another example

o .

Your friend claims that he has written a program halts such
that

true If the computation of x terminates,
halts z = .
false otherwise

Do you believe him? Let’s write down this program:
T z = If halts z then loop else true

The program loop is a program which never terminates. We
now see that the program 7' reverses the termination
behaviour of its argument, I.e.

T o terminates If and only If « does not terminate.

o -

Computability and Self-interpretation — p.12/3(

Another example, contd.

o .

So, If your friend succeeded to write the program halts,
then you have been able to construct a program 7" such that

T a terminates If and only if « does not terminate.

And this holds for all boolean values a! In particular for the
boolean value s defined recursively by

s="1Ts

Does s terminate? From the definition of s it terminates if T' s
terminates. But this terminates if the argument s does not
terminate. So s terminates if s does not terminate. We have
a contradiction, so your friend must be lying when he said
that he had written the halts program.

o -

Computability and Self-interpretation — p.13/3(

Conclusion:

o .

It is Impossible to write a program halts such that

true If the computation of x terminates,
halts x = .
false otherwise

This Is a typical result in the scientific field Computabillity,
a field which started around 70 years ago by people like
Church, Turing, von Neuman, Markov, Curry and Kleene.
They were interested in what mathematical problems can-
not be solved by computers. It is interesting to note that this
was before the computer age. In fact, their results stimulated
the building of the first computers.

o -

Computability and Self-interpretation — p.14/3(

To represent a program as data
W -

e can represent a program as data. For instance as a text
string (source code) or as a tree (abstract syntax tree).

A self-interpreter for a language L is a program in L which
can interpret an arbitrary L-program. So, it takes a represen-
tation of a program p as input and outputs a representation
of the result of executing the program p.

o -

Computability and Self-interpretation — p.15/3(

Can we make a simple self-interpreter?

-

=

This is not simple: the language must be simple so that the
Interpreter is simple. But it must also be powerful so that a
simple program can express Its interpreter.

Think about making a self-interpreter for Java!

-

Computability and Self-interpretation — p.16/3(

Description of a Programming Language

o .

A precise description of a programming language consists
of the following parts:

Concrete syntax (for instance using BNF)
#® Abstract syntax

Semantics (informal and formal)

Syntactic conventions

o -

Computability and Self-interpretation — p.17/3(

Concrete syntax of v
- -

“any character string* string

el €9 application

Ax—e abstraction

Ce constructor application
case e of {C] : e;, ...} case-expression

{li =e1; ...} structure

e.l projection

rec r = ¢ end recursion

T variable

Constructors are identifiers starting with a capital letter. Vari-
ables and labels starts with small letters. The variable e
Lstands for an expression in y, x ranges over variables, CJ

over constructors and 1 over labels.

Computability and Self-interpretation — p.18/3(

Abstract syntax

o .

We assume that e € x,i € Id,t € T(Id, x). The set x Is
defined by the following inductive definition:

string(i) € Exp 1If ield
apply(e1, e2) € X
lambda(i,e) € x
constr(i,e) € x

case(e,t) € x

struct(t) € x

proj((,e), 1) € x

rec(i,e) € x

var(i) € x

o -

Computability and Self-interpretation — p.19/3(

Informal semantics

=

The simplest program is a string “abc- - - «, it computes to itself.
The program Az —e is a value, it cannot be further computed.

The program e e’ is computed by fi rst computing the value of e. If this is Az —e
then we continue by computing the value of the expression obtained by
substituting ¢’ for all free occurrences of z in e.

The program (c e) is a value, it cannot be further computed.

The program case e of {C; : e;, ...} is computed by fi rst computing the value
of e. If this is on the form C; e then we continue by computing the value of

(e;i e).
The program {11 = e1; ...} is a value.

The program e.l is computed by fi rst computing the value of e. If this is on the
form {11 = e1; ...} then we continue by computing the value of ¢;.

Finally, the program rec ¢ = e end is computed by computing the value of the
expression obtained by substituting rec i = e end for all free occurrences of
the identifi er i in the expression e.

Computability and Self-interpretation — p.20/3(

Operational semantics

e1 — lambda(i, es) esli<—e2] — d

apply(e1,e2) — d

e — constr(i,e’) lookup(t,i,e”) apply(e”’,e') — d

case(e,t) — d

e — struct(t) lookup(t,i,e’) e —d

proj((,e),:) — d

eli<—rec(i,e)] — d

rec(i,e) — d
lambda(i,e) — lambda(i, e)

constr(i,e) — constr(i, e)

StI‘uCt (t) —_— St I‘uCt (t) Computability and Self-interpretation — p.21/3

The substitution operation

-

apply(e1, e2)[i<e¢]
lambda(i, e’)[i < €]
lambda(j, e’)[i e
constr(j,e’)[i €]
case(e’, t)[i« e
struct(t)[i < €]
proj((,e)’,i)[i el
rec(i, e’)[i e

rec(7, ’) i—e| =

va
var(j)li<e

r(i)[i<—e€]
)

| =var(j) ifi#j

= apply(ei[i—e], eali—e])

= lambda(i, e)

— lambda(j,e'[i<e]) ifi#j

— constr(j,e'[i«—e]) constructors are not substituted
— case(e'[i<e], t[i+e]T)

= struct(t[i<—e|r)
[

= proj((,)[e’ —ile,i) labels are not substituted
= rec(i,e’)

— rec(j,€/li—e]) ifi#;

—=e

We assume that e, e’ € x, e is closed and : € Id. The expression ¢'[i < e] stands
for the expression obtained by substituting e for all free occurences.Qfihevasiakle. 2z

Substitution on tables

f
Pli<—elr = ¢

(t,7:eNi—elr = (tfie]p,j : €'[i+e])

An ordinary substitution on each entry in the table.

Examples of syntactic conventions

o .

Local definitions
The expression let © = e; in e stands for the expression

(Ax—e e1). The expression let x1 = e;, x2 = e in e Stands
for let 1 = e1 in (let 9 = e2 in ¢) and so on.

Tuples
The expression (e, ...,e,), Where n > 0 stands for the ex-
pression {argl = ey;...;argn = e, }, SO () Is another way of

writing {} and (a, b) stands for {argl = a;arg2 = b}, etc.

o -

Computability and Self-interpretation — p.24/3(

Examples of syntactic conventions, cont’c

o .

Pattern-matching on tuples

The expression X{x1,...,z,)—e¢e stands for the expression
Ar—let xr1 =x.argl,....z, = x.argnine

Pattern-matching

Inside a case-expression case e of {cy : e, ...} the
expression cs : e Is called a case-branch.

There will be certain convenient ways of writing
case-branches:

A case-branch of the form C p : e will stand for C : Ap—e,
where the pattern p is either a variable or a pattern of the
form (xq,...,xp).

o -

Computability and Self-interpretation — p.25/3(

Examples of syntactic conventions, cont’c

o .

These abbreviations are made so that we can use a more
traditional style of writing case-expressions, for instance the
program

case Caof {Czx:e}

computes to the value of e[z <+ a], the expression obtained
by substituting a for all free occurrences of the variable x In
e. etc.

o -

Computability and Self-interpretation — p.26/3(

The self-evaluator for y

-

Application:

€1 — lambda(i, 63) €3 [i<—62] — d
apply(e1,e2) — d

eval apply(e;, e2) =case eval e; of {

lambda(i, e3) : eval (subst e3 i e2)}

o -

Computability and Self-interpretation — p.27/3(

self-evaluator, cont’d

=

Pattern-matching:

e — constr(i, ') lookup(t,i,e") apply(e”’,e') — d

case(e,t) — d

eval case(e,t) =case eval e of {

constr(i, e’} : let ¢ = lookup t 7 in eval apply(e”, e’)]

o -

Computability and Self-interpretation — p.28/3(

self-evaluator, cont’d

-

Projection:

e — struct(t) lookup(t,,e’) el — d

proj((,e),i) —d

eval proj(e, 1) =case eval e of {
struct(t) : let ¢’ = lookup t 7 in eval €'}

Recursion

eli«—rec(i,e)] — d

rec(i,e) — d

eval rec(i,e) = eval (subst e i (rec(i, e)))

o -

Computability and Self-interpretation — p.29/3(

self-evaluator, cont’d

-

String:

string(i) — string(7)

eval string(i) = string (1)

Abstraction:

lambda(i,e) — lambda(i, e)

eval lambda (i, e) = lambda(i, e)

Constructor application:

constr(i,e) — constr(i, e)

eval constr(i, e) = constr(i, e)

Structure:
struct(t) — struct(¢)

Computability and Self-interpretation — p.30/3(

Putting the equations together:

rec eval = A\p—case p of {

apply{ei,e2) : case eval e of {

lambda(i, e3) : eval (subst e3 i e2)}

case(e,t) : case eval e of {

constr(i, e’) : let ¢’ = lookup t i in eval apply(e’,e’)}
proj{e, i) : case eval e of {struct(t) : let ¢/ = lookup ¢ i in eval ¢’}

rec(i,e) : eval (subst e (rec(i,e)))
string(7) : string (i)

lambda(i, e) : lambda(i, e)

constr(i, e) : constr(i, e)

struct(t) : struct(t)}

end

-

Computability and Self-interpretation — p.31/3(

	The world
	Sweden and Korea
	The arctic region
	What is a function?
	Deterministic functions
	Definition
	There are more functions than programs
	Hilbert's Hotel
	Not all functions can be implemented
	Examples of noncomputable functions:
	Another example
	Another example, contd.
	Conclusion:
	To represent a program as data
	Can we make a simple self-interpreter?
	Description of a Programming Language
	Concrete syntax of $chi $
	Abstract syntax
	Informal semantics
	Operational semantics
	The substitution operation
	Substitution on tables
	Examples of syntactic conventions
	Examples of syntactic conventions, cont'd
	Examples of syntactic conventions, cont'd
	The self-evaluator for $chi $
	self-evaluator, cont'd
	self-evaluator, cont'd
	self-evaluator, cont'd
	Putting the equations together:

