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Abstract. The problem of information flow in multithreaded programs remains
an important open challenge. Existing approaches to specifying and enforcing
information-flow security often suffer from over-restrictiveness, relying on non-
standard semantics, lack of compositionality, inability to handle dynamic threads,
inability to handle synchronization, scheduler dependence, and efficiency over-
head for the code that results from security-enforcing transformations. This pa-
per suggests a remedy for some of these shortcomings by developing a novel
treatment of the interaction between threads and the scheduler. As a result, we
present a permissive noninterference-like security specification and a composi-
tional security type system that provably enforces this specification. The type
system guarantees security for a wide class of schedulers and provides a flexible
and efficiency-friendly treatment of dynamic threads.

1 Introduction

The problem of information flow in multithreaded programs remains an important open
challenge [SM03]. While information flow in sequential programs is relatively well
understood, information-flow security specifications and enforcement mechanisms for
sequential programs do not generalize naturally to multithreaded programs [SV98]. In
this light, it is hardly surprising that Jif [MZZ+06] and Flow Caml [Sim03], the main-
stream compilers that enforce secure information flow, lack support for multithreading.

Nevertheless, the need for information flow control in multithreaded programs is
pressing because concurrency and multithreading are ubiquitous in modern program-
ming languages. Furthermore, multithreading is essential in security-critical systems
because threads provide an effective mechanism for realizing the separation-of-duties
principle [VM01].

There is a series of properties that are desired of an approach to information flow
for multithreaded programs:

– Permissiveness The presence of multithreading enables new attacks which are not
possible for sequential programs. The challenge is to reject these attacks without
compromising the permissiveness of the model. In other words, information flow
models should accept as many intuitively secure and useful programs as possible.

– Scheduler-independence The security of a given program should not critically de-
pend on a particular scheduler [SS00]. Scheduler-dependent security models suffer



from the weakness that security guarantees may be destroyed by a slight change in
the scheduler policy. Therefore, we aim at a security condition that is robust with
respect to a wide class of schedulers.

– Realistic semantics Following the philosophy of extensional security [McL90], we
argue for security defined in terms of standard semantics, as opposed to security-
instrumented semantics. If there are some nonstandard primitives that accommo-
date security, they should be clearly and securely implementable.

– Language expressiveness A key to a practical security model is an expressive under-
lying language. In particular, the language should be able to treat dynamic thread
creation, as well as provide possibilities for synchronization.

– Practical enforcement Another practical key is a tractable security enforcement
mechanism. Particularly attractive is compile-time automatic compositional anal-
ysis. Such an analysis should nevertheless be permissive, striving to trade as little
expressiveness and efficiency for security as possible.

This paper develops an approach that is compatible with each of these properties
by a novel treatment of the interaction between threads and the scheduler. We enrich
the language with primitives for raising and lowering the security levels of threads.
Threads with different security levels are treated differently by the scheduler, ensuring
that the interleaving of publicly-observable events may not depend on sensitive data.
As a result, we present a permissive noninterference-like security specification and a
compositional security type system that provably enforces this specification. The type
system guarantees security for a wide class of schedulers and provides a flexible and
efficiency-friendly treatment of dynamic threads.

The main novelty of this paper, compared to a previous workshop version [RS06a],
is the inclusion of synchronization primitives into the underlying language.

In the rest of the paper we present background and related work (Section 2), the un-
derlying language (Section 3), the security specification (Section 4), and the type-based
analysis (Section 5). We discuss an extension to cooperative schedulers (Section 6), an
example (Section 7), implementation issues (Section 8), and present an extension of the
framework with synchronization primitives (Section 9), before we conclude the paper
(Section 10).

2 Motivation and background

This section motivates and exemplifies some key issues with tracking information flow
in multithreaded programs and presents an overview of existing work on addressing
these issues.

2.1 Leaks via scheduler

Assume a partition of variables into high (secret) and low (public). Suppose h and l
are a high and a low variable, respectively. Intuitively, information flow in a program is
secure (or satisfies noninterference [Coh78, GM82, VSI96]) if public outcomes of the
program do not depend on high inputs. Typical leaks in sequential programs arise from
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explicit flows (as in assignment l := h) and implicit [DD77] flows via control flow (as
in conditional if h > 0 then l := 1 else l := 0).

The ability of sequential threads to share memory opens up new information chan-
nels. Consider the following thread commands:

c1 : h := 0; l := h c2 : h := secret

where secret is a high variable. Thread c1 is secure because the final value of l is always
0. Thread c2 is secure because h and secret are at the same security level. Nevertheless,
the parallel composition c1 ‖ c2 of the two threads is not necessarily secure. The sched-
uler might schedule c2 after assignment h := 0 and before l := h is executed in c1. As
a result, secret is copied into l.

Consider another pair of thread commands:

d1 : (if h > 0 then sleep(100) else skip); l := 1 d2 : sleep(50); l := 0

These threads are clearly secure in isolation because 1 is always the outcome for l in
d1, and 0 is always the outcome for l in d2. However, when d1 and d2 are executed in
parallel, the security of the threadpool is no longer guaranteed. In fact, the program will
leak whether the initial value of hwas positive into l under many reasonable schedulers.

We observe that program c1 ‖ c2 can be straightforwardly secured by synchroniza-
tion. Assuming the underlying language features locks, we can rewrite the program as

c1 : lock;h := 0; l := h; unlock c2 : lock; h := secret ; unlock

The lock primitives ensure that the undesired interleaving of c1 and c2 is prevented.
Note that this solution prevents a race condition [SBN+97] in the sense that it is now
impossible for the two threads (where one of them attempts writing) to simultaneously
access variable h.

Unfortunately, synchronization primitives, which are typically used for race-condition
prevention (e.g., [CF07]), offer no general solution. The source of the leak in program
d1 ‖ d2 is internal timing [VS99]. The essence of the problem is that the timing behav-
ior of a thread may affect—via the scheduler—the interleaving of assignments. As we
will see later in this section, securing interleavings from within the program (such as
with synchronization primitives) is a highly delicate matter.

What is the key reason for these flows? Observe that in both cases, it is the inter-
leaving of the threads that introduces leaks. Hence, it is the scheduler and its interaction
with the threads that needs to be secured in order to prevent undesired information dis-
closure. In this paper, we suggest a treatment of schedulers that allows the programmer
to ensure from within the program that undesired interleavings are prevented.

In the rest of this section, we review existing approaches to information flow in
multithreaded programs that are directly related to the paper. We refer to an overview
of language-based information security [SM03] for other, less related, work.

2.2 Possibilistic security

Smith and Volpano [SV98] explore possibilistic noninterference for a language with
static threads and a purely nondeterministic scheduler. Possibilistic noninterference
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states that possible low outputs of a program may not vary as high inputs are varied.
Program d1 ‖ d2 from above is considered secure because possible final values of l are
always 0 and 1, independently of the initial value of h. Because the choice of a sched-
uler affects the security of the program, this demonstrates that this definition is not
scheduler-independent. Generally, possibilistic noninterference is subject to the well
known phenomenon that confidentiality is not preserved by refinement [McC87]. Work
by Honda et al. [HVY00, HY02] and Pottier [Pot02] is focused on type-based tech-
niques for tracking possibilistic information flow in variants of the π calculus. Forms of
noninterference under nondeterministic schedulers have been explored in the context of
CCS (see [FG01] for an overview) and CSP (see [Rya01] for an overview).

2.3 Scheduler-specific security

Volpano and Smith [VS99] have investigated probabilistic noninterference for a lan-
guage with static threads. Probabilities in their multithreaded system come from the
scheduler, which is assumed to select threads uniformly, i.e., each thread can be sched-
uled with the same probability. Volpano and Smith introduce a special primitive in or-
der to help protecting against internal timing leaks. This primitive is called protect,
and it can be applied to any command that contains no loops. A protected command
protect(c) is executed atomically, by definition of its semantics. Such a primitive can
be used to secure program d1 ‖ d2 as:

d1 : protect(if h > 0 then sleep(100) else skip); d2 : sleep(50); l := 0

l := 1

The timing difference is not visible to the scheduler because of the atomic semantics of
protect. The protect primitive is, however, nonstandard. It is not obvious how such
a primitive can be implemented (unless the scheduler is cooperative [RS06b, TRH07]).
A synchronization-based implementation would face some nontrivial challenges. In the
case of program d1 ‖ d2, a possible implementation of protect could attempt locking
all other threads while execution is inside of the if statement:

d1 : lock; (if h > 0 then sleep(100) else skip);

unlock; lock; l := 1; unlock

d2 : lock; sleep(50); unlock; lock; l := 0; unlock

Although this implementation prevents race conditions related to simultaneous access
of variable l, unfortunately, such an implementation is insecure. The somewhat subtle
reason is that when the execution is inside of the if statement, the other threads do
not become instantly locked. Thread d2 can still be scheduled, which could result in
blocking and updating the wait list for the lock with d2.

For simplicity, assume that sleep(n) is an abbreviation for n consecutive skip

commands. Consider a scheduler that picks thread d1 first and then proceeds to run a
thread for 70 steps before giving the control to the other thread. If h > 0 then d1 will
run for 70 steps and, while being in the middle of sleep(100), the control will be given
to thread d2. Thread d2 will try to acquire the lock but will block, which will result in
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d2 being placed as the first thread in the wait list for the lock. The scheduler will then
schedule d1 again, and d1 will release the lock with unlock and try to grab the lock
with lock. However, it will fail because d2 is the first in the wait list. As a result, d1

will be put behind d2 in the wait list. Further, d2 will be scheduled to set l to 0, release
the lock, and finish. Finally, d1 is able to grab the lock and execute l := 1, release the
lock, and finish. The final value of l is 1. If, on the other hand, h ≤ 0 then, clearly,
d1 will finish within 70 steps, and the control will be then given to d2, which will grab
the lock, execute l := 0, release the lock, and finish. The final value of l in this case is
0, which demonstrates that the program is insecure. Generally, under many schedulers,
chances for l := 0 in d2 to execute before l := 1 in d1 are higher if the initial value of
h is positive. Thus, the above implementation fails to remove the internal timing leak.

This example illustrates the need for a tighter interaction with the scheduler. The
scheduler needs to be able to suspended certain threads instantly. This flexibility moti-
vates the introduction of the hide and unhide constructs in this paper.

Returning to probabilistic scheduler-specific noninterference, Smith has continued
this line of work [Smi01] to emphasize practical enforcement. In contrast to previ-
ous work, the security type system accepts while loops with high guards when no
assignments to low variables follow such loops. Independently, Boudol and Castel-
lani [BC01, BC02] provide a type system of similar power and show possibilistic nonin-
terference for typable programs. This system does not rely on protect-like primitives
but winds up rejecting assignments to low variables that follow conditionals with high
guards.

The approaches above do not handle dynamic threads. Smith [Smi03] has suggested
that the language can be extended with dynamic thread creation. The extension is dis-
cussed informally, with no definition for the semantics of fork, the thread creation con-
struct. A compositional typing rule for fork is given, which allows spawning threads
under conditionals with high guards. However, the uniform scheduler assumption is
critical for such a treatment (as it is also for the treatment of while loops). Consider
the following example:

e1 : l := 0 e2 : l := 1 e3 : if h > 0 then fork(skip, skip) else skip

This program is considered secure according to [Smi03]. Suppose the scheduler hap-
pens to first execute e3 and then schedule the first thread (e1) if the threadpool has more
than three threads and the second thread (e2) otherwise. This results in an information
leak from h to l because the size of the threadpool depends on h. Note that the above
program is insecure for many other schedulers. A minor deviation from the strictly uni-
form probabilistic choice of threads may result in leaking information.

A possible alternative aimed at scheduler-independence is to force threads (created
in branches of ifs with high guards) along with their children to be protected, i.e., to
disable all other threads until all these threads have terminated (this can be implemented
by, for example, thread priorities). Clearly, this would take a high efficiency tall on
the encouraged programming practice of placing dedicated potentially time-consuming
computation in separate threads. For example, creating a new thread for establishing a
network connection is a much recommended pattern [Knu02, Mah04].

The above discussion is another motivation for a tighter interaction between threads
and the scheduler. A flexible scheduler would accommodate thread creation in a sen-
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sitive context by scheduling such threads independently from threads with attacker-
observable assignments. This motivates the introduction of the hfork construct in this
paper.

2.4 Scheduler-independent security

Sabelfeld and Sands [SS00] introduce a scheduler-independent security condition (with
respect to possibly probabilistic schedulers) and suggest a type-based analysis that en-
forces this condition. The condition is, however, concerned with external timing leaks,
which implies that the attacker is powerful enough to observe the actual execution
time. External timing models rely on the underlying operating system and hardware
to preserve the timing properties of a given program. Furthermore, the known padding
techniques (e.g., [Aga00, SS00, KM07]) might arbitrarily change the efficiency of the
resulting code.

In the present work, we assume a weaker attacker and aim for a more permissive
security condition and analysis. Similarly to much related work (e.g., [VS99, Smi03,
ZM03, HWS06, RS06b, RHNS07, BRRS07]) our attacker model does not permit ob-
servations of the execution time. The attacker may observe public outcomes of a pro-
gram however, which is sufficient to launch attacks via internal timing. These attacks
are dangerous because they can be magnified to leak all secrets in a single run (see,
e.g., [RHNS07]).

2.5 Security via low determinism

Inspired by Roscoe’s low-view determinism [Ros95] for security in a CSP setting,
Zdancewic and Myers [ZM03] develop an approach to information flow in concurrent
systems. According to this approach, a program is secure if its publicly-observably re-
sults are deterministic and unchanged regardless of secret inputs. This avoids refinement
attacks from the outset. However, low-view determinism security rejects intuitively se-
cure programs (such as l := 0 ‖ l := 1), introducing the risk of rejecting useful
programs. Analysis enforcing low-view determinism are inherently noncompositional
because the parallel composition with a thread assigning to low variables is not gener-
ally secure.

Recently, Huisman et al. [HWS06] have suggested a temporal logic-based charac-
terization of low-view determinism security. This characterization enables high-precision
security enforcement by known model-checking techniques.

2.6 Security in the presence of synchronization

Andrews and Reitman [AR80] propose a logic for reasoning about information flow in
a language with semaphores. However, the logic comes with no soundness arguments
or decision algorithms.

External timing-sensitive security has been extended to languages with semaphores
primitives by Sabelfeld [Sab01] and message passing by Sabelfeld and Mantel [SM02].
Although our focus is internal timing, the semantic presentation of semaphores from
the former work serves as a useful starting point for this paper.
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c ::= stop | skip | v := e | c; c | if b then c else c | while b do c
| hide | unhide | fork(c, ~d) | hfork(c, ~d)

Fig. 1. Command syntax

〈|skip,m|〉⇀ 〈|stop,m|〉 〈|e,m|〉 ↓ n
〈|x := e,m|〉⇀ 〈|stop,m[x 7→ n]|〉

〈|c1,m|〉 α⇀ 〈|stop,m′|〉 α ∈
˘
•;,;•, ◦~d, •~d

¯

〈|c1; c2,m|〉 α⇀ 〈|c2,m′|〉

〈|c1,m|〉 α⇀ 〈|c′1,m′|〉 α ∈
˘
•;,;•, ◦~d, •~d

¯

〈|c1; c2,m|〉 α⇀ 〈|c′1; c2,m′|〉
〈|e,m|〉 ↓ True

〈|if e then c1 else c2,m|〉⇀ 〈|c1,m|〉
〈|e,m|〉 ↓ False

〈|if e then c1 else c2,m|〉⇀ 〈|c2,m|〉
〈|e,m|〉 ↓ True

〈|while e do c,m|〉⇀ 〈|c; while e do c,m|〉
〈|e,m|〉 ↓ False

〈|while e do c,m|〉⇀ 〈|stop,m|〉

〈|hide, m|〉 ;•⇀ 〈|stop,m|〉 〈|unhide,m|〉 •;⇀ 〈|stop,m|〉

〈|fork(c, ~d),m|〉
◦~d⇀ 〈|c,m|〉 〈|hfork(c, ~d),m|〉

•~d⇀ 〈|c,m|〉

Fig. 2. Semantics for commands

Recently, Russo et al. [RHNS07] have proposed a transformation that closes internal
timing leaks by spawning sensitive computation in dedicated threads. Semaphores play
a crucial role for the synchronization of these threads. However, contrary to this work,
the source language for the transformation lacks semaphores.

3 Language

In order to illustrate our approach, we define a simple multithreaded language with dy-
namic thread creation. The syntax of language commands is displayed in Figure 1.
Besides the standard imperative primitives, the language features hiding (hide and
unhide primitives) and dynamic thread creation (fork and hfork primitives).

3.1 Semantics for commands

A command c and a memory m together form a command configuration 〈|c,m|〉. The
semantics of configurations are presented in Figure 2. A small semantic step has the
form 〈|c,m|〉 α⇀ 〈|c′,m′|〉 that updates the command and memory in the presence of a
possible event α. Events range over the set

{
•;,;•, ◦~d, •~d

}
, where ~d is a set of

7



threads. The sequential composition rule propagates events to the top level. We describe
the meaning of the events in conjunction with the rules that involve the events.

Two kinds of threads are supported by the semantics, low and high threads, par-
titioning the threadpool into low and high parts. The intention is to hide—via the
scheduler—the (timing of the) execution of the high threads from the low threads.

The hiding command hidemoves the current thread from the low to the high part of
the threadpool. This is expressed in the semantics by event;• that communicates to the
scheduler to treat the thread as high (whether or not the thread was already high). The
unhiding command unhide has the dual effect: it communicates to the scheduler by
event •; that the thread should be treated as low. To intuitively illustrate how to utilize
hide and unhide, we modify the motivating example given in Section 2.1, where we
wrap the branching command around hide and unhide commands as follows:

d1 : hide; (if h > 0 then sleep(100) else skip); unhide; l := 1

d2 : sleep(50); l := 0

Initially, both threads, d1 and d2 are treated as low by the scheduler. After executing
hide, d1 is temporarily considered as a high thread and d2 is not scheduled for exe-
cuting until running the command unhide. As a consequence, the timing differences
introduced by the branching instruction in d1 are not visible to d2 and internal-timing
leaks are thus avoided.

Although hide and unhide commands are nonstandard, we will show that, unlike
protect, they can be straightforwardly implemented.

We define independent commands hide and unhide instead of forcing them to
wrap code blocks syntactically (cf. protect). We expect this choice to be useful when
adding exceptions to the language. For example, consider the following program

try { if l1 then l2 := 1; hide; c1 else l2 := 0; hide; c2 } catch {unhide; c3}

where command try determines code blocks that might throw an exception and com-
mand catch states exception handlers. Variables l1,l2, and l3 are public. Commands c1

and c2 contain branches whose guards involve secrets. Command c3 is part of the ex-
ception handler. In this program, the unhide command in the exception handler refers
to several hide primitives under the try statement.

Commands fork(c, ~d) and hfork(c, ~d) dynamically spawn a collection ~d of threads
(commands) ~d = d1 . . . dn while the current thread runs command c. The difference
between the two primitives is in the generated event. Command fork signals about the
creation of low threads with event ◦~d (where ◦ is read “low”) while hfork indicates
that new threads should be treated as high by event •~d (where • is read “high”).

3.2 Semantics for schedulers

Figure 3 depicts the semantic rules that describe the behavior of the scheduler. A sched-
uler is a program σ (written in a language, not necessarily related to one from Figure 1)
that, together with a memory ν, forms a scheduler configuration 〈|σ, ν|〉. We assume that
the scheduler memory is disjoint from the program memory. The scheduler memory
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contains variable q that regulates for how many steps a thread can be scheduled. Live
(i.e., ready to execute) threads are tracked by variable t that consists of low and high
parts. The low part is named by t◦, while the high part is composed of two subpools
named t• and te. Threads in t• are always high, but threads in te were low in the past,
are high at present, and might eventually be low in the future. Threads are moved back
and forth from t◦ to te by executing the hiding and unhiding commands. Variable r rep-
resents the running thread. Variable s regulates whether low threads may be scheduled.
When s is ◦, both low and high threads may be scheduled. However, when s is •, only
high threads may be scheduled, preventing low threads from observing internal timing
information about high threads. In addition, the scheduler might have some internal
variables.

Whenever a scheduler-operation rule handles an event, it either corresponds to pro-
cessing information from the top level (such as threads creation and termination) or to
communicating information to the top level (such as thread selection). The rules allow
to derive steps of the form 〈|σ, ν|〉 α

⇁ 〈|σ′, ν′|〉. By convention, we refer to the variables
in ν as q, t, r and s and variables in ν ′ as q′, t′, r′ and s′. When these variables are
not explicitly mentioned, we adopt the convention that they remain unchanged after the
transition. We assume that besides event-driven transitions, the scheduler might per-
form internal operations that are not visible at the top level (and may not change the
variables above). We abstract away from these transitions, assuming that their event
labels are empty. Although the transition system in Figure 3 is nondeterministic, we
only consider deterministic instances of schedulers for simplicity. We expect a natural
generalization of our results to probabilistic schedulers.

The rules can be viewed as a set of basic assumptions that we expect the scheduler to
satisfy. We abstract away from the actual scheduler implementation—it can be arbitrary,
as long as it satisfies these basic assumptions and runs infinitely long. We discuss an
example of a scheduler that conforms to these assumptions in Section 4.

The rule for event αr~d ensures that the scheduler updates the appropriate part of the

threadpool (low or high, depending on α) with newly created threads. Operation N(~d)

returns thread identifiers for ~d and generates fresh ones when new threads are spawn by
fork or hfork. The rule for event r; keeps track of a nonterminal step of thread r;
as an effect, counter q is decremented. A terminal step of thread r results in a r;×
event, which requires the scheduler to remove thread r from the threadpool. Events
↑◦ r′ and ↑• r′ are driven by the scheduler’s selection of thread r′. Note the difference
in selecting low and high threads. A low thread can only be selected if the value of s is
◦, as discussed above.

Events r;• and •; r are triggered by the hide and unhide commands, respec-
tively. The scheduler handles event r;• by moving the current thread from the low
to the high part of the threadpool and setting s′ to •. Upon event •; r, the scheduler
moves the thread back to the low part of the threadpool, setting s′ to ◦.

Events r;•× and •;r× are triggered by hide and unhide, respectively, when
they are the last commands to be executed by a thread.
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q > 0 q′ = q − 1 t′α = tα ∪N(~d)

〈|σ, ν|〉
αr~d⇁ 〈|σ′, ν′|〉

α ∈ {•, ◦}

q > 0 q′ = q − 1

〈|σ, ν|〉 r;⇁ 〈|σ′, ν′|〉
q > 0 q′ = 0 ∀α ∈ {•, ◦}.t′α = tα\{r}

〈|σ, ν|〉 r;×⇁ 〈|σ′, ν′|〉

q = 0 s = ◦ q′ > 0 r′ ∈ t◦ ∪ t•
〈|σ, ν|〉 ↑◦r

′
⇁ 〈|σ′, ν′|〉

q = 0 q′ > 0 r′ ∈ t• ∪ te
〈|σ, ν|〉 ↑•r

′
⇁ 〈|σ′, ν′|〉

q > 0 q′ = q − 1 s′ = • t′◦ = t◦\{r} t′e = {r}
〈|σ, ν|〉 r;•⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = ◦ t′◦ = t◦ ∪ {r} t′e = ∅
〈|σ, ν|〉 •;r⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = • ∀α ∈ {•, ◦}.t′α = tα\{r} t′e = ∅
〈|σ, ν|〉 r;•×⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = ◦ ∀α ∈ {•, ◦}.t′α = tα\{r} t′e = ∅
〈|σ, ν|〉 •;r×⇁ 〈|σ′, ν′|〉

Fig. 3. Semantics for schedulers

3.3 Semantics for threadpools

The interaction between threads and the scheduler takes place at the top level, the
level of threadpool configurations. These configurations have the form 〈|~c,m, σ, ν|〉 α→
〈|~c′,m′, σ′, ν′|〉, where α ranges over the same set of events as in the semantics for
schedulers.

The semantics for threadpool configurations is displayed in Figure 4. The dynamic
thread creation rule is triggered when the running thread cr generates a thread creation
event α~d, where α is either • or ◦. This event is synchronized with scheduler event αr~d
that requests the scheduler to handle the new threads depending on whether α is high
or low.

If cr does not spawn new threads or terminate, then its command rule is synchro-
nized with scheduler event r ;. If cr terminates in a transition without labels, then
scheduler event r;× is required for synchronization in order to update the threadpool
information in the scheduler memory. If cr terminates with ;• (resp., •;) then syn-
chronization with r ;•× (resp., •; r×) is required to record both termination and
hiding (resp., unhiding).

Scheduler event ↑α r′ triggers a selection of a new thread r′ without affecting the
commands in the threadpool or their memory. Finally, entering and exiting the high part
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〈|cr,m|〉
α~d⇀ 〈|c′r, m′|〉 〈|σ, ν|〉

αr~d⇁ 〈|σ′, ν′|〉 α ∈ {•, ◦}

〈|c1 . . . cn,m, σ, ν|〉
αr~d→ 〈|c1 . . . cr−1c

′
r
~dcr+1 . . . cn,m

′, σ′, ν′|〉

〈|cr,m|〉⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 r;⇁ 〈|σ′, ν′|〉
〈|c1 . . . cn,m, σ, ν|〉 r;→ 〈|c1 . . . cr−1c

′
rcr+1 . . . cn,m

′, σ′, ν′|〉

〈|cr,m|〉⇀ 〈|stop,m′|〉 〈|σ, ν|〉 r;×⇁ 〈|σ′, ν′|〉
〈|c1 . . . cn,m, σ, ν|〉 r;×→ 〈|c1 . . . cr−1cr+1 . . . cn, m

′, σ′, ν′|〉

〈|cr,m|〉 ;•⇀ 〈|stop,m′|〉 〈|σ, ν|〉 r;•×⇁ 〈|σ′, ν′|〉
〈|c1 . . . cn,m, σ, ν|〉 r;•×→ 〈|c1 . . . cr−1cr+1 . . . cn,m

′, σ′, ν′|〉

〈|cr,m|〉 •;⇀ 〈|stop,m′|〉 〈|σ, ν|〉 •;r×⇁ 〈|σ′, ν′|〉
〈|c1 . . . cn,m, σ, ν|〉 •;r×→ 〈|c1 . . . cr−1cr+1 . . . cn,m

′, σ′, ν′|〉

〈|σ, ν|〉 ↑αr
′

⇁ 〈|σ′, ν′|〉 α ∈ {◦, •}, r′ ∈ {1, . . . , n}

〈|c1 . . . cn,m, σ, ν|〉 ↑αr
′

→ 〈|c1 . . . cn,m, σ′, ν′|〉

〈|cr,m|〉 α⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 α⇁ 〈|σ′, ν′|〉 α ∈ {r ; •, •; r}
〈|c1 . . . cn,m, σ, ν|〉 α→ 〈|c1 . . . cr−1c

′
rcr+1 . . . cn,m

′, σ′, ν′|〉

Fig. 4. Semantics for threadpools

of the threadpool is performed by synchronizing the current thread and the scheduler
on events r;• and •;r.

Let→∗ stand for the transitive and reflexive closure of→ (which is obtained from
α→ by ignoring events). If for some threadpool configuration cfg we have cfg →∗ cfg ′,
where the threadpool of cfg ′ is empty, then cfg terminates in cfg ′, denoted by cfg ⇓
cfg ′. Recall that schedulers always run infinitely; however, according to the above defi-
nition, the entire program terminates if there are no threads to schedule. We assume that
m(cfg) extracts the program memory from threadpool configuration cfg .

3.4 On multi-level extensions

Although the semantics accommodates two security levels for threads, extensions to
more levels do not pose significant challenges. Assume a security lattice L, where se-
curity levels are ordered by a partial order v, with the intention to only allow leaks
from data at level `1 to data at level `2 when `1 v `2. The low-and-high policy dis-
cussed above forms a two-level lattice with elements low and high so that low v high
but high 6v low .
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d : forklow (clow ); forkmedium(cmedium); forkhigh (chigh );
hidemedium ;
if k then h := 3; else k := 1; k′ := 3;
hidehigh ;
if h then h := 0; else h := 4; h′ := 3;

unhidehigh ;
k′′ := 5;
unhidemedium ;

Fig. 5. Example of multi-level commands hide`, unhide`, and fork`

In the presence of a general security lattice, the threadpool is partitioned into as
many parts as the number of security levels. Commands hide`, unhide`, and fork`
are parameterized over security level `. Initially, all threads are in the ⊥-threadpool.
Whenever a thread executes a hide` command, it enters `-threadpool. The semantics
needs to ensure that no threads from `′-threadpools, for all `′ such that ` 6v `′ may
execute until the hidden thread reaches unhide`. Naturally, command fork` creates
threads in `-threadpool.

To illustrate the use of commands hide`, unhide`, and fork`, we present the thread
d in Figure 5. We assume three security levels in our lattice: low , medium , and high ,
where low v medium v high . Commands clow , cmedium , and chigh describe low,
medium, and high threads, respectively. Variables l, k, and h (and their prime versions)
are associated with security levels low , medium, and high , respectively. The program
starts by spawning three threads at different security levels. Before the first hide, the
low -threadpool is composed by the threads d and clow , while threads cmedium and chigh

are placed in the medium and high-threadpools, respectively. At this point, any of the
threads can be scheduled. Once executed hidemedium , thread clow is not scheduled for
execution until reaching the command unhidemedium . After executing the first branch-
ing instruction, hidehigh is executing. Then, thread cmedium is not able to run and only
d and chigh can be executed at that point of the program. After executing unhidehigh ,
thread cmedium can be scheduled to run. Finally, clow can be scheduled to run after
executing unhidemedium .

We will discuss how general multi-level security can be defined and enforced in
Sections 4 and 5, respectively.

4 Security specification

We specify security for programs via noninterference. The attacker’s view of program
memory is defined by a low-equivalence relation =L such thatm1 =L m2 if the projec-
tions of the memories onto the low variables are the samem1|L = m2|L. As formalized
in Definition 4 below, a program is secure under some scheduler if for any two initial
low-equivalent memories, whenever the two runs of the program terminate, then the
resulting memories are also low-equivalent.
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We generalize this statement to a class of schedulers, requiring schedulers to comply
to the basic assumptions from Section 3 and also requiring that they themselves are not
leaky, i.e., that schedulers satisfy a form of noninterference.

Scheduler-related events have different distinguishability levels. Events ◦r~d,, r ;,
r;×, ↑◦ r′, r;•, •; r, r;•×, and •; r× (where r is a low thread and r′ can be
either a low or a high thread) operate on low threads and are therefore low events. On
the other hand, events •r~d , r;, r;×, ↑• r′, r;•, •;r, r;•×, and •;r× (where r
and r′ are high threads) are high.

With the security partition defined on scheduler events, we specify the indistin-
guishability of scheduler configurations via low-bisimulation. Because we only con-
sider deterministic schedulers, an equivalent trace-based definition is possible. How-
ever, we have chosen a bisimulation-based definition of indistinguishability because
it is both intuitive and concise. The intuition behind indistinguishability of scheduler
configurations is this: A candidate relation R is a low-bisimulation if the following
conditions hold. For two configurations that are related by R, if one of them (say the
first) can make a high step to some other configuration then this other configuration will
be related to the second configuration. If none of the configurations can make a high
step, but one of the configurations can make a low step, then the other one should also
be able to make a low step with the same label and the resulting configurations must be
related by R. Formally:

Definition 1. A relation R is a low-bisimulation on scheduler configurations if when-
ever 〈|σ1, ν1|〉 R 〈|σ2, ν2|〉, then

– if 〈|σi, νi|〉 α⇁ 〈|σ′i, ν′i|〉 where α is high and i ∈ {1, 2}, then 〈|σ′i, ν′i|〉 R 〈|σ3−i, ν3−i|〉;
– if the case above cannot be applied and 〈|σi, νi|〉 α

⇁ 〈|σ′i, ν′i|〉 where α is low and
i ∈ {1, 2}, then 〈|σ3−i, ν3−i|〉 α

⇁ 〈|σ′3−i, ν′3−i|〉 and 〈|σ′i, ν′i|〉 R 〈|σ′3−i, ν′3−i|〉.

Note the condition “if the case above cannot be applied”, which corresponds to the
case where none of the configurations can make a high step. Scheduler configurations
are low-indistinguishable if there is a low-bisimulation that relates them:

Definition 2. Scheduler configurations 〈|σ1, ν1|〉 and 〈|σ2, ν2|〉 are low-indistinguishable
(written 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉) if there is a low-bisimulation R such that 〈|σ1, ν1|〉 R
〈|σ2, ν2|〉.

Noninterference for schedulers requires low-bisimilarity under any memory:

Definition 3. Scheduler σ is noninterferent if 〈|σ, ν|〉 ∼L 〈|σ, ν|〉 for all ν.

Figure 6 displays an example of a scheduler in pseudocode. This is a round-robin
scheduler that keeps track of two lists of threads: low and high ones. The scheduler
interchangeably chooses between threads from these two lists, when possible. It waits
for events generated by the running thread (expressed by primitive receive). Func-
tions head, tail, remove, and append have the standard semantics for list operations.
Operation N(~d), variables t◦, t•, s, r, and q have the same purpose as described in
Section 3.2. Constant M is a positive natural number. Variable turn encodes the in-
terchangeable choices between low and high threads. Function run(r) launches the
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t◦ := [c]; t• := []; r := c; s := 0; turn := 0;
while (True) do {
q := M ; run(r);
while (q > 0) do {
receive

◦r~d : t◦ := append(t◦, N(~d));

•r~d : t• := append(t•, N(~d));

r;: skip;
r;× : t◦ := remove(r, t◦); t• := remove(r, t•);

q := 0;
r;• : t◦ := remove(r, t◦); t• := remove(r, t•);

t• := append(t•, [r]); s := 1;
•;r : t◦ := append(t◦, [r]);

t• := remove(r, t•); s := 0; q := 0;
r;•× : t◦ := remove(r, t◦); t• := remove(r, t•);

s := 1; q := 0;
•;r× : t◦ := remove(r, t◦); t• := remove(r, t•);

s := 0; q := 0;
end receive;
q := q − 1
};
turn := (turn + 1) mod 2;
if ((turn = 1) or (s = 1))
then {r := head(t•); t• := append(tail(t•), [r])}
else {r := head(t◦); t◦ := append(tail(t◦), [r])}
}

Fig. 6. Round-robin scheduler

execution of thread r. It is not difficult to show that this schedulers complies to the
assumptions from Section 3.2, and that it is noninterferent.

Suppose the initial scheduler memory is formed according to νinit = ν[t◦ 7→
{c} , t• 7→ ∅, te 7→ ∅, r 7→ 1, s 7→ ◦, q 7→ 0] for some fixed ν. Security for programs is
defined as a form of noninterference:

Definition 4. Program c is secure if for all σ,m1, and m2 where σ is noninterferent
and m1 =L m2, we have

〈|c,m1, σ, νinit |〉 ⇓ cfg1 & 〈|c,m2, σ, νinit |〉 ⇓ cfg2 =⇒ m(cfg1) =L m(cfg2)

A form of scheduler independence is built in the definition by the universal quantifi-
cation over all noninterferent schedulers. Although the universally quantified condition
may appear difficult to guarantee, we will show that the security type system from
Section 5 ensures that any typable program is secure. Note that this security definition
is termination-insensitive [SM03] in that it ignores nonterminating program runs. Our
approach can be applied to termination-sensitive security in a straightforward manner,
although this is beyond the scope of this paper.
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∀v ∈ FV(e).Γ (v) = low

Γ ` e : low

∃v ∈ FV(e).Γ (v) = high

Γ ` e : high

Γ ` skip : Γ (hc)

Γ ` e : τ τ t Γ (pc) t Γ (hc) v Γ (x)

Γ ` x := e : Γ (hc)

Γ ` c1 : τ1 Γhc, hc 7→ τ1 ` c2 : τ2

Γ ` c1; c2 : τ2

Γpc, pc 7→ high ` c : τ

Γpc, pc 7→ low ` c : τ

Γ ` e : τe τe v Γ (hc) (Γpc, pc 7→ τe t Γ (pc) t Γ (hc) ` ci : Γ (hc))i=1,2

Γ ` if e then c1 else c2 : Γ (hc)

Γ ` e : τe τe v Γ (hc) Γpc, pc 7→ τe t Γ (pc) t Γ (hc) ` c : Γ (hc)

Γ ` while e do c : Γ (hc)

Γ (pc) = low Γ (hc) = low

Γ ` hide : high

Γ (pc) = low Γ (hc) = high

Γ ` unhide : low

Γ ` c : low Γ (hc) = low Γ ` ~d : low

Γ ` fork(c, ~d) : low

Γpc, pc 7→ Γ (hc) ` c : high Γ (hc) = high Γpc, pc 7→ Γ (hc) ` ~d : high

Γ ` hfork(c, ~d) : high

Fig. 7. Security type system

As common, noninterference can be expressed for a general security lattice L by
quantifying over all security levels ` ∈ L and demanding two-level noninterference
between data at levels `1 such that `1 v ` (acting as low) and data at levels `2 such that
`2 6v ` (acting as high).

5 Security type system

This section presents a security type system that enforces the security specification
from the previous section. We proceed by going over the typing rules and stating the
soundness theorem.

5.1 Typing rules

Figure 7 displays the typing rules for expressions and commands. Suppose Γ is a typing
environment which includes security type information for variables (whether they are
low or high) and two variables, pc and hc, ranging over security types (low or high).
By convention, we write Γv for Γ restricted to all variables but v.
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Expression typing judgments have the form Γ ` e : τ where τ is low only if all
variables in e (denoted FV(e)) are low. If there exists a high variable that occurs in e
then τ must be high . Expression types make no use of type variables pc and hc.

Command typing judgments have the form Γ ` c : τ . As a starting point, let us
see how the rules track sequential-style information flow. The assignment rule ensures
that information cannot leak explicitly by assigning an expression that contains high
variables into a low variable. Further, implicit flows are prevented by the program-
counter mechanism [DD77, VSI96]. This mechanism ensures that no assignments to
low variables are allowed in the branches of a control statement (if or while) when
the guard of the control statement has type high . (We call such if’s and while’s high.)
This is achieved by the program-counter type variable pc from the typing context Γ .
The intended guarantee is that whenever Γpc, pc 7→ high ` c : τ then c may not assign
to low variables. The typing rules ensure that branches of high if’s and while’s may
only be typed in a high pc context.

Security type variables hc (that describes hiding context) and τ (that describes the
command type) help tracking information flow specific to the multithreaded setting.
The main job of these variables is to record whether the current thread is in the high
part of the threadpool (hc = high) or is in the low part (hc = low ). Command type τ
reflects the level of the hiding context after the command execution.

The type rules for hide and unhide raise and lower the level of the thread, respec-
tively. Condition τe v Γ (hc) for typing high if’s and while’s ensures that high control
commands can only be typed under high hc, which enforces the requirement that high
control statements should be executed by high threads.

The type system ensures that there are no fork (but possibly some hfork) com-
mands in high control statements. This is entailed by the rule for fork, which requires
low hc.

By removing the typing rules for hide, unhide, hfork, and the security type vari-
ables hc and τ from Figure 7, we obtain a standard type system for securing informa-
tion flow in sequential programs (cf. [VSI96]). This illustrates that our type provides
a general technique for modular extension of systems that track information flow in a
sequential setting.

Extending the type system to an arbitrary security lattice L is straightforward: the
main modification is that security levels ` in hide`, unhide`, and fork` may be al-
lowed only if the level of hc is also `.

5.2 Soundness

We enlist some helpful lemmas for proving the soundness of the type system. The proofs
of all lemmas, theorems, and corollaries are reported in the appendix. The first lemma
states that high control commands must be typed with high hc.

Lemma 1. If Γ ` c : τ , where c = if e then c1 else c2 or c = while e do c, and
Γ ` e : high , then Γ (hc) = high .

The following lemma states that commands with high guards and hforks cannot
contain hide or unhide commands as part of them.
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Lemma 2. If Γhc,pc, pc 7→ high , hc 7→ high ` c : high , then c does not contain hide

and unhide.

The following lemma states that threads in the high part of the threadpool do not
update low variables.

Lemma 3. If Γhc, hc 7→ high ` c : τ and 〈|c,m|〉 α
⇀ 〈|c′,m′|〉, then m =L m′ and

α /∈ {◦,; •}.
The next lemma states that threads created by hfork always remain in the high part

of the threadpool.

Lemma 4. If Γhc,pc, hc 7→ high , pc 7→ high ` c : high and 〈|c,m|〉 α
⇀ 〈|c′,m′|〉 and

c′ 6= stop, then Γhc,pc, hc 7→ high , pc 7→ high ` c′ : high .

As stated by the following lemma, threads that are moved to the low part of the
threadpool are kept in the high part of it until an unhide instruction is executed.

Lemma 5. If Γhc,pc, pc 7→ τc, hc 7→ high ` c : low for some given τc and 〈|c,m|〉 α
⇀

〈|c′,m′|〉, where c′ 6= stop and α 6= •; r, then Γhc,pc, pc 7→ τc, hc 7→ high ` c′ : low .

The following lemma states that threads in the low part of the threadpool preserve
low-equivalence of memories.

Lemma 6. For a given command c such that Γhc, hc 7→ low ` c : low , memories
m1 and m2 such that m1 =L m2, and 〈|c,m1|〉 α

⇀ 〈|c′,m′1|〉; it holds that 〈|c,m2|〉 α
⇀

〈|c′,m′2|〉 and m′1 =L m
′
2.

The next lemma states that threads remain in the low part of the threadpool as long
as no hide instruction is executed.

Lemma 7. If Γhc,pc, pc 7→ τc, hc 7→ low ` c : low for some given τc and 〈|c,m|〉 α
⇀

〈|c′,m′|〉, where c′ 6= stop and α 6= r ; •, then Γhc,pc, pc 7→ τc, hc 7→ low ` c′ : low .

Another important lemma is that commands hide and unhide are matched in pairs.

Lemma 8. If Γhc, hc 7→ low ` hide; c : low , then there exist commands c′ and p such
that c ∈ {c′; unhide, unhide, c′; unhide; p, unhide; p}, where c′ has no unhide

commands.

In order to establish the security of typable commands, we need to firstly identify
the following subpools of threads from a given configuration.

Definition 5. Given a scheduler memory ν and a thread pool ~c, we define the fol-
lowing subpools of threads: L(~c, ν) = {ci}i∈t◦∩N(~c), H(~c, ν) = {ci}i∈t•∩N(~c), and
EL(~c, ν) = {ci}i∈te∩N(~c).

These three subpools of threads, L(~c) (low), H(~c) (high) and EL(~c) (eventually
low), behave differently when the overall threadpool is run with low-equivalent initial
memories. Threads from the low subpool match in the two runs, threads from the high
subpool do not necessarily match (but they cannot update low memories in any event),
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and threads from the eventually low subpool will eventually match. The above intuition
is captured by the following theorem. First, we define what “eventually match” means.

Definition 6. Given a command p, we define the relation eventually low, written∼el,p,
on empty or singleton sets of threads as follows:

– ∅ ∼el,p,∅ ∅;
– {c} ∼el,p,{n} {d} if N(c) = N(d) = n, and there exist commands c′ and d′ with-

out unhide instructions such that c ∈ {c′; unhide, unhide} and d ∈ {d′; unhide,
unhide} or c ∈ {c′; unhide; p, unhide; p} and d ∈ {d′; unhide; p, unhide; p}.
Two traces that start with low-indistinguishable memories might differ on com-

mands (although keeping the command type). We need to show that this difference will
not affect the sequence of low-observable events and low-observable memory changes.
In order to show this, we define an unwinding [GM84] property, which is similar to the
low-bisimulation property for schedulers. This unwinding property below establishes
an invariant on two configurations that is preserved by low steps in lock-step and is
unchanged by high steps with any of the configurations.

Theorem 1. Given a command p and the multithreaded configurations 〈|~c1,m1, σ1, ν1|〉
and 〈|~c2,m2, σ2, ν2|〉 so that m1 =L m2, written as R1(m1,m2), N(~c1) = H(~c1, ν1)∪
L(~c1, ν1)∪EL(~c1, ν1), written asR2(~c1, ν1),R2(~c2, ν2), setsH(~c1, ν1),L(~c1, ν1), and
EL(~c1, ν1) are disjoint, written as R3(~c1, ν1), R3(~c2, ν2), L(~c1, ν1) = L(~c2, ν2), writ-
ten as R4(~c1, ν1, ~c2, ν2), EL(~c1, ν1) ∼el,p,te1

EL(~c2, ν2), written as R5(~c1, ν1, ~c2, ν2,
p), (Γ [hc 7→ low ] ` ci : low )i∈L(~c1,ν1), written as R6(~c1, ν1), (Γ [hc 7→ high , pc 7→
high ] ` ci : high)i∈H(~c1 ,ν1)∪H(~c2,ν2), written as R7(~c1, ν1, ~c2, ν2), (Γ [hc 7→ high ] `
ci : low )i∈EL(~c1,ν1)∪EL(~c2,ν2), written as R8(~c1, ν1, ~c2, ν2), and 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉,
written as R9(σ1, ν1, σ2, ν2), then:

i) if 〈|~ci,mi, σi, νi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i|〉 where α is high and i ∈ {1, 2}, then there ex-
ists p′ such that R1(m′i,m3−i), R2(~c ′i, ν

′
i), R2(~c3−i, ν3−i), R3(~c ′i, ν

′
i), R3(~c3−i,

ν3−i), R4(~c ′i, ν
′
i,~c3−i, ν3−i), R5(~c ′i, ν

′
i,~c3−i, ν3−i, p′), R6(~c ′i, ν

′
i), R7(~c ′i, ν

′
i,

~c3−i, ν3−i), R8(~c ′i, ν
′
i,~c3−i, ν3−i), and R9(σ′i, ν

′
i, σ3−i, ν3−i);

ii) if the above case cannot be applied, and if 〈|~ci,mi, σi, νi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i|〉 where
α is low and i ∈ {1, 2}, then 〈|~c3−i,m3−i, σ3−i, ν3−i|〉 α→ 〈|~c ′3−i,m′3−i, σ′3−i, ν′3−i|〉
where there exists p′ such thatR1(m′i,m

′
3−i),R2(~c ′i, ν

′
i),R2(~c ′3−i, ν

′
3−i), R3(~c ′i,

ν′i),R3(~c ′3−i, ν
′
3−i),R4(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i),R5(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i, p

′),R6(~c ′i, ν
′
i),

R7(~c ′i, ν
′
i, ~c
′
3−i, ν

′
3−i), R8(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i), and R9(σ′i, ν

′
i, σ
′
3−i, ν

′
3−i).

Corollary 1 (Soundness). If Γhc, hc 7→ low ` c : low then c is secure.

6 Extension to cooperative schedulers

It is possible to extend our model to cooperative schedulers. This is done by a minor
modification of the semantics and type system rules. One can show that the results from
Section 5 are preserved under these modifications.
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The language is extended with primitive yield whose semantics is as follows:

〈|yield,m|〉 ;/⇀ 〈|stop,m|〉

The semantics for commands also needs to propagate label 6; in the sequential compo-
sition rules.

Event 6; signals to the scheduler that the current thread yields control. The sched-
uler semantics needs to react to such an event by resetting counter q ′ to 0:

q > 0 q′ = 0

〈|σ, ν|〉 r;/⇁ 〈|σ′, ν′|〉
q > 0 q′ = 0 ∀α ∈ {•, ◦}.t′α = tα\{r}

〈|σ, ν|〉 r;/×⇁ 〈|σ′, ν′|〉

We need to ensure that the only possibility to schedule another thread is by generating
event 6;. Hence, we add premise q′ = ∞ to the semantics rules for schedulers that
handle events ↑• r′ and ↑◦ r′. Additionally, the last rule in Figure 4 now allows α
to range over {r ; •, •; r, r 6;}, which propagates yielding events 6; from threads
to the scheduler. Similar to scheduler events r;•× and •; r×, a new transition is
added to the threadpool semantics to include the case when yield is executed as the
last command by a thread.

At the type-system level, yielding control while inside a high control command, as
well as inside hide/unhide pairs, is potentially dangerous. These situations are avoided
by a type rule for yield that restricts pc and hc to low:

Γ (pc) = low Γ (hc) = low

Γ ` yield : Γ (hc)

A theorem that implies soundness for the modified type system can be proved similarly
to Theorem 1.

Recently, we have suggested a mechanism for enforcing security under cooperative
scheduling [RS06b]. Besides checking for explicit and implicit flows, the mechanism
ensures that there are no yield commands in high context. Similarly, the rule above
implies that yield may not appear in high context. On the other hand, the mechanism
from [RS06b] allows no dynamic thread creation in high context. This is improved by
the approach sketched in this section, because it retains the flexibility that is offered by
hfork.

7 Ticket purchase example

In Section 2, we have argued that a flexible treatment of dynamic thread creation is
paramount for a practical security mechanism. We illustrate, by an example, that the
security type system from Section 5 offers such a permissive treatment without com-
promising security.

Consider the code fragment in Figure 8. This fragment is a part of a program that
handles a ticket purchase. Variables have subscripts indicating their security levels (l
for low and h for high). Suppose fl contains public data for the flight being booked
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. . .
nl := computeMilesFor (fl);
mh := miles(pl);
sh := statusOf (pl);
oh := sh;
if (mh + nl > 50000)

then fork(sh := GOLD , updateStatus );
okl := printTicket(pl, fl, dl);
. . .
updateStatus :
if (oh 6= GOLD) then changeStatus (pl,GOLD);
eh := extraMiles(mh, nl, sh);
mh := updateMiles(pl,mh + nl + eh)

Fig. 8. Ticket purchase code

(including the class and seat details), pl contains data for the passenger being processed.
Variable nl is assigned the (public) number of frequent-flier miles for flight fl. Variable
mh is assigned the current number of miles of passenger pl, which is secret. Variable
sh is assigned the (secret) status (e.g., BASIC or GOLD) of passenger pl. The value
of sh is then stored in oh. Variable okl records if the procedure to print a ticket has been
successful.

The next line is a control statement: if the updated numbermh+nl of miles exceeds
50000 then a new thread is spawn to perform a status update updateStatus for the
passenger. The status update code involves a computation for extra miles (due to the
passenger status) and might involve a request changeStatus to the status database. As
potentially time-consuming computation, it is arranged in a separate thread. The final
computation in the main thread prints the ticket.

This program creates threads in a high context because the guard of the if in the
main thread depends on mh. Furthermore, the main thread contains an assignment to
a low variable (okl) after the instructions that branches on secrets. Because of this,
the program is rejected by the type systems of Smith [Smi01] as well as Boudol and
Castellani [BC01, BC02]. Nevertheless, a minor modification of the program (which
can be easily automated) by replacing if (mh + nl > 50000) then fork(sh :=
GOLD , updateStatus) with

hide;
if(mh + nl > 50000) then hfork(sh := GOLD , updateStatus) else skip;
unhide

results in a typable (and therefore secure) program.

8 Feasibility study of an implementation

As discussed in Section 2, it is important that the proposed security mechanism for
regulating the interaction between threads and the scheduler is feasible to put into effect
in practice.
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We have analyzed two well-known thread libraries: the GNU Pth [Eng05] and the
NPTL [DM03] libraries for the cooperative and preemptive concurrent model, respec-
tively. Generally, the cooperative model has been widely used in, for instance, GUI
programming, when few computations are performed, and most of the time the system
waits for events. The preemptive model is popular in operating systems, where preemp-
tion is essential for resource management. We have not analyzed the libraries in full
detail, focusing on a feasibility study of the presented interaction between threads and
the scheduler.

The GNU Pth library is well known by its high level of portability and by only
using threads in user space. This library is suitable to implement the primitives hide
and unhide as well as a scheduler based on the round-robin policy from Section 4.
Besides reacting to the commands hide and unhide, the scheduler could be modified
to include one list of threads for each security level, in this case, low and high. Such
scheduler interchangeably chooses between elements of those lists depending on the
value of s (i.e., low and high threads when s = ◦, and only high ones otherwise). Based
on these ideas, the work described in [TRH07] implements the scheduler of a library
that provides information-flow security for multithreaded programs.

On the other hand, the NPTL library is more complex. It maps threads in user space
to threads in kernel space by using low-level primitives in the code. Nevertheless, it
would be possible to apply the similar modifications that we described for the GNU Pth
library. The interaction between threads and the scheduler becomes more subtle in this
model due to the operations performed at the kernel space. The responsiveness of the
kernel for the whole system would depend on temporal properties of code wrapped by
hide and unhide primitives.

9 Synchronization primitives

Synchronization mechanisms are of fundamental importance to concurrent programs.
We focus on semaphores [Dij02] because they are simple yet widely used synchroniza-
tion primitives. In principle, the language described in Section 3 allows synchronization
of threads by implementing busy waiting algorithms. While making synchronization
possible, these algorithms also introduce performance degradation. Conversely, blocked
waiting, which commonly underlies semaphore implementations, does not have this
drawback. Semaphores, and generally any other mechanism based on blocked waiting,
can potentially affect the security of programs. Therefore, it is important to provide poli-
cies regarding the utilization of such primitives in order to guarantee confidentiality. In
this section, we extend the language, semantics and type system described previously
to include semaphores primitives and provably show that noninterference is preserved
for well-typed programs.

9.1 Extended language

The extended syntax of the language is displayed in Figure 9. A semaphore is a special
variable, written sem , that ranges over nonnegative integers and can only be manip-
ulated by two commands: wait(sem) and signal(sem). We assume, without losing
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c :: = stop | skip | v := e | c; c | if b then c else c | while b do c
| hide | unhide | fork(c, ~d) | hfork(c, ~d) | wait(sem) | signal(sem)

Fig. 9. Extended command syntax

〈|sem,m|〉 ↓ 0

〈|wait(sem),m|〉 b(sem)
⇀ 〈|stop,m|〉

〈|sem,m|〉 ↓ n n > 0

〈|wait(sem),m|〉⇀ 〈|stop,m[sem 7→ n− 1]|〉

〈|signal(sem),m|〉 u(sem)
⇀ 〈|stop,m|〉

Fig. 10. Semantics for wait() and signal()

q = 0 s = ◦ q′ > 0 r′ ∈ (t◦ ∪ t•)\tw
〈|σ, ν|〉 ↑◦r

′
⇁ 〈|σ′, ν′|〉

q = 0 q′ > 0 r′ ∈ (t• ∪ te)\tw
〈|σ, ν|〉 ↑•r

′
⇁ 〈|σ′, ν′|〉

q′ = q′ − 1 t′w = tw ∪ {r}
〈|σ, ν|〉 b

r

⇁ 〈|σ′, ν′|〉

q′ = q′ − 1 t′w = tw\{a}

〈|σ, ν|〉 u
r
a⇁ 〈|σ′, ν′|〉

q′ = q′ − 1 ∀α ∈ {•, ◦}.t′α = tα\{r}
〈|σ, ν|〉 b

r×
⇁ 〈|σ′, ν′|〉

q′ = q′ − 1 t′w = tw\{a} ∀α ∈ {•, ◦}.t′α = tα\{r}

〈|σ, ν|〉 u
r
a×⇁ 〈|σ′, ν′|〉

Fig. 11. Extended semantics for schedulers

generality, that every semaphore variable is initialized with 0. The semantics for these
commands (in the line of [Sab01]) is shown in Figure 10. Command wait(sem) blocks

a thread if sem has a value of 0, indicated by event
b(sem)
⇀ , or otherwise decrements its

value by 1. Command signal(sem) triggers event
u(sem)
⇀ .

9.2 Extended semantics for schedulers

Threads that are blocked on semaphore variables cannot be scheduled. Clearly, sched-
ulers need to know when threads are blocked (or not) in order to decide if they can be
chosen to run. For this purpose, we introduce a new scheduler variable tw that stores
the set of blocked threads. The semantic rules involving this variable are shown in Fig-
ure 11. Rules for selecting threads to run, represented by events ↑◦ r′ and ↑• r′, are
adapted to rule out blocked threads. Observe how threads placed in tw are removed
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〈|cr,m|〉 b(sem)
⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 b

r

⇁ 〈|σ′, ν′|〉 w(sem) = ~d

〈|c1 . . . cn,m, σ, ν, w|〉
brsem→ 〈|c1 . . . cr−1cr+1 . . . cn,m

′, σ′, ν′, w[sem 7→ ~dc′r]|〉

〈|cr,m|〉 u(sem)
⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 u

r
a⇁ 〈|σ′, ν′|〉 w(sem) = ca ~d

〈|c1 . . . cn, m, σ, ν,w|〉
ursem→ 〈|c1 . . . cr−1c

′
rcr+1 . . . cnca,m

′, σ′, ν′, w[sem 7→ ~d]|〉

〈|cr, m|〉 u(sem)
⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 u

r
r⇁ 〈|σ′, ν′|〉 wsem = 〈〉

〈|c1 . . . cn,m, σ, ν, w|〉
ursem→ 〈|c1 . . . cr−1c

′
rcr+1 . . . cnca,m

′, σ′, ν′, w|〉

〈|cr,m|〉 b(sem)
⇀ 〈|stop,m′|〉 〈|σ, ν|〉 b

r×
⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn,m, σ, ν,w|〉
brsem×→ 〈|c1 . . . cr−1cr+1 . . . cn,m

′, σ′, ν′, w|〉

〈|cr, m|〉 u(sem)
⇀ 〈|stop,m′|〉 〈|σ, ν|〉 u

r
a×⇁ 〈|σ′, ν′|〉 w(sem) = ca ~d

〈|c1 . . . cn, m, σ, ν,w|〉
ursem×→ 〈|c1 . . . cr−1cr+1 . . . cnca,m

′, σ′, ν′, w[sem 7→ ~d]|〉

〈|cr, m|〉 u(sem)
⇀ 〈|stop,m′|〉 〈|σ, ν|〉 u

r
r×⇁ 〈|σ′, ν′|〉 w(sem) = 〈〉

〈|c1 . . . cn,m, σ, ν, w|〉
ursem×→ 〈|c1 . . . cr−1cr+1 . . . cnca,m

′, σ′, ν′, w|〉

Fig. 12. Threadpool semantics for semaphores primitives

from the possible values of r′. Events br and ura indicate to the scheduler that threads
r and a have been blocked and unblocked, respectively. Events br× and ura× provide
to the scheduler the same information as events br and ura together with the fact that
thread r has terminated.

9.3 Extended semantics for threadpools

The action of blocking and unblocking threads occurs at the level of threadpool con-
figurations. For that reason, such configurations are extended with FIFO queues of
waiting threads. More precisely, the extended threadpool configurations have the form
〈|~c,m, σ, ν, w|〉 where w is a function from semaphores to a list of blocked threads. Se-
mantic rules in Figure 4 are easily extended to consider w into account and therefore
we omit the details here. Observe that the extended version of those rules do not modify
w since they do not block or unblock threads at all.

Semantic rules for semaphore operations at the level of threadpools are shown in
Figure 12. Event brsem is triggered when the top level configuration receives a b(sem)
signal and the blocked thread is placed at the end of the queue associated with sem.
When a u(sem) signal is generated by the running thread, it awakes the first thread in
the queue associated with sem and triggers event ursem . Moreover, it communicates to
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fork(skip, wait(s2); l := 0; signal(p); signal(f));
fork(skip, wait(s1); l := 1; signal(p); signal(f));
if h ≥ 0 then signal(s1); wait(p); signal(s2)

else signal(s2); wait(p); signal(s1);
wait(p); wait(f); wait(f);

Fig. 13. Attack using semaphores

the scheduler which thread has been awakened with event ura. In case that the queue as-
sociated with sem is empty, no thread is awakened and the scheduler is informed about
that by event urr. Events brsem× and ursem× are triggered when threads terminate with
synchronization commands under circumstances similar to brsem and ursem , respectively.

9.4 Attacks using semaphores

Confidentiality of data might be compromised if commands related to semaphores are
freely allowed in programs. To illustrate this, we show an attack in Figure 13. The
program contains semaphore variables s1, s2, p, and f , and variables h and l to store
secret and public data, respectively. The code blocks and unblocks threads that assign
to public variables in an order that depends on h. That is, the execution of l := 1 is
followed by l := 0 when h ≥ 0, and l := 0 is followed by l := 1 otherwise. Observe that
the branching command presents no timing differences. Nevertheless, some information
about h is revealed. Restrictions on the use of semaphores are needed in order to avoid
such leaks.

9.5 Extended security specification

In Section 4, we state that a program is secure under some scheduler if for any two ini-
tial low-equivalence memories, whenever the two runs of the program terminate, then
the resulting memories are also low-equivalent. Since semaphores variables are stored
in programs memories as any other variables, the low-equivalent relation, as defined
previously, is enough to capture the attacker’s view of memories even in the presence
of semaphores. However, the notion of “configuration cfg terminates in configuration
cfg ′” needs to be adapted. An entire program terminates if there are no blocked threads
and no threads to schedule. More precisely, cfg ⇓ cfg ′ if cfg →∗ cfg ′ where the thread-
pool of cfg ′ is empty and the waiting queue w(sem) is empty for every semaphore
sem.

To maintain the assumption that schedulers are not leaky, it is necessary to extend
the low-bisimulation defined in Section 4 with the events related to synchronization.
The distinguishability level of events brsem , ursem , brsem×, and ursem× is the same as the
security level of thread r. Definitions 1, 2, and 3 can be easily extended to consider such
events and we therefore omit the details here.

We introduce a low-equivalence relation on queues of waiting threads. We define
such relation as =L where w1 =L w2 if for every low semaphore sem, it holds that
w1(sem) = w2(sem). We are now in condition to present the extended security speci-
fication:
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Γ (hc) v Γ (sem)

Γ ` signal(sem) : Γ (hc)

Γ (sem) = Γ (hc)

Γ ` wait(sem) : Γ (hc)

Fig. 14. Typing rules from synchronization primitives

d1 : signal(sl); if h ≥ 0 then wait(sl) else skip;

d2 : sleep(30); wait(sl); l := 0

d3 : sleep(60); l := 1; signal(sl);

Fig. 15. Waiting on low semaphores in high threads

Definition 7. Program c is secure if for all σ,m1, m2, w1, and w2 where σ is noninter-
ferent, m1 =L m2, and w1 =L w2, we have

〈|c,m1, σ, νinit , w1|〉 ⇓ cfg1 & 〈|c,m2, σ, νinit , w2|〉 ⇓ cfg2 =⇒ m(cfg1) =L m(cfg2)

9.6 Extended type system

The type system proposed in Section 5 is extended to enforce secure uses of semaphores.
As for variables, semaphores have security types (low or high) associated with them,
which are included in the typing environmentΓ . Typing rules for semaphore commands
are depicted in Figure 14. The first rule establishes that signals to any semaphore can
be performed in low threads. However, signals to public semaphores cannot be sent
from high threads. To illustrate why this restriction is imposed, we can think about sig-
nals on low semaphores as updates on low variables, which must be avoided inside of
high threads. The second rule imposes that threads can only wait on semaphores that
matches their security level. Waiting on semaphores at security level ` in threads of
security level `′, where ` 6= `′, might affect the timing behavior of threads at security
level ` and `′. For instance, waiting on high semaphores in low threads might affect
low threads timing behavior depending on some secret data and lead to internal timing
leaks. Moreover, waiting on low semaphores in high threads might affect, also through
internal timing, how assignments to public variables are performed. To illustrate this,
we show an example in Figure 15. The code involves high thread d1, low threads d2

and d3, low semaphore sl, and variables h and l to store secret and public information,
respectively. Let us assume a scheduler that picks thread d1 first and then proceeds to
run threads for 15 steps before yielding the control. In this case, d1 terminates before
yielding. After that, depending on the secret, two scenarios are possible. If h ≥ 0, then
d2 blocks until d3 completes its execution and produces 0 as the final value of l. If
h < 0, on the other hand, d2 is likely to execute l := 0 before d3 runs l := 1. The final
value of l is then 1, which demonstrates that the program is insecure.

The restrictions enforced by the type system are summarized in Figure 16. The first
and second columns describe the use of wait() and signal(), respectively. The first
and second rows describe the use of semaphores in low and high threads, respectively.
In addition, sl (resp., sh) means that low (resp., high) semaphores can be safely used.
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wait() signal()

low thread sl sl, sh
high thread sh sh

Fig. 16. Secure use of semaphores

9.7 Soundness of the extension

It is straightforward to see that the lemmas in Section 5.2 hold for the extended lan-
guage. In fact, the requirements on their typing rules can be thought as requirements
for assignments of some variables where their security levels have hc as lower bound.
This condition is weaker than the one applied in the typing rule for assignments. Con-
sequently, it is not surprising that every lemma holds considering the synchronization
primitives wait and signal.

In order to prove the security of typable commands, we define an operatorN(w) that
returns, for every semaphore sem, the thread identifiers in w(sem). We then identify
the following subpools of blocked threads for a given configuration.

Definition 8. Given a scheduler memory ν and a function w from semaphores to a list
of blocked threads, we define the following subpools of blocked threads: BL(w, ν) =
{ci}i∈t◦∩N(w), BH(w, ν) = {ci}i∈t•∩N(w), and BEL(w, ν) = {ci}i∈te∩N(w).

Definition 6 is extended to include the fact that eventually low threads might be
blocked on high semaphores. The notion of “eventually match” is now described in
terms of tuples. The status, blocked or unblocked, of such threads depends on which
components of the tuples they are situated. More precisely, we have the following defi-
nition:

Definition 9. Given a command p, we define the relation eventually low, written∼el,p,
on tuples of empty or singleton sets of threads as follows:

∅, ∅ ∼el,p,∅ ∅, ∅; ∅, {c} ∼el,p,{n} {d}, ∅; ∅, {c} ∼el,p,{n} ∅, {d};
{c}, ∅ ∼el,p,{n} {d}, ∅; {c}, ∅ ∼el,p,{n} ∅, {d} ;

where N(c) = N(d) = n, and there exist commands c′ and d′ without unhide in-
structions such that c ∈ {c′; unhide, unhide} and d ∈ {d′; unhide, unhide} or c
∈ {c′; unhide; p, unhide; p} and d ∈ {d′; unhide; p, unhide; p}.

The following definition indicates that blocked high and low threads are placed in
the waiting list of high and low semaphores, respectively.

Definition 10. Given a typing environment Γ , an scheduler memory ν, and queues of
blocked threads, we define w � v iff for any sem ∈ dom(w) such that w(sem) =
ci1ci2 . . . cik where k ≥ 0, {i1, i2, . . . , ik} ⊆ ν.t• ∪ ν.te whether Γ (sem) = high , and
{i1, i2, . . . , ik} ⊆ ν.t◦ whether Γ (sem) = low .

This leads us to the following soundness theorem, which extends Theorem 1 with
invariants R10−17 concerning blocked threads.
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Theorem 2. Given a command p and the multithreaded configurations 〈|~c1,m1, σ1, ν1

, w1|〉 and 〈|~c2,m2, σ2, ν2, w2|〉 so that R1(m1,m2), R2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1),
R3(~c2, ν2),R4(~c1, ν1, ~c2, ν2), the eventually low relationshipBEL(w1, ν1), EL(~c1, ν1)
∼el,p,te1

EL(~c2, ν2), BEL(w2, ν2), written asR5 (~c1, w1, ν1, ~c2, w2, ν2, p),R6(~c1, ν1),
R7(~c1, ν1, ~c2, ν2), R8(~c1, ν1, ~c2, ν2), R9(σ1, ν1, σ2, ν2), N(w1) = BL(w1, ν1) ∪ BH (
w1, ν1)∪BEL(w1, ν1), writtenR10(w1, ν1),R10(w2, ν2), setsBH(w1, ν1),BL(w1, ν1),
BEL(w1, ν1), andN(~c1) are disjoint, written asR11(w1, ν1),R11(w2, ν2),BL(w1, ν1)
= BL(w2, ν2), written as R12(w1, ν1, w2, ν2), (Γ [hc 7→ low ] ` ci : low )i∈BL(w1,ν1),
written asR13(w1, ν1), (Γ [hc 7→ high , pc 7→ high ]` ci : high)i∈BH(w1 ,ν1)∪BH(w2,ν2),
written as R14(w1, ν1, w2, ν2), (Γ [hc 7→ high ] ` ci : low)i∈BEL(w1,ν1)∪BEL(w2,ν1),
written as R15(w1, ν1, w2, ν2), w1 =L w2, written as R16(w1, w2), w1�ν1, written as
R17(w1, ν1), R17(w2, ν2), then:

i) if 〈|~ci,mi, σi, νi, wi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i, w′i|〉 where α is high and i ∈ {1, 2}, then
there exists p′ such that R1(m′i,m3−i), R2(~c ′i, ν

′
i), R2(~c3−i, ν3−i), R3(~c ′i, ν

′
i),

R3(~c3−i, ν3−i), R4(~c ′i, ν
′
i,~c3−i, ν3−i), R5(~c ′i, w

′
i, ν
′
i,~c3−i, w3−i, ν3−i, p′), R6(

~c ′i, ν
′
i), R7 (~c ′i, ν

′
i, ~c3−i, ν3−i), R8(~c ′i, ν

′
i,~c3−i, ν3−i), and R9(σ′i, ν

′
i, σ3−i, ν3−i),

R10(w′i, ν
′
i), R10(w3−i, ν3−i), R11(w′i, ν

′
i), R11(w3−i, ν3−i), R12(w′i, ν

′
i, w3−i,

ν3−i), R13(w′i , ν
′
i), R14(w′i, ν

′
i, w3−i, ν3−i), R15(w′i, ν

′
i, w3−i, ν3−i), R16(w′i,

w3−i), R17(w′i, ν
′
i), and R17(w3−i, ν3−i);

ii) if the above case cannot be applied, and given 〈|~ci,mi, σi, νi, wi|〉 where BEL(wi
, νi) 6= ∅, then R1(mi,m3−i), R2(~c i, νi), R2(~c3−i, ν3−i), R3(~c i, νi), R3(~c3−i,
ν3−i), R4(~c i, νi,~c3−i, ν3−i), R5(~c i, wi, νi, w3−i,~c3−i, ν3−i, p), R6(~c i, νi), R7

(~c i, νi, ~c3−i, ν3−i),R8(~c i, νi,~c3−i, ν3−i), andR9(σi, νi, σ3−i, ν3−i),R10 (wi, νi),
R10 (w3−i, ν3−i),R11(wi, νi),R11(w3−i, ν3−i), R12(wi, νi, w3−i, ν3−i),R13(wi
, νi),R14(wi, νi, w3−i, ν3−i),R15(wi, νi, w3−i, ν3−i),R16(wi, w3−i),R17(wi, νi),
and R17(w3−i, ν3−i);

iii) if the above cases cannot be applied, and if 〈|~ci,mi, σi, νi, wi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i, w′i|〉
where α is low and i ∈ {1, 2}, then 〈|~c3−i,m3−i, σ3−i, ν3−i, w3−i|〉 α→ 〈|~c ′3−i,m′3−i,
σ′3−i, ν

′
3−i, w

′
3−i|〉 where there exists p′ such that R1(m′i,m

′
3−i), R2(~c ′i, ν

′
i), R2(

~c ′3−i, ν
′
3−i), R3(~c ′i, ν

′
i), R3(~c ′3−i, ν

′
3−i), R4(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i), R5(~c ′i, ν

′
i, w
′
i,

~c ′3−i, w
′
3−i, ν

′
3−i, p

′), R6(~c ′i, ν
′
i), R7(~c ′i, ν

′
i, ~c
′
3−i, ν

′
3−i), R8(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i),

andR9(σ′i, ν
′
i, σ
′
3−i, ν

′
3−i),R10(w′i, ν

′
i),R10(w′3−i, ν

′
3−i),R11(w′i, ν

′
i),R11(w′3−i,

ν′3−i), R12(w′i, ν
′
i, w
′
3−i, ν

′
3−i), R13(w′i, ν

′
i), R14(w′i, ν

′
i, w
′
3−i, ν

′
3−i), R15(w′i, ν

′
i,

w′3−i, ν
′
3−i), R16(w′i, w

′
3−i), R17(w′i, ν

′
i), and R17(w′3−i, ν

′
3−i);

Compared with Theorem 1, Theorem 2 has new invariants, described byR10−R17,
and applies the extended definition of the eventually low relationship in R5. Intuitively,
invariants R10 and R11 establish that the subpools of blocked threads introduced in
Definition 8 form a partition of the blocked threads found in the configuration. In-
variant R12 determines that the subpools of low blocked threads are the same in both
configurations. InvariantsR13−R15 establish the typing requirements for the subpools
of blocked threads. A subpool of blocked threads at some security level is typed under
the same circumstances that live threads at that security level. Observe the similarities
between R6 − R8 and R13 − R15. Invariant R16 establishes that threads blocked on
low semaphores are the same in both configurations. Invariant R17 determines that the
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blocked threads present in the configuration match the blocked threads registered by the
scheduler.

Corollary 2 (Soundness). If Γhc, hc 7→ low ` c : low then c is secure.

10 Conclusion

We have argued for a tight interaction between threads and the scheduler in order to
guarantee secure information flow in multithreaded programs. In conclusion, we revisit
the goals set in the paper’s introduction and report the degree of success meeting these
goals.

Permissiveness A key improvement over previous approaches is a permissive, yet se-
cure, treatment of dynamic thread creation. Even if threads are created in a sensitive
context, the flexible scheduling mechanism allows these threads to perform useful com-
putation. This is particularly satisfying because it is an encouraged pattern to perform
time-consuming computation (such as establishing network connections) in separate
threads [Knu02, Mah04].

Scheduler-independence In contrast to known approaches to internal timing-sensitive
approaches, the underlying security specification is robust with respect to a wide class
of schedulers. However, the schedulers supported by the definition need to satisfy a
form of noninterference that disallows information transfer from threads created in a
sensitive context to threads with publicly observable effects. Sections 4 and 8 argue that
such scheduler properties are not difficult to achieve.

Realistic semantics The underlying semantics does not appeal to the nonstandard con-
struct protect. The semantics, however, features additional hide, unhide, and hfork

primitives. In contrast to protect, these features are directly implementable, as dis-
cussed in Section 8.

Language expressiveness As discussed earlier, a flexible treatment of dynamic thread
creation is a part of our model. So is synchronization, as elaborated in Section 9. Note
that our typing rules do not force a separated use of low and high semaphores by low and
high threads, respectively. For example, signaling on a high semaphore by a low thread
is allowed. However, input/output primitives are also desirable features. We expect a
natural extension of our model with input/output primitives on channels labeled with
security levels, similarly to semaphores that operate on different security levels. For
the two-point security lattice, we imagine the following extension of the type system.
Low channels would allow low threads to input to low variables and to output low
expressions: similarly to low semaphores s that permit low threads to execute both P(s)
and V(s) operations. High channels would allow high threads to input/output data and
allow low threads to output data: similarly to high semaphores that allow high threads
s to perform both P(s) and V(s) operations and allow low threads to perform V(s).
Formalizing this intuition is subject to our future work.
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Practical enforcement We have demonstrated that security can be enforced for both
cooperative and preemptive schedulers using a compositional type system. The type
system accommodates permissive programming. We have illustrated by an example in
Section 7 that the permissiveness of dynamic thread creation is not majorly restricted
by the type system. The type system does not involve padding to eliminate timing leaks
at the cost of efficiency.

Most recently, together with Barthe and Rezk [BRRS07], we have adapted our type
system to an unstructured assembly language. Our future work plans include handling
richer low-level languages (such as languages with exceptions and bytecode) and facil-
itating tool support for them.
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Appendix

Lemma 1. If Γ ` c : τ , where c = if e then c1 else c2 or c = while e do c, and
Γ ` e : high , then Γ (hc) = high .

Proof. By inspection of the typing rules for if and while. 2

Lemma 2. If Γhc,pc, pc 7→ high , hc 7→ high ` c : high , then c does not contain hide

and unhide.

Proof. By simple induction on the typing derivation. 2
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Lemma 3. If Γhc, hc 7→ high ` c : τ and 〈|c,m|〉 α
⇀ 〈|c′,m′|〉, then m =L m′ and

α /∈ {◦,; •}.
Proof. By induction on the type derivation of c. 2

Lemma 4. If Γhc,pc, hc 7→ high , pc 7→ high ` c : high and 〈|c,m|〉 α
⇀ 〈|c′,m′|〉 and

c′ 6= stop, then Γhc,pc, hc 7→ high , pc 7→ high ` c′ : high .

Proof. By case analysis on c and inspection of the typing rules. 2

Lemma 5. If Γhc,pc, pc 7→ τc, hc 7→ high ` c : low for some given τc and 〈|c,m|〉 α
⇀

〈|c′,m′|〉, where c′ 6= stop and α 6= •; r, then Γhc,pc, pc 7→ τc, hc 7→ high ` c′ : low .

Proof. By case analysis on c. Observe that the only typable command under the hy-
pothesis of the lemma is the sequential composition. 2

Lemma 6. For a given command c such that Γhc, hc 7→ low ` c : low , memories m1

andm2 such thatm1 =L m2, and 〈|c,m1|〉 α⇀ 〈|c′,m′1|〉; it holds that 〈|c,m2|〉 α
⇀ 〈|c′,m′2|〉

and m′1 =L m
′
2.

Proof. By case analysis on c and by exploring its type derivation. 2

Lemma 7. If Γhc,pc, pc 7→ τc, hc 7→ low ` c : low for some given τc and 〈|c,m|〉 α
⇀

〈|c′,m′|〉, where c′ 6= stop and α 6= r ; •, then Γhc,pc, pc 7→ τc, hc 7→ low ` c′ : low .

Proof. By case analysis on c and inspection of the typing rules. 2

Lemma 8. If Γhc, hc 7→ low ` hide; c : low , then there exist commands c′ and p such
that c ∈ {c′; unhide, unhide, c′; unhide; p, unhide; p}, where c′ has no unhide

commands.

Proof. By induction on the size of command c. 2

Theorem 1. Given a command p and the multithreaded configurations 〈|~c1,m1, σ1, ν1|〉
and 〈|~c2,m2, σ2, ν2|〉 so that m1 =L m2, written as R1(m1,m2), N(~c1) = H(~c1, ν1) ∪
L(~c1, ν1)∪EL(~c1, ν1), written asR2(~c1, ν1),R2(~c2, ν2), setsH(~c1, ν1),L(~c1, ν1), and
EL(~c1, ν1) are disjoint, written as R3(~c1, ν1), R3(~c2, ν2), L(~c1, ν1) = L(~c2, ν2), writ-
ten as R4(~c1, ν1, ~c2, ν2), EL(~c1, ν1) ∼el,p,te1

EL(~c2, ν2), written as R5(~c1, ν1, ~c2, ν2,
p), (Γ [hc 7→ low ] ` ci : low )i∈L(~c1,ν1), written as R6(~c1, ν1), (Γ [hc 7→ high , pc 7→
high ] ` ci : high)i∈H(~c1,ν1)∪H(~c2,ν2), written as R7(~c1, ν1, ~c2, ν2), (Γ [hc 7→ high ] `
ci : low )i∈EL(~c1,ν1)∪EL(~c2,ν2), written as R8(~c1, ν1, ~c2, ν2), and 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉,
written as R9(σ1, ν1, σ2, ν2), then:

i) if 〈|~ci,mi, σi, νi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i|〉 where α is high and i ∈ {1, 2}, then there ex-
ists p′ such that R1(m′i,m3−i), R2(~c ′i, ν

′
i), R2(~c3−i, ν3−i), R3(~c ′i, ν

′
i), R3(~c3−i,

ν3−i), R4(~c ′i, ν
′
i,~c3−i, ν3−i), R5(~c ′i, ν

′
i,~c3−i, ν3−i, p′), R6(~c ′i, ν

′
i), R7(~c ′i, ν

′
i,

~c3−i, ν3−i), R8(~c ′i, ν
′
i,~c3−i, ν3−i), and R9(σ′i, ν

′
i, σ3−i, ν3−i);
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ii) if the above case cannot be applied, and if 〈|~ci,mi, σi, νi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i|〉where
α is low and i ∈ {1, 2}, then 〈|~c3−i,m3−i, σ3−i, ν3−i|〉 α→ 〈|~c ′3−i,m′3−i, σ′3−i, ν′3−i|〉
where there exists p′ such thatR1(m′i,m

′
3−i),R2(~c ′i, ν

′
i),R2(~c ′3−i, ν

′
3−i), R3(~c ′i,

ν′i),R3(~c ′3−i, ν
′
3−i),R4(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i),R5(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i, p

′),R6(~c ′i, ν
′
i),

R7(~c ′i, ν
′
i, ~c
′
3−i, ν

′
3−i), R8(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i), and R9(σ′i, ν

′
i, σ
′
3−i, ν

′
3−i).

Proof. By case analysis on command/scheduler steps. We are only going to show the
proofs for the mentioned commands when the configuration 〈|~c1,m1, σ1, ν1|〉 makes
some progress. We assume that the thread cr belongs to ~c1 . Analogous proofs are
obtained when 〈|~c2,m2, σ2, ν2|〉 makes progress instead. We make a distinction if the
system performs an step that produces a low or a high event.

i) High events •r~d , r;, r;×, and ↑• r′ (where {r, r′} ⊆ H(~c1, ν1) ∪ EL(~c1, ν1)).

α1 = •r~d ) By inspecting the semantics for threadpools and the scheduler, we know

that cr ∈ H(~c1, ν1) or cr ∈ EL(~c1, ν1) and that H(~c′1, ν
′
1) = H(~c1, ν1) ∪N(~d).

R1(m′1,m
′
2) holds trivially since hfork has no changed the memories.R2(~c1

′, ν′1),
R2(~c2, ν2), R3(~c1

′, ν′1), and R3(~c2, ν2), hold since R2(~c1, ν1), R2(~c2, ν2), R3(~c1,
ν1), and R3(~c2, ν2) hold, and by inspecting the semantics for the scheduler to-
gether with the fact that N(~d) are fresh names for threads.R4(~c1

′, ν′1, ~c2, ν2) holds
since R4(~c1, ν1, ~c2, ν2) holds and because the transition α1 does not affect the low
threads (only high threads were created). For a similar reason, R6(~c1

′, ν′1) also
holds. R9(σ′1, ν

′
1, σ2, ν2) holds since R9(σ1, ν1, σ2, ν2) holds and by applying the

definition of ∼L.
In order to prove R5(~c1

′, ν′1, ~c2, ν2, p
′), R7(~c1

′, ν′1, ~c2, ν2), and R8(~c1
′, ν′1, ~c2, ν2),

we need to split the proof in two more cases: cr ∈ H(~c1, ν1) and cr ∈ EL(~c1, ν1).
cr ∈ H(~c1, ν1)) By taking p′ = p, we have that R5(~c′1, ν

′
1, ~c2, ν2, p) and proposi-

tionR8(~c′1, ν
′
1, ~c2, ν2) hold becauseR5(~c1, ν1, ~c2, ν2, p), andR8(~c1, ν1, ~c2, ν2)

hold; and because the eventually low thread, if there exists one, has made no
progress. Finally,R7(~c′1, ν

′
1, ~c2, ν2) holds since R7(~c1, ν1, ~c2, ν2) holds and by

applying Lemma 4 to cr.
cr ∈ EL(~c1, ν1)) Since R5(~c1, ν1, ~c2, ν2, p) holds, we know that the thread with

name r belongs to the threadpool ~c2. Moreover, we know that cr =hfork(c, ~d);

c′; unhide, cr = hfork(c, ~d); unhide, cr = hfork(c, ~d); c′; unhide; p, or cr
= hfork(c, ~d); unhide; p, where c′ has no unhide commands. Then, R5(~c′1
, ν′1, ~c2, ν2, p

′) holds by taking p′ = p. R8(~c′1, ν
′
1, ~c2, ν2) holds by Lemma 5.

Finally,R7(~c′1, ν
′
1, ~c2, ν2) holds sinceR7(~c1, ν1, ~c2, ν2) holds and because high

threads have made no progress.
α1 = r; ) We split the proof in two more cases: cr ∈ H(~c1, ν1) and cr ∈ EL(~c1, ν1).

cr ∈ H(~c1, ν1)) R1(m′1,m2) holds by applying Lemma 3.R2(~c1
′, ν′1),R2(~c2, ν2),

R3(~c1
′, ν′1), andR3(~c2, ν2), hold sinceR2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and

R3(~c2, ν2) hold, and by inspecting the semantics for the scheduler. R4(~c1
′, ν′1,

~c2, ν2) holds since R4(~c1, ν1, ~c2, ν2) holds and because the transition α1 does
not affect the low threads. For a similar reason, R6(~c1

′, ν′1) also holds. R7(~c′1,
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ν′1, ~c2, ν2) holds since R7(~c1, ν1, ~c2, ν2) holds and by applying Lemma 4. By
taking p′ = p, we have thatR5(~c′1, ν

′
1, ~c2, ν2, p

′) andR8(~c′1, ν
′
1, ~c2, ν2) hold be-

cause R5(~c1, ν1, ~c2, ν2, p), and R8(~c1, ν1, ~c2, ν2) hold; and because the even-
tually low thread, if there exists one, has made no progress. R9(σ′1, ν

′
1, σ2, ν2)

holds since R9(σ1, ν1, σ2, ν2) holds and by applying the definition of ∼L.
cr ∈ EL(~c1, ν1)) R1(m′1,m2) holds by applying Lemma 5. R2(~c1

′, ν′1), R2(~c2,
ν2),R3(~c1

′, ν′1), andR3(~c2, ν2), hold sinceR2(~c1, ν1),R2(~c2, ν2),R3(~c1, ν1),
andR3(~c2, ν2) hold, and by inspecting the semantics for the scheduler.R4(~c1

′,
ν′1, ~c2, ν2) holds since R4(~c1, ν1, ~c2, ν2) holds and because the transition α1

does not affect the low threads. For a similar reason, R6(~c1
′, ν′1) also holds.

SinceR5(~c1, ν1, ~c2, ν2, p) holds, we know that cr = c′; unhide , cr = unhide,
cr = c′; unhide; p, or cr = unhide; p for some command c′ without unhide
instructions. However, cr 6= unhide; p and cr 6= unhide since α1 = r ;.
The proof proceeds similarly when cr = c′; unhide or cr = c′; unhide; p.
Therefore, we only show the latter case. By inspecting the semantics for com-
mands, we know that 〈|cr,m1|〉 ⇀ 〈|c′r,m′1|〉, where c′r = c′′; unhide; p where
〈|c′,m1|〉⇀ 〈|c′′,m′1|〉 and c′′ 6= stop or c′r = unhide; p. By taking p′ = p, we
can conclude thatR5(~c′1, ν

′
1, ~c2, ν2, p

′) holds by Definition 6.R7(~c′1, ν
′
1, ~c2, ν2)

holds since R7(~c1, ν1, ~c2, ν2) holds and because the transition α1 does not in-
volve high threads.R8(~c′1, ν

′
1, ~c2, ν2) hold by applying Lemma 5 to cr. R9(σ′1,

ν′1, σ2, ν2) holds since R9(σ1, ν1, σ2, ν2) holds and by applying the definition
of ∼L.

α1 = r;× ) We need to split the proof in two more cases: cr ∈ H(~c1, ν1) and cr ∈
EL(~c1, ν1).

cr ∈ H(~c1, ν1)) R1(m′1,m2) holds by applying Lemma 3.R2(~c1
′, ν′1),R2(~c2, ν2),

R3(~c1
′, ν′1), andR3(~c2, ν2), hold sinceR2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and

R3(~c2, ν2) hold, and by inspecting the semantics for the scheduler. R4(~c1
′, ν′1,

~c2, ν2) holds since R4(~c1, ν1, ~c2, ν2) holds and because the transition α1 does
not affect the low threads. For a similar reason, R6(~c1

′, ν′1) also holds. R7(~c′1,
ν′1, ~c2, ν2) holds since R7(~c1, ν1, ~c2, ν2) holds and because the thread cr has
finished. By taking p′ = p, we have thatR5(~c′1, ν

′
1, ~c2, ν2, p) andR8(~c′1, ν

′
1, ~c2,

ν2) hold becauseR5(~c1, ν1, ~c2, ν2, p), andR8(~c1, ν1, ~c2, ν2) hold; and because
the eventually low thread, if there exists one, has made no progress.R9(σ′1, ν

′
1,

σ2, ν2) holds since R9(σ1, ν1, σ2, ν2) holds and by applying the definition of
∼L.

cr ∈ EL(~c1, ν1)) The eventually low thread cannot make progress and finishes
immediately. Observe that cr must be typable as Γ [hc 7→ high ] ` cr : low and
it must terminate in one step. Therefore, cr = unhide but this cannot occur
since α1 = r;×.

α1 =↑• r′ ) By taking p′ = p, we have that R1(m′1,m2), R2(~c1
′, ν′1), R2(~c2, ν2),

R3(~c1
′, ν′1), R3(~c2, ν2), R4(~c1

′, ν′1, ~c2, ν2), R5(~c′1, ν
′
1, ~c2, ν2, p

′), R6(~c1
′, ν′1), R7

(~c′1, ν
′
1, ~c2, ν2), and R8(~c′1, ν

′
1, ~c2, ν2) holds since R1(m1,m2), R2(~c1, ν1), R2(~c2,

ν2), R3(~c1, ν1),R3(~c2, ν2), R4(~c1, ν1, ~c2, ν2),R5(~c1, ν1, ~c2, ν2, p),R6(~c1, ν1), R7

(~c1, ν1, ~c2, ν2) andR8(~c1, ν1, ~c2, ν2) hold and because the transition has only mod-
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ified the variable tr in the scheduler. R9(σ′1, ν
′
1, σ2, ν2) holds since R9(σ1, ν1, σ2,

ν2) holds and by applying the definition of ∼L.

ii) Low events : ◦r~d , r;, r;×, ↑◦ r′, r;•, •; re, r;•×, and •; re× (where
{r, r′} ⊆ L(~c1, ν1) and re ∈ te1EL(~c1, ν1)).

α1 = ◦r~d ) By inspecting the semantics for threadpools, the scheduler, and commands,

we have that cr ∈ L(~c1, ν1), and that cr = fork(c, ~d) or cr = fork(c, ~d); c∗ for
some commands c and c∗. We are only going to show the proof for the case when
cr = fork(c, ~d); c∗ since the proof for cr = fork(c, ~d) proceeds in a similar way.
By inspecting the semantics for threadpools and commands, we have the transi-

tion 〈|cr,m1|〉
◦~d⇀ 〈|c; c∗,m1|〉, and that 〈|σ1, ν1|〉

◦r~d⇁ 〈|σ′1, ν′1|〉. Because 〈|σ1, ν1|〉 ∼L
〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉

◦r~d⇁ 〈|σ′2, ν′2|〉. In addition to that,
we also know that cr ∈ L(~c2, ν2) sinceL(~c2, ν2) = L(~c1, ν1), and that 〈|cr,m2|〉

◦~d⇀

〈|c; c∗,m2|〉. We can therefore conclude that 〈|~c2,m2, σ2, ν2|〉
◦r~d⇀ 〈|~c2′,m′2, σ′2, ν′2|〉.

R1(m′1,m
′
2) holds by applying Lemma 6. R2(~c1

′, ν′1), R2(~c2
′, ν′2), R3(~c1

′, ν′1),
and R3(~c2

′, ν′2) hold since propositions R2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and
R3(~c2, ν2) holds, and by inspecting the semantics for the scheduler together with
the fact that N(~d) are fresh names for threads. R4(~c1

′, ν′1, ~c2
′, ν′2) holds since

R4(~c1, ν1, ~c2, ν2) holds and because the transition α1 added the same new low
threads to both configurations. By taking p′ = p, we have thatR5(~c1

′, ν′1, ~c2
′, ν′2, p)

holds since proposition R5(~c1, ν1, ~c2, ν2, p) holds and because the eventually low
thread, if exists one, has made no progress.R6(~c1

′, ν′1) holds sinceR6(~c1, ν1) holds
and by inspecting the Lemma 7. R7(~c1

′, ν′1, ~c2
′, ν′2) holds R7(~c1, ν1, ~c2, ν2) holds

and because high threads have been not modified by the low stepα1.R8(~c1
′, ν′1, ~c2

′,
ν′2) holds R8(~c1, ν1, ~c2, ν2) holds and because the eventually low threads in both
configurations, if they exists, have been not modified by the step α1. Finally, propo-
sition R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2, ν2) holds and by applying the

definition of ∼L.
α1 = r; ) By inspecting the semantics rules for threadpools, the scheduler, and com-

mands, we have that cr ∈ L(~c1, ν1), 〈|cr,m1|〉 ⇀ 〈|c′,m′1|〉, and that 〈|σ1, ν1|〉 r;⇁
〈|σ′1, ν′1|〉. Because 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 andα1 is low, we also have that 〈|σ2, ν2|〉 r;⇀
〈|σ′2, ν′2|〉. In addition to that, we also know that cr ∈ L(~c2, ν2) since L(~c2, ν2) =
L(~c1, ν1), and that 〈|cr,m2|〉⇀ 〈|c′,m2|〉. Therefore, we can conclude that the tran-
sition 〈|~c2,m2, σ2, ν2|〉 r;⇀ 〈|~c2′,m′2, σ′2, ν′2|〉 holds.
R1(m′1,m

′
2) holds by applying Lemma 6 to cr. R2(~c1

′, ν′1), R2(~c2
′, ν′2), R3(~c1

′,
ν′1), and R3(~c2

′, ν′2) hold since R2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and R3(~c2, ν2)
holds, and by inspecting the semantics for the scheduler. R4(~c1

′, ν′1, ~c2
′, ν′2) holds

sinceR4(~c1, ν1, ~c2, ν2) holds and by applying Lemma 6 to cr. By taking p′ = p, we
have that R5(~c1

′, ν′1, ~c2
′, ν′2, p) holds since R5(~c1, ν1, ~c2, ν2, p) holds and because

the eventually low threads, if they exist, have made no progress. R6(~c1
′, ν′1) holds

since R6(~c1, ν1) holds and by applying Lemma 7 to cr. R7(~c1
′, ν′1, ~c2

′, ν′2) holds
since R7(~c1, ν1, ~c2, ν2) and because high threads have been not modified by the
transition α1. R8(~c1

′, ν′1, ~c2
′, ν′2) holds since R8(~c1, ν1, ~c2, ν2) holds and because
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the eventually low threads in both configurations, if they exist, have been not mod-
ified by the transition α1. Finally, R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2, ν2)

holds and by applying the definition of ∼L.
α1 = r;× ) By inspecting the semantics for threadpools, the scheduler, and com-

mands, we have that cr ∈ L(~c1, ν1), 〈|cr,m1|〉⇀ 〈|stop,m′1|〉, and that 〈|σ1, ν1|〉 r;×⇁
〈|σ′1, ν′1|〉. Because 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉
r;×
⇀ 〈|σ′2, ν′2|〉. In addition to that, we also know that cr ∈ L(~c2, ν2) since L(~c2, ν2)

= L(~c1, ν1), and that 〈|cr,m2|〉 ⇀ 〈|stop,m2|〉. We can therefore conclude that the
transition 〈|~c2,m2, σ2, ν2|〉 r;×⇀ 〈|~c2′,m′2, σ′2, ν′2|〉 holds.
R1(m′1,m

′
2) holds by applying Lemma 6 to cr. R2(~c1

′, ν′1), R2(~c2
′, ν′2), R3(~c1

′,
ν′1), and R3(~c2

′, ν′2) hold since R2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and R3(~c2, ν2)
hold, and by inspecting the semantics for the scheduler (observe that the thread
cr has just terminated).R4(~c1

′, ν′1, ~c2
′, ν′2) holds since R4(~c1, ν1, ~c2, ν2) holds and

by applying Lemma 6 to cr. By taking p′ = p, we have that R5(~c1
′, ν′1, ~c2

′, ν′2, p)
holds since R5(~c1, ν1, ~c2, ν2, p) holds and because the eventually low threads, if
they exist, have made no progress. R6(~c1

′, ν′1) holds since R6(~c1, ν1) holds and
cr /∈ L(~c ′1, ν

′
1). R7(~c1

′, ν′1, ~c2
′, ν′2) holds since R7(~c1, ν1, ~c2, ν2) holds and be-

cause high threads have been not modified by the transition α1. R8(~c1
′, ν′1, ~c2

′, ν′2)
holds since R8(~c1, ν1, ~c2, ν2) holds and because the eventually low threads in both
configurations, if they exists, have been not modified by the transition α1. Finally,
R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2, ν2) holds and by applying the defini-

tion of ∼L.
α1 =↑◦ r′) By inspecting the semantics for threadpools and the scheduler, we have

that 〈|σ1, ν1|〉 ↑◦r
′

⇁ 〈|σ′1, ν′1|〉. Because 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also

have that 〈|σ2, ν2|〉 ↑◦r
′

⇀ 〈|σ′2, ν′2|〉. We can therefore conclude that the transition

〈|~c2,m2, σ2, ν2|〉 ↑◦r
′

⇀ 〈|~c2′,m′2, σ′2, ν′2|〉 holds.
Let us take p′ = p. Then, we have that R1(m′1,m

′
2), R2(~c1

′, ν′1), R2(~c2
′, ν′2),

R3(~c1
′, ν′1),R3(~c2

′, ν′2),R4(~c1
′, ν′1, ~c2

′, ν′2),R5(~c1
′, ν′1, ~c2

′, ν′2, p
′),R6(~c1

′, ν′1),R7

(~c1
′, ν′1, ~c2

′, ν′2), R8(~c1
′, ν′1, ~c2

′, ν′2) holds since R1(m1,m2), R2(~c1, ν1), R2(~c2,
ν2), R3(~c1, ν1),R3(~c2, ν2), R4(~c1, ν1, ~c2, ν2),R5(~c1, ν1, ~c2, ν2, p),R6(~c1, ν1), R7

(~c1, ν1, ~c2, ν2), R8(~c1, ν1, ~c2, ν2) holds and because the transition has only modi-
fied the variable tr in the scheduler. R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2,

ν2) holds and by applying the definition of ∼L.
α1 = r ; •) By inspecting the semantics for threadpools, the scheduler, and com-

mands, we have that cr = hide; c∗ for some command c∗, 〈|cr,m1|〉 ;•⇀ 〈|c′r,m1|〉,
and that 〈|σ1, ν1|〉 r;•⇁ 〈|σ′1, ν′1|〉. We also know that 〈|cr,m2|〉 ;•⇀ 〈|c′r,m2|〉 since
L(~c1) = L(~c2). Moreover, we know that 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low,
we also have that 〈|σ2, ν2|〉 r;•⇁ 〈|σ′2, ν′2|〉. We can thus conclude that the transition
〈|~c2,m2, σ2, ν2|〉 r;•⇀ 〈|~c2′,m′2, σ′2, ν′2|〉 holds.
We know that EL(~c1) = ∅ because a low thread was scheduled to produce the
event r ; •. Then, EL(~c2) = ∅ since R5(~c1, ν1, ~c2, ν2, p) holds. By applying
Lemma 8 to cr, we know that c∗ = c′; unhide, c∗ = unhide, c∗ = c′; unhide; p∗,
or c∗ = unhide; p∗, where c′ has no unhide.
R1(m′1,m

′
2) holds since m′1 = m1 and m′2 = m2. R2(~c1

′, ν′1), R2(~c2
′, ν′2),
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R3(~c1
′, ν′1), R3(~c2

′, ν′2), and R4(~c1
′, ν′1, ~c2

′, ν′2) hold since the following equali-
ties EL(~c1, ν1) = EL(~c2, ν2) = ∅ hold, (L(~ci

′, ν′i) = L(~ci, νi)\{cr})i=1,2, and
(EL(~ci

′, ν′i) = {cr})i=1,2 hold by inspecting the semantics for threadpools and the
scheduler.
In the cases where c∗ = c′; unhide or c∗ = unhide, R5(~c1

′, ν′1, ~c2
′, ν′2, p

′) holds
by taking p′ = skip (see Definition 6). On the other cases, by taking p′ = p∗, we
know thatR5(~c1

′, ν′1, ~c2
′, ν′2, p

∗) holds because the application of Lemma 8 gave us
the appropriate p∗ that satisfies Definition 6. R6(~c1

′, ν′1) holds since L(~c1
′, ν′1) =

L(~c1, ν1)\{cr} and R6(~c1, ν1) hold. R7(~c1
′, ν′1, ~c2

′, ν′2) holds since proposition
R7(~c1, ν1, ~c2, ν2) holds and because high threads have been not modified by the
transition α1. R8(~c1

′, ν′1, ~c2
′, ν′2) holds since R8(~c1, ν1, ~c2, ν2) holds and by in-

specting the type derivation of cr. Finally, proposition R9(σ′1, ν
′
1, σ
′
2, ν
′
2) holds

since R9(σ1, ν1, σ2, ν2) holds and by applying the definition of ∼L.

α1 = •; re) We know that re ∈ te1 . By inspecting the semantics for threadpools,
the scheduler, and commands, we have that cre = unhide; c∗ or cre = unhide for
some command c∗, cre ∈ EL(~c1, ν1), 〈|cre ,m1|〉 •;⇀ 〈|c∗,m1|〉, and that 〈|σ1, ν1|〉 •;re⇁
〈|σ′1, ν′1|〉. We are only going to consider the case when cre = unhide; c∗ since
the proof for cre = unhide is analogous. Therefore, we omit the proof when
α1 = •; re×.
Because 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉 •;re⇁
〈|σ′2, ν′2|〉. Because R5(~c1, ν1, ~c2, ν2, p) holds, we know that c∗ = p and that the
thread with name re belongs to the threadpool ~c2 as well. Let us call it c2re . Since
R5(~c1, ν1, ~c2, ν2, p) holds and it is not possible for a thread to make progress by a
high computation, we have that c2

re = unhide; p. As a consequence of that, it holds
that 〈|c2re ,m2|〉 •;⇀ 〈|p,m2|〉. Thus, transition 〈|~c2,m2, σ2, ν2|〉 •;re⇀ 〈|~c2′,m′2, σ′2, ν′2|〉
holds.
R1(m′1,m

′
2) holds trivially since unhide has no changed the memories. R2(~c1

′,
ν′1), R2(~c2

′, ν′2), R3(~c1
′, ν′1), and R3(~c2

′, ν′2) hold since R2(~c1, ν1), R2(~c2, ν2),
R3(~c1, ν1), and R3(~c2, ν2) holds; and by inspecting the semantics for the sched-
uler. R4(~c1

′, ν′1, ~c2
′, ν′2) holds since R4(~c1, ν1, ~c2, ν2) holds and because after the

transition α1, the threads cre and c2re become the thread p. By inspecting the seman-
tics for the scheduler, we have that EL(~c′1, ν

′
1) = EL(~c′2, ν

′
2) = ∅. Then, by taking

p′ = skip, it trivially holds that R5(~c1
′, ν′1, ~c2

′, ν′2, skip). R6(~c1
′, ν′1) holds since

R5(~c1, ν1, ~c2, ν2, p) and R7(~c1, ν1, ~c2, ν2, p) holds ; and by inspecting the type
derivation of cre . R7(~c1

′, ν′1, ~c2
′, ν′2) holds since R7(~c1, ν1, ~c2, ν2) holds and be-

cause high threads have been not modified by the transition α1. R8(~c1
′, ν′1, ~c2

′, ν′2)
holds sinceEL(~c1

′, ν′1) = EL(~c2
′, ν′2) = ∅. Finally,R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since

R9(σ1, ν1, σ2, ν2) holds and by applying the definition of ∼L.

α1 = r;•×) We know that r ∈ t◦1 . The hypothesis in the theorem state that cr must
be typable as Γ [hc 7→ low ] ` cr : low byR6(~c1, ν1). Observe that when cr = hide

this requirement is violated. Therefore, this event can never occur under the given
hypothesis.

2
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Corollary 1 (Soundness). If Γhc, hc 7→ low ` c : low then c is secure.

Proof. For arbitrary σ,m1, and m2 so that m1 =L m2 and σ is noninterferent, assume
〈|c,m1, σ, νinit |〉 ⇓ cfg1 & 〈|c,m2, σ, νinit |〉 ⇓ cfg2. By inductive (in the number of
transition steps of the above configurations) application of Theorem 1, we propagate
invariant m1 =L m2 to the terminating configurations. 2

Theorem 2. Given a command p and the multithreaded configurations 〈|~c1,m1, σ1, ν1

, w1|〉 and 〈|~c2,m2, σ2, ν2, w2|〉 so that R1(m1,m2), R2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1),
R3(~c2, ν2),R4(~c1, ν1, ~c2, ν2), the eventually low relationshipBEL(w1, ν1), EL(~c1, ν1)
∼el,p,te1

EL(~c2, ν2), BEL(w2, ν2), written asR5 (~c1, w1, ν1, ~c2, w2, ν2, p),R6(~c1, ν1),
R7(~c1, ν1, ~c2, ν2), R8(~c1, ν1, ~c2, ν2), R9(σ1, ν1, σ2, ν2), N(w1) = BL(w1, ν1)∪BH(
w1, ν1)∪BEL(w1, ν1), writtenR10(w1, ν1),R10(w2, ν2), setsBH(w1, ν1),BL(w1, ν1),
BEL(w1, ν1), andN(~c1) are disjoint, written asR11(w1, ν1),R11(w2, ν2),BL(w1, ν1)
= BL(w2, ν2), written as R12(w1, ν1, w2, ν2), (Γ [hc 7→ low ] ` ci : low )i∈BL(w1,ν1),
written asR13(w1, ν1), (Γ [hc 7→ high , pc 7→ high ] ` ci : high)i∈BH(w1 ,ν1)∪BH(w2,ν2),
written as R14(w1, ν1, w2, ν2), (Γ [hc 7→ high ] ` ci : low)i∈BEL(w1,ν1)∪BEL(w2,ν1),
written as R15(w1, ν1, w2, ν2), w1 =L w2, written as R16(w1, w2), w1� ν1, written as
R17(w1, ν1), R17(w2, ν2), then:

i) if 〈|~ci,mi, σi, νi, wi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i, w′i|〉 where α is high and i ∈ {1, 2}, then
there exists p′ such that R1(m′i,m3−i), R2(~c ′i, ν

′
i), R2(~c3−i, ν3−i), R3(~c ′i, ν

′
i),

R3(~c3−i, ν3−i), R4(~c ′i, ν
′
i,~c3−i, ν3−i), R5(~c ′i, w

′
i, ν
′
i,~c3−i, w3−i, ν3−i, p′), R6(

~c ′i, ν
′
i), R7 (~c ′i, ν

′
i, ~c3−i, ν3−i), R8(~c ′i, ν

′
i,~c3−i, ν3−i), and R9(σ′i, ν

′
i, σ3−i, ν3−i),

R10(w′i, ν
′
i), R10(w3−i, ν3−i), R11(w′i, ν

′
i), R11(w3−i, ν3−i), R12(w′i, ν

′
i, w3−i,

ν3−i), R13(w′i , ν
′
i), R14(w′i, ν

′
i, w3−i, ν3−i), R15(w′i, ν

′
i, w3−i, ν3−i), R16(w′i,

w3−i), R17(w′i, ν
′
i), and R17(w3−i, ν3−i);

ii) if the above case cannot be applied, and given 〈|~ci,mi, σi, νi, wi|〉 where BEL(wi
, νi) 6= ∅, then R1(mi,m3−i), R2(~c i, νi), R2(~c3−i, ν3−i), R3(~c i, νi), R3(~c3−i,
ν3−i), R4(~c i, νi,~c3−i, ν3−i), R5(~c i, wi, νi, w3−i,~c3−i, ν3−i, p), R6(~c i, νi), R7

(~c i, νi, ~c3−i, ν3−i),R8(~c i, νi,~c3−i, ν3−i), andR9(σi, νi, σ3−i, ν3−i),R10 (wi, νi),
R10 (w3−i, ν3−i),R11(wi, νi),R11(w3−i, ν3−i),R12(wi, νi, w3−i, ν3−i),R13(wi
, νi),R14(wi, νi, w3−i, ν3−i),R15(wi, νi, w3−i, ν3−i),R16(wi, w3−i),R17(wi, νi),
and R17(w3−i, ν3−i);

iii) if the above cases cannot be applied, and if 〈|~ci,mi, σi, νi, wi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i, w′i|〉
whereα is low and i ∈ {1, 2}, then 〈|~c3−i,m3−i, σ3−i, ν3−i, w3−i|〉 α→ 〈|~c ′3−i,m′3−i,
σ′3−i, ν

′
3−i, w

′
3−i|〉 where there exists p′ such that R1(m′i,m

′
3−i), R2(~c ′i, ν

′
i), R2(

~c ′3−i, ν
′
3−i), R3(~c ′i, ν

′
i), R3(~c ′3−i, ν

′
3−i), R4(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i), R5(~c ′i, ν

′
i, w
′
i,

~c ′3−i, w
′
3−i, ν

′
3−i, p

′), R6(~c ′i, ν
′
i), R7(~c ′i, ν

′
i, ~c
′
3−i, ν

′
3−i), R8(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i),

andR9(σ′i, ν
′
i, σ
′
3−i, ν

′
3−i),R10(w′i, ν

′
i),R10(w′3−i, ν

′
3−i),R11(w′i, ν

′
i),R11(w′3−i,

ν′3−i), R12(w′i, ν
′
i, w
′
3−i, ν

′
3−i), R13(w′i, ν

′
i), R14(w′i, ν

′
i, w
′
3−i, ν

′
3−i), R15(w′i, ν

′
i,

w′3−i, ν
′
3−i), R16(w′i, w

′
3−i), R17(w′i, ν

′
i), and R17(w′3−i, ν

′
3−i);

Proof. By case analysis on command/scheduler steps. We are only going to show the
proofs for commands related to synchronization and unhide when the configuration
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〈|~c1,m1, σ1, ν1|〉 makes some progress. The proof for other commands proceeds simi-
larly as in Theorem 1. We assume that the thread cr belongs to ~c1 . Analogous proofs
are obtained when 〈|~c2,m2, σ2, ν2|〉 makes progress instead.

i) High events related to synchronization : brsem , brsem×, ursem , and ursem× (where
r ∈ H(~c1, ν1) ∪ EL(~c1, ν1)).

α1 = brsem )
cr ∈ H(~c1, ν1))

R1(m′1,m2) holds by inspecting the semantics of threadpools and applying
Lemma 3 to cr. By inspecting the threadpool semantics and since cr has been
blocked, we have thatN(~c1

′) = N(~c1)\{cr}. Moreover, we have thatN(~c ′1) =
H(~c1, ν1) ∪ L(~c1, ν1) ∪ EL(~c1, ν1) \ {cr}. We also know that H(~c1

′, ν′1) =
H(~c1, ν1) \ {cr} since r ∈ t•1 and cr has been blocked. By this last fact and
R3(~c1, ν1), it holds R2(~c1

′, ν′1) as expected. R2(~c2, ν2) holds since it already
holds by hypothesis.R3(~c1

′, ν′1) holds sinceR3(~c1, ν1) holds andH(~c1
′, ν′1) =

H(~c1, ν1)\{cr}.R3(~c2, ν2) holds since it already holds by hypothesis.R4(~c ′1,
ν′1,~c 2, ν2) holds since low threads are not affected by the transition α1. By tak-
ing p′ = p, we have that R5(~c ′1, w

′
1, ν
′
1, ~c2, w2, ν2, p

′) holds since R5(~c 1, w1,
ν1, ~c2, w2, ν2, p) holds and because the eventually low thread, if it exists, has
made no progress. R6(~c1

′, ν′1) holds since R6(~c1, ν1) holds and low threads
have made no progress.R7(~c ′1, ν

′
1, ~c2, ν2) holds sinceR7(~c 1, ν1, ~c2, ν2) holds

and H(~c ′1, ν
′
1) = H(~c 1, ν1) \ {cr}. PropositionR8(~c1

′, ν′1, ~c2, ν2) holds since
R8(~c1, ν1, ~c2, ν2) holds and because the eventually low thread, if exists one, has
made no progress. PropositionR9(σ′1, ν

′
1, σ2, ν2) holds sinceR9(σ1, ν1, σ2, ν2)

holds and by applying the definition of ∼L. By inspecting the semantics of
threadpools, we have that N(w′1) = N(w1) ∪ {cr}. By rewriting N(w) ac-
cording to R10(w1, ν1), we know that N(w′1) = BL(w1, ν1) ∪BH(w1, ν1) ∪
BEL(w1, ν1)∪{cr}. Since r ∈ t•1 , we also know that BH (w′1, ν

′
1) = BH(w1,

ν1) ∪ {cr}. Consequently, R10(w′1, ν
′
1) holds. Proposition R10(w2, ν2) holds

since it already holds by hypothesis. PropositionR11(w′1, ν
′
1) holds sinceR11(

w1, ν1) holds and because BH (w′1, ν
′
1) = BH(w1, ν1) ∪ {cr}. Proposition

R11( w2, ν2) holds since it holds by hypothesis. Propositions R12(w′1, ν
′
1,

w2, ν2) and R13(w′1, ν
′
1) hold since R12(w1, ν1, w2, ν2) and R13(w1, ν1) hold

and because no blocked low threads are affected by the transition α1. By
R7(~c1, ν1, ~c2, ν2), R14(w1, ν1, w2, ν2), Lemma 4 applied to cr, and the fact
that BH (w′1, ν

′
1) = BH(w1, ν1) ∪ {cr}, we obtain that R14(w′1, ν

′
1, w2, ν2)

holds. PropositionR15(w′1, ν
′
1, w2, ν2) andR16(w′1, w2) hold sinceR15(w1, ν1,

w2, ν2) and R16(w1, w2) hold and because no low semaphores or the eventu-
ally low thread, if exists one, are affected by the transition α1. By inspecting
the semantics, cr ∈ H(~c1, ν1), and R7(~c1, ν1, ~c2, ν2), we have that Γ (sem) =
high and r ∈ t•1 . By these last facts and R17(w1, ν1), we obtain that R17(w′1,
ν′1) holds. R17(w2, ν2) holds since it already holds by hypothesis.

cr ∈ EL(~c1, ν1))
Propositions R1−4 can be proved in a similar way as when cr ∈ H(~c1, ν1).
By hypothesis, we know that BEL(w1, ν1), EL(~c1, ν1) ∼el,p,te1

EL(~c2, ν2),
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BEL(w2, ν2). By inspecting the semantics, we also know that te1 = {cr}. By
inspecting Definition 9, we have that ∅, {cr} ∼el,p,te1

EL(~c2, ν2), BEL(w2,
ν2). We need to do case analysis to determine if EL(~c2, ν2) = ∅ or BEL(w2,
ν2) = ∅. Both cases proceed in a similar way and therefore we omit when
BEL(w2, ν2) = ∅. Consequently, we have that ∅, {cr} ∼el,p,te1

∅, {dr} where
there exist commands c′ and d′ without unhide instructions such that cr ∈
{c′; unhide, unhide} and dr ∈ {d′; unhide, unhide} or cr ∈ {c′; unhide; p,
unhide; p} and dr ∈ {d′; unhide; p, unhide; p}. Since the triggered event
is brsem , we can deduce that cr ∈ {c′; unhide} or cr ∈ {c′; unhide; p}. By

inspecting the threadpool semantics, we have that 〈|cr,m1|〉
b(sem)
⇀ 〈|c′r,m′1|〉,

where c′r 6= stop. Consequently, we know that c′r ∈ {c′′; unhide, unhide} or

c′r ∈ {c′′; unhide; p, unhide; p} where 〈|c′,m1|〉
b(sem)
⇀ 〈|c′′,m′1|〉. Let us take

p′ = p. Since t′w1
= tw1 ∪ {r} and te1 = {r}, we have that BEL(w′1, ν

′
1) =

{c′r}, EL(~c1
′, ν′1) = ∅, and that {c′r}, ∅ ∼el,p′,te1 ∅, {dr} holds. Therefore,

R5(~c1
′, w′1, ν

′
1, ~c2, ν2, w2, p

′) holds. Propositions R6(~c1
′, ν′1) and R7(~c1

′, ν′1,
~c2, ν2) hold since R6(~c1, ν1) and R7(~c1, ν1, ~c2, ν2) hold and because low and
high threads have made no progress. PropositionR8(~c1

′, ν′1, ~c2, ν2) holds since
R8(~c1, ν1, ~c2, ν2) holds and EL(~c1

′, ν′1) = ∅. Propositions R9−13 are proved
similarly as when cr ∈ H(~c1, ν1). PropositionR14(w′1, ν

′
1, w2, ν2) holds since

R14(w1, ν1, w2, ν2) holds and because high threads have made no progress.
By R8(~c1, ν1, ~c2, ν2), applying Lemma 5 to cr, and R15(w1, ν1, w2, ν2), we
obtain that R15(w′1, ν

′
1, w2, ν2) holds. Proposition R16(w′1, w2) holds since

R16(w1, w2) holds and because no low semaphores or the eventually low thread,
if it exists, are affected by the transition. By inspecting the semantics, cr ∈
EL(~c1, ν1), and R7(~c1, ν1, ~c2, ν2), we have that Γ (sem) = high and r ∈ te1 .
By these last facts and R17(w1, ν1), we obtain that R17(w′1, ν

′
1) holds. Propo-

sition R17(w2, ν2) holds since it already holds by hypothesis.
α1 = brsem× )

The proof proceeds similarly as when α1 = brsem .
α1 = ursem )

By inspecting the semantics of threadpools, this event can be produced by two
rules in Figure 12. Which rule is applied depends on the existence of threads on the
waiting list w1(sem) when executing signal, which is captured by the scheduler
events urr and ura. The proof proceeds similarly in both cases. Therefore, we omit
the case when the scheduler triggers the event urr.
cr ∈ H(~c1, ν1))

R1(m′1,m2) holds by inspecting the semantics of threadpools and applying
Lemma 3 to cr. By semantics, the thread ca has been awakened and place into
the threadpool. Since R17(w1, ν1) holds and Γ (sem) = high by R7(~c1, ν1,
~c2, ν2), we have that a ∈ t•1 ∪ te1 and consequentlyR2(~c ′1, ν

′
1) holds. Propo-

sition R2(~c2, ν2) holds since it holds by hypothesis. Proposition R3(~c ′1, ν
′
1)

holds by R3(~c1, ν1) and R11(w1, ν1). Proposition R3(~c2, ν2) holds since it
holds already by hypothesis. Propositions R4−6 can be proved in a similar
way as when α1 = brsem . To prove proposition R7(~c1

′, ν′1, ~c2, ν2), we need
to consider if a ∈ t•1 . If that is the case, it is proved by R7(~c1, ν1, ~c2, ν2)
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and R14(w1, ν1, w2, ν2). Otherwise, it holds since it already holds by hypoth-
esis. To prove proposition R8(~c1

′, ν′1, ~c2, ν2), we need to consider if a ∈ te1 .
If that is the case, it is proved by R8(~c1, ν1, ~c2, ν2) and R15(w1, ν1, w2, ν2).
Otherwise, it holds since it already holds by hypothesis. By inspecting the se-
mantics, we know that N(w′1) = N(w1) \ {ca} and that, depending if a ∈ t•1
or a ∈ te1 , we have that BH (w′1, ν

′
1) = BH(w1, ν1)\{ca} or BEL(w′1, ν

′
1) =

BEL(w1, ν1) \ {ca}, respectively. Consequently, we obtain that R10(w′1, ν
′
1)

holds. Proposition R10(w2, ν2) since it already holds by hypothesis. Proposi-
tion R11(w′1, ν

′
1) holds since R11(w1, ν1) holds and ca has been move from

one subpool of threads to another. Proposition R12(w2, ν2) holds since it al-
ready holds by hypothesis. Proposition R13(w′1 , ν

′
1) holds since R13(w1, ν1)

holds and no threads have been blocked by the transition α1. Propositions
R14(w′1, ν

′
1, w2, ν2) andR15(w′1, ν

′
1, w2, ν2) hold sinceR14(w1, ν1, w2, ν2) and

R15(w1, ν1, w2, ν2) hold and because ca has been removed from the subpool of
threads BH (w′1, ν

′
1) or BEL(w′1, ν

′
1) by the transition α1. Since R17(w1, ν1)

holds and Γ (sem) = high by R7(~c1, ν1, ~c2, ν2), it holds that w′1 =L w1

and thus R16(w′1, w2) holds. PropositionR17(w′1, ν
′
1) holds since R17(w1, ν1)

holds and ca has been removed from the waiting list of sem. Proposition
R17(w2, ν2) holds since it already holds by hypothesis.

cr ∈ EL(~c1, ν1))
The proof ofR1−4 proceeds as when cr ∈ H(~c1, ν1). PropositionR5 is proved
as when α1 = brsem and cr ∈ EL(~c1, ν1). The rest of the propositions are
proved similarly as when cr ∈ H(~c1, ν1).

α1 = ursem× )
The proof proceeds similarly as when α1 = ursem .

ii) In this case, all the propositions are valid since they are valid already by hypothesis.
Observe that no step in the semantics is performed.

iii) Low events related to synchronization : brsem , brsem×, ursem , and ursem× (where
r ∈ L(~c1, ν1) and re ∈ EL(~c1, ν1)).

α1 = brsem ) By inspecting the semantics for threadpools, the scheduler, and com-
mands, we have that cr ∈ L(~c1, ν1), and that cr = wait(sem); c′ for some com-
mand c′. By inspecting the semantics for threadpools and commands, we have

the transition 〈|cr,m1|〉
b(sem)
⇀ 〈|c′r,m1|〉, and that 〈|σ1, ν1|〉 br

⇁ 〈|σ′1, ν′1|〉. Because

〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉 b
sem

⇁ 〈|σ′2, ν′2|〉. In
addition to that, we also know that cr ∈ L(~c2, ν2) since L(~c2, ν2) = L(~c1, ν1), and

that 〈|cr,m2|〉
b(sem)
⇀ 〈|c′r,m2|〉. We can therefore conclude that 〈|~c2,m2, σ2, ν2, w2|〉

brsem→ 〈|~c2′,m′2, σ′2, ν′2, w′2|〉. R1(m′1,m
′
2) holds by applying Lemma 6 to cr. Propo-

sitions R2(~c1
′, ν′1), R2(~c2

′, ν′2), R3(~c1
′, ν′1), and R3(~c2

′, ν′2) hold since proposi-
tions R2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), R3(~c2, ν2), R10(w1, ν1) and R10(w2, ν2)
hold and since L(~c ′1, ν

′
1) = L(~c1, ν1) \ {c′r} by inspecting the semantics for

threadpools. Proposition R4(~c1
′, ν′1, ~c2

′, ν′2) holds since R4(~c1, ν1, ~c2, ν2) holds
and because the transition α1 block the same low thread on both configurations.
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By taking p′ = p, we have that R5(~c1
′, w′1, ν

′
1, ~c2

′, w′2, ν
′
2, p) holds since proposi-

tion R5(~c1, w1, ν1, ~c2, ν2, w2, p) holds and because the eventually low thread, if
exists one, has made no progress. R6(~c1

′, ν′1) holds by R6(~c1, ν1) and the fact
that c′r /∈ L(~c1

′, ν′1). R7(~c1
′, ν′1, ~c2

′, ν′2) holds because R7(~c1, ν1, ~c2, ν2) holds
and because high threads have been not modified by the transition α1. R8(~c1

′, ν′1,
~c2
′, ν′2) holds because R8(~c1, ν1, ~c2, ν2) holds and because the eventually low

threads in both configurations, if they exists, have been not modified by the tran-
sition α1. Proposition R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2, ν2) holds and

by applying the definition of ∼L. By inspecting the semantics of threadpools,
R4(~c1, ν1, ~c2, ν2), and R12(w1, ν1, w2, ν2), we have that N(w′1) = N(w′2) =
N(w1)∪{c′r},N(~c1

′) = N(~c2
′) = N(~c1)\{cr}, and BL(w′1, ν

′
1) = BL(w′2, ν

′
2) =

BL(w1, ν2) ∪ {c′r}. By these last facts, R10(w1, ν2), R10(w2, ν2), R11(w1, ν1),
R11(w2, ν2), R12(w1, ν1, w2, ν2), we have that it holds R10(w′1, ν

′
2), R10(w′2, ν

′
2),

R11(w′1, ν
′
1),R11(w′2, ν

′
2),R12(w′1, ν

′
1, w

′
2, ν
′
2).R13(w′1, ν

′
1) holds sinceR13(w1, ν1)

holds and by Lemma 7. Proposition R14(w′1, ν
′
1, w

′
2, ν
′
2) and R15(w′1, ν

′
1, w

′
2, ν
′
2)

holds since R14(w1, ν1, w2, ν2) and R15(w1, ν1, w2, ν2) holds and because tran-
sition α1 does not affect high and eventually low threads, if they exists. Since
cr = wait(sem); c′, cr ∈ L(~c1, ν1), R6(~c1, ν1), and typing rules, we have that
Γ (sem) = low . By this fact and R16(w1, w2), By inspecting the semantics, cr ∈
L(~c1, ν1), and R6(~c1, ν1), we have that Γ (sem) = low , r ∈ t◦1 = t◦2 . By
these last facts, R17(w1, ν1), and R17(w2, ν2), we obtain that R17(w′2, ν

′
2) and

R17(w′2, ν
′
2) hold.

α1 = brsem× ) It proceeds in a similar way as when α1 = brsem .
α1 = ursem )

By inspecting the semantics of threadpools, this event can be produced by two rules
in Figure 12. Which rule is applied depends on the waiting list w(sem) when ex-
ecuting signal, which is captured by the scheduler events urr and ura. The proof
proceeds similarly in both cases. Therefore, we omit the case when the scheduler
triggers the event urr.
By inspecting the semantics for threadpools, the scheduler, and commands, we
have that cr ∈ L(~c1, ν1), and that cr = signal(sem); c′ for some command c′.
By inspecting the semantics for threadpools and commands, we have the transi-

tion 〈|cr,m1|〉
u(sem)
⇀ 〈|c′r,m1|〉, and that 〈|σ1, ν1|〉

ura⇁ 〈|σ′1, ν′1|〉 for some a. Because

〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉
ura⇁ 〈|σ′2, ν′2|〉. In addi-

tion to that, we also know that cr ∈ L(~c2, ν2) since L(~c2, ν2) = L(~c1, ν1), and that

〈|cr,m2|〉
u(sem)
⇀ 〈|c′r,m2|〉. We can therefore conclude that 〈|~c2,m2, σ2, ν2, w2|〉

ursem→
〈|~c2′,m′2, σ′2, ν′2, w′2|〉. Proposition R1(m′1,m

′
2) holds by applying Lemma 6 to cr.

By R4(~c1, ν1, ~c2, ν2) and inspecting the semantics of threadpools and the sched-
uler, we have that L(~c1

′, ν′1) = L(~c2
′, ν′2) = L(~c1, ν1) ∪ {ca}. Therefore, we have

that R4(~c1
′, ν′1, ~c2

′, ν′2) holds. Moreover,R2(~c1
′, ν′1), R2(~c2

′, ν′2), R3(~c1
′, ν′1), and

R3(~c2
′, ν′2) hold sinceR2(~c1, ν1),R2(~c2, ν2),R3(~c1, ν1),R3(~c2, ν2),R11(w1, ν1),

R11(w2, ν2), Γ (sem) = low by typing rules, andR17(w1, ν1) hold. By taking p′ =
p, we have that R5(~c1

′, w′1, ν
′
1, ~c2

′, w′2, ν
′
2, p) holds since proposition R5(~c1, w1,

ν1, ~c2, ν2, w2, p) holds and because the eventually low thread, if exists one, has
made no progress. Proposition R6(~c1

′, ν′1) holds by R6(~c1, ν1), inspecting the se-
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mantics of threadpools, and R13(~c1, ν1). R7(~c1
′, ν′1, ~c2

′, ν′2) holds because R7(~c1,
ν1, ~c2, ν2) holds and because high threads have been not modified by the transi-
tion α1. R8(~c1

′, ν′1, ~c2
′, ν′2) holds becauseR8(~c1, ν1, ~c2, ν2) holds and because the

eventually low threads in both configurations, if they exists, have been not modified
by the transition α1. Proposition R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2, ν2)

holds and by applying the definition of ∼L. Since r ∈ t◦1 and R6(~c1, ν1), we
obtain that Γ (sem) = low . By these facts, R12(~c1, ν1, ~c2, ν2), R16(w1, w2), and
R17(w1, ν1), we can conclude that BL(~c1

′, ν′1) = BL(~c2
′, ν′2) = BL(~c1, ν1) \

{ca}. By applying this fact together with R10(w1, ν1) and R10(w2, ν2), we obtain
that R10(w′1, ν

′
1) and R10(w′2, ν

′
2) hold. Propositions R11(w′1, ν

′
1), R11(w′2, ν

′
2),

and R12(w′1, ν
′
1, w

′
2, ν
′
2) hold since R11(w1, ν1), R11(w2, ν2), and R12(w1, ν1,

w2, ν2) hold and since BL(~c1
′, ν′1) = BL(~c2

′, ν′2) = BL(~c1, ν1)\{ca} by inspect-
ing the semantics of threadpools. R13(w′1, ν

′
1) holds since R13(w1, ν1) holds an a

low thread has been awakened. R14(w′1, ν
′
1, w

′
2, ν
′
2) and R15(w′1, ν

′
1, w

′
2, ν
′
2) holds

since R14(w1, ν1, w2, ν2) and R15(w1, ν1, w2, ν2) holds and because transition α1

does not affect high and eventually low threads, if they exists. R16(w′1, w
′
2) holds

since R16(w1, w2) holds and since w′1(sem) = w1(sem) \ {ca} by inspecting the
semantics of threadpools.R17(w′1, ν

′
1) andR17(w′2, ν

′
2) hold sinceR17(w1, ν1) and

R17(w2, ν2) hold and because t′w1
= tw1 \ {a} and t′w2

= tw2 \ {a} by semantics
of the scheduler.

α1 = ursem× ) It proceeds in a similar way as when α1 = ursem .
α1 = •; re) We know that re ∈ te1 . By inspecting the semantics for threadpools,

the scheduler, and commands, we have that cre = unhide; c∗ or cre = unhide for
some command c∗, cre ∈ EL(~c1, ν1), 〈|cre ,m1|〉 •;⇀ 〈|c∗,m1|〉, and that 〈|σ1, ν1|〉 •;re⇁
〈|σ′1, ν′1|〉. We are only going to consider the case when cre = unhide; c∗ since
the proof for cre = unhide is analogous. Therefore, we omit the proof when
α1 = •; re×.
Because 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉 •;re⇁
〈|σ′2, ν′2|〉. Because R5(~c1, w1, ν1, ~c2, w2, ν2, p) holds, we know that c∗ = p and that
the thread with name re ∈ L(~c2, ν2) or re ∈ BL(w2, ν2). Since ii) cannot be
applied, we obtain that re ∈ L(~c2, ν2). Let us call c2re the thread with name re
in ~c2. Since R5(~c1, w1, ν1, ~c2, w2, ν2, p) holds and it is not possible for a thread
to make progress by a high computation, we have that c2

re = unhide; p. As a
consequence of that, it holds that 〈|c2

re ,m2|〉 •;⇀ 〈|p,m2|〉. Therefore, the transition
〈|~c2,m2, σ2, ν2, w2|〉 •;re⇀ 〈|~c2′,m′2, σ′2, ν′2, w′2|〉 holds.
R1(m′1,m

′
2) holds trivially since unhide has no changed the memories. R2(~c1

′,
ν′1), R2(~c2

′, ν′2), R3(~c1
′, ν′1), and R3(~c2

′, ν′2) hold since R2(~c1, ν1), R2(~c2, ν2),
R3(~c1, ν1), andR3(~c2, ν2) holds; and by inspecting the semantics for the scheduler.
R4(~c1

′, ν′1, ~c2
′, ν′2) holds since R4(~c1, ν1, ~c2, ν2) holds and because after the tran-

sition α1, the threads cre and c2re become the thread p. By inspecting the semantics
for the scheduler, we have that EL(~c′1, ν

′
1) = EL(~c′2, ν

′
2) = ∅. By R5(~c1, w1, ν1,

~c2, w2, ν2, p) and since we cannot apply ii), we also know that BEL(w1, ν1) =
BEL(w2, ν2) = ∅ and consequently BEL(w′1, ν

′
1) = BEL(w′2, ν

′
2) = ∅ since no

thread is blocked by the transition α1. Then, by taking p′ = skip, it trivially holds
that R5(~c1

′, w′1, ν
′
1, ~c2

′, w′2, ν
′
2, skip). R6(~c1

′, ν′1) holds since R5(~c1, w1, ν1, ~c2,
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w2, ν2, p) and R7(~c1, ν1, ~c2, ν2, p) holds ; and by inspecting the type derivation
of cre . R7(~c1

′, ν′1, ~c2
′, ν′2) holds since R7(~c1, ν1, ~c2, ν2) holds and because high

threads have been not modified by the transition α1.R8(~c1
′, ν′1, ~c2

′, ν′2) holds since
EL(~c1

′, ν′1) = EL(~c2
′, ν′2) = ∅. Finally, R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1,

σ2, ν2) holds and by applying the definition of∼L. PropositionsR10−17 hold since
they hold already by hypothesis and since transition α1 does not affect blocked
threads.

2

Corollary 2 (Soundness). If Γhc, hc 7→ low ` c : low then c is secure.

Proof. For arbitrary σ,m1, and m2 so that m1 =L m2 and σ is noninterferent, assume
〈|c,m1, σ, νinit |〉 ⇓ cfg1 & 〈|c,m2, σ, νinit |〉 ⇓ cfg2. Observe that, by assuming termi-
nating configurations, it is not possible to apply case ii) of Theorem 2.
By inductive (in the number of transition steps of the above configurations) application
of Theorem 2, we propagate invariantm1 =L m2 to the terminating configurations. 2
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