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Sweden and Korea
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The arctic region
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What is a function?

Functions in mathematics: The function

f(x, y) =
4 ∗ cos

√

2 ∗ x2 + y2
√

x2 + y2

and in a programming language:
f(x,y) = 4*cos(sqrt(2*xˆ2+yˆ2))/sqrt(xˆ2+yˆ2)
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Deterministic functions

Functions in programming languages are in general not
deterministic (not the same output for the same input)

A function in mathematics is always deterministic (since
we want f(n) = f(n))

Is this the only difference?
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Definition

We say that f is a ( mathematical) function if it is a set of
pairs

{(n1, m1), . . . , (ni, mi), . . . }

such that the first component uniquely decides the
second component, i.e. if both (n, m) and (n, k) are in f

then m = k.

A program (function in a programming language) is a
method which when given an object a either terminates
with an object b or does not terminate.

Are these function concepts the same?
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There are more functions than programs

There are more functions taking natural numbers as input
and output then program taking natural numbers as input
and output.
What does this mean?
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Hilbert’s Hotel
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Not all functions can be implemented

The set of programs fit in Hilbert’s hotel.

The set of functions from N to N does not.

Why?
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Examples of noncomputable functions:

It is an open mathematical problem whether Goldbach’s
conjecture is true.
Conjecture 1 (Goldbach) Every even number greater than
2 can be written as a sum of two prime numbers
We can then ask ourselves if the constant function
g ∈ N→ N defined by

g n =

{

1 if Goldbach’s conjecture is true,

0 otherwise
(1)

is computable?
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Another example

Your friend claims that he has written a program halts such
that

halts x =

{

true if the computation of x terminates,

false otherwise

Do you believe him? Let’s write down this program:

T x = if halts x then loop else true

The program loop is a program which never terminates. We
now see that the program T reverses the termination
behaviour of its argument, i.e.

T a terminates if and only if a does not terminate.
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Another example, contd.

So, if your friend succeeded to write the program halts,
then you have been able to construct a program T such that

T a terminates if and only if a does not terminate.

And this holds for all boolean values a! In particular for the
boolean value s defined recursively by

s = T s

Does s terminate? From the definition of s it terminates if T s

terminates. But this terminates if the argument s does not
terminate. So s terminates if s does not terminate. We have
a contradiction, so your friend must be lying when he said
that he had written the halts program.
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Conclusion:

It is impossible to write a program halts such that

halts x =

{

true if the computation of x terminates,

false otherwise

This is a typical result in the scientific field Computability,
a field which started around 70 years ago by people like
Church, Turing, von Neuman, Markov, Curry and Kleene.
They were interested in what mathematical problems can-
not be solved by computers. It is interesting to note that this
was before the computer age. In fact, their results stimulated
the building of the first computers.
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To represent a program as data

We can represent a program as data. For instance as a text
string (source code) or as a tree (abstract syntax tree).
A self-interpreter for a language L is a program in L which
can interpret an arbitrary L-program. So, it takes a represen-
tation of a program p as input and outputs a representation
of the result of executing the program p.

Computability and Self-interpretation – p.15/30



Can we make a simple self-interpreter?

This is not simple: the language must be simple so that the
interpreter is simple. But it must also be powerful so that a
simple program can express its interpreter.
Think about making a self-interpreter for Java!
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Description of a Programming Language

A precise description of a programming language consists
of the following parts:

Concrete syntax (for instance using BNF)

Abstract syntax

Semantics (informal and formal)

Syntactic conventions
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Concrete syntax of χ

“any character string“ string
e1 e2 application
λx→e abstraction
C e constructor application
case e of {C1 : e1, . . .} case-expression
{l1 = e1; . . .} structure
e.l projection
rec x = e end recursion
x variable

Constructors are identifiers starting with a capital letter. Vari-
ables and labels starts with small letters. The variable e

stands for an expression in χ, x ranges over variables, C

over constructors and l over labels.
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Abstract syntax

We assume that e ∈ χ, i ∈ Id, t ∈ T(Id, χ). The set χ is
defined by the following inductive definition:

string(i) ∈ Exp if i ∈ Id

apply(e1, e2) ∈ χ

lambda(i, e) ∈ χ

constr(i, e) ∈ χ

case(e, t) ∈ χ

struct(t) ∈ χ

proj((, e), i) ∈ χ

rec(i, e) ∈ χ

var(i) ∈ χ
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Informal semantics

The simplest program is a string “abc · · · “, it computes to itself.

The program λx→e is a value, it cannot be further computed.

The program e e′ is computed by first computing the value of e. If this is λx→e

then we continue by computing the value of the expression obtained by
substituting e′ for all free occurrences of x in e.

The program (c e) is a value, it cannot be further computed.

The program case e of {C1 : e1, . . .} is computed by first computing the value
of e. If this is on the form Ci e then we continue by computing the value of
(ei e).

The program {l1 = e1; . . .} is a value.

The program e.l is computed by first computing the value of e. If this is on the
form {l1 = e1; . . .} then we continue by computing the value of ei.

Finally, the program rec i = e end is computed by computing the value of the
expression obtained by substituting rec i = e end for all free occurrences of
the identifier i in the expression e.
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Operational semantics

e1 −→ lambda(i, e3) e3[i←e2] −→ d

apply(e1, e2) −→ d

e −→ constr(i, e′) lookup(t, i, e′′) apply(e′′

, e
′) −→ d

case(e, t) −→ d

e −→ struct(t) lookup(t, i, e′) e
′ −→ d

proj((, e), i) −→ d

e[i←rec(i, e)] −→ d

rec(i, e) −→ d

lambda(i, e) −→ lambda(i, e)

constr(i, e) −→ constr(i, e)

struct(t) −→ struct(t) Computability and Self-interpretation – p.21/30



The substitution operation

apply(e1, e2)[i←e] = apply(e1[i←e], e2[i←e])

lambda(i, e′)[i←e] = lambda(i, e′)

lambda(j, e′)[i←e] = lambda(j, e′[i←e]) if i 6= j

constr(j, e′)[i←e] = constr(j, e′[i←e]) constructors are not substituted

case(e′

, t)[i←e] = case(e′[i←e], t[i←e]T )

struct(t)[i←e] = struct(t[i←e]T )

proj((, e)′

, i)[i←e] = proj((, )[e′← i]e, i) labels are not substituted

rec(i, e′)[i←e] = rec(i, e′)

rec(j, e′)[i←e] = rec(j, e′[i←e]) if i 6= j

var(i)[i←e] = e

var(j)[i←e] = var(j) if i 6= j

We assume that e, e′ ∈ χ, e is closed and i ∈ Id. The expression e′[i← e] stands

for the expression obtained by substituting e for all free occurences of the variable

var(i) in e′.
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Substitution on tables

φ[i←e]T = φ

(t, j : e′)[i←e]T = (t[i←e]T , j : e′[i←e])

An ordinary substitution on each entry in the table.
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Examples of syntactic conventions

Local definitions
The expression let x = e1 in e stands for the expression
(λx→e e1). The expression let x1 = e1, x2 = e2 in e stands
for let x1 = e1 in (let x2 = e2 in e) and so on.
Tuples
The expression 〈e1, . . . , en〉, where n ≥ 0 stands for the ex-
pression {arg1 = e1; . . . ; argn = en}, so 〈〉 is another way of
writing {} and 〈a, b〉 stands for {arg1 = a; arg2 = b}, etc.
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Examples of syntactic conventions, cont’d

Pattern-matching on tuples
The expression λ〈x1, . . . , xn〉→e stands for the expression
λx→let x1 = x.arg1, . . . , xn = x.argn in e

Pattern-matching
Inside a case-expression case e of {c1 : e1, . . .} the
expression c1 : e1 is called a case-branch.
There will be certain convenient ways of writing
case-branches:
A case-branch of the form C p : e will stand for C : λp→e,
where the pattern p is either a variable or a pattern of the
form 〈x1, . . . , xn〉.
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Examples of syntactic conventions, cont’d

These abbreviations are made so that we can use a more
traditional style of writing case-expressions, for instance the
program

case C a of {C x : e}

computes to the value of e[x← a], the expression obtained
by substituting a for all free occurrences of the variable x in
e. etc.
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The self-evaluator for χ

Application:

e1 −→ lambda(i, e3) e3[i←e2] −→ d

apply(e1, e2) −→ d

eval apply〈e1, e2〉 =case eval e1 of {

lambda〈i, e3〉 : eval (subst e3 i e2)}
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self-evaluator, cont’d

Pattern-matching:

e −→ constr(i, e′) lookup(t, i, e′′) apply(e′′, e′) −→ d

case(e, t) −→ d

eval case〈e, t〉 =case eval e of {

constr〈i, e′〉 : let e′′ = lookup t i in eval apply〈e′′, e′〉}
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self-evaluator, cont’d

Projection:

e −→ struct(t) lookup(t, i, e′) e′ −→ d

proj((, e), i) −→ d

eval proj〈e, i〉 =case eval e of {

struct〈t〉 : let e′ = lookup t i in eval e′}

Recursion

e[i←rec(i, e)] −→ d

rec(i, e) −→ d

eval rec〈i, e〉 = eval (subst e i (rec〈i, e〉))
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self-evaluator, cont’d

String:

string(i) −→ string(i)

eval string〈i〉 = string〈i〉

Abstraction:

lambda(i, e) −→ lambda(i, e)

eval lambda〈i, e〉 = lambda〈i, e〉

Constructor application:

constr(i, e) −→ constr(i, e)

eval constr〈i, e〉 = constr〈i, e〉

Structure:

struct(t) −→ struct(t)

eval struct〈t〉 = struct〈t〉
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Putting the equations together:

rec eval = λp→case p of {

apply〈e1, e2〉 : case eval e1 of {

lambda〈i, e3〉 : eval (subst e3 i e2)}

case〈e, t〉 : case eval e of {

constr〈i, e′〉 : let e′′ = lookup t i in eval apply〈e′′, e′〉}

proj〈e, i〉 : case eval e of {struct〈t〉 : let e′ = lookup t i in eval e′}

rec〈i, e〉 : eval (subst e i (rec〈i, e〉))

string〈i〉 : string〈i〉

lambda〈i, e〉 : lambda〈i, e〉

constr〈i, e〉 : constr〈i, e〉

struct〈t〉 : struct〈t〉}

end
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