
Security for Multithreaded Programs under
Cooperative Scheduling

Alejandro Russo and Andrei Sabelfeld

Dept. of Computer Science and Engineering, Chalmers University of Technology
412 96 Göteborg, Sweden, Fax: +46 31 772 3663

In Proc. Perspectives of System Informatics, Akademgorodok, Novosibirsk, Russia, June 2006, LNCS. c© Springer-Verlag

Abstract. Information flow exhibited by multithreaded programs is subtle be-
cause the attacker may exploit scheduler properties when deducing secret infor-
mation from publicly observable outputs. Volpano and Smith have introduced a
protect command that prevents the scheduler from observing sensitive timing
behavior of protected commands and therefore prevents undesired information
flows. While a useful construct, protect is nonstandard and difficult to imple-
ment. This paper presents a transformation that eliminates the need for protect
under cooperative scheduling. We show that both termination-insensitive and
termination-sensitive security can be enforced by variants of the transformation
in a language with dynamic thread creation.

1 Introduction

Information-flow security specifications and enforcement mechanisms for sequential
programs have been developed for several years. Unfortunately, they do not naturally
generalize to multithreaded programs [17]. Information flow in multithreaded programs
remains an important open challenge [12]. Furthermore, otherwise significant efforts
(such as Jif [7] and Flow Caml [14]) in extending programming languages (such as
Java and Caml) with information flow controls have sidestepped multithreading issues.
Nevertheless, concurrency and multithreading are important in the context of security
because environments of mutual distrust are often concurrent. As result, the need for
controlling information flow in multithreaded programs has become a necessity.

This paper is focused on preventing attacks that exploit scheduler properties to de-
duce secret information from publicly observable outputs. Suppose h is a secret (or
high) variable and l is a public (or low) one. Consider threads c1 and c2:

c1 : (if h > 0 then sleep(100) else skip); l := 1
c2 : sleep(50); l := 0

Although these threads do not exhibit insecure information flow in isolation (because
1 is always the outcome for l in c1, and 0 is always the outcome for l in c2), there is a
race between assignments l := 1 and l := 0, whose outcome depends on secret h. If h
is originally positive, then—under many schedulers—it is likely that the final value of
l is 1. If h is not positive, then it is likely that the final value of l is 0. It is the timing
behavior of thread c1 that leaks—via the scheduler—secret information into l. This

〈|ci, m|〉 α
_ 〈|c′i, m′|〉 α ∈ {ε, ~d} σ = i

〈|σ, 〈c1 . . . cn〉, m|〉 → 〈|σ, 〈c1 . . . ci−1c
′
iαci+1 . . . cn〉, m′|〉

〈|ci, m|〉 α
_ 〈|stop, m′|〉 σ = i

〈|σ, 〈c1 . . . cn〉, m|〉 → 〈|σ, 〈c1 . . . ci−1ci+1 . . . cn〉, m′|〉

〈|ci, m|〉
6;
_ 〈|c′i, m|〉 σ = i σ′ = (i mod n) + 1 c′i 6= stop

〈|σ, 〈c1 . . . cn〉, m|〉 → 〈|σ′, 〈c1 . . . ci−1c
′
ici+1 . . . cn〉, m|〉

Fig. 1. Semantics for threadpools

phenomenon is due to internal timing, i.e., timing that is observable to the scheduler.
As in [17, 18, 15, 1, 16, 8], we do not consider external timing, i.e., timing behavior
visible to an attacker with a stopwatch.

Volpano and Smith have introduced a protect command that prevents the sched-
uler from observing the timing behavior of the protected command and therefore pre-
vents undesired information flows. A protected command is executed atomically by de-
finition. Although it has been acknowledged [13, 8] that protect is hard to implement,
no implementation of protect has been discussed by approaches that rely on it [18,
15, 16]. This paper presents a transformation that eliminates the need for protect un-
der cooperative scheduling. This transformation can be integrated into source-to-source
translation that introduces yield commands for cooperative schedulers. We show that
both termination-insensitive and termination-sensitive security can be enforced by vari-
ants of the transformation in a language with dynamic thread creation.

2 Language

We consider a simple imperative language that includes skip, assignment, sequential
composition, conditionals, and while-loops. Its sequential semantics is standard [20].
The language also includes dynamic thread creation and a yield command. A com-
mand configuration 〈|c,m|〉 consists of a command c and memory m. Memories m :
IDs → Vals are finite maps from identifier names IDs to values Vals . Transitions be-
tween configurations have form 〈|c,m|〉 α

_ 〈|c′,m′|〉 where α is either ε (empty label), ~d
(indicating a sequence of newly spawned threads), or 6;. The latter label is used in the
transition rule for yield:

〈|yield,m|〉
;/
_ 〈|stop,m|〉

Labels are propagated through sequential composition to the threadpool-semantics level.
Dynamic thread creation is performed by command fork:

〈|fork(c, ~d),m|〉
~d

_ 〈|c,m|〉

This has the effect of continuing with thread c while spawning a sequence of fresh
threads ~d. Threadpool configurations have form 〈|σ, 〈c1 . . . cn〉,m|〉where σ is the sched-
uler’s running thread number, 〈c1 . . . cn〉 is a threadpool, and m is a shared memory.

2

Threadpool semantics, describing the behavior of threadpools and their interaction with
the scheduler, are displayed in Figure 1. The rules correspond to normal execution of
thread i from the threadpool, termination of thread i, and yielding by thread i. Note that
due to cooperative scheduling, only termination or a yield by a thread may change the
decision of the scheduler which thread to run next. Although these semantics model a
round-robin scheduler, our approach can be generalized to a wide class of schedulers.

Let cfg →0 cfg , for any configuration cfg , and cfg →v cfg ′, for v > 0, if there is
a configuration cfg ′′ such that cfg → cfg ′′ and cfg ′′ →v−1 cfg ′. Then, cfg →∗ cfg ′ if
cfg →v cfg ′ for some v ≥ 0. Threadpool configuration cfg terminates in memory m
(written cfg ⇓ m) if cfg →∗ 〈|σ, 〈〉,m|〉 for some σ. In particular, cfg ⇓v m is written
when cfg →v 〈|σ, 〈〉,m|〉. If 〈〉 is not finitely reachable from cfg , then cfg diverges
(written cfg ⇑). Termination ⇓ and divergence ⇑ are defined similarly for command
configurations.

3 Security specification

We define two security conditions, termination-insensitive and termination-sensitive se-
curity, both based on noninterference [4]. Suppose security environment Γ : IDs →
{high, low} specifies a partitioning of variables into high and low ones. Two mem-
ories m1 and m2 are low-equal (m1 =L m2) if they agree on low variables, i.e.,
∀x ∈ IDs. Γ (x) = low =⇒ m1(x) = m2(x).

Command c satisfies termination-insensitive noninterference if c’s terminating exe-
cutions on low-equal inputs produce low-equal results.

Definition 1. Command c satisfies termination-insensitive security if

∀m1,m2.m1 =L m2 & 〈|1, 〈c〉,m1|〉 ⇓ m′
1 & 〈|1, 〈c〉,m2|〉 ⇓ m′

2 =⇒ m′
1 =L m′

2

Command c satisfies termination-sensitive noninterference if c’s executions on any
two low-equal inputs either both diverge or both terminate in low-equal results.

Definition 2. Command c satisfies termination-sensitive security if

∀m1,m2.m1 =L m2 =⇒
〈|1, 〈c〉,m1|〉⇓ m′

1 & 〈|1, 〈c〉,m2|〉⇓ m′
2 & m′

1 =L m′
2 ∨ 〈|1, 〈c〉,m1|〉⇑& 〈|1, 〈c〉,m2|〉⇑

4 Transformation

By performing a simple analysis while injecting yield commands, we are able to auto-
matically enforce both termination-insensitive and termination-sensitive security. The
transformation rules are presented in Figure 2. They have form Γ ` c ↪→ c′, where
command c is transformed into c′ under Γ . In order to rule out explicit flows [2] via as-
signment, we ensure that expressions assigned to low variables may not depend on high
data. This is enforced by demanding the type of the assigned variable to be at least as
restrictive as the type of the expression that is to be assigned. Restrictiveness relation v
on security levels is defined by low v low , high v high , low v high and high 6v low .

3

∀v ∈ Vars(e). Γ (v) = low

Γ ` e : low

∃v ∈ Vars(e). Γ (v) = high

Γ ` e : high

(HCTX)
No yield, fork or assignment to l in c

Γ ` c : high

Γ ` skip ↪→ skip; yield Γ ` yield ↪→ yield

Γ ` e : τ τ v Γ (v)

Γ ` v := e ↪→ v := e; yield

Γ ` c1 ↪→ c′1 Γ ` c2 ↪→ c′2

Γ ` c1; c2 ↪→ c′1; c
′
2

Γ ` e : low Γ ` c1 ↪→ c′1 Γ ` c2 ↪→ c′2

Γ ` if e then c1 else c2 ↪→ if e then (yield; c′1) else (yield; c′2)

(H-IF)
Γ ` e : high Γ ` c1 : high Γ ` c2 : high

Γ ` if e then c1 else c2 ↪→ (if e then c1 else c2); yield

Γ ` e : low Γ ` c ↪→ c′

Γ ` while e do c ↪→ (while e do (yield; c′)); yield

(H-W)
Γ ` e : high Γ ` c : high

Γ ` while e do c ↪→ (while e do c); yield

Γ ` c ↪→ c′ Γ ` d1 ↪→ d′1 . . . Γ ` dn ↪→ d′n

Γ ` fork(c, d1 . . . dn) ↪→ fork(c′, d′1 . . . d′n)

Fig. 2. Transformation rules

In order to reject implicit flows [2] via control flow, we guarantee that if’s and while’s
with high guards may not have assignments to low variables in their bodies. These two
techniques are well known [2, 19] and do not require code transformation.

The transformation injects yield commands in such a way that threads may not
yield whenever their timing information depends on secret data. This is achieved by a
requirement that if’s and while’s with high guards may not contain yield commands.
In addition, such control flow statements may not contain fork. The rationale is that
if secrets influence the number of threads, then it is possible for some schedulers to
leak this difference via races of publicly-observable assignments [13, 10]. Rules H-IF
and H-W enforce the above requirements. The rest of the transformation injects yield
commands without significant restrictions (but with some obvious liveness guarantees
for commands that do not branch on secrets).

The first lemma shows that commands typed under rule HCTX do not affect the
low-security variables.

Lemma 1. Given a command c and memories m1 and m2 so that Γ ` c : high ,
m1 =L m2, 〈|c,m1|〉⇓m′

1, and 〈|c,m2|〉⇓m′
2, then m′

1 =L m′
2.

The following theorem states that pools of transformed threads preserve low-equality
on memories:

4

Theorem 1. Given two (possibly empty) threadpools ~c and ~c ′ of equal size, memories
m1 and m2, and number σ so that Γ ` ci ↪→ c′i where ci ∈ ~c and c′i ∈ ~c ′, m1 =L m2,
〈|σ, 〈~c ′〉,m1|〉⇓v m′

1, and 〈|σ, 〈~c ′〉,m2|〉⇓w m′
2, then m′

1 =L m′
2.

Proof. The proof is done by induction on v + w. 2

As desired, the transformation enforces termination-insensitive security:

Corollary 1. If Γ ` c ↪→ c′ then c′ satisfies termination-insensitive security.

Proof. By applying Theorem 1 with ~c = 〈c〉, ~c ′ = 〈c′〉, and σ = 1. 2

The transformation can be adopted to termination-sensitive security in a straightfor-
ward way. We write Γ `TS c ↪→ c′ whenever Γ ` c ↪→ c′ with the modifications that
(i) rule H-W is not used, and (ii) rule HCTX is replaced by:

(HCTX’)
No while, yield, fork or assignment to l in c

Γ `TS c : high

These modifications ensure that loops have low guards and that no loop may appear in
an if statement with a high guard. These requirements are similar to those of Volpano
and Smith [18] (except for the requirement on fork, which Volpano and Smith lack):

Lemma 2. Given a command c so that Γ ` c : high cmd for some security environ-
ment Γ in Volpano and Smith’s type system [18]; and given command c′ obtained from
c by erasing occurrences of protect, we have Γ `TS c′ : high .

Proof. By structural induction on the type derivation of c. 2

This allows us to connect the transformation to Volpano and Smith’s type system:

Theorem 2. If command c is typable under security environment Γ in Volpano and
Smith’s type system [18], then there exists command c′′ such that Γ `TS c′ ↪→ c′′,
where c′ is obtained from c by erasing occurrences of protect.

Proof. By structural induction on the type derivation of c and Lemma 2. 2

We also achieve termination-sensitive security with the above modifications of the
transformation. We firstly present some auxiliaries lemmas. The following lemma states
that commands typed as high terminate and do not affect the low part of the memory:

Lemma 3. Given a command c and memory m so that Γ `TS c : high , then 〈|c,m|〉⇓m′

and m =L m′.

Proof. By induction on the size of c. 2

In order to show termination-sensitive security, we track the behavior of thread-
pools after executing some number of yield and fork commands. We capture this by
relation →∗

y,f so that cfg →∗
1,0 cfg ′ if there is cfg ′′ such that cfg →∗ cfg ′′ where no

yield’s have been executed, cfg ′′ → cfg ′ results from executing a yield command;
and cfg →∗

y,f cfg ′ if there is cfg ′′ such that cfg →∗
y−1,f cfg ′′ (resp. cfg →∗

y,f−1 cfg ′′)
and cfg ′′ → cfg ′ results from executing a yield (resp. fork) command.

The next two lemmas state that low-equivalence between memories is preserved
after executing some number of yield and fork commands:

5

Lemma 4. Given two non-empty threadpools ~c and ~c ′ of equal size, memories m1 and
m2, and number σ so that Γ `TS ci ↪→ c′i where ci ∈ ~c and c′i ∈ ~c ′, m1 =L m2, and
〈|σ, 〈~c ′〉,m1|〉 →∗

1,0 〈|σ′, 〈~c ′′〉,m′
1|〉, then there exists m′

2 such that 〈|σ, 〈~c ′〉,m2|〉 →∗
1,0

〈|σ′, 〈~c ′′〉,m′
2|〉, and m′

1 =L m′
2.

Proof. By simple induction on the number of steps of →∗
1,0. 2

Lemma 5. (yield/fork lock-step execution) Given two non-empty threadpools ~c and
~c ′ of equal size, memories m1 and m2, numbers σ, y, and f so that Γ `TS ci ↪→ c′i
where ci ∈ ~c and c′i ∈ ~c ′, m1 =L m2, and 〈|σ, 〈~c ′〉,m1|〉 →∗

y,f 〈|σ′, 〈~c ′′〉,m′
1|〉, then

there exists m′
2 such that 〈|σ, 〈~c ′〉,m2|〉 →∗

y,f 〈|σ′, 〈~c ′′〉,m′
2|〉, and m′

1 =L m′
2.

Proof. By induction on y + f and by applying Lemmas 3 and 4 when necessary. 2

The final theorem shows that the transformation eliminates the need for protect:

Theorem 3. If Γ `TS c ↪→ c′ then c′ satisfies termination-sensitive security.

Proof. By applying Lemma 5 with ~c = 〈c〉, ~c ′ = 〈c′〉, and σ = 1 and observing that a
divergent configuration (originating from c′) performs an infinite number of yield’s. 2

5 Related work

An overview of information flow controls for concurrent programs can be found in [12].
We briefly mention most closely related work. External timing-sensitive information-
flow policies have been addressed for a multithreaded language [13], and extended
with synchronization [9], message passing [11], and declassification [6]. Type systems
have been investigated for termination-sensitive flows in possibilistic [1] and proba-
bilistic [18, 15, 16] settings. Recently, we have presented a type system that guarantees
termination-insensitive security with respect to a class of deterministic schedulers [8].
Information flow via low determinism, prohibiting races on low variables from the out-
set, has been addressed in [21, 5].

6 Conclusion

We have presented a transformation that prevents timing leaks via cooperative sched-
ulers. We argue that this technique is general: it applies to a wide class of schedulers
(although only a round-robin scheduler has been considered here for simplicity).

We have experimented with the GNU Pth [3], a portable thread library for threads
in user space. We have modified this library to allow the round-robin scheduling policy
from Section 2. We have successfully applied the transformation for source-to-source
translation of multithreaded programs without yield’s into GNU Pth programs. The
security of this translation is ensured by Theorems 1 and 3.

Acknowledgment This work was funded in part by the Information Society Technolo-
gies program of the European Commission, Future and Emerging Technologies under
the IST-2005-015905 Mobius project.

6

References

[1] G. Boudol and I. Castellani. Non-interference for concurrent programs and thread systems.
Theoretical Computer Science, 281(1):109–130, June 2002.

[2] D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

[3] R. S. Engelschall. Gnu pth - the gnu portable threads.
http://www.gnu.org/software/pth/, Nov. 2005.

[4] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp.
on Security and Privacy, pages 11–20, Apr. 1982.

[5] M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation of observational
determinism. In Proc. IEEE Computer Security Foundations Workshop, July 2006.

[6] H. Mantel and D. Sands. Controlled downgrading based on intransitive (non)interference.
In Proc. Asian Symp. on Programming Languages and Systems, volume 3302 of LNCS,
pages 129–145. Springer-Verlag, Nov. 2004.

[7] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java information
flow. Software release. http://www.cs.cornell.edu/jif, July 2001–2006.

[8] A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler. In
Proc. IEEE Computer Security Foundations Workshop, pages 177–189, July 2006.

[9] A. Sabelfeld. The impact of synchronisation on secure information flow in concurrent
programs. In Proc. Andrei Ershov International Conference on Perspectives of System
Informatics, volume 2244 of LNCS, pages 225–239. Springer-Verlag, July 2001.

[10] A. Sabelfeld. Confidentiality for multithreaded programs via bisimulation. In Proc. Andrei
Ershov International Conference on Perspectives of System Informatics, volume 2890 of
LNCS, pages 260–273. Springer-Verlag, July 2003.

[11] A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed programs.
In Proc. Symp. on Static Analysis, volume 2477 of LNCS, pages 376–394. Springer-Verlag,
Sept. 2002.

[12] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

[13] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proc. IEEE Computer Security Foundations Workshop, pages 200–214, July 2000.

[14] V. Simonet. The Flow Caml system. Software release. Located at
http://cristal.inria.fr/∼simonet/soft/flowcaml/, July 2003.

[15] G. Smith. A new type system for secure information flow. In Proc. IEEE Computer Security
Foundations Workshop, pages 115–125, June 2001.

[16] G. Smith. Probabilistic noninterference through weak probabilistic bisimulation. In Proc.
IEEE Computer Security Foundations Workshop, pages 3–13, 2003.

[17] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.
In Proc. ACM Symp. on Principles of Programming Languages, pages 355–364, Jan. 1998.

[18] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. J. Com-
puter Security, 7(2–3):231–253, Nov. 1999.

[19] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J.
Computer Security, 4(3):167–187, 1996.

[20] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT
Press, Cambridge, MA, 1993.

[21] S. Zdancewic and A. C. Myers. Observational determinism for concurrent program secu-
rity. In Proc. IEEE Computer Security Foundations Workshop, pages 29–43, June 2003.

7

