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Abstract. We introduce SecWasm, the first general purpose information-
flow control system for WebAssembly (Wasm), thus extending the safety
guarantees offered by Wasm with guarantees that applications manipulate
sensitive data in a secure way. SecWasm is a hybrid system enforcing
termination-insensitive noninterference which overcomes the challenges
posed by the uncommon characteristics for machine languages of Wasm
in an elegant and thorough way.

1 Introduction

WebAssembly (Wasm) [22] is gaining popularity as a new standard for near-
native low-level code and is becoming a popular compilation target for languages
like C, C++, and Rust. Designed to enable high-performance web applications,
Wasm is currently supported by all major browsers [48]. Wasm also boasts
support to standalone environments such as Node.js and it has been deployed for
decentralized cloud computing [24], smart contracts [1], and IoT [51,40].

Consider a password meter website PM which needs to communicate with
a third-party website TP to fetch a password dictionary. PM would fetch the
dictionary in the beginning and signal the end of a successful run at the end.
Current Wasm security guarantees are able to prevent direct exfiltration, but
cannot ensure the password is not leaked (through URL parameter encoding or
otherwise) given a malicious developer providing module PM.

More specifically, Wasm security relies on the browser’s same-origin policy and
a memory-safe sandboxed execution environment [2] with separate memory and
code space [22]. Wasm has an unstructured linear memory which can be grown
dynamically. To ensure memory safety, all memory accesses are dynamically
checked against the memory bounds, trapping any out-of-bounds access. Fur-
thermore, Wasm applications have structured control flow, therefore disallowing
jumps to arbitrary locations. In this way, Wasm ensures control-flow integrity
(CFI) [3], such that Wasm code can be compiled and validated in a single pass.

While Wasm offers CFI, it remains an open challenge to ensure a secure
flow of information through its applications. A promising technique address-
ing this is information-flow control (IFC) [36], which tracks both explicit and
implicit information flows. While first valuable steps have been taken in this
direction [49,43,19,41], prior work is yet to address implicit flows [19,41], provide
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formal guarantees [43,19], handle flows via the memory [41], or apply beyond
specialized scenarios of constant-time Wasm for cryptographic algorithms [49].

A general and sound IFC approach to Wasm suitable for general-purpose
applications is pending. Moreover, it is a prerequisite for further progress in IFC
techniques for WebAssembly. Although several IFC systems for other machine
languages have been proposed [10,25,20,11,7,5,30,29,13,52,21], they cannot be
immediately repurposed here. Wasm is not a regular low-level language. Its struc-
tured control flow mechanisms and unstructured linear memory are uncommon.
And when it comes to IFC, they prove to be quite challenging on certain aspects.

The structured control flow allows us to design an IFC system which leverages
Wasm’s syntax to compute the control flow regions directly. This in contrast to
IFC approaches for other machine languages which resorted to employing external
tools [10,5,52,25,13] or adding artificial syntactic constructs [29,13,52] to achieve
some structure at the low-level. However, Wasm’s handling of the operand stack
which, to the best of our knowledge, is unique among machine languages requires
some innovation when it comes to defining the security properties enforced by
the IFC system.

Dealing with an unstructured linear memory entails an analysis in itself, not
only on what labeling tactic to apply, but also on what type of IFC enforcement
to design—both quite intermingled. While choosing the type of enforcement may
seem trivial, choosing the right memory labeling approach does not. When it
comes to the former, the reasoning is straightforward. On the one hand, Wasm’s
well-developed type system makes it suitable for static IFC. On the other hand,
managing dynamic flows such as memory accesses statically would lead to a
restrictive and rigid system, tipping the balance in favor of dynamic IFC. Yet, a
purely dynamic IFC approach usually bearing significant execution overhead is
not necessary for Wasm, since the language does not exhibit dynamic features.
Thus, the challenge remains in labeling the memory such that it minimizes the
dynamic checks while still maintaining permissiveness and expressiveness.

In this paper, we propose SecWasm, a hybrid IFC system addressing the chal-
lenges above in an elegant and thorough way. As is common [13,52,29,25,5,49,10],
our focus is on confidentiality, with the security goal of preventing information
from secret inputs to leak to public outputs. However, we envision our mecha-
nisms to be suitable for tracking some facets of integrity, thanks to the duality of
confidentiality and information-flow integrity [12].

Non-goals To delimit the scope of the paper, we emphasize the non-goals of
SecWasm, pertaining to handling the sources of non-determinism in WebAssembly:
lack of bit pattern for NaN values, resource exhaustion, and imported host
functions [22]. While we acknowledge that non-determinism can lead to illicit
information-flows through side channels (e.g., via the micro-architectural state
of the processor [44], or termination and progress channels [4]), we consider it a
worthwhile subject for future work and not crucial for laying the foundations of
general IFC in Wasm, which is the goal of this paper.

Contributions In brief, we make the following contributions:
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– We discuss the key aspects of IFC for Wasm, to back up and give an intuition
for the design of SecWasm (Section 3).

– We present SecWasm, the first general IFC system for Wasm (Section 4).
– We formally prove SecWasm to enforce termination insensitive noninterference

(Section 5).

2 Background on Wasm

This section gives a brief overview of the Wasm specifics required to understand
SecWasm. In particular, we present the basic features and discuss important
aspects such as structured control flow, linear memory, and security characteristics.
For more details on Wasm, we refer the reader to the initial publication [22] or
official live documentation [50]. In the following and the rest of the paper, we
focus on Wasm v1.0 [47].

2.1 Basics

We begin by presenting the syntactic features of WebAssembly most relevant for
SecWasm (Figure 1).

Modules Wasm programs are organized into modules. A module is composed of
a list of function types, a list of functions, a table identifying function pointers
with functions, a linear memory of raw bytes3, and a list of typed global variables.

A module is instantiated through an embedder, which is a host environment
usually attached to the JavaScript engine in a web browser. When instantiating
a module, the embedder must provide definitions for everything that should be
imported, such as host functions, and an initial linear memory m. The module
can also export Wasm functions the embedder can invoke, and the embedder can
read the linear memory of the module.

Each function func has a type specifying its signature by reference to a
function type defined in the module. Functions may have local variables and
consist of a sequence of instructions comprising the function body. Functions
are not first-class, meaning they cannot be used as arguments to or returned
from other functions, nor assigned to variables. However, functions can call other
functions, including themselves recursively. Functions can be invoked directly
using the call instruction which takes as argument the index of the function
in the functions vector, or indirectly with the call indirect instruction via the
function pointer table tbl mapping integers to functions.

Global variables gbl may be either mutable or immutable and are in scope to
the entire module. Local variables are always mutable and only in scope to the
executing function.

Types Wasm supports four primitive value types t: 32 and 64-bit integers (i32
and i64) and single and double precision floating-point numbers (f32 and f64).
Complex data types such as arrays or pointers do not exist in Wasm, and any

3 Wasm 1.0 only has support for a single memory per module.
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(modules) module ::= {types ft∗, funcs func∗, tables tbl,mems m1, globals glb}
(functions) func ::= {type idx , locals t∗, body expr}
(immediates) i ::= nat
(value types) t ::= i32 | i64 | f32 | f64

(global types) gt ::= mut? t
(function types) ft ::= t∗ → t∗

(block types) bt ::= t∗ → t∗

(constants) k ::= . . .
(instructions) instr ::= data | mem | ctrl | admin

data ::= t.const n | t.unop | t.binop | drop | select | local.get i | local.set i
| local.tee i | global.get i | global.set i

mem ::= t.load a o | t.store a o | memory.size | memory.grow
ctrl ::= nop | unreachable | block (bt) expr end | loop (bt) expr end

| if (bt) expr else expr end | br i | br if i | br table i+ | return | call i
| call indirect ft

admin ::= trap | labeln{expr} expr end | framen{frame} expr end | invoke a
(expressions) expr ::= instr | expr ; expr

Fig. 1: Selected Wasm abstract syntax. Non-empty sequences are denoted with
exponent +, possibly empty ones with exponent ∗, possibly empty singleton
sequences with exponent 1, and optional arguments with exponent ?.

representation of these types in the source language is compiled down to a
primitive type. Function types ft (as well as block types bt) define a sequence of
Wasm values taken as parameters and a sequence of values to return.

Instructions Wasm bytecode is executed as a stack-machine, where instructions
pop argument values off and push result values onto an operand stack.

Instructions are partitioned into data, mem, ctrl , and admin. Data instruc-
tions either manipulate the operand stack directly (t.const n, drop, select),
the local variables (local.get i, local.set i, local.tee i), or the global variables
(global.get i, global.set i). Memory instructions are used for interaction with
the linear memory. Instructions store and load write to and read from the linear
memory, respectively. memory.size returns the current size of the memory, and
memory.grow extends it dynamically. Control instructions comprise scoping
constructs (block), loops (loop), conditionals (if), structured unconditional (br,
br table, return) and conditional jumps (br if), and direct (call) and indirect
function calls (call indirect). Finally, nop does nothing, while unreachable causes
an unconditional, uncatchable trap exception. When a trap occurs, the entire
computation is aborted, and no other changes to the state are allowed. Wasm does
not handle the traps, but propagates them to the embedder. Traps are expressed
by the administrative instruction trap. Other admin instructions express reduc-
tion of control instructions. As such, block, loop, and if reduce to labels, and
calls to invoke, which further reduce to frames. Labels labeln{expr1} expr2 end
carry the return arity n of the block, the block’s body expr2, and the continuation
expr1 to execute when a jump occurs within the block. invoke represents the
invocation of a function instance identified by its address a. Finally, frames
framen{frame} expr end carry the return arity n and body expr of the function
and the values of its arguments stored in frame.
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2.2 Structured Control Flow

Unlike other machine languages, the control flow in Wasm is structured and
this guarantees a program cannot jump to arbitrary locations. The structured
control flow is obtained by a combination of nested block constructs and jumping
instructions permitted only from within the blocks, and only as far out as the
nesting depth allows.

Blocks Blocks are formed by standard control flow constructs if and loop, and
scoping construct block. Each such construct terminates with an end opcode
indicating where the construct’s lexical scope ends.

Branches Wasm further implements its structured control flow with several
branching instructions: br, br table, and return—unconditional, and br if—con-
ditional. The crux of these branching instructions is that unlike unstructured
control flow, such as goto in C, they can only be executed inside nested blocks.
Branches have label immediates referencing outer blocks by their relative nesting
depth. This makes the labels scoped and able to reference only constructs in which
their corresponding branches are nested. Depending on the type of construct, the
effect of taking a branch differs. For a block or if instruction, a forward jump
occurs that resumes execution after the matching end. On the other hand, a
loop has a backward jump that restarts the loop.

Operand Stack Unwinding In Wasm, the operand stack contains three types of
entries: values t.const n, labels labeln{expr}, and frames framen{frame}, with
the latter two modeled by their respective administrative instructions. As such,
when a block (or call) instruction executes, the top values corresponding to the
block (or function) arguments are temporarily popped, a label (or frame) is
pushed, and the value arguments are pushed back, order preserved.

Branching retains the values on top of the operand stack corresponding to
the return values of the current block (but also to the argument values of the
continuation) and pops all entries off the stack until and including the label
entry corresponding to the continuation. Basically, this amounts to popping a
number of labels off the stack equal to branching immediate +1 and all other
value entries in between.

A return from a function keeps the top values on the stack denoting the
function return values and pops everything off the stack until and including the
first frame, which represents the frame of the current function.

Example Consider the code in Figure 2a and assume an initial operand stack
containing only value i32.const 0. The evolution of the stack during the execution
of the code is depicted in Figure 2b. In the following, we will go through each
instruction in the code of Figure 2a and explain the behavior of the stack. Blocks
are labeled $0 and $1 for easier referencing.

Note the type of block $0 is i32 → i32. This means the block takes one
argument and has only one return value, both of type i32. More specifically,
before entering and leaving the block, the operand stack requires on top a value
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1 block (i32→ i32) $0
2 block (i32→ ε) $1
3 i32.eqz
4 br if 0
5 i32.const 1
6 br 1
7 end
8 i32.const 0
9 end

(a)

0 $0

0

1

$0

$1

0

2

$0

$1

1

3

$1

4

$1

0

8

0

9

(b)

Fig. 2: Branching example (a) and the evolution of the operand stack during
its execution (b). The stack and index i below denote the operand stack after
the execution of the instruction on line i. Values are depicted as n instead of
t.const n. $0 = label1{ε}; $1 = label0{i32.const 0};

of type i32. Block $1 of type i32→ ε only takes an argument of type i32 and has
no return values.

When block $0 is entered, value i32.const 0 is popped off the stack, label
label1{i32.const 0} is pushed, then i32.const 0 is pushed back in. The same
behavior arises for instruction 2. i32.eqz pops the top value off the stack and
checks if it equals 0. It does, so it pushes back i32.const 1, otherwise it would have
pushed i32.const 0. br if 0 is a conditional jump which executes if the top of the
operand stack is i32.const 1. It is (step 3), so control is given to the instruction
at the end of block $1. When this happens, the label of block $1 is popped off the
stack. Note i32.const 1 was popped off during the execution of br if 0. Instruction
8 simply pushes i32.const 0 on the operand stack. Since block $0 needs to return
an i32 value, when leaving it on line 9, i32.const 0 is temporarily popped off, the
block label is removed and i32.const 0 is pushed back in.

2.3 Linear Memory

The main storage for a Wasm program is an unmanaged linear memory represent-
ing a contiguous mutable array of raw bytes [50] which uses the little-endian byte
order [22]. The memory is instantiated with an initial size and initialized with
zeros. It can be grown dynamically with instruction memory.grow and queried
for the current size with memory.size. The memory can be accessed through
load and store instructions, with the addresses being unsigned integers of type
i32. Whenever a memory access occurs, a dynamic check ensures the address is
within the memory bounds. If it is not, a trap occurs.

Writing to and Reading from Memory Figure 3 depicts instances of memory
access. Initially, linear memory m0 of size memory.size = n contains only zeros.
We store 32-bit integer 10752 on array positions 0 to 3, as the value takes four
bytes, and get a new memory m1. Reading a 32-bit integer from m1 (starting) at
location 1 means converting bytes 2A000000 to 42. Observe bytes from values
stored at adjacent positions in the memory can be interpreted as a new value, as
the raw data in the memory can be used to represent other numbers [50].
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i32.const 0
i32.const 10752
i32.store

00 00 00 00 00 . . . 00m0

0 n

i32.const 1
i32.load 00 2A 00 00 00 . . . 00m1

0 n

Fig. 3: Illustrative memory accesses for reads and writes. Highlighted memory
locations denote the positions in the memory array where the value is written
to/read from.

Security Specifications The linear memory is disjoint from the code space, the
execution stack, and the runtime engine’s data structures. As the memory is
unmanaged, Wasm does not provide garbage collection. Moreover, being the only
unmanaged part of Wasm, the linear memory becomes the only component of
the execution environment prone to corruption by buggy or malicious Wasm
code. Thus, untrusted Wasm code can safely execute in the same address space
as other code.

Unfortunately, this does not do away with buggy programs susceptible to
attacks via the memory. Specifically, certain memory vulnerabilities in C code
can persist when compiled to Wasm [27]. While these vulnerabilities do not allow
the attacker to corrupt the execution environment, meaning they are memory-
safe, they can still lead to insecure information flows that, e.g., may breach
confidentiality; in other words, they are information-flow unsafe.

3 Challenges and Design Choices

Next, we highlight the challenges arising from building an IFC system for Wasm
and give an intuition for the design choices taken when modeling it.

3.1 Attacker Model

As usual when designing an IFC system, we consider a join semi-lattice (L,v)
of security levels `, where data at level `d ∈ L can flow to an observer at level
`o ∈ L if and only if `d v `o.

The attacker is thus able to observe information below their security level A.
In addition, they have the ability to execute a Wasm program, and have access
to the final state of the global variables whose labels ` may flow to A (` v A).
The attacker does not have access to the linear memory, nor to the operand
stack after the execution of the Wasm program. However, as customary, in our
noninterference proofs we also show A-equivalence on the operand stacks and
linear memories of two runs to get the appropriate induction invariants.

While these requirements may seem restrictive, they are in line with previous
work [10] and we argue our model allows for a realistic attacker, external to
the system in which the Wasm code is running. Recall the attacker providing
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the malicious PM module in the password meter example in the introduction.
The attacker is able to supply malicious Wasm code, but cannot control the
surrounding JavaScript context, is able to see external events (such as web
requests) emanating from the Wasm code, but cannot usurp the entire surrounding
execution context and thus cannot see the whole linear memory at the end of
the execution. As Wasm does not have a notion of web requests or channel
communication with the surrounding execution context, we model external events
by the final value of global variables.

Finally, as already mentioned, we ignore information leaks stemming from
other side channels or from the interaction with the environment.

3.2 Unstructured Linear Memory

When it comes to the linear memory, we point out three properties we want our
IFC enforcement to fulfill, all necessary to achieve a more expressive and per-
missive system. The system should: 1) handle dynamic data structures compiled
down from the high-level language, such as objects and arrays; 2) allow for a
dynamic memory reuse; and 3) provide an IFC-sound memory.

In addition, for the IFC enforcement per se, two aspects need to be considered:
type of enforcement and memory labeling strategy (including granularity and
sensitivity). While tightly bound, we address them separately in the following
paragraphs.

Type of IFC Enforcement In theory, we could model our system as a static,
dynamic, or hybrid enforcement. In practice, enforcing IFC in Wasm dynamically
could be an overkill since the language does not have dynamic features, e.g., in
the style of JavaScript4. Leveraging Wasm’s type system and building a fully
static IFC enfocement is not an option either because of the unstructured nature
of the memory. Statically, we do not have access to the memory address we are
reading from/writing to, so we cannot propagate memory taints via the type
system. A static enforcement can be indeed forced by either labeling the entire
memory upfront, or by using one memory for every security level in the lattice, as
previously suggested [49]. However, the former approach leads to a rigid system
breaking points 1) and 2), while the latter suffers from several drawbacks. Firstly,
it does not scale well to larger lattices and secondly, objects in the high-level
language with differently labeled fields would have to be split across different
memories. Finally, handling implicit flows in a meaningful way is not obvious.

Thus, the solution we adopt in this paper is hybrid IFC enforcement. More
specifically, we design a mainly static enforcement augmented with dynamic secu-
rity checks on memory access instructions. This is consistent with previous work
on IFC for other low-level languages without dynamic features [25,5,30,29,13,52],
which are fully static as they do not handle a linear memory, but rely entirely on
a heap. Hybrid IFC systems have also been discussed for TAL-like languages [21]

4 Wasm does exhibit some dynamism through importObject, but since we do not
handle imported host functions in this paper, we do not consider it further here.
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Example 1.

1 i32.const 1
2 i32.load L

Example 2.

1 i32.const 1
2 i32.load H

a

L

a

L

a

L

a

L

b

M

b

M

b

M

. . . . . .

`
m0

0 1 n

Example 3.

1 i32.const 2
2 i32.const c
3 i32.store H

a

L

a

L

c

H

c

H

c

H

c

H

b

M

. . . . . .

`
m1

0 2 n

Fig. 4: Illustrative examples for memory access rules. Locations a

L

denote bytes

of value a labeled L. Highlighted locations are read from/written to.

and even JavaScript [38,23], the former to increase expressiveness of previous
static enforcements, the latter to reduce the overhead of the dynamic monitor.

Labeling the Linear Memory Recall Wasm’s linear memory is a contiguous
array of raw bytes. To achieve more flexibility, we opt for a fine-grained approach
of labeling the memory and assign a label to every memory location. As such,
each memory location l maps in SecWasm to a pair (b, `) of byte b and security
level `.

The fine-grained labeling allows for a straightforward handling of arrays and
objects when compiled down to Wasm, as they can occupy a contiguous sequence
of memory locations, instead of non-adjacent ranges of locations (a first step in
satisfying point 1). For the same reason, but also for satisfying point 2), we pursue
a flow-sensitive approach. Flow-insensitivity would again require the memory
to be statically labeled upfront, without possibility of changing its taints. As
mentioned earlier, this is a rigid approach we do not consider further.

Security Considerations One consequence of these choices is that memory access
instructions become adorned with a security label `. Then t.load ` (t.store `)
reads from (writes to) the memory a value of type t and security level `.

Further, to reduce the dynamic overhead, we employ dynamic checks only
when reading from the memory. Checks when writing to the memory are not
needed. First, because the labels in the memory are updated upon a write,
and second, because the security type system ensures the security labels of the
value to be written, of the execution context, and of the address to write at
all have lower sensitivity than the instruction’s label. As such, while writing to
memory will always succeed, given the instruction does not trap due to insufficient
resources, reading from memory needs to additionally ensure the security labels
of all memory locations required to form the value read are below level ` of the
instruction. Thus, given memory m0 in Figure 4, the program in Example 1 will
trap (M 6v L), while the one in Example 2 will not (L t M v H). Finally, executing
the program in Example 3 with memory m0 produces memory m1.

Another consequence of our memory labeling strategy is that new memory
locations require a security label as well. (Recall Wasm’s memory can be extended



10 Iulia Bastys, Maximilian Algehed, Alexander Sjösten, and Andrei Sabelfeld

dynamically with construct memory.grow.) Thus, for security reasons the newly
created memory locations are labeled with the bottom label L of the lattice.

Example 4.

1 memory.size
2 global.set 0
3 i32.load H
4 memory.grow
5 memory.size
6 global.set 1

Example 5.

1 memory.size
2 global.set 0
3 i32.const 1
4 i32.load H
5 if (memory.grow)
6 else (i32.const 0)
7 memory.size
8 global.set 1

Moreover, calls to memory.grow can only
take place in public contexts and by a public
value. Allowing other levels would leak private
information, as depicted in the code snippets
in Example 4 and Example 5. In both exam-
ples, by comparing the global values stored
at positions 0 and 1 in the final state, the
attacker can learn the secret read on line 3 in
Example 4, respectively line 4 in Example 5.

3.3 Structured Control Flow

One of the challenges of extending Wasm with IFC is computing the control flow
regions for handling implicit flows.

Wasm has scoped control flow instructions, similarly to high-level languages,
and branching instructions which extend their lexical scope, similarly to other
low-level languages. Computing the scope extension is what sets SecWasm apart,
as employing external tools or performing additional computations [5,10] does
not seem to be necessary for it. Instead, we benefit from branching instructions
arising only within nested blocks and use their immediates to compute the scope
extension.

Example 6.

1 block $B0
2 expr0
3 block $B1
4 expr1
5 block $B2
6 expr2
7 t.load M
8 br if 1
9 t.load H

10 br if 0
11 expr3
12 end
13 expr4
14 end
15 expr5
16 end
17 expr6

Consider the code snippet in Example 6. It contains three
nested blocks (labeled $B0-$B2 and whose types we omit for
clarity) and two conditional branching instructions inside block
$B2, with br if 1 (line 8) extending $B2’s scope until the end
of block $B1. The first branch (line 8) is conditioned by the
medium-labeled value read on line 7. Then, instructions on lines
8-13 will be in medium context. However, since the second
branch (line 10) is conditioned by the high-labeled value read
on line 9, the execution of instructions on lines 10-11 will be
in high context. We assume exprn, with 0 ≤ n ≤ 4, are not
branching instruction. Note expr4 is not highlighted in red,
nor expr5 in blue. The reason for this is that expr4 is executed
irrespective of whether expr3 gets executed or not. Similarly,
expr5 is not in a medium context as it is always executed.

In brief, immediate i of a branching instruction extends the scope of the
current block until the end of the ith-1 block, where counting starts at 0 from
the current block. We further use this information to compute the control flow
regions without resorting to other additional tools.

The pc upgrading and downgrading around the control flow regions is not
surprising, and this is usually dealt with by adopting a stack of security levels [53],
with the top pc being the effective one. We follow a similar tactic and push a pc
entry onto the stack whenever we enter a block. What SecWasm does differently
next, is to use a flow-sensitive stack, i.e., a stack whose entry sensitivity can change



SecWasm: Information Flow Control for WebAssembly 11

0 1-2 3-4 5-7 8-9 10-11 12-13 14-15 16-17

Fig. 5: pc stack progression for Example 6. Indices denote code line numbers,
white denotes a low program counter, blue medium, and red high.

during typing (Figure 5), in contrast to most previous approaches employing a
flow-insensitive one. More specific details on this are discussed in Section 4.3.

3.4 A-Equivalences

The final challenge we face is not to ensure the design of SecWasm is sound,
information flow in Wasm is comparatively straight forward, but proving it is
sound. A first step in this direction is coming up with the right definitions to get
the appropriate induction invariants for proving noninterference.

While we are interested in global variables equivalence with respect to the
attacker (Section 3.1), we need to show some kind of A-equivalence holds through-
out the program’s execution for other parameters as well, such as memory and
operand stack, even though the attacker does not have access to them.

Memory A-Equivalence Traditionally, `-equivalence on memories m0 and m1

(denoted m0 ∼` m1) is defined such that for every memory location l, if m0(l) =
(k0, `0) and m1(l) = (k1, `1) and both `0, `1 v `, then k0 = k1 and `0 = `1.

However, this relation is not an equivalence relation, as it is not transitive.
Given memories m1 = {0 7→ (1, L), 1 7→ (1, L), 2 7→ (3, H)}, m2 = {0 7→ (1, L), 1 7→
(1, H), 2 7→ (2, H)}, and m3 = {0 7→ (1, L), 1 7→ (2, L), 2 7→ (1, H)}, m1 ∼L m2 and
m2 ∼L m3, but m1 6∼L m3. Due to this, the classical formulation for confinement
will not be strong enough to hold true, as after typing a program in a high
context, executing it will not necessarily result in `-equivalent memories. Because
of the flow-sensitivity, the program execution in a high context is confined to
strictly making more memory locations secret.

This means we need a stronger relation for memories, an ordered-equivalence
JA which says two memories m0 and m1 are JA-equivalent if m1 has strictly
more high-labeled indices and all low-labeled indices are the same between m0

and m1 (see Definition 6 in Section 5).

Operand Stack A-Equivalence Defining A-equivalence for two unwinding
operand stacks is more involved.

Consider the Wasm code in Example 7 prepending the code in Figure 2a
with instructions 1-2 for reading value of secret xH. This also corresponds to C
code if (xH) {return 0;} else {return 1;}. Figure 6 depicts the evolution of
the operand stack during the execution of this program for both cases when
xH = 0 and xH 6= 0.
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(a) xH = 0
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(b) xH 6= 0

Fig. 6: Evolution of the operand stack for Example 7. The stack and index i below
denote the operand stack after the execution of the instruction on line i. Values
are depicted as n instead of t.const n. $0 = label1{ε}; $1 = label0{i32.const 0};
x is the value read from memory starting at location ax.

Example 7.

1 i32.const ax
2 i32.load H
3 block (i32→ i32) $0
4 block (i32→ ε) $1
5 i32.eqz
6 br if 0
7 i32.const 1
8 br 1
9 end

10 i32.const 0
11 end

Since we consider x to be high, running the program
with values for xH from the two cases gives us two different
operand stacks which at the end of the execution must be
indistinguishable to an attacker. We say the end of the
execution since instructions 6-11 will be in high context.
(br if 0 sets a high context for instructions 6-9 and br 1 on
line 8 extends it until line 11.)

Generally, we show this indistinguishability by first
relating through an equivalence relation ∼A two operand
stacks with the same shape OS 1 and OS 2 and second,
by relating through an ordered equivalence JA and a confinement lemma two
operand stacks OS 1 and OS ′1 (OS 2 and OS ′2, respectively) when entering and
leaving a high-context area. Finally, a triangle lemma proves the two final operand
stacks OS ′1 and OS ′2 A-equivalent.

OS 1 JA OS ′1

∼A ∼A
OS 2 JA OS ′2

Recall the elements on the operand stack are values, frames,
and labels, and none of which contains security levels. Before
relating the operand stacks in attacker-equivalence relations, we
need to relate them to another structure containing security
levels, and this is a type stack TS of labeled types t〈`〉. Then,
TS 
 OS (Definition 3 in Section 5) says that OS is in agreement with TS,
meaning that if disconsidering frames and labels, then for every labeled type t〈`〉
in TS there is a corresponding value t.const k on the same position in OS.

(a) OS ∼A OS ′

∼A

(b) OS JA OS ′

Fig. 7: Operand stack equivalence
relations in SecWasm. White is low,
gray is high, striped is either.

Defining relation ∼A simply means en-
suring the operand stacks satisfy certain
requirements given their corresponding la-
beled type stacks. Figure 7a illustrates this
relation. Cells denote values on the operand
stack, and gray cells denote values whose
corresponding labeled type on the type
stack has a high label. Basically, ∼A says
that any two operand stacks of the same
shape (without frames and labels) and with
equal low values (the label of the corre-
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sponding type is low) on the same positions are attacker-equivalent (Definition 4
in Section 5).

Defining relation JA is particularly challenging, as we need to specify what
happens to the operand stack during the high-context execution. If it unwinds,
how much does it unwind? If it grows, what gets added to it? When a program
executes in a high context, one of three things can happen (and all three things
can happen during different parts of the execution). Firstly, the program can
branch and pop the appropriate number of entries off the stack. Secondly, the
program can pop some number of entries off the stack without branching. Thirdly,
the program can push elements onto the stack. In the first two cases, the bottom
of the stack will remain unchanged between the beginning and the end of the
execution. In the third case, there is still some part at the bottom of the stack
that remains unchanged (this may however be empty) and the top of the stack
will contain only values labeled at or above the high pc-label. Relation JA in
Figure 7b captures all three cases (Definition 5 in Section 5).

3.5 Big-Step Semantics

To conclude this section, we make a final note on a decision related to the semantic
model we take to obtain proof clarity and simplicity.

In this paper, we opt for a big-step operational semantics for (Sec)Wasm, in
contrast to previous work using a small-step operational semantics [22], due to
two principal reasons. Firstly, our goal is to provide an IFC system that is mostly
static and, therefore, we do not find the choice of semantics to be crucial, as long
as it remains faithful to the Wasm specification. Secondly, our IFC system aims
to provide end-to-end noninterference for full program executions. In this setting,
big-step semantics naturally accommodates clean proofs of noninterference for
Wasm’s structured control flow primitives.

4 SecWasm

This section presents the technical details of SecWasm, our information flow-aware
variant of Wasm. Recall we focus on WebAssembly 1.0 [47]. Consequently, we
disregard language extensions in the current version [50]. However, to the best of
our knowledge, the extensions do not fundamentally alter Wasm in a way that
could not be accommodated in SecWasm.

4.1 Syntax

As already discussed in the previous section, SecWasm extends several of Wasm

syntactic constructs with security levels, all highlighted in Figure 8. We append

a security label ` to each value type, and augment all types t in Wasm to labeled
types τ in SecWasm. Further, we annotate function types ft with a security label
` specifying an upper bound on the information that may flow into the execution
of a function. As mentioned in Section 3, instructions for reading from/writing
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(security labels) ` ::= L | H | . . .

(labeled types) τ ::= t〈 ` 〉
(global types) gt ::= mut? τ

(function types) ft ::= τ∗
`→ τ∗

(block types) bt ::= τ∗ → τ∗

(memory instructions) mem ::= t.load ` | t.store `

(admin instructions) admin ::= trap

Fig. 8: SecWasm’s extensions over Wasm syntax.

to memory also carry a security label `. We omit alignment immediates for
these instructions as they do not affect the semantics [50]. As seen in Section 2,
administrative instructions are an artifact of small-step semantics. Due to the
big-step semantics paradigm we employ, all administrative operators except for
trap become irrelevant in SecWasm.

As our extensions are only related to information-flow, we do not explicitly
distinguish between SecWasm and Wasm when we discuss about the syntax and
semantics the two systems share. We use SecWasm only when we refer to the
information-flow extensions to Wasm.

4.2 Semantics

Since our IFC enforcement is mostly static, this subsection provides mainly a
glimpse into (Sec)Wasm’s semantic behavior.

Notation If a is a sequence or stack of items, then we use notation a[i] to denote
the i:th element of the stack (counting from top and starting from 0), a[i :] to
denote all elements from a[i] through the end of a, and a[i : j] to denote all
elements from a[i] to a[j] inclusive (the empty sequence is j < i and a[i :∞] is
equivalent to a[i :]). Furthermore, we write a[i : j → k∗] to denote the sequence
in a with all data at indices between (inclusive) i and j replaced by the sequence
of values k∗. We use :: as a stack entry separator. Note in SecWasm, we represent
the top of the stack on the left, i.e., a[0] :: a[1 :], unlike in pure Wasm, where it
is denoted on the right.

By en we denote a sequence of length n with all free variables in e replaced
by xi for each i ∈ [0, n− 1].

Following Wasm, we make heavy use of record-like syntactic constructs in
SecWasm. A grammatical category consisting of records is declared, e.g., as
R ::= {key1 n, key2 expr} and if r ∈ R then r = {key1 n, key2 expr} for some
number n and expression expr , and r.key1 = n. Furthermore, we use syntax
r{key1 0} to denote a record that is like r except “field” key1 now has value 0.

Evaluation Judgment As discussed in Section 3, we employ a big-step semantics
paradigm due to its cleaner representation and ease of reasoning. As such, we
have a big-step evaluation judgment !σ, S, expr" ⇓ !σ′, S′, θ" relating an initial
configuration to a final configuration. In the initial configuration, a sequence of
instructions expr is executed in current state S by interacting with the operand
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(values) v ::= t.const k
(addresses) a ::= 0 | 1 | 2 | . . .
(store) S ::= {funcs func∗inst , tables table∗inst , globals global∗inst ,mems mem∗inst}
(function instances) funcinst ::= {type i,module moduleinst , code func}
(memory instances) mem inst ::= {data (byte, ` )∗,max k?}
(operand stack) σ ::= ε | v :: σ | Lk :: σ | framek{frame} :: σ

(frames) frame ::= {locals v∗,module moduleinst}

Expression evaluation: !σ, S, expr" ⇓ !σ
′
, S
′
, θ"

e-load
j = i+ S.mem.offset

j + |t|/8 ≤ S.mem.data S.mem[j : j + |t|/8] = (b, ` )
∗

bytest(n) = b
∗ ⊔

` v `m

!i32.const i :: σ, S, t.load `m " ⇓ !t.const n :: σ, S,no-br"

e-store
j = i+ S.mem.offset

j + |t|/8 ≤ S.mem.data bytest(n) = b
∗

S
′
= S.mem[j : j + |t|/8 7→ (b, `m )

∗
]

!t.const n :: i32.const i :: σ, S, t.store `m " ⇓ !σ, S
′
,no-br"

e-memory-grow
σ|F [0].module.memaddrs[0] = a S.mems[a] = m sz = |m.data|/64 Ki len = k + sz

len ≤ 2
16

(m.max = null ∨ len ≤ m.max) S
′
= S.mems[a][sz : len → (0, L )]

!i32.const k :: σ, S,memory.grow" ⇓ !i32.const sz :: σ, S
′
,no-br"

e-block
!v

n
1 :: Lm :: σinit , S, expr" ⇓ !σ, S

′
, θ"

θ 6= no-br ⇒ σfin = σ θ = no-br ⇒ (σ = σ
′
:: L

0
m :: σ

′′ ∧ σfin = σ
′
:: σ
′′
)

!v
n
1 :: σinit , S, block (τ

n
1 → τ

m
2 ) expr end" ⇓ !σfin , S

′
, pred(θ)"

e-loop-eval
!v

n
1 :: Ln :: σ, S, expr" ⇓ !σ

′
, S
′
, 0" !σ

′
, S
′
, loop (τ

n
1 → τ

m
2 ) expr end" ⇓ !σ

′′
, S
′′
, θ"

!v
n
1 :: σ, S, loop (τ

n
1 → τ

m
2 ) expr end" ⇓ !σ

′′
, S
′′
, θ"

e-br-if-jump

!i32.const k + 1 :: v
n

:: σ0 :: L
i−1
n :: σ, S, br if i" ⇓ !v

n
:: σ, S, i"

e-br-if-no-jump

!i32.const 0 :: σ, S, br if i" ⇓ !σ, S,no-br"

e-return

!v
n

:: σ :: Fn, S, return" ⇓ !v
n

:: Fn, S, return"

e-call

f = S.funcs[i] f.type = τ
n
1

`
→ τ

m
2 f.code.locals = τ

p
f.code.body = expr

Fm = {locals vn1 : (t.const 0)
p
,module f.module} !Fm, S, expr" ⇓ !v

m
2 :: Fm, S

′
, θ"

!v
n
1 :: σ, S, call i" ⇓ !v

m
2 :: σ, S

′
,no-br"

e-seq-jump
!σ0, S0, expr0" ⇓ !σ1, S1, θ" θ 6= no-br

!σ0, S0, expr0; expr1" ⇓ !σ1, S1, θ"

e-seq
!σ0, S0, expr0" ⇓ !σ1, S1,no-br"

!σ1, S1, expr1" ⇓ !σ2, S2, θ"

!σ0, S0, expr0; expr1" ⇓ !σ2, S2, θ"

Fig. 9: SecWasm selected evaluation rules. Security extensions are highlighted .
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stack σ, leading to the final configuration containing the updated state S′ and
operand stack σ′. The essence of this paradigm is the third component θ of a final
configuration. θ evaluates to either a natural number j denoting a branch out of
j contexts (blocks, loops, or conditionals), no-br if there was no jump, or return
if a return instruction executed. θ allows to do away with the administrative
instructions in Wasm. More on this in the next paragraph when we discuss
selected evaluation rules.

Metavariable S represents the store or the global state and comprises of
instances for all functions, globals, tables, and memories that have been allocated.
Just like in pure Wasm, operand stack σ contains three types of entries: values,
labels, and frames. In SecWasm, we diverge slightly from Wasm by denoting
branch target labels as Ln instead of labeln{expr}, as in SecWasm we do not
need to keep track of the continuation expression expr . As a simplifying choice,
we also use the syntax σ :: Li−1n :: σ′ to represent the case where Ln is the i:th
label (counting from top and starting from 0) on the compound stack σ :: Ln :: σ′.
Frames remain as defined in Wasm, framen{frame}, with frame keeping track of
the values for the function’s local variables.

Another point of divergence from Wasm is that in SecWasm there is only one
frame on the operand stack at any given time. The reason for this change is that it
simplifies our formalization. Thus, instead of having an operand stack containing
several frames, in SecWasm every function call creates another (sub-)stack, where
its corresponding frame is on the bottom. This is in line with function behavior in
WebAssembly, as jumps from inside a function are either branching from within
nested blocks, giving control at the end of the corresponding block, or returns,
giving control back to the caller function. This will become more obvious when
discussing rules e-call-*.

Similar to Wasm, abnormal termination of a program results in a trap, denoted
!σ, S, expr" ⇓ trap. When a trap occurs, the computation is aborted and no
further modifications to the state can be made. In SecWasm, the execution of an
instruction traps under the same conditions as in Wasm, but failure to satisfy
the additional security checks also leads to a trap. Thus, SecWasm introduces
additional rules for handling the error cases which result in a trap due to the
IFC-checks. These rules are presented in the technical report [6].

Selected Evaluation Rules Figure 9 depicts the most important evaluation rules,
while the full set of rules is presented in the technical report [6]. Since we opt for
a mostly static enforcement, note only few semantic rules carry security checks.

The intuition for the memory access rules was given in Section 3, so we
do not discuss the rules in detail here. However, recall Examples 1 and 2 and
note premise

⊔
` v `m in rule e-load ensuring all security levels ` of memory

locations read from are below the immediate label `m for the load instruction.
Due to this check, in SecWasm the execution of Example 1 will trap, while the
execution of Example 2 will succeed. Further, recall Example 3 and note that
rule e-store updates the security levels of the memory locations written into
with no additional checks.
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Before we discuss the rules for achieving structured control flow, few things
are worth mentioning. First, recall that branching can only happen from within
the block constructs block, loop, and if. Second, the end of every such block
is a valid branch target for code executing inside the block, with the exception
of loops where the target can also be at the start of the loop. Finally, recall θ
specifies how far out of a series of nested blocks to jump. We further introduce
the notion of predecessor of θ (pred(θ)) specifying how to update θ when we exit
a block: pred(no-br) = pred(0) = no-br , pred(j + 1) = j, pred(return) = return.

When entering a block of type τn1 → τm2 and body expr , label Lm is added
in between the top n values vn1 of the operand stack corresponding to the block’s
input arguments and the rest of the stack. Exiting a block can happen either by
trapping (rule e-block-trap), by jumping (when a branch/return instruction is
executed inside the block), or by reaching its end without a jump. Rule e-block
distinguishes between the latter two cases by inspecting marker θ. If no jump
occurred (θ = no-br), we remove the label Lm from the operand stack and return
the result σ′ :: σ′′. Otherwise, we return the operand stack as is, since the stack
unwinding has been dealt with already by the jumping instruction (See below
rule e-br-if-jump.) Finally, function pred adjusts θ to account for the fact that
a block has been exited.

Consider again Example 7 when x 6= 0 and the instruction on line 8 is about
to be executed. br 1 unconditionally jumps out of the two blocks and gives control
at the end of instruction on line 11. θ is set to 1 after executing line 8 and exiting
block $1 updates it to pred(1) = 0 (rule e-block). Since θ 6= no-br , all remaining
instructions in block $0 will be ignored (rule e-seq-jump). Reaching the end of
block $0 updates θ again to pred(0) = no-br . If present, executing all subsequent
instructions would continue according to rule e-seq until the next branching or
function return.

loop and if statements constitute blocks with slightly specialized rules to
reflect their different function. This can also be seen in the semantic behavior
of pure Wasm, where ifs and loops reduce in one step to a block [22]. For this
reason we only present rules e-loop-skip (for leaving a loop) and e-if in the
technical report [6], as they differ only slightly from rule e-block. What differs
is that if statements choose the expression to execute based on the value on top
of the operand stack, while e-loop-skip requires θ to be different than 0, as
θ = 0 restarts the loop (rule e-loop-eval). Note from rule e-loop-eval another
perk of Wasm, namely loop blocks are evaluated at least once.

A conditional branch br if i executes when the value on top of the operand
stack is different than 0 (rule e-br-if-jump). In this case, Wasm requires the top
of the stack to contain at least n other values, as illustrated by the index of the
i:th label Li−1n on the input stack. Recall the index specifies the number of values
expected by the branch target. Next, the rule drops everything between the top
n + 1 entries on the stack down to and including label Li−1n and finishes with
θ = i. If the top value of the operand stack is 0, then the conditional branch does
not execute (rule e-br-if-no-jump), and the computation proceeds sequentially,
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finishing with θ = no-br . Unconditional branching br i (rule e-br) works in a
similar way as executing conditional branching.

When a function is called (rules e-call-*), we create an empty operand stack
and push on it a frame instantiated with values vn1 for the function arguments
and initial values 0 for the function’s local variables. When returning from a
function, we only retain the return values, discarding everything else, including
the frame. Note in Wasm, the frame is popped off when executing a return, but
in SecWasm it is not (rule e-return).

Finally, rules e-seq-* distinguish between the cases when a jump occurred,
i.e., θ 6= no-br in rule e-seq-jump, and when the execution proceeds sequentially
in rule e-seq. In the former case, rule e-seq-jump simply ignores the subsequent
instructions until θ becomes no-br . And the block rules ensure θ indeed decreases
to no-br , by computing its predecessor every time a block is exited. Thus, either
the same number of blocks have been exited as the initial value of θ + 1, or all
instructions after a return statement have been ignored.

4.3 Security Type System

As our enforcement is mostly static, SecWasm’s type system is heavily populated
with security checks. Before discussing the type system, we first give an intuition
for the constructs SecWasm uses to track the information flows, and then briefly
discuss the typing judgment.

Tracking Flows—an Intuition As the bedrock for static IFC in Wasm, SecWasm’s
type system tracks both explicit and implicit information flows. For tracking
explicit flows, we assign a security label to each value in the operand stack via
a type stack st denoting a stack of labeled types. As discussed in Section 3.3,
for tracking implicit flows we use a stack of pc labels, with a label entry for
every block context. We then combine the pc stack with the type stack in a
stack-of-stacks γ with entries 〈st , pc〉. Upon entering a block, γ is augmented
with a new pair 〈st , pc〉, with st denoting the input stack for the block, and pc
the initial program counter label for the block’s execution. The security labels in
γ may get upgraded, and after leaving a block, the top two entries are merged.

Typing Judgments The type system assumes a typing security context C con-
taining e.g., the type of functions and local variables. C is defined as in Wasm,
but where value types t have been adorned with labels to labeled types τ .

Previous presentations of Wasm [22] depict the type system using a judgment
of the form C ` expr : tn → tm that only says how expr affects the top elements
on the stack and leaves the rest to a subtyping-like rule. Instead, we use a more
explicit judgment form passing the entire γ around while updating its program
counters: γ,C ` expr a γ′. The judgment reads as follows: Assuming input type
stack γ.fst and security context C, expr produces (possibly) updated output type
stack γ′.fst. For γ = 〈st0, pc0〉 :: . . . :: 〈stn, pcn〉, γ.fst denotes the stack formed
by the first elements of each entry in γ, i.e., γ.fst , st0 :: . . . :: stn.

We extend the type system with a simple subtyping judgment for types to
capture when a type is less sensitive than another and write τ v τ ′ whenever the
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( Security contexts) C ::= {globals (mut? τ )∗, locals τ ∗, return ( τ ∗)?, labels ( τ ∗)∗, . . .}

(Security-labeled type stack) st ::= ε | τ :: st

(Stack-of-stacks) γ ::= ε | (st, pc) :: γ

Expression typing: γ, C ` expr a γ′

t-unreachable

γ, C ` unreachable a γ

t-load

C.mem = n `v = `a t ` t pc

〈i32〈 `a 〉 :: st, pc 〉 :: γ, C ` t.load ` a 〈t〈 `v 〉 :: st, pc 〉 :: γ

t-store

C.mem = n pc t `a t `v v `

〈t〈 `v 〉 :: i32〈 `a 〉 :: st, pc 〉 :: γ, C ` t.store ` a 〈st, pc 〉 :: γ

t-memory-grow
C.mem = n

〈i32〈 L 〉 :: st, L 〉 :: γ, C ` memory.grow a 〈i32〈 L 〉 :: st, L 〉 :: γ

t-block

〈τn
1 , pc 〉 :: 〈st, pc 〉 :: γ, label(τm

2 ) : C ` expr a 〈τm
2 , pc

′ 〉 :: 〈st
′
, pc

′′ 〉 :: γ′

〈τn
1 :: st, pc 〉 :: γ, C ` block (τ

n
1 → τ

m
2 ) expr end a 〈τm

2 :: st
′
, pc t pc

′′ 〉 :: γ′

t-loop

pc v pc
′

γ v γ′ pc v pc
′′

st v st
′

〈τn
1 , pc

′ 〉 :: 〈st
′
, pc

′′ 〉 :: γ′, label(τn
1 ) : C ` expr a 〈τm

2 , pc
′ 〉 :: 〈st

′
, pc

′′ 〉 :: γ′

〈τn
1 :: st, pc 〉 :: γ, C ` loop (τ

n
1 → τ

m
2 ) expr end a 〈τm

2 :: st
′
, pc t pc

′′ 〉 :: γ′

t-br-if

C.labels[i] = st γ v γ′ pc t ` v st γ
∗
= lift`tpc(〈st :: st

′
, pc〉 :: γ′[0 : i− 1])

〈i32〈 ` 〉 :: st :: st
′
, pc 〉 :: γ, C ` br if i a γ∗ :: γ

′
[i :]

t-return

C.return = st γ v γ′ pc v st

γ
′′

= liftpc(〈st
′′
, `〉 :: γ′)

〈st :: st
′
, pc 〉 :: γ, C ` return a γ′′

t-call

C.funcs[i] = f : τ
n
1

`→ τ
m
2 pc v `

〈τn
1 :: st, pc 〉 :: γ, C ` call i a 〈τm

2 :: st, pc 〉 :: γ

t-call-indirect

pc t ` v `f

〈i32〈 ` 〉 :: τn
1 :: st, pc 〉 :: γ, C ` call indirect τn

1

`f→ τ
m
2 a 〈τ

m
2 :: st, pc 〉 :: γ

Fig. 10: SecWasm type system (Selected rules). Security extensions and static

checks are highlighted .

label of τ can flow to the label of τ ′. We further extend this notion to sequences
of labeled types as st v st ′ if st and st ′ are of the same length and τi v τ ′i for
τi = st [i] and τ ′i = st ′[i], respectively.
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Selected Typing Rules In the following, we discuss the most interesting rules of
the type system, depicted in Figure 10. The full set of rules is presented in the
technical report [6].

First, note that abuses of non-termination channel such as in snippet
t.load H; br if 0; unreachable are outside the scope of this work, as we further
focus on enforcing termination-insensitive noninterference. Thus, we add no
restrictions on the program context in rule t-unreachable.

An intuition for the memory access instructions was given in Section 3. Here,
we reiterate that static security checks are employed only when writing to the
memory (pc t `a t `v v ` in t-store), as the semantics are responsible for
the dynamic security checks when reading. Finally, memory.grow executes in a
public context and only if the amount to extend the memory with is also public.

Typing the block instruction (rule t-block) requires the current type stack
to contain at least n labeled types, corresponding to the block type. Since we enter
a new block, we split the arguments off and push pair 〈τn1 , pc〉 containing the n
labeled types and the same program counter pc on the stack-of-stacks 〈st , pc〉 :: γ.
We also push τm2 on the label-stack C.labels in context C to denote the branch
target at the end of the block (label(τm2 ) : C). The sequence of instructions expr
is required to produce m correctly typed output values and a new stack of stacks
〈st ′, pc′′〉 :: γ′ possibly with higher labels. Finally, on the output stack-of-stacks,
τm2 is merged with st ′.

Recall if and loop are just special types of blocks. As a consequence, rules
t-if and t-loop only bear minor differences to rule t-block. For the former,
inner expressions expr1 and expr2 are type-checked under a program counter
tainted by the information flow from the condition operand, and for the latter,
the labels of type stacks and program counter need to be in a fixed-point over
the loop.

Example 8.

1 block
2 block
3 i32.const 0
4 local.get yH
5 br if 1
6 end
7 drop
8 i32.const 1
9 end

10 local.set xL

In rule t-br-if, all types on the stack-of-stacks 〈st , pc〉 :: γ
until and including the i:th+1 entry are tainted by label ` of
the top element on the input stack deciding whether a branch
will happen, as illustrated in Example 6. (This is represented
by operator lift upgrading all security levels present in its
argument.) Furthermore, we require pct` v C.labels[i] to avoid
implicit flows. This rule is important because it rejects leaky
programs like the one in Example 8 that copies the truth-value
of local variable yH to local variable xL by skipping all the way
to the end with br if 1.

All other jumping rules entail a similar taint propagation. In rule t-return,
for example, the entire stack-of-stacks is tainted by the function program counter.
Note that premise pc v st in the jumping rules is synthetic and we resort to
using it as it considerably simplifies the proofs.

Rule t-call is standard for function calls in IFC type systems. The input
type stack is required to be a subtype of the input type stack for the caller
function, the function program counter label ` needs to be at least as high as
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current callee pc, and the output type stack of the function needs to be a subtype
of the expected output type stack.

t-call-indirect works in almost the same way as rule t-call, with the
difference that indirect calls require a 32-bit integer labeled ` on top of the input
stack acting as the function pointer and thus the function also needs to check `
flows to the function program counter `f .

5 Security Properties

This section presents the security properties enforced by SecWasm. All proofs
are manual and presented in the technical report [6], a mechanization thereof
being left for future work.

We begin by stating two well-formedness properties for operand stacks C ` σ
and stores C ` S, specifying that local and global variables are well-typed in σ
and S, respectively, with respect to the types declared in context C.

Definition 1 (Context-Stack Well-Formedness). Operand stack σ is well-
formed with respect to context C, denoted C ` σ, if:

1. For all i in the domain of C.labels there exists some σ0, σ1, and m such that
σ = σ0 :: Lim :: σ1 and C.labels[i] = τm for some τm.

2. C.return = τm for some m and σ|F [0] = Fm, for the bottom frame Fm and
Fm.locals is well typed with respect to C.locals.

Definition 2 (Context-Store Well-Formedness). Store S is well-formed
with respect to context C, denoted C ` S, if:

1. For every function f in S.funcs we have C ` f .

2. For every variable in C.globals there is a corresponding well-typed entry in
S.globals.

Next, we state what it means for an operand stack and labeled type stacks to
be in agreement. (Recall Figure 7a.)

Definition 3 (Operand Stack and Type Stack Agreement). Given
operand stack σ and type stack st, we define σ agreement with st (denoted
st 
 σ) inductively as:

[] 
 ε

st 
 σ

t〈`〉 :: st 
 t.const k :: σ

st 
 σ

st 
 L :: σ

st 
 σ

st 
 F :: σ
.

Now, we can define what it means for two operand stacks to be equivalent
with respect to the attacker, i.e., relations ∼A and JA, as discussed in Section 3.
Recall security label A simply captures the level at or below which the attacker
can read information.
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Definition 4 (Operand Stack and Type Stack Agreement Equivalence).
For two operand stacks σ0 and σ1 and type stacks st0 and st1 such that st i 
 σi,

we define operand stack equivalence st0 
 σ0 ∼CA st1 
 σ1 inductively as:

[] 
 ε ∼CA [] 
 ε

st0 
 σ0 ∼CA st1 
 σ1 `0 v A ∧ `1 v A ⇒ v0 = v1

t〈`0〉 :: st0 
 v0 :: σ0 ∼CA t〈`1〉 :: st1 
 v1 :: σ1

st0 
 σ0 ∼CA st1 
 σ1 F ∼CA F ′

st0 
 F :: σ0 ∼CA st1 
 F
′ :: σ1

st0 
 σ0 ∼CA st1 
 σ1

st0 
 L :: σ0 ∼CA st1 
 L :: σ1
.

The two type stacks st0 and st1 must have the same shape, but may differ
in their security labels. This allows us to relate prefixes of stacks before and
after program execution (when security labels may have been upgraded due to
a branch). In other words, this part of the definition does not come into effect
when considering a “traditional” noninterference theorem statement.

Ideally, when proving noninterference one would show that if two configura-
tions, including stacks and memories, are A-equivalent then the output configura-
tions that result after executing the same program on both these configurations
are also A-equivalent. However, this property cannot easily be extended to be
inductive and instead a confinement lemma is required. This lemma relates the
configurations before and after a single execution in a high context. Specifically,
it usually says that when you execute a well-typed program in a high context it
only alters high data. However, this statement is not sufficient in SecWasm, as
we also have to specify what happens to the operand stack during this execution.

And this is how we define ordered equivalence JA, by introducing judgment
γ 
 σ JCA γ

′ 
 σ′ stating that stack σ′ is the result of executing a high (w.r.t. the
attacker-label A) program that starts off with σ. To prove σ and σ′ are related
in this way one needs to prove there is some common A-equivalent bottom of
the two stacks (that may be empty) and that all elements on top of this bottom
part of σ′ are labeled high in γ′.

Definition 5 (Operand Stack and Stack-of-Stacks Agreement Ordered
Equivalence).

γ 
 σt :: σb γ′ 
 σ′t :: σ′b γ.fst = st t :: stb
γ′.fst = st ′t :: st ′b stb v st ′b high(st ′t) stb 
 σb ∼CA st ′b 
 σ

′
b

γ 
 σt :: σb J
C
A γ
′ 
 σ′t :: σ′b

Note the pcs are not used in the ordered equivalence, although they are part
of γ. The reason for this is that in our proofs we only require the structure of
γ.fst given by γ.

Recall from the discussion in Section 3 that the classical memory equivalence
is not strong enough for our setting, so we use an ordered-equivalence relation JA
which says that two linear memories m and m ′ are JA-ordered equivalent if m
has strictly more high-labeled indices and all the low-labeled indices are the same
between m and m ′.
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Definition 6 (A-Ordered Memory Equivalence). Two memories m0 and
m1 are A-ordered equivalent (denoted m0 JA m1) iff ∀l. m1(l) = (k, `)∧ ` v A ⇒
m0(l) = (k, `) and ∀l. m1(l) = (k1, `1) ∧ `1 6v A ⇒ m0(l) = (k0, `0) ∧ `1 6v `0.

Further, we also need to consider what happens to the linear memory, global
and local variables, i.e., the state of the program. Fortunately, the flow-insensitive
nature of the global and local variables means that these will just be A-equivalent
before and after execution.

Definition 7 (A-Ordered Store Equivalence). Two stores S0 and S1 are
A-ordered equivalent given security context C:

S0 J
C
A S1 iff


S0.funcs = S1.funcs

S0.tables = S1.tables

S0.globals ∼CA S1.globals

S0.mems JCA S1.mems.

Confinement Usually, these definitions are sufficient for stating confinement. Yet,
in SecWasm we need to deal with an unwinding stack too. Ideally, confinement
would be that given γ,C ` expr a γ′ where γ[0].snd 6v A and !σ, S, expr" ⇓
!σ′, S′, θ", then γ 
 σ JCA γ′ 
 σ′ and S JCA S′. However, this definition
implicitly assumes θ = no-br ! For example, if θ = j + 1 then a branch executed
in expr and the stack σ′ is not well-typed with respect to γ′ anymore. We take
this dependency of the type of σ′ on θ with the following definition.

Definition 8 (θ-Variant Typing Contexts).

∆(C, γ, θ) ,


γ if θ = no-br

merge(C, γ, j) if θ = j

〈C.return, γ[0].snd〉 if θ = return,

where merge(C, γ, j) , 〈C.labels[j] :: γ[j+1].fst, γ[0].snd t γ[j+1].snd〉 :: γ[j+2:].

Finally, we introduce an order on θs to capture the fact that if we branch in a
high context we know something about the pc-labels in the output γ. Specifically,
we have no-br < 0 < 1 < . . . < return. We also need to define a translation of θs
to integers with infinity where nat(no-br) = −1, nat(j) = j, and nat(return) =∞.

We are now ready to state our confinement lemma.

Lemma 1 (Confinement). For any typing context C, store S0, operand stack
σ0, stack-of-stacks γ0, and expression expr, such that C ` S0, C ` σ0, and
γ0 
 σ0, if !σ0, S0, expr" ⇓ !σ1, S1, θ", γ0, C ` expr a γ1, and γ0[0].snd 6v A,
then the following statements hold:
1. γ0 
 σ0 JCA ∆(C, γ1, θ) 
 σ1,

2. S0 JCA S1, and

3. γ1[0 : nat(pred(θ))].snd 6v A.
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JC
A

(a) Performing a step
in the same block

JC
A

(b) Leaving normally
the high context block

JC
A

(c) Entering a block

JC
A

(d) Conditional branch-
ing not taken

JC
A

(e) Unconditional
branching

JC
A

(f) Return

Fig. 11: Pictorial representation of the confinement lemma. Each box represents
an element 〈st , pc〉 of γ before (left) or after (right) the execution in the high
context. White means pc v A, gray pc 6v A.

The confinement lemma as stated above and proven in the technical report [6],
captures the intuition laid out previously. Furthermore, the different cases one
needs to consider in the proof are illustrated in Figure 11.

Noninterference Next we turn our attention to stating and proving nonin-
terference. We would like to state a classical theorem along the lines “if you
start off with two A-equivalent configurations and execute the same program in
both, you end up with two A-equivalent configurations.” However, this is not a
strong enough statement to induct over the evaluation of expressions in SecWasm
because the two different executions may end up branching differently in a high
context. For this reason we need a weaker notion of stack similarity than the
strong equivalence given above.

Definition 9 (Weak Stack Similarity). Stacks σ0 and σ1 with respective
thetas θ0 and θ1 are weakly similar given γ and C (written WSγ,C(〈σ0, θ0〉, 〈σ1, θ1〉))
iff ∆(γ,C, θ0) 
 σ0 JCA ∆(γ,C, θ1) 
 σ1 or ∆(γ,C, θ1) 
 σ1 JCA ∆(γ,C, θ0)γ 
σ0,
and if θ0 6= θ1 then γ[0 : |pred(max(θ0, θ1))|].snd 6v A.

This is enough to let us state and prove a sufficiently strong noninterference
statement:

Theorem 1 (Noninterference). If
1. γ,C ` expr a γ′,
2. C ` S0 and C ` S1,
3. C ` σ0 and C ` σ1,
4. γ 
 σ0 ∼CA γ 
 σ1,
5. !σ0, S0, expr" ⇓ !σ′0, S

′
0, θ0" and !σ1, S1, expr" ⇓ !σ′1, S

′
1, θ1", and

6. S0 ∼CA S1,
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then S′0 ∼CA S′1 and WSγ′,C(〈σ′0, θ0〉, 〈σ′1, θ1〉).

Finally, we note this theorem gives us a corollary resembling a traditional
noninterference theorem.

Corollary 1 (Termination Insensitive Noninterference). If
1. 〈st , pc〉, C ` expr a 〈C.return, pc′〉,
2. C ` S0 and C ` S1,
3. C ` σ0 and C ` σ1,
4. 〈st , pc〉 
 σ0 ∼CA 〈st , pc〉 
 σ1,
5. !σ0, S0, expr" ⇓ !σ′0, S

′
0, θ0" and !σ1, S1, expr" ⇓ !σ′1, S

′
1, θ1", and

6. S0 ∼CA S1,
then S′0 ∼CA S′1 and 〈C.return, pc′〉 
 σ′0 ∼CA 〈C.return, pc′〉 
 σ′1.

This corollary holds because if the program expr terminates without trapping,
then it terminates with either θ = no-br or θ = return and both of these
guarantee that the two output stacks are typed with the same stack type. When
they do, JCA boils down to ∼CA.

6 Discussion

Several points we have not addressed in the paper are worth discussing. These are
implementation, overhead, usability, and declassification. Before addressing them
below, we stress that they are extensions to our work and important avenues for
future exploration and not mandatory for foundational IFC in Wasm.

Implementation and Overhead It is difficult to judge the overhead our frame-
work would entail without having an actual implementation. We have argued
for and justified the hybrid design of SecWasm as a trade-off between achieving
permissiveness and expressiveness, and incurring some runtime overhead. While
the semantics carry only few dynamic checks, the type system is heavily popu-
lated with additional IFC constraints which might slow-down the type-checking
mechanism. However, as in prior work, the concern is not on the static overhead,
but on the dynamic one. As we keep dynamic checks to a minimum, we are
confident future benchmarks will not reveal considerate overheads.

Usability We expect the use of SecWasm to be straightforward. The developer
would have to manually annotate the function types and the load and store
operations with security labels, and then to verify if any detected illicit information
flows are due to buggy implementations or imported malicious modules (such as
the password meter module PM).

Declassification Certain situations require sensitive data to be released, an
operation known as declassification [31]. When designing a declassification mech-
anism, one should aim to have it robust, meaning not allowing public data to
influence what data to be declassified [32].

Sabelfeld and Sands presented four dimensions of declassification: what infor-
mation is released, who is releasing information, where in the system information
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is released, and when information can be released [37]. To allow declassification
in a static IFC system for Wasm, Watt et al. allowed functions marked as trusted
to declassify data through a declassification primitive [49]. In order to extend
SecWasm with a declassification construct, the formalization of the security
properties enforced by the current system must be altered, as some information
about the secret data could be learned by a public observer. In this sense, a
password checker is different from a password meter because the latter leaks some
information about the password. Although we leave it for future work, we believe
our approach can be straightforwardly extended to handle the what dimension
from Sabelfeld and Sands by guaranteeing that the system cannot leak more
secrets than allowed by externally-specified escape hatches.

7 Related work

IFC for Low-Level Languages There has been much work on securing (sub-
sets of) Java bytecode [25,20,11,7,5], or on enforcing security in TAL (Typed
Assembly Language) [30,29,13,52,21] which models the RISC architecture, and
even on JavaScript bytecode [10]. These approaches dealt with languages with
unstructured control flow and heap memory, with TAL also employing registers.
Due to lack of structured control flow at the low-level, prior work resorted to
mimicking the block structure of the original high-level languages and computing
dependence regions: linear continuations and continuation stacks [13], static code
labels [29], control regions [5,25,10], type annotations [29,52]. Due to the struc-
tured control flow inherited from Wasm, in SecWasm the language’s constructs
proved sufficient for computing the dependence regions.

Most previous approaches dealt with Java bytecode or TAL, both languages
without dynamic features. Thus, the preferred IFC enforcement was static,
through security type systems [13,29,5,25,52]. More recently, a hybrid system was
suggested for TAL-like languages [21], in an attempt to increase permissiveness
over previous fully static approaches. Due to being a language heavily-charged
with dynamic features, JavaScript bytecode was instrumented through a dynamic
monitor, although prior static analysis is required for computing the control flow
graphs and immediate post-dominators [10]. Although Wasm does not exhibit
the same dynamism as JavaScript does, the nature of memory accesses requires
a dynamic handling if a more expressive and permissive system is desired. Thus,
SecWasm is designed to be mainly static and introduces dynamic checks in key
places to increase permissiveness.

Cassel et al. present FlowNotation to find information flow violations in C
programs [15], and De Francesco and Martini use abstract interpretation for
instruction-level information-flow analysis [16]. Both have similar handling of
the memory as SecWasm. With FlowNotation, each pointer (i.e., heap location)
and its corresponding value are labeled with security policies which are joined
upon dereferencing the pointer, and De Francesco and Martini label each memory
location with a label to represent the maximum security level of the data to be
stored. However, since FlowNotation does not handle pointer arithmetic and the
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memory in the system by De Francesco and Martini is a map of variables to
abstract values, neither of those solutions have an unstructured memory as in
SecWasm with partial re-writes of data (such as Example 3, where part of the
32-bit integer value starting at position 0 is overwritten).

Hybrid IFC While hybrid analyses were not so popular amongst low-level
languages, they have been employed for high-level languages [46,26,35,8,23]. Our
hybrid mechanism draws on the basic principles laid out in prior work, such as
establishing what paths are reachable by dynamic analysis and inferring what
dependencies arise from non-taken branches by static analysis [26,35]. A key
contribution of SecWasm is extending these principles to deal with the challenges
of an unstructured linear memory.

Wasm Security Lehmann et al. [27] prove vulnerabilities with well-known
mitigations in the original high-level code propagate down to Wasm code. As
a vulnerable program in C/C++ compiled to Wasm can translate the memory
vulnerabilities, Disselkoen et al. introduce MS-Wasm, an extension to Wasm
allowing developers to capture low-level C/C++ memory semantics in Wasm
at compile time [18]. Swivel is a compiler framework to harden Wasm against
Spectre attacks [33]. These works, however, do not focus on information-flow
control.

Different language-based security techniques for Wasm perform taint-tracking.
Szanto et al. propose a Wasm virtual machine in JavaScript [43], TaintAssembly
presents a taint-tracking engine for interpreted Wasm implemented in V8 [19],
while Wasabi is an expressive framework for dynamically analyzing and taint-
tracking in Wasm [28]. Lastly, Stiévenart and De Roover [41] use taint-tracking
to create function summaries, i.e., descriptions of where information from the
function parameters and global variables can flow to when a function is invoked.
Compared to these techniques, SecWasm not only tracks explicit and implicit
flows, but also memory accesses.

Vivienne is an open-source tool that performs symbolic analysis and constraint
solving for analyzing constant-time properties in Wasm programs [45]. Watt et
al. introduce CT-Wasm [49], a type-driven extension to Wasm for constant-
time cryptographic applications. To achieve constant-time, CT-Wasm disallows
secret-dependent control instructions, being thus more restrictive than SecWasm.
Furthermore, CT-Wasm introduces a separate memory for storing secret data,
while in SecWasm we annotate individual memory cells with security labels, an
approach that scales to general lattices.

Gradual Typing Gradual typing allows programmers to control the combination
of dynamic and static approaches at the programming level [39]. Swamy et al. [42]
presented TS∗ that adds a static static type system over JavaScript and Rastogi
et al. [34] presented Safe TypeScript to catch any dynamic type errors while not
altering the semantics of type-safe TypeScript code.

Gradual typing has also been used for IFC. Disney and Flanagan described an
IFC type system for λ-calculus that defers cast checks that cannot be determined
statically to the runtime [17]. In HLIO, Buiras et al. used gradual typing to allow



28 Iulia Bastys, Maximilian Algehed, Alexander Sjösten, and Andrei Sabelfeld

programmers to defer some IFC checks to runtime in Haskell [14]. Bichhawat et
al. investigated the tension between noninterference and gradual guarantees and
defined a simple imperative languages that provides both noninterference and
gradual guarantees [9].

Although there are high-level connections with gradual typing, there are also
important differences. Indeed, gradual typing gives the developer the control of
when to use static and when to use dynamic types. In our approach, the split is
taken care of by the enforcement mechanism.

8 Conclusions

This paper presented SecWasm, the first general-purpose information-flow enforce-
ment mechanism for Wasm. The synergy of static and dynamic IFC enforcement
in SecWasm is the result of a thorough design analysis that leverages the al-
ready existing Wasm type system, while also ensuring permissiveness for Wasm’s
dynamic features. SecWasm overcomes the challenges imposed by the combina-
tion of uncommon characteristics for machine languages of structured control
flow and linear memory in an elegant way. Finally, SecWasm provably enforces
termination-insensitive noninterference.

In line with other foundational work on hybrid IFC (e.g., [26,35,8,23]), we leave
implementation and experiments with performance overhead as an important
track for future work.
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41. Q. Stiévenart and C. De Roover. Compositional Information Flow Analysis for
WebAssembly Programs. In SCAM, 2020.

42. N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P. Strub, and G. M.
Bierman. Gradual Typing Embedded Securely in JavaScript. In POPL, 2014.

43. A. Szanto, T. Tamm, and A. Pagnoni. Taint Tracking for WebAssembly. CoRR,
abs/1807.08349, 2018.

44. J. Szefer. Survey of Microarchitectural Side and Covert Channels, Attacks, and
Defenses. J. of Hardware and Sys. Sec., 2019.

45. R. Tsoupidi, M. Balliu, and B. Baudry. Vivienne: Relational Verification of Crypto-
graphic Implementations in WebAssembly. In IEEE Secure Development Conference,
SecDev 2021, Atlanta, GA, USA, October 18-20, 2021, pages 94–102. IEEE, 2021.

46. P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna. Cross Site
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