
BetterTimes

Privacy-assured Outsourced Multiplications for Additively
Homomorphic Encryption on Finite Fields

Per Hallgren1, Mart́ın Ochoa2,3, and Andrei Sabelfeld1

1 Chalmers University of Technology, Sweden
2 Technische Universität München, Germany

3 Singapore University of Technology and Design, Singapore

Abstract. We present a privacy-assured multiplication protocol using
which an arbitrary arithmetic formula with inputs from two parties over
a finite field Fp can be jointly computed on encrypted data using an ad-
ditively homomorphic encryption scheme. Our protocol is secure against
malicious adversaries. To motivate and illustrate applications of this
technique, we demonstrate an attack on a class of known protocols show-
ing how to compromise location privacy of honest users by manipulating
messages in protocols with additively homomorphic encryption. We eval-
uate our approach using a prototypical implementation. The results show
that the added overhead of our approach is small compared to insecure
outsourced multiplication.

1 Introduction

There has been an increase of the public awareness about the importance of
privacy. This has become obvious with cases such as Snowden [37] and the Tor
project [11]. Unfortunately, the current practice is not yet to address privacy
concerns by design [7, 36, 27, 32]. It is by far more common that the end con-
sumer has to send privacy-sensitive information to service providers in order to
achieve a certain functionality, rather than the service using privacy-preserving
technologies. A major challenge of today’s research community is to enable ser-
vices to address privacy without hampering sought functionality and efficiency.

Recent years have brought much attention to secure computations distributed
among several participants, a subfield of cryptography generally known as Secure
Multi-party Computation (SMC). SMC has in recent years been brought to the
brink of being widely applicable to real world scenarios [4, 3], although general
purpose solutions with strong security guarantees are still too slow to be widely
applied in practice.

This paper proposes a novel and efficient approach to jointly compute an
arbitrary arithmetic formula using certain additively homomorphic encryption
schemes, while maintaining security against malicious adversaries. The solution
is shown to be valuable as a vital complement to boost the security of a class
of privacy-preserving protocols [12, 34, 19, 33, 38], where Alice queries Bob for a

function over their combined inputs (see Figure 2). In such scenarios, it is com-
mon that Bob is intended to learn nothing at all, while still providing Alice with
useful information such as whether a picture of a face matches a database [33,
12] or whether two principals are close to each other [19, 34, 38]. This work al-
lows such solutions to harden the attacker model from honest-but-curious to
malicious attackers that do not necessarily follow the protocol (both attacker
models are standard in SMC and are presented for instance in [17, 28]).

Although some connections have been identified [30, 34, 19], the two commu-
nities of Privacy-preserving Services and Secure Multi-Party Computations are
still largely separated. One of the goals of this paper is to contribute to bridg-
ing the gap, in particular when it comes to rigorously improving the security of
efficient protocols using additively homomorphic encryption in the presence of
honest-but-curious adversaries, enabling them to also protect against malicious
adversaries in an efficient manner.

Problem statement In general in secure two-party computation [28] one considers
the case where two parties, Alice with inputs −→x and Bob with inputs −→y , want to

compute a functionality f(−→x ,−→y) = (g(−→x ,−→b), h(−→x ,−→y)), where the procedure
f yields a tuple in which Alice’s output is the first item and Bob’s output is the
second item. For the scope of this work, h is always the empty string, and the
inputs of both parties are in Fp, such that ∀xi ∈ −→x : xi ∈ Fp and ∀yi ∈ −→y :
yi ∈ Fp. That is, Alice obtains the result of g whereas Bob observes nothing (as
usual when using partial or full homomorphic encryption). For this reason, in
the following we will refer only to g(−→x ,−→y) as the functionality.

x x y y

+

· ·

Fig. 1. Arithmetic formula computing x2 + y2.

Moreover, we set g(−→x ,−→y) to be an arbitrary arithmetic formula over −→x and−→y in the operations (·,+) of Fp, that is an arithmetic circuit [35] that is also a
directed tree, as the one depicted in Figure 1.

We assume as usual that both Alice and Bob want privacy of their inputs, as
much as it is allowed by g. Bob is willing to reveal the final output of g, but not
any intermediate results, or a different function g′ that would compromise the

privacy of his inputs. More precisely, we want a secure two-party computation in
the malicious adversary model for a malicious Alice [28], as depicted in Figure 2.

Alice Bob�!x �!y
J�!x K

Jg(�!x ,�!y)K

· · ·

Fig. 2. High-level view of a 2-party computation based on homomorphic encryption,
where J·K denotes encryption under the public key of Alice.

Note that additions in the formula can be done correctly by Bob without the
help of Alice when using an additively homomorphic encryption scheme. This
holds also for all multiplications involving Bob’s input only, and multiplications
with a ciphertext and a value known to Bob. The only operations outside of
the scope of the additively homomorphic capabilities are multiplications involv-
ing inputs from Alice only. For instance in Figure 1, Bob can not compute x2

(assuming x is a private input to Alice). In this work therefore we focus on a
protocol such that Bob can outsource such multiplications to Alice without dis-
closing the value of the operands, and such that if Alice does not cooperate, the
final value of the arithmetic formula is corrupted and useless to her. This will
allow us to show that our protocol is fully privacy-preserving in the malicious
adversary model of SMC.

Fairness of the computation (that is, all parties receive their intended output)
is out of scope for two reasons: it is impossible to guarantee this property for
two-party computations in the malicious model [28], but more interestingly, note
that since by construction Bob is allowed to observe nothing, an early abortion
of the protocol by Alice will only hamper fairness for herself.

Contributions The paper outlines a novel protocol BetterTimes which lets Bob
outsource multiplications using an additively homomorphic encryption scheme
(where he does not hold the private key) while asserting privacy of his inputs.
BetterTimes provides Bob not only with the encrypted product but also the
encryption of an assurance value (a field element a ∈ Fp) which is a random
value in F∗p if Alice does not follow the protocol and an encryption of 0 otherwise.
The assurance is added to the final output of g thus making the result useless
to Alice if she tries to cheat. Our contribution thus brings the state-of-the art
forward by efficiently giving Bob guarantees in the case that Alice is malicious.

We illustrate the usefulness of our approach for a class of protocols from the
literature [12, 34, 19, 33, 38], which compute whether the distance between two
vectors in the plane is less than a threshold. In the presence of malicious adver-

saries, leakage of private information is possible. A solution using our technique
is presented for these protocols. Moreover, we make our implementation fully
available to the community4.

Relation to Zero Knowledge Proofs An alternative solution to the presented
problem would be to use a Zero Knowledge schema such that Bob can verify that
a ciphertext corresponds to a certain multiplication. Such a schema is guaranteed
to exist given the general theorem of Goldreich et al. [18]. However, to the best
of our knowledge it is not straightforward to constructively devise such a scheme
for a given additively homomorphic cryptosystem. Our solution in contrast does
not require Bob to be able to verify whether a multiplication is correct, but
by construction will render the final computation result useless to malicious
adversaries.

In a nutshell, the novelty as compared to zero-knowledge proofs is based
on the simple realization that Bob does not need to know whether Alice is
cheating or not in order to assure the correctness of the final computation and
the privacy of his inputs, which decreases the number of round-trips that such
a verification step implies. This is a special case of the conditional disclosure of
secrets introduced by Gertner et al. [16], where a secret is disclosed using SMC
only if some condition is met. In our case, the condition is that zi = xi · yi for
each multiplication in the formula, and the secret is the output of g.

To the best of our knowledge, there is no previous solution to accomplish
secure outsourced multiplications for additively homomorphic encryption in the
malicious model without the use of zero-knowledge proofs.

Outline The paper first introduces necessary background and notation in Sec-
tion 2. Following, in Section 3 the BetterTimes protocol is described, and its
application to computing arbitrary arithmetic formulas is discussed. Section 4
presents the security guarantees in the malicious adversary setting. Section 5
presents benchmarks that allow one to estimate which impact the approach
would have in comparison to only protecting against semi-honest adversaries.
Section 6 positions this work in perspective to already published work. Finally,
Section 7 summarizes the material presented in this paper. Before delving into
details, a concrete application of the proposed solution is outlined in Section 1.1.

1.1 Exploits for Proximity Protocols

We illustrate the usefulness of our approach by an attack on a class of protocols
from the literature [12, 34, 19, 33, 38], which compute whether the distance be-
tween two vectors in the plane is less than a threshold in a privacy-preserving
manner. Popular applications of this algorithm are geometric identification and
location proximity. For concreteness, this section focuses on the distance compu-
tation used in the InnerCircle protocol by Hallgren et al. [19]. The same attack

4 https://bitbucket.org/hallgrep/bettertimes

also applies to the other representatives of the same class of protocols [12, 34,
33, 38], but in many cases a successful exploit does not have as visible effects.

Hallgren et al. present a protocol for privacy-preserving location proximity. It
is based on the fact that Bob can compute the euclidean distances from a point
represented as three ciphertexts J2xK, J2yK and Jx2 + y2K to any other point
known by Bob using additively homomorphic encryption (here J·K stands for
encryption under the public key of Alice). A problem with the approach is that
Bob has no knowledge of how the ciphertexts are actually related, he sees three
ciphertexts JαK, JβK and JγK. In the case that γ 6= (α/2)

2
+ (β/2)

2
, subsequent

computations may leak unwanted information. The distance is expressed as the
(squared) distance as shown in Equation (1), computed homomorphically as
shown in Equation (2) where only some of Bob’s inputs are needed in plaintext.

D =x2A + y2A + x2B + y2B − (2xAxB + 2yAyB) (1)

JDK =Jx2A + y2AK⊕ Jx2B + y2BK	 (J2xAK�xB⊕ J2yAK�yB) (2)

Here, ⊕, 	 and � are the homomorphic operations which in the plaintext
space map to +, − and · respectively (see Section 2). Now, by replacing the
information sent by Alice by α, β and γ and observing that Alice can choose α
and β arbitrarily, the expression becomes as in Equation (3):

D = x2B + y2B + γ + αxB + βyB (3)

The effects of the attack are very illustrative in [34, 19, 38]. In these works,
Bob wants to return a boolean b = (r2 > D) indicating whether two principals
are within r from each other. Thus the result given to Alice is the evaluation of
the function r2 > x2B + y2B + αxB + βyB + γ. This is equivalent to the result
of r2 − γ > x2B + y2B + αxB + βyB . Given that Alice knows r, she can encode
it into the manipulated variables thus forcing the evaluation of δ > x2B + y2B +
αxB +βyB +η, with γ = r2− δ−η. By changing α, β and η, Alice can move the
center of the queried area, and by tweaking δ she can dictate the size of the area,
causing unwanted and potentially very serious information leakage (for instance
by querying in arbitrarily located and precise areas such as buildings).

Securing affected protocols Based on the novel asserted multiplication pre-
sented in Section 3, a new structure for the protocols of Hallgren et al. can be
constructed. Similar amendments can easily be constructed in similar form for
other afflicted solutions [12, 34, 33, 38]. Using the system proposed in this paper,
it is possible to send only the encryption of xA and yA in the initial message,
and securing the necessary squaring by means of BetterTimes.

An arithmetic formula which computes the distance directly using xA, yA,
xB and yB is already defined in Equation (1). Now remains only to model this
such that it can be computed by the system presented later in this paper, after
which the protocols can proceed to compute the proximity result as they would
normally.

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2
BK)),

Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2
BK))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2
BK)),

Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2
BK))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2
BK)),

Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2
BK))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2
BK)),

Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2
BK))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2
BK)),

Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2
BK))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2
BK)),

Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2
BK))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J
Ins(SUB,

Ins(ADD,
Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(PMUL, Ins(JxBK), Ins(JxBK))),
Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(PMUL, Ins(JyBK), Ins(JyBK)))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J�2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J�2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

Which in the plaintexts corresponds to:

a =
�
a0 � z0 � y0 · ca

�
· cm · ⇢ (10)

z =z0
�
x0 · by + y0 · bx + bx · by

�
(11)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J
Ins(SUB,

Ins(ADD,
Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(PMUL, Ins(JxBK), Ins(JxBK))),
Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(PMUL, Ins(JyBK), Ins(JyBK)))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J�2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J�2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

Which in the plaintexts corresponds to:

a =
�
a0 � z0 � y0 · ca

�
· cm · ⇢ (10)

z =z0
�
x0 · by + y0 · bx + bx · by

�
(11)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2
BK)),

Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2
BK))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2
BK)),

Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2
BK))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J
Ins(SUB,

Ins(ADD,
Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(PMUL, Ins(JxBK), Ins(JxBK))),
Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(PMUL, Ins(JyBK), Ins(JyBK)))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J�2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J�2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

Which in the plaintexts corresponds to:

a =
�
a0 � z0 � y0 · ca

�
· cm · ⇢ (10)

z =z0
�
x0 · by + y0 · bx + bx · by

�
(11)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2
BK)),

Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2
BK))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

10

as a binary tree rather then in a textual form.”
Could do a picture, or create more explicit syntax in the first place. J
Ins(SUB,

Ins(ADD,
Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(PMUL, Ins(JxBK), Ins(JxBK))),
Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(PMUL, Ins(JyBK), Ins(JyBK)))

),
Ins(ADD,

Ins(MUL, Ins(JxAK), Ins(J2 · xBK)),
Ins(MUL, Ins(JyAK), Ins(J2 · yBK))

),
)

The algorithm can be fed into evaluate, after which all three protocols
can proceed to compute the proximity result as they would normally.

4 Security guarantees

Reviewer 1 @ICITS “... can be reduced to the security of the underlying addi-
tively homomorphic crypto system in a black box way.”
. Can we use this? I saw block-box in a couple of papers, I am not sure
what this means. J

Reviewer 1 @ICITS “The authors claim that their protocol can be arbitrar-
ily composed to achieve outsourced computation of arbitrary arithmetic
circuits. However, they dont present a proof of comparability under any
framework (e.g. UC).”
Perhaps we do not need UC, but we should discuss our position. J

The goal is to show that the result of evaluate as defined above is
secure in the malicious adversary model for Alice, following the standard
SMC security definitions [22]. To this extent, it is shown that for every ad-
versary A attacking the protocol, there exists a simulator S attacking the
ideal functionality and such that their distributions are computationally
indistinguishible.

First consider the calculations from Figure 2:

JaK
�
Ja0K Jz0K�cm Jy0K� (ca · cm)

�
�⇢; (8)

JzK Jz0K
�
Jx0K�by� Jy0K�bx� Jbx · byK

�
(9)

Which in the plaintexts corresponds to:

a =
�
a0 � z0 � y0 · ca

�
· cm · ⇢ (10)

z =z0
�
x0 · by + y0 · bx + bx · by

�
(11)

10

Where m1 2 M, m2 2 M and MU is a uniformly random distribution
of all elements in M \ {0}. For readability, the operations �K , �K , ¬K ,
EK and DK are henceforth not indexed with the public key used in the
operation, however it is assumed that K is available when the respective
function is computed. Further, the symbol is used in the following to
represent addition by a negated term, that is, c1�¬c2 is written as c1 c2

Henceforth, a ciphertext c encrypting a plaintext p is denoted as JpK = c.

3 Generic Arithmetic through assured Multiplication

The end goal is a system which can compute any arithmetic circuit in
the presence of a malicious Alice (who holds the private key), without
leaking any additional information derived from Bob’s inputs outside the
result of g.

TODO @Martin, can you see if we can describe A even more precisely
here? J The proposed system for arbitrary arithmetic circuits is below
presented as a composition of additions, multiplications, and subtractions.
There is one interaction point for the adversary through a probabilistic
polynomial-time procedure A, which is a procedure which may store a
state between each invocation. A is called twice for every multiplication
within the protocol MultiplyAssured . The procedures detailed below en-
able composition of arbitrary arithmetic circuits. Note that all operations
are performed on encrypted data TODO is it really all operations? J.

The general idea is to accumulate any errors caused by misbehaviour
by Alice using attestations aj . If she is dishonest, the corresponding at-
testation aj is a uniformly random variable. Once an arithmetic circuit
has been fully evaluated, and the result obtained as JresultK, Bob instead
returns the value JresultK�P

ai. The returned value is JresultK if and
only if Alice is honest, and a uniformly random ciphertext if and only if
she is dishonest. The introduction of the attestation variables and their
randomness is located in the MultiplyAssuredprotocol.

The basic building block for the system is a recursive data structure
Ins, modeling an instruction. An instruction either contains an operation
and two operands or a scalar, as Ins 2 {[o, l, r]|x}, where l and r are
the left- and right-hand side operands, o the operator, and x the scalar.
The operands are nested instances of Ins. The operator is an enum-
like variable, with four possible values {ADD, SUB, MUL, PMUL}. The
scalar member holds a ciphertext or a plaintext. An instance ins of Ins
is created using either Ins(scalar), or Ins(op, ins1, ins2). An instruction

6

Where m1 2 M, m2 2 M and MU is a uniformly random distribution
of all elements in M \ {0}. For readability, the operations �K , �K , ¬K ,
EK and DK are henceforth not indexed with the public key used in the
operation, however it is assumed that K is available when the respective
function is computed. Further, the symbol is used in the following to
represent addition by a negated term, that is, c1�¬c2 is written as c1 c2

Henceforth, a ciphertext c encrypting a plaintext p is denoted as JpK = c.

3 Generic Arithmetic through assured Multiplication

The end goal is a system which can compute any arithmetic circuit in
the presence of a malicious Alice (who holds the private key), without
leaking any additional information derived from Bob’s inputs outside the
result of g.

TODO @Martin, can you see if we can describe A even more precisely
here? J The proposed system for arbitrary arithmetic circuits is below
presented as a composition of additions, multiplications, and subtractions.
There is one interaction point for the adversary through a probabilistic
polynomial-time procedure A, which is a procedure which may store a
state between each invocation. A is called twice for every multiplication
within the protocol MultiplyAssured . The procedures detailed below en-
able composition of arbitrary arithmetic circuits. Note that all operations
are performed on encrypted data TODO is it really all operations? J.

The general idea is to accumulate any errors caused by misbehaviour
by Alice using attestations aj . If she is dishonest, the corresponding at-
testation aj is a uniformly random variable. Once an arithmetic circuit
has been fully evaluated, and the result obtained as JresultK, Bob instead
returns the value JresultK�P

ai. The returned value is JresultK if and
only if Alice is honest, and a uniformly random ciphertext if and only if
she is dishonest. The introduction of the attestation variables and their
randomness is located in the MultiplyAssuredprotocol.

The basic building block for the system is a recursive data structure
Ins, modeling an instruction. An instruction either contains an operation
and two operands or a scalar, as Ins 2 {[o, l, r]|x}, where l and r are
the left- and right-hand side operands, o the operator, and x the scalar.
The operands are nested instances of Ins. The operator is an enum-
like variable, with four possible values {ADD, SUB, MUL, PMUL}. The
scalar member holds a ciphertext or a plaintext. An instance ins of Ins
is created using either Ins(scalar), or Ins(op, ins1, ins2). An instruction

6

Could do a picture, or create more explicit syntax in the first place. J
Ins(SUB,

Ins(ADD,
Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2

BK)),
Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2

BK))
),
Ins(ADD,

Ins(PMUL, Ins(JxAK), Ins(2 · xB)),
Ins(PMUL, Ins(JyAK), Ins(2 · yB))

),
)

18

Could do a picture, or create more explicit syntax in the first place. J
Ins(SUB,

Ins(ADD,
Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2

BK)),
Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2

BK))
),
Ins(ADD,

Ins(PMUL, Ins(JxAK), Ins(2 · xB)),
Ins(PMUL, Ins(JyAK), Ins(2 · yB))

),
)

18

Could do a picture, or create more explicit syntax in the first place. J
Ins(SUB,

Ins(ADD,
Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2

BK)),
Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2

BK))
),
Ins(ADD,

Ins(PMUL, Ins(JxAK), Ins(2 · xB)),
Ins(PMUL, Ins(JyAK), Ins(2 · yB))

),
)

18

Could do a picture, or create more explicit syntax in the first place. J
Ins(SUB,

Ins(ADD,
Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2

BK)),
Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2

BK))
),
Ins(ADD,

Ins(PMUL, Ins(JxAK), Ins(2 · xB)),
Ins(PMUL, Ins(JyAK), Ins(2 · yB))

),
)

18

Fig. 3. Tree depicting computation of a secured version of the protocol.

The result is an algorithm modeled using the recursive data structure Ins,
which simply is passed to the procedure evaluate by Bob, see Section 3 and
Figure 6. The formula of can be depicted as a tree as in Figure 3. The concrete
instructions (instances of Ins) are spelled out in Appendix A.

2 Background

The solution proposed in this paper makes use of any additively homomorphic
encryption scheme which provides semantic security and where the plaintext
space is a field (for instance such as the DGK Scheme [9]). For a definition of
semantic security see [2].

Additively Homomorphic Encryption Schemes Here and henceforth, k is the
private key belonging to Alice and K and is the corresponding public key. Let the
plaintext spaceM be isomorphic to the field (Zp, ·,+) for some prime number p
and the ciphertext space C such that encryption using public key K is a function
E :M→ C and decryption using a private key k is D : C →M.

The vital homomorphic features which is used later in the paper is an addition
function⊕ : C×C → C, a unary negation function ¬ : C → C, and a multiplication
function� : C ×M→ C.

E(m1)⊕E(m2) =E(m1 +m2) (4)

¬E(m1) =E(−m1) (5)

E(m1)�m2 =E(m1 ·m2) (6)

Note that in a finite field any non-zero element multiplied with a non-zero
random element yields a non-zero uniformly distributed element. Formally:

E(m1)�ρ =

{
E(0) if m1 = 0
E(l) with l ∈MU otherwise

, with ρ ∈MU (7)

where m1 ∈ M, m2 ∈ M and MU is a uniformly random distribution of all
elements in M\ {0}.

Syntax and conventions For readability, the operations⊕,�, ¬, E and D do not
have a key associated to them, we assume they all use the usual k,K pair where
Alice holds k. The 	 symbol is used in the following to represent addition by
a negated term. That is, c1 ⊕¬c2 is written as c1 	 c2. For further brevity, a
ciphertext c encrypting a plaintext p under the public key of Alice is denoted as
JpK.

The protocol description in Figure 5 and Figure 6 is given in the language
pWhile [1]. For the convenience of the reader a few constructs used in the
paper are outlined here, but for details the reader is directed to [1]. a← b means
assigning a value b to a variable a, while a $← [0..n] means assigning a random
value between 0 and n to a.

Security Concepts In the following we briefly recall some fundamental concepts
from SMC that will be useful for the security guarantees discussion of Sect. 4.

Definition 1 (Negligible functions). A function ε : N → R is said to be
negligible if

∀ c ∈ N. ∃ nc ∈ N. ∀n≥nc |ε(n)| ≤ n−c

That is, ε decreases faster than the inverse of any polynomial.

Definition 2 (Indistinguishability).

The two random variables X(n, a) and Y (n, a) (where n is a security pa-
rameter and a represents the inputs to the protocol) are called computationally

indistinguishable and denoted X
c≡ Y if for a probabilistic polynomial time (PPT)

adversary A the following function is negligible:

δ(n) = |Pr[A(X(n, a)) = 1]− Pr[A(Y (n, a)) = 1]|

3 Arithmetic formulas through assured Multiplication

As previously discussed, our goal is a system which can compute any arithmetic
formula in the presence of a malicious Alice (who holds the private key), without
leaking any information derived from Bob’s inputs except the result of g. To show
how to reach this, we first outline the primary building block, BetterTimes.

Alice Bob

BetterT imes(JxK, JyK)
OS(Jx′K, Jy′K, JcK)

OS′(Jx′K, Jy′K, JcK)

Jz′K, Ja′K
Jz′K, Ja′K

JzK, JaK

Fig. 4. Visualization of the attested multiplication protocol

3.1 Privacy-assured Outsourced Multiplication

The core of the solution is a novel outsourced multiplication protocol with pri-
vacy guarantees, BetterTimes. The protocol is visualized in Figure 4 and detailed
in Figure 5. BetterTimes allows Bob to calculate a multiplication by outsourcing
to Alice, while retaining an attestation value with which it is possible to make
sure that Alice can learn no unintended information.

The principals interact once during BetterTimes, where Bob contacts Alice
through the procedure OS (for outsource), defined in Figure 5. As a result of this
interaction, Bob can compute a value JzK which corresponds to the encryption
of the multiplication x · y if Alice is honest and an attestation value a which will
be uniformly random if Alice does not comply with the protocol. Alice can only
deviate from the protocol by using OS′ 6= OS.

BetterTimes contains several random variables, here follows a brief explana-
tion of their names to make the procedures easier to follow. The first two, ca
and cm, serve to construct the challenge c used in the attestation. ca and cm are
an additive and multiplicative component, respectively. The second pair, bx and
by, are used to blind the operands x and y, respectively, when outsourcing the
multiplication. Finally ρ is used to make sure that an attestation which doesn’t
match the supplied product causes a random offset of the final result.

Note that the attestation is only needed when outsourcing a multiplication.
The blinding used in BetterTimes has also been presented and used by, among
others, Kolesnikov et al. [22]. The construction using the challenges ca and cm
yield the following computations in the plaintext, starting with the attestation
value a in Equation (8). Through the procedure OS, Alice replies with (in the
plaintexts) as in Equation (9). Thus, assuming Alice is honest, we see that Equa-
tion (10) must hold.

Proc. BetterT imes(JxK, JyK) :
ca $← {0..p}; cm $← {1..p};
bx $← {0..p}; by $← {0..p};
ρ $← {1..p};
// Blind operands
Jx′K← JxK⊕ JbxK; Jy′K← JyK⊕ JbyK;
// Create challenge
JcK← (Jx′K⊕ JcaK)�cm;
// Outsource multiplication
(Jz′K, Ja′K)← OS(Jx′K, Jy′K, JcK);
// Compute assurance value
JaK← (Ja′K	 Jz′K�cm	 Jy′K� (ca · cm))�ρ;
// Un-blind multiplication
JzK← Jz′K	 (Jx′K�by⊕ Jy′K�bx⊕ Jbx · byK) ;
return (JaK, JzK) ;

Proc. OS(JxK, JyK, JcK) :
return ((E(D(JxK) ·D(JyK),

E(D(JcK) ·D(JyK))) ;

Fig. 5. The attested multiplication protocol

a = (a′ − z′ · cm − y′ · ca · cm) · ρ = (a′ − z′ − y′ · ca) · cm · ρ (8)

a′ = ((x′ + ca) · cm) · y′ = (x′ · y′ + y′ · ca) · cm (9)

a = (x′ · y′ − z′) · cm · ρ (10)

Since by assumption Alice is honest, z′ = x′ · y′ =⇒ a = 0. To see that this
is the case if and only if Alice honest, see Section 4.

3.2 Privacy-assured Arithmetic Formulas

Using BetterTimes as described above, the following discusses how to construct
arbitrary arithmetic formulas. The general idea is to accumulate any errors
caused by misbehavior by Alice using attestations aj , one for each outsourced
multiplication. The other operations require no attestations as they can be cal-
culated locally by Bob. If Alice is dishonest during an outsourced multiplication,
the corresponding attestation aj is a uniformly random variable. Once an arith-
metic formula has been fully evaluated, and the result obtained as JresultK, Bob
instead returns the value JresultK⊕∑ ai. The returned value is JresultK if and
only if Alice is honest, and the encryption of a uniformly random field element
if she is dishonest.

Given an arbitrary arithmetic formula g, the system is designed using a
recursive data structure Ins, modeling an instruction representing g. An in-
struction either contains an operation and two operands or a scalar. Formally,
Ins ∈ {[o, l, r]|x}, where o is the operator, l and r are the left- and right-hand
side operands, and x is a scalar. The operands are nested instances of Ins. The
operator is an enum-like variable, with four possible values {ADD, SUB, MUL,
PMUL}. The scalar member holds a ciphertext or a plaintext. An instance ins

Proc. binOp(ins) :
if isScalar(ins) then :

return (J0K, ins) ;
else :

(a1, x)← binOp(ins[1]);
(a2, y)← binOp(ins[2]);
switch(ins[0]) :

case ADD :
return (a1⊕a2, x⊕y) ;

case SUB :
return (a1⊕a2, x	y) ;

case PMUL :
return (a1⊕a2, x�y) ;

case MUL :
(a3, z)← BetterT imes(x, y)
return (a1⊕a2⊕a3, z) ;

Proc. evaluate(alg) :
(a, result)← binOp(alg);
return result⊕a;

Fig. 6. The procedures to evaluate recursive instructions.

of Ins is created using either Ins(scalar), or Ins(op, ins1, ins2). An instruction
to compute the addition of two encrypted values JxK and JyK thus looks like
as e.g.: Ins(ADD, Ins(JxK), Ins(JyK)). At the start of the protocol, Bob must
collect Alice’s encrypted inputs, and hard-wire them into the algorithm. For an
example, see Appendix A.

The core of the setup is the recursive procedure binOp, defined in Figure 6,
which recursively computes an instruction including any nested instructions.
The binOp return value has the same structure as that of BetterTimes, but the
attestation in the first part of the return value is now an accumulated value over
all nested instructions.

The main function, wrapping all functionality, is the evaluate procedure,
see Figure 6. It takes as parameter an algorithm, which is modeled using an
instruction with nested instructions. Evaluate adds the attestation values and
the result of the instructions, creating the final result – which is the output of
g if and only if Alice is honest. For a visualization of messages exchanged and
actions taken by each principal, see Appendix B.

4 Security guarantees

The goal of this section is to show that the result of evaluate as defined above
is secure in the malicious adversary model for Alice (as depicted in Figure 2),
following standard SMC security definitions. We have already introduced the
fundamental notion of computational indistinguishability in Sect. 2.

Malicious adversary Recall that a malicious Alice in possession of the private
key can attack the privacy of the inputs of Bob by deviating from the origi-
nal protocol (as discussed in Section 1.1 for a proximity calculation protocol).

Intuitively, a malicious Alice will deviate from the protocol every time it fails
to answer to the outsourced multiplication with the expected values z′ and a′

as defined in Figure 5. A deviation would be for example failing to multiply x′

with y′, in order to change the intended jointly computed arithmetic formula.
Formally, we set out to prove the following theorem, which is an instance of the
general definition of [28] where the concrete SMC protocol π will depend on the
arithmetic formula g to be jointly computed. In the following indistinguishability
will be established with respect to the size p of the field Fp (p is thus the security
parameter).

Theorem 1. For a fixed but arbitrary arithmetic formula g(−→x ,−→y) represented
by a recursive instruction ι ∈ Ins, for every adversary A against the protocol π
resulting from evaluate(ι), there exist a simulator S such that:

{idealg,S(s)(−→x ,−→y)} c≡ {realπ,A(s)(
−→x ,−→y)}

where
c≡ denotes computational indistinguishability of distributions.

Here the ideal function gives the distribution of the output of a simulator S
that interacts with an idealized implementation of the functionality g on behalf of
Alice, where both parties give their inputs to a trusted third party that computes
g and gives it back to S. Recall that in our setting Bob receives no output from
the ideal functionality. Therefore, it does not make sense for the adversary to
abort the protocol. Also, this means that fairness guarantees for Bob are out of
scope, so we do not account for abortions of the protocol by the simulator.

On the other hand real stands for the distribution of the output of a real
adversary A against concrete executions of the protocol π. The parameter s
stands for extra information known to the attacker, in this case we assume that
the adversary knows the abstract arithmetic formula g and therefore knows how
many multiplications it contains.

Before proceeding with the proof, we introduce the following Lemma.

Lemma 1. In the outsourced multiplication protocol BetterTimes the attestation
value a is equal to 0 if the protocol is followed, and is indistinguishable from a
randomly distributed non-zero element otherwise.

Proof. First recall the calculations from Figure 5:

JaK← (Ja′K	 Jz′K�cm	 Jy′K� (ca · cm))�ρ; (11)

JzK←Jz′K	 (Jx′K�by⊕ Jy′K�bx⊕ Jbx · byK) (12)

Which in the plaintexts corresponds to:

a = (a′ − (z′ + y′ · ca) · cm) · ρ (13)

z =z′ − (x′ · by + y′ · bx + bx · by) (14)

where a′ and z′ are produced by Alice. It is easy to see that if a′ and z′ are
computed following the protocol, then a = 0 by construction.

To see that if Alice does not comply with the protocol then a is a randomly
distributed non-zero element with very high probability, first note that there are
three cases for non-compliance, either z′ 6= x′ · y′, a′ 6= y′ · c or both. In any case
of non-compliance, the goal of Alice is to construct a′ and z′ such that:

a′ − (z′ + y′ · ca) · cm = 0

since otherwise by construction a will be random. Then it must hold:

a′ = (z′ + y′ · ca) · cm
Note that given (x′ + ca) · cm (which is known by Alice), the probability of

guessing cm is at most ε = 1
2p where p is the size of the field, since multiplication

is a random permutation and ca is unknown and uniformly distributed.
Now by contradiction, lets assume that the probability of Alice of computing

a′ = (z′+ y′ · ca) · cm with z′ 6= x′ · y′ is bigger than ε. If this holds, then she can
also compute:

α = a′ − (x′ + ca) · cm · y′ = (z′ − x′ · y′) · cm

But then she could also compute cm = α(z′−x′ ·y′)−1 with probability bigger
than ε, since by hypothesis z′ 6= x′ · y′ and thus (z′ − x′ · y′) ∈ F∗p is invertible,
which contradicts the fact that the probability of guessing cm is smaller than
ε. ut

Now, for the proof of Theorem 1:

Proof (Theorem 1). Without loss of generality, we assume that ι ∈ Ins has m
instructions of type MUL. We will distinguish two cases.

A follows the protocol It is easy to see that all m intermediate messages sent
from Bob appear uniformly random to Alice (and independent) due to the fact
that they are all of the type ri = (x′, y′, c) where each value is blinded. In the
case when A complies with the protocol, the last message contains the correct
output g, since Bob is an honest party. This implies that the output of A depends
exclusively on r0, . . . , rm uniformly distributed triples and g(−→x ,−→y), so we can
simulate an adversary as:

S := A(r0, . . . , rm, g(−→x ,−→y))

A does not follow the protocol Note that independently of the cheating strategy
of A, all m intermediate messages sent from Bob appear uniformly random to
A since the blinding is done by Bob locally with randomization independent
from A’s inputs. Now, as a consequence of Lemma 1, if A does not follow the
protocol for at least one of the outsourced multiplications, the final message will
be blinded by the accumulated attestation value, which is indistinguishable from
random. Therefore, the last message will contained the encryption of a random
value, denoted rm+1. Therefore we can simulate this in the ideal model as:

S := A(r0, . . . , rm, rm+1)

for pairwise independent and random variables ri. ut

Rings Note that additively homomorphic schemes are commonly defined over
groups where when multiplying a non zero element γ with a uniformly chosen ρ,
the result is not necessarily uniformly distributed, thus potentially affecting the
blinding of g(x, y). For instance, in groups such as Zn for composite n = p · q (as
used by the Paillier [31] encryption scheme) when multiplying a non invertible
element with random ρ, the result stays in the subgroup of non-invertible ele-
ments. In that setting is thus possible to show a counterexample to the theorem
above, which motivates our restriction to constructions over fields.

5 Evaluation

The approach has been implemented in Python using the GMP [13] arithmetic
library. The implementation as been benchmarked to show the impact of using
our approach compared to the more common approach of naive outsourced mul-
tiplications. In the naive approach, Alice is honest-but-curious, and the operands
are therefore only blinded. For this implementation, the DGK [9] cryptosystem
was used.

Table 1. Benchmarks for outsourced multiplication

Plaintext space

Time (in milliseconds)
1024 bits 2048 bits

This
approach

Naive
approach

Extra work
This
approach

Naive
approach

Extra work

22 6.286 4.016 56.52% 29.686 19.458 52.56%
28 6.400 4.017 59.32% 30.052 19.484 54.24%
216 6.432 4.148 55.06% 30.188 19.574 54.22%
224 6.538 4.100 59.46% 30.578 19.801 54.43%

Table 1 shows time in milliseconds for different sizes of plaintexts and keys for
the two cases when outsourced multiplication is performed using BetterTimes,
or naively. The difference between the two approaches is a small factor of about
1.5 for both key sizes, though slightly smaller for the larger keys. The factor is
only marginally increasing as the plaintext space grows from 22 to 224.

The benchmarked time shows only the processing time for each multiplica-
tion, the communication overhead is exactly twice for our approach as compared
to the naive solution.

6 Related Work

There are three current approaches to compute an arbitrary formula in the
two-party setting in the presence of malicious adversaries, Fully Homomorphic
Encryption, Enhanced Garbled Circuits and Zero-knowledge proofs.

FHE is by far the most inefficient approach, and its use is often consid-
ered not feasible due to the heavy resource consumption. We do not consider
FHE a viable alternative to additively homomorphic encryption for practical
applications. Garbled Circuits is an excellent tool for boolean circuits, but has
been found to not perform as well for arithmetic circuits as approaches built on
homomorphic encryption. Zero-knowledge proofs could be used instead of the
proposed approach, but at the cost of more computations and/or round trips.

Zero-knowledge Proofs The technique which most resembles BetterTimes is that
of Zero-Knowledge (ZK) proofs. Any statement in NP can be proven using
generic, though inefficient, ZK (Goldreich et al. [18]). However, to the best of our
knowledge, there is no ad-hoc proof for correct multiplications that directly ap-
plies to the setting of additively homomorphic encryption without significantly
more overhead than the proposed approach, by e.g. introducing more round
trips.

Some protocols in the literature can be used efficiently for proving correct
multiplications, with only one additional round trip. One such is the Chaum-
Pedersen protocol [6], which however is not trivially applicable to an arbitrary
encryption scheme. Another interesting solution was introduced by Damg̊ard and
Jurik [10], but which is constructed specifically for the Damg̊ard-Jurik cryptosys-
tem.

Secure Multi-party Computations There are two main categories for private re-
mote computations: Homomorphic Encryption and Garbled Circuits. Through
recent research they are both near practical applicability (see [24, 20, 25] and [5,
20, 15]). However, which of the two approaches to choose is typically application-
dependent [26, 23]. Our approach brings state-of-the-art SMC solutions based on
additively homomorphic cryptographic systems forward by protecting against
malicious adversaries when outsourcing multiplications, while remaining strongly
competitive to the efficient though less secure approaches which currently are
popular examples.

There are several works that combine the use of an additively homomorphic
scheme with secret sharing, to compute multiplications securely using threshold
encryption. This line of work stems from the SMC schemes developed by Cramer
et al. [8]. Note that such approaches are secure only against malicious minorities,
and are not directly applicable in scenarios with only two parties.

To compare against GC-solutions which can compute arbitrary formulas,
some experiments using FastGC, a Garbled Circuit framework by Huang et
al. [20] were conducted. Any arithmetic circuit can be expressed as a binary
circuit, and vice versa[14]. In this framework for arbitrary computations, integer
multiplication of 24-bit numbers needed 332 ms to finish, approximately 5078%

slower than BetterTimes. Note however that FastGC is only secure in the honest-
but-curious model, and thus not as secure as the approach presented in this
paper. Further work exists in the direction of efficiently providing security against
malicious adversaries by the authors of FastGC [21], however where one bit
of the input is leaked. Moreover, work on optimizing garbled-circuits in the
honest-but-curious model also exists, e.g. recently [29], but so far without enough
speedup that it can compare to additively homomorphic encryption for privately
computing arithmetic formulas.

7 Conclusions

We have presented a protocol for outsourcing multiplications and have shown
how to use it construct a system for computation of arbitrary arithmetic formulas
with strong privacy guarantees. We have shown that the construction is secure
in the malicious adversary model and that the overhead of using the approach
is a small constant factor.

The need for such a protocol is justified by the format attacks we have un-
veiled in known protocols, and presented a concrete exploit targeting [38] where
we can alter the format of a message and gain more than the intended amount
of location information. We have made a case for using a more realistic attacker
model and identified examples from the literature which are vulnerable to this
stronger attacker, while also showing how to amend such vulnerabilities. More-
over, we make our implementation fully available to the community.

As future work we plan to investigate the non-trivial task of applying closely
related primitives (such as Zero-Knowledge constructions [6] and Threshold En-
cryption [8]) to achieve the same security guarantees, and benchmark those so-
lutions to compare them to BetterTimes.

Acknowledgments Thanks are due to Allen Au for the useful comments. This
work was funded by the European Community under the ProSecuToR project
and the Swedish research agencies SSF and VR.

References

1. G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal certification of code-based
cryptographic proofs. In Z. Shao and B. C. Pierce, editors, Proceedings of the 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages 90–101. ACM, 2009.

2. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In B. Preneel, editor, EUROCRYPT,
volume 1807 of Lecture Notes in Computer Science, pages 259–274. Springer, 2000.

3. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations. In S. Jajodia and J. López, editors, Computer Security
- ESORICS 2008, 13th European Symposium on Research in Computer Security,
Málaga, Spain, October 6-8, 2008. Proceedings, volume 5283 of Lecture Notes in
Computer Science, pages 192–206. Springer, 2008.

4. P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure multiparty computation goes live. In R. Dingle-
dine and P. Golle, editors, Financial Cryptography, volume 5628 of Lecture Notes
in Computer Science, pages 325–343. Springer, 2009.

5. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryp-
tion without bootstrapping. Electronic Colloquium on Computational Complexity
(ECCC), 18:111, 2011.

6. D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell,
editor, Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings,
volume 740 of Lecture Notes in Computer Science, pages 89–105. Springer, 1992.

7. D. Coldewey. “Girls Around Me” Creeper App Just Might Get People To Pay
Attention To Privacy Settings. TechCrunch, March 2012.

8. R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from thresh-
old homomorphic encryption. In B. Pfitzmann, editor, Advances in Cryptology -
EUROCRYPT 2001, International Conference on the Theory and Application of
Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume
2045 of Lecture Notes in Computer Science, pages 280–299. Springer, 2001.

9. I. Damg̊ard, M. Geisler, and M. Krøigaard. Efficient and secure comparison for on-
line auctions. In J. Pieprzyk, H. Ghodosi, and E. Dawson, editors, ACISP, volume
4586 of Lecture Notes in Computer Science, pages 416–430. Springer, 2007.

10. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applica-
tions of paillier’s probabilistic public-key system. In K. Kim, editor, Public Key
Cryptography, 4th International Workshop on Practice and Theory in Public Key
Cryptography, PKC 2001, Cheju Island, Korea, February 13-15, 2001, Proceedings,
volume 1992 of Lecture Notes in Computer Science, pages 119–136. Springer, 2001.

11. R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-generation
onion router. In USENIX Security Symposium, pages 303–320. USENIX, 2004.

12. Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft.
Privacy-preserving face recognition. In I. Goldberg and M. J. Atallah, editors,
Privacy Enhancing Technologies, volume 5672 of Lecture Notes in Computer Sci-
ence, pages 235–253. Springer, 2009.

13. Free Software Foundation. The gnu multiple precision arithmetic library. http:

//gmplib.org/, 1991-2013.
14. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,

editor, STOC, pages 169–178. ACM, 2009.
15. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with

errors: Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti
and J. A. Garay, editors, CRYPTO (1), volume 8042 of Lecture Notes in Computer
Science, pages 75–92. Springer, 2013.

16. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci., 60(3):592–629, 2000.

17. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

18. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their va-
lidity or all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690–
728, July 1991.

19. P. Hallgren, M. Ochoa, and A. Sabelfeld. InnerCircle: A Parallelizable Decentral-
ized Privacy-Preserving Location Proximity Protocol. In International Conference
on Privacy, Security and Trust (PST), July 2015.

20. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation
using garbled circuits. In USENIX Security Symposium. USENIX Association,
2011.

21. Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-tocols: Strengthening semi-honest
protocols with dual execution. In IEEE Symposium on Security and Privacy,
SP 2012, 21-23 May 2012, San Francisco, California, USA, pages 272–284. IEEE
Computer Society, 2012.

22. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. From dust to dawn: Practically
efficient two-party secure function evaluation protocols and their modular design.
IACR Cryptology ePrint Archive, 2010:79, 2010.

23. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. A systematic approach to prac-
tically efficient general two-party secure function evaluation protocols and their
modular design. Journal of Computer Security, 21(2):283–315, 2013.

24. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor gates and
applications. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP (2), volume 5126 of Lecture
Notes in Computer Science, pages 486–498. Springer, 2008.

25. B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure computation with mali-
cious adversaries. In T. Kohno, editor, Proceedings of the 21th USENIX Security
Symposium, Bellevue, WA, USA, August 8-10, 2012, pages 285–300. USENIX As-
sociation, 2012.

26. R. L. Lagendijk, Z. Erkin, and M. Barni. Encrypted signal processing for pri-
vacy protection: Conveying the utility of homomorphic encryption and multiparty
computation. IEEE Signal Process. Mag., 30(1):82–105, 2013.

27. M. Li, H. Zhu, Z. Gao, S. Chen, L. Yu, S. Hu, and K. Ren. All your location are
belong to us: breaking mobile social networks for automated user location tracking.
In MobiHoc, pages 43–52, 2014.

28. Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving
data mining. IACR Cryptology ePrint Archive, 2008:197, 2008.

29. C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. Oblivm: A programming
framework for secure computation. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 359–376. IEEE
Computer Society, 2015.

30. A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh. Lo-
cation privacy via private proximity testing. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2011, San Diego, California, USA,
6th February - 9th February 2011. The Internet Society, 2011.

31. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International Con-
ference on the Theory and Application of Cryptographic Techniques, Prague, Czech
Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer
Science, pages 223–238. Springer, 1999.

32. I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis. Where’s
Wally? Precise User Discovery Attacks in Location Proximity Services. In ACM
Conference on Computer and Communications Security, Oct. 2015.

33. A. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face
recognition. In D. Lee and S. Hong, editors, Information, Security and Cryptology
- ICISC 2009, 12th International Conference, Seoul, Korea, December 2-4, 2009,
Revised Selected Papers, volume 5984 of Lecture Notes in Computer Science, pages
229–244. Springer, 2009.

34. J. Sedenka and P. Gasti. Privacy-preserving distance computation and proximity
testing on earth, done right. In S. Moriai, T. Jaeger, and K. Sakurai, editors, 9th
ACM Symposium on Information, Computer and Communications Security, ASIA
CCS ’14, Kyoto, Japan - June 03 - 06, 2014, pages 99–110. ACM, 2014.

35. A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science,
5(3-4):207–388, 2010.

36. M. Veytsman. How I was able to track the location of any Tinder user, February
2014. Web resource: http://blog.includesecurity.com/.

37. M. Wachs, M. Schanzenbach, and C. Grothoff. On the feasibility of a censorship
resistant decentralized name system. In J. L. Danger, M. Debbabi, J. Marion,
J. Garćıa-Alfaro, and A. N. Zincir-Heywood, editors, Foundations and Practice of
Security - 6th International Symposium, FPS 2013, La Rochelle, France, October
21-22, 2013, Revised Selected Papers, volume 8352 of Lecture Notes in Computer
Science, pages 19–30. Springer, 2013.

38. G. Zhong, I. Goldberg, and U. Hengartner. Louis, lester and pierre: Three protocols
for location privacy. In N. Borisov and P. Golle, editors, Privacy Enhancing Tech-
nologies, 7th International Symposium, PET 2007 Ottawa, Canada, June 20-22,
2007, Revised Selected Papers, volume 4776 of Lecture Notes in Computer Science,
pages 62–76. Springer, 2007.

A A concrete instantiation to secure Hallgren et al.

To make the protocol from Hallgren et al., and other afflicted solutions, secure
against format attacks from Alice, the distance can be computed directly on the
coordinates instead of using several correlated values. The secured algorithm
could be modeled as follows:

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2BK)),
Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2BK))

),
Ins(ADD,

Ins(PMUL, Ins(JxAK), Ins(2 · xB)),
Ins(PMUL, Ins(JyAK), Ins(2 · yB))

),
)

B Visualization of privacy-preserving arithmetic formula

Figure 7 depicts the system for privacy-preserving arithmetic formulas presented
in this paper, during an execution where Alice is honest. Alice is the initiating
party, and starts by sending her inputs to Bob. Bob then hardwires both is
and Alice’s inputs into a instruction of nested operations, forming a tree like
in Figure 3. Depending on g, Bob computes any local operations and executes

BetterTimes as necessary, with as many iterations as necessary. Finally, he com-
putes the ciphertext JresultK. Since Alice by assumption is honest, JresultK will
hold the output of g (and would hold the encryption of a random element in
Fp if Alice was dishonest). BetterTimes is simplified here, for a more complete
visualization see Figure 4.

Alice Bob

Ja1K, Ja2K, . . . , JanK
evaluate()

JxK⊕ JyK
Local Additions — R,OLocal Additions — R,O

JxK	 JyK
Local Subtractions — R,OLocal Subtractions — R,O

JxK�y
Local Multiplications — R,OLocal Multiplications — R,O

JxK, JyK

JzK, JaK

BetterTimes — OBetterTimes — O

Arithmetic Formula — RArithmetic Formula — R

JresultK
g(Ja1K, Ja2K, . . . , JanK, b1, b2, . . . , bn)

Fig. 7. Visualization of actions by each principal, where R and O means repeatable
and optional, respectively.

