
6

A simple type-theoretic language: Mini-TT
Thierry Coquand

Chalmers University of Technology and Göteborg University

Yoshiki Kinoshita
National Institute of Advanced Industrial Science and Technology (AIST),

Japan

Bengt Nordström
Chalmers University of Technology and Göteborg University

Makoto Takeyama
National Institute of Advanced Industrial Science and Technology (AIST),

Japan

Abstract

This paper presents a formal description of a small functional language
with dependent types. The language contains data types, mutual re-
cursive/inductive definitions and a universe of small types. The syntax,
semantics and type system is specified in such a way that the imple-
mentation of a parser, interpreter and type checker is straightforward.
The main difficulty is to design the conversion algorithm in such a way
that it works for open expressions. The paper ends with a complete
implementation in Haskell (around 400 lines of code).

6.1 Introduction

We are going to describe a small language with dependent types, its
syntax, operational semantics and type system. This is in the spirit
of the paper “A simple applicative language: Mini-ML” by Clément,
Despeyroux, and Kahn [5], where they explain a small functional lan-
guage. From them we have borrowed the idea of using patterns instead
of variables in abstractions and let-bindings. It gives an elegant way
to express mutually recursive definitions. We also share with them the
view that a programming language should not only be formally speci-
fied, but it should also be possible to reason about the correctness of its
implementation. There should be a small step from the formal opera-

139

140 Coquand, Kinoshita, Nordström, and Takeyama

tional semantics to an interpreter and also between the specification of
the type system to a type checker.

Our type checking algorithm reduces the problem to checking convert-
ibility of terms1. A central feature of our Mini-TT presentation is that
we compute normal forms of open terms for convertibility checking.

A major problem has been to define the computation of normal forms
in such a way that checking convertibility can be reduced to checking
syntactic identity of the normal forms. This is done in two steps: first
evaluating an expression to its value and then applying a readback func-
tion taking the value to a normal expression. Values are representations
of expressions in weak head normal form. There are connections between
our work and the work of B. Gregoire and X. Leroy on compilation of
strong reductions [10, 9]. Like in their work, our approach for conversion
is based on weak reductions on open terms, complemented by a recursive
“read back” procedure.

Two main differences with this work are the following. First, there is
the use of patterns mentioned above to encode mutual recursive defini-
tions and our representation of data types as labelled sums. These two
features allow us to represent some inductive recursive definitions in a
natural way. Second, our way of comparing functions defined by case is
less refined than the one in [10]. Though less refined, we think that our
approach is simpler to implement at a machine level. The programming
language associated to type theory is usually presented as λ-calculus
extended with some primitive constants (constructors) and constants
implicitly defined by pattern-matching equations [13]. Our simple treat-
ment is actually more faithful to this usual presentation than structural
equality. It has also the advantage that our syntax is very close to
the one of an ordinary functional programming language, with arbitrary
mutual recursive definitions.

Our approach should also allow us to apply the results of [4, 7]. This
should provide a modular and semantical sufficient condition ensuring
strong normalisation and hence decidability of our type-checking algo-
rithm.

This paper is organised as follows. In Section 6.2, the syntax of Mini-
TT is given, as well as some syntactic sugar. Some programming ex-
amples, such as booleans and natural numbers, are given in Section 6.3.
Section 6.4 introduces values and the evaluation function that sends
expressions to values. Our semantics is not based on a reduction rela-
1 Conversely, the convertibility of two terms t, u of type A can be reduced to the

problem of whether the term λT.λx.x has type ΠT : A→ U. T t→ T u.

A simple type-theoretic language: Mini-TT 141

expressions M, N, A, B ::= λ p . M | x | M N | Π p : A . B | U |
M, N | M.1 | M.2 | Σ p : A . B |
0 | 1 |
c M | fun S | Sum S |
D; M

patterns p ::= x | p, p |
choices S ::= () | (c M, S)

declarations D ::= p : A = M | rec p : A = M
syntactic sugar A → B = Π : A . B

A × B = Σ : A . B
c A | S = (c, A), S

c → M | S = (c, M), S

Fig. 6.1. Syntax of Mini-TT

tion between expressions. Intuitively, a value represents an expression
in weak head normal form and the evaluation function implements the
weak head reduction. Section 6.5 defines normal expressions and the
readback function that sends a value to a normal expression. We check
the convertibility of expressions by first evaluating them to values, then
applying the readback function, and finally checking for syntactic iden-
tity. Typing rules are presented in Section 6.6, and Section 6.8 discusses
variations possibly applied to mini-TT as is given here. Finally Section
6.9 concludes the paper. In the appendix, we attach a Haskell code which
checks the typing relation, i.e, given two expressions, checks whether the
latter is a type expression and the former has the latter as its type.

6.2 Syntax

A brief summary of the syntax can be found in figure 6.1.
In this presentation of the language, we are using patterns to introduce

variables. An abstraction of the form λ (x, y) . e is an abstraction of two
variables x and y, so (λ (x, y) . e) u reduces to e[x := u.1, y := u.2] while
an abstraction of the form λ . e is an abstraction of no variables, so
(λ . e) u reduces to e.

A program is an expression of type 1, usually just a list of declarations.
A declaration is a definition of a constant with its type. We will first
explain the syntax of the declarations, then continue to describe the
various ways of forming expressions associated to each type forming
operation (unit type, dependent product, labelled sum and universe).

142 Coquand, Kinoshita, Nordström, and Takeyama

Declarations: Recursive and explicit definitions There are two
kinds of definitions, let expression p : A = M ; N , and letrec expression
rec p : A = M ; N . Use of patterns is not strictly necessary but simplifies
the definition of mutually recursive definitions.

We allow definitions of non-terminating functions. This is essential
if Mini-TT is going to be a core language for programming. Non-
terminating functions are essential for interactive programs. Of course,
it causes problems for type-checking to be terminating, so we assume
that termination is checked in a separate phase.

Unit type The unit type 1 has the unit element 0.

Dependent product, lambda abstraction, application The de-
pendent product type Π p : A . B is the type of functions taking an
object M in the type A to an object in the type B (where B may de-
pend on M). Lambda abstractions are written λ p . M and application
M N . It is possible to use the notation A → B as syntactic sugar for
Π : A . B.

Dependent sum, pairs and projections The dependent sum Σ p :
A . B is the type of pairs M,N , where M ∈ A, N ∈ B[M/p]. The
projections are written M.1 and M.2. It is possible to use the notaton
A×B as syntactic sugar for Σ : A . B.

Labelled sum, constructor application and case An inductive set
is looked as a labelled sum Sum(c1 A1, . . . , cn An), which contains objects
of the form ci E, where E is an object in Ai. We will also write this as
Sum(c1 A1 | · · · | cn An). It is possible to skip the type Ai in the case
that it is the unit type 1. For instance, the type of Boolean values can
be written as Sum (true | false) instead of Sum (true 1 | false 1).

The case-analysis function has the shape fun(c1 M1, . . . , cn Mn). It
is a function which when applied to an object of the form ci N is equal
to Mi N . The choice ci (λ p . Mi) is written ci p → Mi and the choice
ci (λ . Mi) is written ci → Mi.

Universe The type of small types is written U. The objects in this are
types not built up using U.

A simple type-theoretic language: Mini-TT 143

6.3 Examples of programs

Here are some examples of programs (a list of declarations D1; · · · ;Dn)
that we can write in Mini-TT. The generic identity function will be
represented by the program

id : ΠA : U . A → A = λ A . λ x . x

A simple example is the data type of Booleans and the corresponding
elimination function:

Bool : U = Sum (true | false)
elimBool : ΠC : Bool → U . C false → C true → Π b : Bool . C b

= λ C . λ h0 . λ h1 . fun (true → h1 | false → h0)

The type of natural numbers is represented as a recursively defined
labelled sum

rec Nat : U = Sum (zero | succ Nat)

Similarly, the type of lists is described by

rec List : U → U = λ A . Sum (nil | cons A× List A)

The elimination function of the type of natural numbers is the recur-
sively defined function

rec natrec : ΠC : Nat → U . C zero → (Π n : Nat . C n → C(succ n)) →
Π n : Nat . C n

= λ C . λ a . λ g . fun (zero → a | succ n1 → g n1 (natrec C a g n1))

If we work in this fragment, and we do not introduce new definitions
using rec,Sum and fun, we obtain a faithful representation of the corre-
sponding fragment of type theory described in Chapter 20 of [12].

In Mini-TT, we can directly introduce other recursive functions on
natural numbers, even if they can be defined without recursion using
natrec. A simple example is the addition function

rec add : Nat → Nat → Nat

= λ x . fun (zero → x | succ y1 → succ (add x y1))

A more complex example is provided by the decidable equality func-
tion

rec eqNat : Nat → Nat → Bool

= fun (zero → fun (zero → true | succ y → false)
| succ x → fun (zero → false | succ y → eqNat x y))

144 Coquand, Kinoshita, Nordström, and Takeyama

values u, v, t ::= [k] | λf | Π t g | U |
u, v | 0 | Σ t g | 1 |
c v | fun s | Sum s

neutral values (accumulators) k ::= xn | k v | k.1 | k.2 | s k
function closures f, g ::= 〈λp.M, ρ〉 | f ◦ c

choice closures s ::= 〈S, ρ〉
environments ρ ::= () | ρ, p = v | ρ, D

Fig. 6.2. Values

Our representation of this function corresponds to the system of pattern-
matching equations

eqNat zero zero = true, eqNat zero (succ y) = false,

eqNat (succ x) zero = false, eqNat (succ x) (succ y) = eqNat x y,

compiled using two auxiliary functions

eqNat zero = f, f zero = true, f (succ y) = false,

eqNat (succ x) = g x, g x zero = false, g x (succ y) = eqNat x y

The last example is the inductive-recursive definition [8] of a universe
containing a code of the type of natural numbers and the dependent
product formation, defined in a mutual recursive way with its corre-
sponding decoding function:

rec (V,T) : Σ X : U . X → U

= (Sum (nat | pi (Σ x : V . Tx → V)),
fun (nat → Nat | pi (x, f) → Π y : Tx . T (f y))) ;

6.4 Operational Semantics

In order to define the semantics of the language, it is necessary to first
define the set of values (figure 6.2).

6.4.1 Values

A value represents an open expression in weak head normal form. It
is either a neutral value [k] which represents an expression whose com-
putation stopped because of an attempt to compute a variable, or a
canonical value, the form of which makes clear the head construction of
an expression: λ-abstraction λf , Π-abstraction Π t g, etc.

A simple type-theoretic language: Mini-TT 145

The neutral value xn is a primitive (not defined) constant which is
used to represent the value of a free variable. It is a constant about
which we know nothing. It is called a generic value in [6].

Other neutral values are built up from evaluation contexts in which
neutral values are attempted to be computed. For instance, we obtain
the neutral value k v when trying to evaluate an application and the value
of the function is the neutral value k and the argument is v. Similarly,
the neutral values k.1 and k.2 are results from trying to project from a
neutral value k. The neutral value 〈S, ρ〉 k is the result from trying to
apply a choice function funS to a neutral value k in an environment ρ.
Neutral values are called accumulators by Grégoire and Leroy [10].

6.4.2 Value operations

There is a small set of functions defined on values. They are in general
not defined for all arguments, e.g. the projections are not defined for
functions. This does not lead to problems since the operations are only
applied when evaluating well-typed expressions.

There is a function which instantiates a function closure to a value.
It is defined by:

inst〈λp.M, ρ〉 v = JMK(ρ, p = v)
inst(f ◦ c) v = inst f(c v)

Application app u v of values is defined using instantiation. Notice
how a neutral value is built up in the case that the function is a neutral
value:

app(λf) v = inst f v

app(fun〈S, ρ〉)(ci v) = app(JMiKρ) v

where S = (c1 → M1 | · · · | cn → Mn)
app(fun s)[k] = [s k]
app[k] v = [k v]

The projection function for pairs of values follows the same pattern:

(u, v).1 = u

[k].1 = [k.1]
(u, v).2 = v

[k].2 = [k.2]

The function to look up the value ρ(x) of a variable x in an envi-

146 Coquand, Kinoshita, Nordström, and Takeyama

Jλ p . MKρ = 〈λp.M, ρ〉
JxKρ = ρ(x)
JM NKρ = app(JMKρ)(JNKρ)
JΠ p : A . BKρ = Π(JAKρ) 〈λp.B, ρ〉
JUKρ = U
JD; MKρ = JMK(ρ, D)

JM, NKρ = (JMKρ, JNKρ)
J0Kρ = 0
JM.1Kρ = (JMKρ).1
JM.2Kρ = (JMKρ).2
JΣ p : A . BKρ = Σ (JAKρ) 〈λp.B, ρ〉
J1Kρ = 1

Jc MKρ = c (JMKρ)
Jfun SKρ = fun〈S, ρ〉
JSum SKρ = Sum〈S, ρ〉

Fig. 6.3. Semantics of Mini-TT

ronment ρ is only defined for ρ in which x is defined. Type-checking
guarantees that this is the case.
If x is in p,

(ρ, p = v)(x) = projpx(v)
(ρ, p : A = M)(x) = projpx(JMKρ)
(ρ, rec p : A = M)(x) = projpx(JMK(ρ, rec p : A = M))

If x is not in p,

(ρ, p = v)(x) = ρ(x)
(ρ,D)(x) = ρ(x)

The notation projpx(v) is well-defined under the precondition that x is in
p.

projxx(v) = v

proj(p1,p2)
x (v) = projp1

x (v.1) if x is in p1,
proj(p1,p2)

x (v) = projp2
x (v.2) if x is in p2

6.4.3 Semantics

In figure 6.3 we give the semantics of Mini-TT by equations of the form
JMKρ = v, meaning that the expression M evaluates to the value v in
the environment ρ.

A simple type-theoretic language: Mini-TT 147

E ::= λ xi . E | Π xi : E1 . E2 | U | [K]
E1, E2 | 0 | Σ xi : E1 . E2 | 1
c E | fun〈S, α〉 | Sum〈S, α〉

K ::= xi | KE | K.1 | K.2 | 〈S, α〉K
α ::= () | (α, p = E) | (α, D)

Fig. 6.4. Normal expressions

Ri(λf) = λ xi . Ri+1(inst f [xi])
Ri(u, v) = (Ri u, Ri v)
Ri 0 = 0
Ri(c v) = c (Ri v)
Ri(fun〈S, ρ〉) = fun〈S, Ri ρ〉
Ri(Sum〈S, ρ〉) = Sum〈S, Ri ρ〉
Ri U = U
Ri 1 = 1
Ri(Π t g) = Π xi : Ri t . Ri+1(inst g[xi])
Ri(Σ t g) = Σ xi : Ri t . Ri+1(inst g[xi])
Ri[k] = [Ri k]

Ri xj = xj

Ri(k v) = (Ri k)(Ri v)
Ri(k.1) = (Ri k).1
Ri(k.2) = (Ri k).2
Ri(〈S, ρ〉 k) = 〈S, Ri ρ〉 (Ri k)

Ri(ρ, p = v) = Ri ρ, p = Ri v
Ri(ρ, D) = Ri ρ, D
Ri() = ()

Fig. 6.5. The readback notation

6.5 Normal expressions and Readback

The readback function Ri takes a value to a normal expression (figure
6.2). The purpose of Ri is to facilitate convertibility checking. Notice
that normal expressions are first-order objects, and have a decidable
(syntactic) equality. Two convertible values are mapped to the same
normal expression (i.e. identical, including choice of bound variables).
This is similar to [10].

We overload the notation Ri(−) (i ∈ N) for three cases: the readback
of a value Ri v is a normal expression E, that of a neutral value Ri k

is a neutral expression K, and that of an environment Ri ρ is a normal
environment α.

148 Coquand, Kinoshita, Nordström, and Takeyama

6.6 Typing Rules

Typing context A typing context consists of an environment ρ and a
type environment Γ:

Γ ::= () | Γ, x : t

The lookup operation Γ(x) is expressed not as a function but as an in-
ductive predicate since it may fail and signals incorrectness of expression
being type checked.

(Γ, x : t)(x) → t

Γ(x) → t

(Γ, y : t′)(x) → t
y 6= x

That Γ is updated by binding p : t = v to Γ′ is written Γ ` p : t = v ⇒ Γ′.
It decomposes the pattern binding to bindings of simple variables while
checking that the shape of p fits the type t. The bound value v is needed
to compute the type of subpatterns of p.

Γ ` x : t = v ⇒ Γ, x : t Γ ` : t = v ⇒ Γ

Γ ` p1 : t1 = v.1 ⇒ Γ1 Γ1 ` p2 : inst g(v.1) = v.2 ⇒ Γ2

Γ ` (p1, p2) : Σ t1 g = v ⇒ Γ2

6.6.1 Overview

There are four forms of judgements.

checkD ρ,Γ `l D ⇒ Γ′ D is a correct declaration and extends Γ to Γ′

checkT ρ,Γ `l A A is a correct type expression
check ρ,Γ `l M ⇐ t M is a correct expression of the given type t

checkI ρ,Γ `l M ⇒ t M is a correct expression and its type is in-
ferred to be t

The inference rules are syntax directed and constitute a standard bidi-
rectional type-checking (semi-)algorithm. It is an important property of
the checking algorithm that JMKρ is never computed without first check-
ing that M is well-formed.

A simple type-theoretic language: Mini-TT 149

checkD: Check that a declaration is correct

ρ,Γ `l A ρ,Γ `l M ⇐ t Γ ` p : t = JMKρ ⇒ Γ1

ρ,Γ `l p : A = M ⇒ Γ1

(t = JAKρ)

ρ,Γ `l A

Γ ` p : t = [xl] ⇒ Γ1

(ρ, p = [xl]),Γ1 `l+1 M ⇐ t

Γ ` p : t = v ⇒ Γ2

ρ,Γ `l rec p : A = M ⇒ Γ2

(
t = JAKρ,

v = JMK(ρ, rec p : A = M)

)

The rule for a let binding is as expected. We check that A is a type,
M is an expression of that type, and extend Γ while checking that p fits
the type. In the rule for a letrec binding, the body M is checked in a
temporarily extended context where p is bound to a generic value. This
means that while checking M , recursively defined identifiers are treated
as fresh constants about which we assume nothing but their typing. Once
M is checked, Γ is extended using the ‘real’ value JMK(ρ, rec p : A = M)
for p.

checkT: Check that something is a type

ρ,Γ `l U

ρ,Γ `l A Γ ` p : JAKρ = [xl] ⇒ Γ1 (ρ, p = [xl]),Γ1 `l+1 B

ρ,Γ `l Π p : A . B

ρ,Γ `l A Γ ` p : JAKρ = [xl] ⇒ Γ1 (ρ, p = [xl]),Γ1 `l+1 B

ρ,Γ `l Σ p : A . B

ρ,Γ `l A ⇐ U

ρ,Γ `l A
(if other rules are not applicable)

If A is expected to be a type but not any of U,Π, or Σ, then it must be
a small type of type U (the last rule).

150 Coquand, Kinoshita, Nordström, and Takeyama

check: Check that an expression has a given type

Γ ` p : t = [xl] ⇒ Γ1 (ρ, p = [xl]),Γ1 `l+1 M ⇐ inst g [xl]

ρ,Γ `l λ p . M ⇐ Π t g

ρ,Γ `l M ⇐ t ρ,Γ `l N ⇐ inst g(JMKρ)

ρ,Γ `l (M,N) ⇐ Σ t g

ρ,Γ `l M ⇐ JAiKν

ρ,Γ `l ci M ⇐ Sum〈c1 A1 | · · · | cn An, ν〉

ρ,Γ `l M1 ⇐ Π (JA1Kν) (g ◦ c1)
· · ·

ρ,Γ `l Mn ⇐ Π (JAnKν) (g ◦ cn)

ρ,Γ `l fun(c1 → M1 | · · · | cn → Mn) ⇐
Π (Sum〈c1 : A1 | · · · | cn : An, ν〉) g

ρ,Γ `l D ⇒ Γ1 (ρ,D),Γ1 `l M ⇐ t

ρ,Γ `l D;M ⇐ t

ρ,Γ `l 0 ⇐ 1 ρ,Γ `l 1 ⇐ U

ρ,Γ `l A ⇐ U Γ ` p : JAKρ = [xl] ⇒ Γ1 (ρ, p = [xl]),Γ1 `l+1 B ⇐ U

ρ,Γ `l Π p : A . B ⇐ U

ρ,Γ `l A ⇐ U Γ ` p : JAKρ = [xl] ⇒ Γ1 (ρ, p = [xl]),Γ1 `l+1 B ⇐ U

ρ,Γ `l Σ p : A . B ⇐ U

ρ,Γ `l A1 ⇐ U · · · ρ,Γ `l An ⇐ U

ρ,Γ `l Sum(c1 A1 | · · · | cn An) ⇐ U

ρ,Γ `l M ⇒ t′ Rl t = Rl t
′

ρ,Γ `l M ⇐ t
(if other rules are not applicable)

This deals with expressions in canonical forms (weak head normal forms).
For an expression in a non-canonical form, the last rule infers its type
and checks that the inferred type is equal to the expected one. This is
the single place where type checking uses conversion checking.

In the rule for a case-analysis function, it must be checked against
a Π type whose domain is a Sum type. For simplicity, we require the
constructors in case branches to match exactly the constructors listed
in the Sum type, including the order. From the right hand side of the

A simple type-theoretic language: Mini-TT 151

equation

app(Jfun(c1 → M1 | · · · | cn → Mn)Kρ)(ci v) = app(JMiKρ) v

we expect the branch expression Mi to have a Π type with the domain
JAiKν. The closure g ◦ci in the codomain part is what is needed to make
both sides of the equation to have the same type, namely inst g(ci v).

The rules for Π, Σ, 1, and Sum here make the universe U to be directly
closed under those operations, unlike the type Set of Logical Framework.

checkI: Infer the type of an expression

Γ(x) → t

ρ,Γ `l x ⇒ t

ρ,Γ `l M ⇒ Π t g ρ,Γ `l N ⇐ t

ρ,Γ `l M N ⇒ inst g(JNKρ)

ρ,Γ `l M ⇒ Σ t g

ρ,Γ `l M.1 ⇒ t

ρ,Γ `l M ⇒ Σ t g

ρ,Γ `l M.2 ⇒ inst g((JMKρ).1)

We check and infer types of expressions in non-canonical forms here.

6.7 Metamathematical remarks

As we explained in the introduction, the work [4, 7] should provide a
general semantical condition ensuring termination of type-checking: it
is enough that the strict denotational semantics of the program is 6=⊥.
As in [4, 7], one can ensure this by proving totality of the program. In
turn, there are sufficient purely syntactical criterion ensuring totality.
One such criteria is for instance size-change termination [11, 15].

6.8 Variations

NBE and η-conversion We can adopt the typed NBE algorithm by
Abel, Dybjer, and Coquand [2] for our evaluation to obtain the ver-
sion of Mini-TT with η-conversion. There are two points to modify our
presentation of Mini-TT. First, when type checking under a binder, we
extend a context not by a generic value [xl] (l = |ρ|) but by its reflected
form ↑t [xl] where t is the type of the generic value. Second, when we
compare the expected type t and the inferred type t′ in the last of check,
we compare the readbacks of their reified form Ri ⇓ t and Ri ⇓ t′. These
modifications make the comparison to be between η-long normal forms,
thus making Mini-TT a language type checked with η-conversion.

152 Coquand, Kinoshita, Nordström, and Takeyama

Higher order values A function closures f is a first order represen-
tation of a semantic function from values to values. We do not need to
“look inside” it (cf. [10]). This can be made clear by replacing closures
with these semantic functions themselves, thus making values higher or-
der. Then, closure instantiation and constructions are replaced by the
following.

inst f v = f v

〈λp.M, ρ〉 = (v 7→ JMK(ρ, p = v))
f ◦ c = (v 7→ f(c v))

6.9 Conclusion

We have presented a dependently typed language Mini-TT with its se-
mantics and type checking rules. Mini-TT has dependent products,
dependent sums and unit type, labelled sums, recursive definitions, and
pattern abstractions and bindings.

Mini-TT is a step towards a simple and definitive core language for the
proof-assistant Agda [3] based on versions of Martin-Löf Type Theory.
To make development of large proofs and programs feasible, the full lan-
guage must support various advanced features such as incomplete terms
with meta-variables and synthesis of implicit arguments. Directly giving
semantics to them and justifying its complex implementation is difficult.
Our approach is to translate the full language to a well-understood sim-
ple core language. We would have a simple theory and implementation
of the core language, with respect to which a full-fledged proof assistant
is specified, implemented, and tested.

Our future work is towards that goal. This includes a strong normal-
ization theorem for Mini-TT using the denotational semantics of [4, 7],
non-uniform inductive families of types, universe hierarchy, proven cor-
rect compilation to abstract machine code as in [10], etc.

Bibliography

[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques
Lèvy. Explicit substitutions. In Conference Record of the Seventeenth An-
nual ACM Symposium on Principles of Programming Languages, San Fran-
cisco, California, pages 31–46. ACM, 1990.

[2] Andreas Abel, Klaus Aehlig, and Peter Dybjer. Normalization by eval-
uation for Martin-Löf type theory with one universe. Electronic Notes in
Theoretical Computer Science, 173:17–39, 2007.

A simple type-theoretic language: Mini-TT 153

[3] Agda homepage. http://unit.aist.go.jp/cvs/Agda/.
[4] Ulrich Berger. Strong normalization for applied lambda calculi. Logical

Methods in Computer Science, 1(2), 2005.
[5] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, and Gilles

Kahn. A simple applicative language: Mini-ML. In LISP and Functional
Programming, pages 13–27, 1986.

[6] Thierry Coquand. An algorithm for type-checking dependent types. Sci-
ence of Computer Programming, 26(1–3):167–177, 1996.

[7] Thierry Coquand and Arnaud Spiwack. A proof of strong normalisation
using domain theory. In LICS, pages 307–316. IEEE Computer Society,
2006.

[8] Peter Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. Journal of Symbolic Logic, 65(2):525–549, 2000.

[9] B. Grégoire. Compilation des termes de preuves: un (nouveau) mariage
entre Coq et Ocaml. Thése de doctorat, spécialité informatique, Université
Paris 7, École Polytechnique, France, December 2003.

[10] Benjamin Grégoire and Xavier Leroy. A compiled implementation of
strong reduction. In International Conference on Functional Programming
2002, pages 235–246. ACM Press, 2002.

[11] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-
change principle for program termination. In Conference Record of the
Twenty-eighth Annual ACM Symposium on Principles of Programming Lan-
guages, volume 28 of ACM SIGPLAN Notices, pages 81–92. ACM press,
january 2001.

[12] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-
Löf ’s Type Theory, volume 7 of Monographs on Computer Science. Oxford
University Press, 1990.

[13] Bengt Nordström, Kent Petersson, and Jan M. Smith. Martin-Löf’s
type theory. In S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 5. Oxford Science
Publications, 2000.

[14] Michael Pellauer, Markus Forsberg, and Aarne Ranta. BNF Con-
verter multilingual front-end generation from labelled BNF grammars.
Technical Report 2004-09, Department of Computing Science, Chalmers
University of Technology and Göteborg University, 2004. available from
http://www.cs.chalmers.se/˜markus/BNFC/.

[15] David Wahlstedt. Dependent Type Theory with Parameterized First-
Order Data Types and Well-Founded Recursion. PhD thesis, Chalmers Uni-
versity of Technology, 2007. ISBN 978-91-7291-979-2.

Appendix: Implementation

The inference rules are directly translated to Haskell using a simple error
monad G a. The Haskell typing of the routines that corresponds to the
four forms of judgements are:

154 Coquand, Kinoshita, Nordström, and Takeyama

data G a = Success a | Fail Name

instance Monad G where

(Success x) >>= k = k x

Fail s >>= k = Fail s

return = Success

fail = Fail

checkD :: Int -> Rho -> Gamma -> Decl -> G Gamma

checkT :: Int -> Rho -> Gamma -> Exp -> G ()

check :: Int -> Rho -> Gamma -> Exp -> TVal -> G ()

checkI :: Int -> Rho -> Gamma -> Exp -> G TVal

If these routines return without producing error messages, then there
are derivations that conclude corresponding judgements. The clause for
the application rule of checkI judgement is

ρ,Γ `l M ⇒ Π t g ρ,Γ `l N ⇐ t

ρ,Γ `l M N ⇒ inst g(JNKρ)

checkI k rho gma (EApp e1 e2) =

do t1 <- checkI k rho gma e1

(t, g) <- extPiG t1

check k rho gma e2 t

return (g * eval e2 rho)

where

extPiG (Pi t g) = return (t, g)

extPiG u = fail ("extPiG " ++ showVal u)

The implementation supposes a parser function. One can either write
directly a parser in Haskell, or use the BNF Converter compiler con-
struction tool [14]. From a description of concrete syntax in a labelled
BNF grammar, BNFC generates modules for the data type for abstract
syntax trees, a parser, and a pretty printer.

The implementation can be obtained from http://www.cs.chalmers.

se/Cs/Research/Logic/Mini-TT/

-- Main module

module Main where

A simple type-theoretic language: Mini-TT 155

import Prelude hiding ((*))

--

-- Expressions

type Name = String

data Exp =

ELam Patt Exp

| ESet

| EPi Patt Exp Exp

| ESig Patt Exp Exp

| EOne

| Eunit

| EPair Exp Exp

| ECon Name Exp

| ESum Branch

| EFun Branch

| EFst Exp

| ESnd Exp

| EApp Exp Exp

| EVar Name

| EVoid

| EDec Decl Exp

deriving (Eq,Ord,Show)

data Decl =

Def Patt Exp Exp

| Drec Patt Exp Exp

deriving (Eq,Ord,Show)

data Patt =

PPair Patt Patt

| Punit

| PVar Name

deriving (Eq,Ord,Show)

type Branch = [(Name,Exp)]

156 Coquand, Kinoshita, Nordström, and Takeyama

-- Values

data Val =

Lam Clos

| Pair Val Val

| Con Name Val

| Unit

| Set

| Pi Val Clos

| Sig Val Clos

| One

| Fun SClos

| Sum SClos

| Nt Neut

deriving Show

data Neut = Gen Int

| App Neut Val

| Fst Neut

| Snd Neut

| NtFun SClos Neut

deriving Show

type SClos = (Branch, Rho)

-- Function closures

data Clos = Cl Patt Exp Rho | ClCmp Clos Name

deriving Show

-- instantiation of a closure by a value

(*) :: Clos -> Val -> Val

(Cl p e rho) * v = eval e (UpVar rho p v)

(ClCmp f c) * v = f * Con c v

mkCl :: Patt -> Exp -> Rho -> Clos

mkCl p e rho = Cl p e rho

A simple type-theoretic language: Mini-TT 157

clCmp :: Clos -> Name -> Clos

clCmp g c = ClCmp g c

get s [] = error ("get " ++ show s)

get s ((s1,u):us) | s == s1 = u

get s ((s1,u):us) = get s us

app :: Val -> Val -> Val

app (Lam f) v = f * v

app (Fun (ces, rho)) (Con c v) =

app (eval (get c es) rho) v

app (Fun s) (Nt k) = Nt(NtFun s k)

app (Nt k) m = Nt(App k m)

app w u = error "app "

vfst :: Val -> Val

vfst (Pair u1 _) = u1

vfst (Nt k) = Nt(Fst k)

vfst w = error "vfst "

vsnd :: Val -> Val

vsnd (Pair _ u2) = u2

vsnd (Nt k) = Nt(Snd k)

vsnd w = error "vsnd "

-- Environment

data Rho = RNil | UpVar Rho Patt Val | UpDec Rho Decl

deriving Show

getRho :: Rho -> Name -> Val

getRho (UpVar rho p v) x | x ‘inPat‘ p = patProj p x v

| otherwise = getRho rho x

getRho (UpDec rho (Def p _ e)) x

| x ‘inPat‘ p = patProj p x (eval e rho)

| otherwise = getRho rho x

getRho rho0@(UpDec rho (Drec p _ e)) x

| x ‘inPat‘ p = patProj p x (eval e rho0)

158 Coquand, Kinoshita, Nordström, and Takeyama

| otherwise = getRho rho x

getRho RNil _ = error "getRho"

inPat :: Name -> Patt -> Bool

inPat x (PVar y) = x == y

inPat x (PPair p1 p2) = inPat x p1 || inPat x p2

inPat _ Punit = False

patProj :: Patt -> Name -> Val -> Val

patProj (PVar y) x v | x == y = v

patProj (PPair p1 p2) x v | x ‘inPat‘ p1 = patProj p1 x (vfst v)

| x ‘inPat‘ p2 = patProj p2 x (vsnd v)

patProj _ _ _ = error "patProj"

lRho :: Rho -> Int

lRho RNil = 0

lRho (UpVar rho _ _) = lRho rho + 1

lRho (UpDec rho _) = lRho rho

eval :: Exp -> Rho -> Val

eval e0 rho = case e0 of

ESet -> Set

EDec d e -> eval e (UpDec rho d)

ELam p e -> Lam $ mkCl p e rho

EPi p a b -> Pi (eval a rho) $ mkCl p b rho

ESig p a b -> Sig (eval a rho) $ mkCl p b rho

EOne -> One

Eunit -> Unit

EFst e -> vfst (eval e rho)

ESnd e -> vsnd (eval e rho)

EApp e1 e2 -> app (eval e1 rho) (eval e2 rho)

EVar x -> getRho rho x

EPair e1 e2 -> Pair (eval e1 rho) (eval e2 rho)

ECon c e1 -> Con c (eval e1 rho)

ESum cas -> Sum (cas, rho)

EFun ces -> Fun (ces, rho)

e -> error $ "eval: " ++ show e

-- Normal forms

A simple type-theoretic language: Mini-TT 159

data NExp =

NLam Int NExp

| NPair NExp NExp

| NCon Name NExp

| NUnit

| NSet

| NPi NExp Int NExp

| NSig NExp Int NExp

| NOne

| NFun NSClos

| NSum NSClos

| NNt NNeut

deriving (Eq,Show)

data NNeut = NGen Int

| NApp NNeut NExp

| NFst NNeut

| NSnd NNeut

| NNtFun NSClos NNeut

deriving (Eq,Show)

type NSClos = (Branch, NRho)

data NRho = NRNil | NUpVar NRho Patt NExp | NUpDec NRho Decl

deriving (Eq,Show)

-- Readback functions

rbV :: Int -> Val -> NExp

rbV k v0 = case v0 of

Lam f -> NLam k (rbV (k+1) (f * genV k))

Pair u v -> NPair (rbV k u) (rbV k v)

Con c v -> NCon c (rbV k v)

Unit -> NUnit

Set -> NSet

160 Coquand, Kinoshita, Nordström, and Takeyama

Pi t g -> NPi (rbV k t) k (rbV (k+1) (g * genV k))

Sig t g -> NSig (rbV k t) k (rbV (k+1) (g * genV k))

One -> NOne

Fun (s,rho) -> NFun (s,rbRho k rho)

Sum (s,rho) -> NSum (s,rbRho k rho)

Nt l -> NNt (rbN k l)

rbN :: Int -> Neut -> NNeut

rbN i k0 = case k0 of

Gen j -> NGen j

App k m -> NApp (rbN i k) (rbV i m)

Fst k -> NFst (rbN i k)

Snd k -> NSnd (rbN i k)

NtFun (s,rho) k -> NNtFun (s,rbRho i rho) (rbN i k)

rbRho :: Int -> Rho -> NRho

rbRho _ RNil = NRNil

rbRho i (UpVar rho p v) = NUpVar (rbRho i rho) p (rbV i v)

rbRho i (UpDec rho d) = NUpDec (rbRho i rho) d

--

-- Error monad and type environment

--

data G a = Success a | Fail Name

instance Monad G where

(Success x) >>= k = k x

Fail s >>= k = Fail s

return = Success

fail = Fail

type Gamma = [(Name, Val)]

lookupG :: (Show a, Eq a) => a -> [(a,b)] -> G b

lookupG s [] = fail ("lookupG " ++ show s)-- should never occur

lookupG s ((s1,u):us) | s == s1 = return u

lookupG s ((s1,u):us) = lookupG s us

-- Updating type environment Gamma |- p : t = u => Gamma’

A simple type-theoretic language: Mini-TT 161

upG :: Gamma -> Patt -> Val -> Val -> G Gamma

upG gma Punit _ _ = return gma

upG gma (PVar x) t _ = return $ (x,t):gma

upG gma (PPair p1 p2) (Sig t g) v =

do gma1 <- upG gma p1 t (vfst v)

upG gma1 p2 (g * vfst v) (vsnd v)

upG _ p _ _ =

fail $ "upG: p = " ++ show p

-- Type checking rules

genV :: Int -> Val

genV k = Nt (Gen k)

checkT :: Int -> Rho -> Gamma -> Exp -> G ()

check :: Int -> Rho -> Gamma -> Exp -> Val -> G ()

checkI :: Int -> Rho -> Gamma -> Exp -> G Val

checkD :: Int -> Rho -> Gamma -> Decl -> G Gamma

checkT k rho gma e0 =

case e0 of

EPi p a b -> do checkT k rho gma a

gma1 <- upG gma p (eval a rho) (genV k)

checkT (k+1) (UpVar rho p (genV k)) gma1 b

ESig p a b -> checkT k rho gma (EPi p a b)

ESet -> return ()

a -> check k rho gma a Set

check k rho gma e0 t0 =

case (e0, t0) of

(ELam p e , Pi t g)->

do let gen = genV k

gma1 <- upG gma p t gen

check (k+1) (UpVar rho p gen) gma1 e (g * gen)

(EPair e1 e2, Sig t g)->

do check k rho gma e1 t

check k rho gma e2 (g * eval e1 rho)

(ECon c e , Sum (cas,rho1))->

162 Coquand, Kinoshita, Nordström, and Takeyama

do a <- lookupG c cas

check k rho gma e (eval a rho1)

(EFun ces, Pi (Sum (cas, rho1)) g) ->

if map fst ces == map fst cas

then sequence_ [check k rho gma e (Pi (eval a rho1) (clCmp g c))

| ((c,e), (_,a)) <- zip ces cas]

else fail "case branches does not match the data type"

(Eunit , One)-> return ()

(EOne , Set)-> return ()

(EPi p a b , Set)->

do check k rho gma a Set

let gen = genV k

gma1 <- upG gma p (eval a rho) gen

check (k+1) (UpVar rho p gen) gma1 b Set

(ESig p a b , Set)-> check k rho gma (EPi p a b) Set

(ESum cas, Set) ->

sequence_ [check k rho gma a Set | (_,a) <- cas]

(EDec d e , t)-> do gma1 <- checkD k rho gma d

check k (UpDec rho d) gma1 e t

(e , t)-> do t1 <- checkI k rho gma e

eqNf k t t1

where

eqNf :: Int -> Val -> Val -> G ()

eqNf i m1 m2

| e1 == e2 = return ()

| otherwise = fail $ "eqNf: " ++ show e1 ++ "=/=" ++ show e2

where e1 = rbV i m1

e2 = rbV i m2

checkI k rho gma e0 =

case e0 of

EVar x -> lookupG x gma

EApp e1 e2 -> do t1 <- checkI k rho gma e1

(t, g) <- extPiG t1

check k rho gma e2 t

return (g * eval e2 rho)

EFst e -> do t <- checkI k rho gma e

(a,_) <- extSigG t

return a

ESnd e -> do t <- checkI k rho gma e

A simple type-theoretic language: Mini-TT 163

(_, g) <- extSigG t

return (g * vfst (eval e rho))

e -> fail ("checkI: " ++ show e)

where

extPiG :: Val -> G (Val, Clos)

extPiG (Pi t g) = return (t, g)

extPiG u = fail ("extPiG " ++ showVal u)

extSigG :: Val -> G (Val, Clos)

extSigG (Sig t g) = return (t, g)

extSigG u = fail ("extSigG " ++ showVal u)

showVal u = show (rbV 0 u)

checkD k rho gma d@(Def p a e) = do

checkT k rho gma a

let t = eval a rho

check k rho gma e t

upG gma p t (eval e rho)

checkD k rho gma d@(Drec p a e) = do

checkT k rho gma a

let t = eval a rho

gen = genV k

gma1 <- upG gma p t gen

check (k+1) (UpVar rho p gen) gma1 e t

let v = eval e (UpDec rho d)

upG gma p t v

--

-- Main checking routines

--

-- The input is checked as an expression of type One.

checkMain :: Exp -> G ()

checkMain e = check 0 RNil [] e One

-- checking a string input

164 Coquand, Kinoshita, Nordström, and Takeyama

checkStr :: String -> IO()

checkStr s =

case parseExp $ myLex s of -- parsing using routines

Fail msg -> putStrLn $ "Parse error: " ++ msg

Success (e,_) ->

case checkMain e of

Fail msg’ ->

putStrLn ("type-checking failed:\n" ++ msg’)

Success _ ->

putStrLn ("type-checking succeded.")

-- checking the content of a file.

checkFile :: String -> IO()

checkFile file = checkStr =<< readFile file

