
A Perspective on
Information-Flow Control

Daniel HEDIN a and Andrei SABELFELD a

a Chalmers University of Technology, Gothenburg, Sweden

Abstract. Information-flow control tracks how information propagates through the
program during execution to make sure that the program handles the information
securely. Secure information flow is comprised of two related aspects: informa-
tion confidentiality and information integrity — intuitively pertaining to the read-
ing and writing of the information. The prevailing basic semantic notion of se-
cure information flow is noninterference, demanding independence of public (or,
in the case of integrity, trusted) output from secret (or, in the case of integrity,
untrusted) input. This document gives an account of the state-of-the-art in confi-
dentiality and integrity policies and their enforcement with a systematic formal-
ization of four dominant formulations of noninterference: termination-insensitive,
termination-sensitive, progress-insensitive, and progress-sensitive, cast in the set-
ting of two minimal while languages.

1. Information-flow control

The control of how information is propagated by computing systems is vital for informa-
tion security. Historically, access control has been the main means of preventing infor-
mation from being disseminated. As the name indicates, access control verifies that the
program’s access rights at the point of access, and either grants or denies the program ac-
cess. Once the program has been given access to information no further effort is made to
make sure that the program handles the accessed information correctly. However, access
control is inadequate in many situations, since it forces an all-or-nothing choice of either
fully trusting the program not to leak/compromise information or not allowing access to
this information altogether.

Information-flow control tracks how information propagates through the program
during execution to make sure that the program handles the information securely. The
research on secure information flow goes back to the early 70’s [35,39], primarily in
the context of military systems. Secure information flow is comprised of two related
aspects: information confidentiality and information integrity — intuitively pertaining
to the reading and writing of the information. The prevailing basic semantic notion of
secure information flow is noninterference [46], demanding independence of public (or,
in the case of integrity, trusted) output from secret (or, in the case of integrity, untrusted)
input. As the field has matured, numerous variations of noninterference [98], as well as
other semantic characterizations have been explored [103].

Recently, information integrity has received attention [55,57,19,4]. Integrity has fre-
quently been seen as the dual of confidentiality [18], though it can be argued that this
description might ignore other important facets [19].



One important aspect of integrity lies in its interaction with declassification — in-
tentional lowering of security classification of information — in order to prevent the
attacker from controlling what information is declassified [77,78].

Below we give an account of the state-of-the-art in confidentiality and integrity poli-
cies and enforcement, with a detailed exposition of various formulations of noninterfer-
ence.

1.1. Attacker model

Information-flow security aims at protecting confidentiality and integrity of information.
Traditionally, the attacker model is program-centric; the attacker is assumed to have ac-
cess to the program source code and to public observable behavior, e.g., public outputs.
In addition, it is assumed that the attacker is in control of the public input of the programs.

With the rise of the web as a more general application platform the old program-
centric attacker model is no longer adequate. A web application is often a mashup (pro-
grammableweb.com) of information and services from different distributed sources. In
the web setting, a notion of web attacker [15] is of interest. The model is built on the as-
sumption of an honest user who runs a trusted browser on a trusted machine and that the
attacker is an owner of malicious web sites that the user might be accessing. This implies
that the web attacker is unable to mount man-in-the-middle attacks. This is in contrast to
the the classical Dolev-Yao attacker where the attacker is able to overhear, intercept and
modify messages on the network. Instead, the network capabilities of the web attacker
are restricted to the standard network protocols of communication with servers in the
domain of attacker’s control.

1.2. Policy languages for confidentiality and integrity

Both confidentiality and integrity policies can be staged into two parts. The policy lan-
guage describing the possible classifications of information and how the different classi-
fications relate, i.e., how information from one classification may flow with respect to the
other and the semantic characterization describing the meaning of the policy language
in terms of the semantics of the programming language. The former is predominantly
described using a lattice model [38,52] for information classification. Historically, the
latter has typically been a variant of noninterference.

Deviating from policy language based on a lattice of security levels is the work by
Myers and Liskov on the Decentralized Label Model (DLM) [76]. The DLM shares the
lattice structure of classifications, but differs in the intentional interpretation of security
levels. The security labels of the DLM track information ownership and read rights — a
label {A : B} expresses that A owns the data and that B is given read rights to the data.

More fundamentally different is the policy language of FlowLocks [22,23,24]. The
core idea is to associate data with a set of clauses of the form Σ→ A. The set Σ states the
circumstances under which Amay view the data.

1.3. Outline and sources

This document is laid out as follows. Section 2 investigates noninterference for confi-
dentiality. In particular, we detail and compare four flavors of noninterference in terms
of two small while languages, and discuss their relative merits. The section ends with a



discussion on declassification, and the different dimensions of declassification: what is
declassified, who is able to declassify, where the declassification occurs and when the
declassification takes place. Section 3 presents different facets of integrity: integrity as
a dual to confidentiality and integrity as program correctness. The section ends with a
discussion on endorsement (the dual to declassification, when integrity is taken to be
the dual of confidentiality), and the corresponding interpretation of the four dimensions.
Finally, Section 4 discusses different methods for enforcing secure information flow. In
particular, dynamic, static and hybrid analyses are contrasted.

Given the tutorial nature of this document, we borrow some material and exposition
from a few sources [103,100,64,19,117]. Yet the systematic formalization of noninterfer-
ence policies is presented here for the first time. Because this document is more a tutorial
than a survey, we discuss a selection of the area’s highlights rather than an exhaustive
account of all work on the topic.

2. Confidentiality

An important aspect of information-flow security is the preservation of confidentiality
of information. In this section we will explore security policies for confidentiality with
focus on noninterference. There are various flavors of noninterference offering different
levels of assurance depending on the power of the attacker and the features of the under-
lying programming language. The different variants occur in the literature under a variety
of different, sometimes overlapping names. We describe the landscape of noninterfer-
ence definitions according to the following four dominant axes: termination-insensitive
vs. termination-sensitive noninterference and progress-insensitive vs. progress-sensitive
noninterference.

2.1. Noninterference

A program may during execution — advertently or inadvertently — leak information.
To ensure secure information flow we need to consider end-to-end security, which in-
volves not only preventing unauthorized access to information, but also tracking how
information is flowing through the program during execution.

2.1.1. Sources of information flow

There are two principal sources of information flow in programs. Explicit flows corre-
spond to the direct copying of secrets — when the value of one variable is copied into
another. The following code fragment copies the value of a secret (or high) variable h
into a public (or low) variable l:

l = h

Implicit flows [39] may arise when the control flow is affected by secret values;
any differences in side effects under secret control encode information about the con-
trol. Consider, for instance, the following small example where the value of h is copied
indirectly into l:

l = false; if h then l = true else skip



As foreshadowed earlier, the dominant semantic characterization of secure informa-
tion flow is in terms of noninterference. The term noninterference was coined by Goguen
and Meseguer [46] but goes back to the notion of strong dependency introduced by Co-
hen [34]. Informally, a program satisfies noninterference if the values of its public out-
puts do not depend on the values of its secret inputs. Formulated in terms of program
executions, if the program is run with different secret inputs, while holding the public
values fixed, the public output must not change.

2.1.2. General noninterference

We will show how all four variants of noninterference mentioned above — termination-
insensitive, termination-sensitive, progress-insensitive and progress-sensitive noninter-
ference — can be seen as instances of a general schema, which closely follows the intu-
ition that the public output should be independent of the secret input.

Let c range over the commands of some language, and let 〈c, E〉 ⇓ o be an evaluation
relation read c executes in the environment E producing some observable behavior o.
Assume further a low equivalence relation, ∼, on environments that captures that the
public parts of the environments are equal, and an indistinguishability relation, ', on
behavior that captures the notion of attacker indistinguishability, i.e., if o1 ' o2 then
the attacker is not able to distinguish between o1 and o2. In the following, we will use
observable behavior of a program and the behavior of a program interchangeably.

A program c satisfies noninterference, written NI(c), if, for any two low equivalent
environments, a successful run of the program in one of the environments with behavior
o1 guarantees a successful run in the other environment with behavior some o2 such that
the behaviors are indistinguishable.

NI(c) = ∀E1, E2 . E1 ∼ E2 ∧ 〈c, E1〉 ⇓ o1 =⇒ ∃o2 . 〈c, E2〉 ⇓ o2 ∧ o1 ' o2

If we chose the produced behavior to be the public output of the program and chose the
indistinguishability relation to be equality, NI(c) captures the intuition of noninterference
above precisely, i.e., that the public output should remain equal when run with different
secret input while retaining the public input equal.

Below we show how the three parts — 1) low equivalence, 2) the evaluation re-
lation (in particular what is considerer observable behavior), and 3) observational in-
distinguishability — of this general schema can be concretely instantiated with re-
spect to two different languages with different semantics (one big-step and one small-
step) to achieve the four notions of noninterference: termination-insensitive, termination-
sensitive, progress-insensitive, and progress-sensitive noninterference.

2.2. Termination-insensitive vs. termination-sensitive noninterference

To be concrete, we investigate termination-insensitive and termination-sensitive nonin-
terference in terms of a minimal batch-job while language. A batch-job program is a
program that starts in an environment and produces a new environment or diverges. The
attacker model of the batch-job setting is that the attacker is able to inspect the public
part of the final environment.



〈skip, E〉 ⇒ E
〈c1, E1〉 ⇒ E2 〈c2, E2〉 ⇒ E3

〈c1; c2, E1〉 ⇒ E3

〈e, E1〉 ⇒ true 〈c1, E1〉 ⇒ E2

〈if e then c1 else c2, E1〉 ⇒ E2

〈e, E1〉 ⇒ false 〈c2, E1〉 ⇒ E2

〈if e then c1 else c2, E1〉 ⇒ E2

〈e, E1〉 ⇒ true 〈c, E1〉 ⇒ E2 〈while e do c done, E2〉 ⇒ E3

〈while e do c done, E1〉 ⇒ E3

〈e, E〉 ⇒ false

〈while e do c done, E〉 ⇒ E
〈e, E〉 ⇒ v

〈x := e, E〉 ⇒ E[x 7→ v]

Table 1. Big-step Semantics

2.2.1. Batch-job while language

Assume a standard expression, ranged over by e, language consisting of integer and
boolean literals, variables, and the standard boolean and arithmetic operators and let
the commands, ranged over by c, be built up by skip, sequence, conditional branches,
iteration, and assignment.

e ::= b | n | x | e1 ? e2
c ::= skip | c1; c2 | if e then c1 else c2 | while e do c done | x := e

Semantics The batch-job semantics is defined as a big-step operational semantics. Let
the values, ranged over by v, be the integers and the booleans, and let the variable en-
vironments, ranged over by γ, be maps from variable names to values. Let the environ-
ments, ranged over by E, consist of a single variable environment — the section on
progress insensitive and progress sensitive noninterference below extends the environ-
ments to model input and output. Let E[x] denote looking up variable x in the variable
environment of E, and E[x 7→ v] denote updating variable x with value v in E resulting
in a new environment such that E[x 7→ v][x] = v, and E[x 7→ v][y] = E[y] for y , x.

Assume an evaluation relation for expressions, 〈e, E〉 ⇒ v, read the expression e
executes in the environment E yielding the value v, defined structurally as follows.

〈n, E〉 ⇒ n 〈b, E〉 ⇒ b
E[x] = v
〈x, E〉 ⇒ v

〈e1, E〉 ⇒ v1 〈e2, E〉 ⇒ v2

〈e1 ? e2, E〉 ⇒ v1 ? v2

Similarly we define an evaluation relation for commands, 〈c, E1〉 ⇒ E2, read the com-
mand c executes in environment E1 and terminates yielding the new environment E2.
The big-step semantics is defined in Table 1.

2.2.2. Security policy language for the batch-job while language

Frequently, the policy language for confidentiality is in terms of a lattice of security levels
[38,52], where the lattice describes how information may flow between the different
levels. For instance, a typical security lattice — and the lattice used in this document
— is the two-point lattice described by H > L, which introduces two classifications of
information — either secret or public — and expresses that secret information must never
be considered public, but accepts flows the other way.

Let σ ::= H | L be security labels corresponding to the security levels and let Γ

range over variable security maps, maps from variable names to security labels. The



intuition is that variables mapped to L should only contain public information, whereas
variables mapped to H may contain secrets. In the following, we refer the former as
public variables and the latter as secret variables.

In the examples below it is understood that h is a secret variable, and that l is a public
variable, i.e., the examples should be read with respect to the following variable security
map Γ = {h 7→ H, l 7→ L}.

2.2.3. Low equivalence

Based on the variable maps we can define low equivalence of environments structurally
by demanding that the parts labeled public by the map are equal. Technically, low equiv-
alence is formulated as a family of relations indexed by variable security maps.

σ = L =⇒ v1 = v2

v1 ∼σ v2

∀x ∈ dom(Γ) . γ1(x) ∼Γ(x) γ2(x)
γ1 ∼Γ γ2

Two values are low equivalent with respect to public is they are equal; any two values are
low equivalent with respect to secret. Two variable environments are low equivalent with
respect to a variable map Γ if for all variables in Γ the respective values in the variable
environments are low equivalent with respect to the label given by Γ. Thus, two low
equivalent variable environments are guaranteed to contain the variables labeled by the
variable map, with the additional property that all variables labeled public will contain
equal values. Finally, two environments are low equivalent with respect to a variable map
if their variable environments are low equivalent with respect to the variabel map.

2.2.4. Termination-insensitive vs. termination-sensitive noninterference

In the batch-job setting it is reasonable to assume an attacker model where the attacker is
able to inspect the public parts of the final environment, as indicated by a variable map
that maps the variables the attacker can inspect to L.

By letting the final environments of programs be the observable behavior, and let
the basis of the indistinguishable relation be low equivalence, we capture the intuition
that the public parts of the final environments be independent on secrets. In addition, we
let the divergence of programs be observable behavior. Making divergence observable
behavior is immediate, and does not require explicit modeling of divergence, since, in
the semantics of Table 1, failure to execute implies divergence, i.e. a program c diverges
in E1 if ¬∃E2 . 〈c, E1〉 ⇒ E2.

By letting divergence be an observable behavior, the difference between termina-
tion insensitivity and termination sensitivity can be expressed by the indistinguishability
relation as shown below.

Let the observable behavior, ranged over by o, be defined by the environments
E together with the symbol �, which indicates divergence. The evaluation relation for
termination-insensitive and termination-sensitive noninterference can be formulated as
follows.

〈c, E1〉 ⇒ E2

〈c1, E1〉 ⇓ E2

¬∃E2 . 〈c, E1〉 ⇒ E2

〈c1, E1〉 ⇓ �

If the program terminates the final environment is the observable behavior; otherwise,
the program diverges.



Termination-Insensitive noninterference (TINI) TINI [116,98] demands the following
property. For two low equivalent environments, if the program terminates in both pro-
ducing two new environments, then the environments must be low equivalent. As indi-
cated above, we capture this intuition by letting divergence be indistinguishable from
everything else, and two environments be indistinguishable if they are low equivalent.

Two observations are termination-insensitive (TI) indistinguishable if 1) they are
low equivalent environments, or 2) either is divergence.

� 'T I o2 o1 'T I �

E1 ∼Γ E2

E1 'T I E2

A program c satisfies termination-insensitive noninterference if pairwise execution in
low equivalent environments results in TI-indistinguishable behavior, i.e., low equivalent
environments in the case both programs terminate.

T INI(c) = ∀E1, E2 . E1 ∼Γ E2 ∧ 〈c, E1〉 ⇓ o1 =⇒ ∃o2 . 〈c, E2〉 ⇓ o2 ∧ o1 'T I o2

This way, if either of the programs diverges, nothing is demanded, whereas if both pro-
grams terminate, we demand that the resulting environments are low equivalent, which
corresponds exactly to the description of TINI above.

For batch-job programs this is a perfectly adequate formulation of security; it does
not offer complete information security, but is limited to leaking of 1 bit per program
run. Consider the following program that loops if the public value l is equal to the secret
value h.

if (l == h) then while (true) do skip done

From the termination behavior of the program an observer can deduce whether l == h or
not corresponding to 1 bit of information.

Termination-sensitive noninterference (TSNI) TSNI [113,98] demands the following
property. For two low equivalent environments, if the program terminates in one, then
the program must terminate in the other as well and the resulting environments must be
low equivalent.

To capture TSNI it suffices to change the indistinguishability relation of TINI in
such a way that divergence is not considered indistinguishable from normal termination.
Two environments are termination-sensitive (TS) indistinguishable if 1) they are low
equivalent environments, or 2) they are both divergence.

� 'TS �

E1 ∼Γ E2

E1 'TS E2

A program c satisfies termination-insensitive noninterference if pairwise execution in
low equivalent environments results in TS-indistinguishable behavior, i.e., both terminate
with low equivalent environments, or both diverge.

TS NI(c) = ∀E1, E2 . E1 ∼Γ E2 ∧ 〈c, E1〉 ⇓ o1 =⇒ ∃o2 . 〈c, E2〉 ⇓ o2 ∧ o1 'TS o2



2.2.5. Classical formulation of batch-job noninterference

Rather than the formulation above, the classical formulation of batch-job noninterfer-
ence is in terms of the preservation of low equivalence under execution. For any two
low equivalent environments, if the program terminates in both environments then the
resulting environments should be low equivalent.

T INIΓ(c) = ∀E11, E12 . E11 ∼Γ E12 ∧〈c, E11〉 ⇒ E21∧〈c, E12〉 ⇒ E22 =⇒ E21 ∼Γ E22

A minor change to the security definition makes it termination sensitive. Instead of de-
manding that if the program terminates in two low equivalent environments then the re-
sulting environments are low equivalent, we demand that for any low equivalent environ-
ments if the program terminates in one, the it must terminate in the other as well, and the
resulting environments should be low equivalent.

TS NIΓ(c) = ∀E11, E12 . E11 ∼Γ E12 ∧

〈c, E11〉 ⇒ E21 =⇒ ∃E22 . 〈c, E12〉 ⇒ E22 ∧ E21 ∼Γ E22

It is easy to verify that these definitions are equivalent to the formulations in the previous
section.

2.3. From termination to progress

TINI and TSNI are not adequate for programs where the attacker can inspect intermediate
steps of the computation, e.g., in the presence of input or output. For such languages TINI
and TSNI open up for the entire secret to be leaked instantly. The reason for this is that
leaks can be hidden by non-terminating computations. Consider the following program,
which is trivially secure with respect to both TINI and TSNI, since it does not terminate
for any inputs.

output secret on public_channel; while true do skip done

Hence, there is need to explicitly model intermediate observations in security definitions
for interactive programs. This brings us to progress-insensitive and progress-sensitive
noninterference.

2.4. Progress-insensitive vs. progress-sensitive noninterference

We investigate progress-insensitive and progress-sensitive noninterference in terms of a
minimal while language with input and output. The assumption is that the attacker is able
to inspect the public output of the program.

2.5. While language with input and output

To model input and output, two commands are added to the language: inσ x which reads
a value and stores it in x, and outσ x which outputs the value of x. The input and output
commands are indexed by security labels. The intention is that inL models sources of



〈skip, E〉 → E

〈c1, E1〉
v̇
→ 〈c′1, E2〉

〈c1; c2, E1〉
v̇
→ 〈c′1; c2, E2〉

〈c1, E1〉
v̇
→ E2

〈c1; c2, E1〉
v̇
→ 〈c2, E2〉

〈e, E〉 ⇒ true

〈if e then c1 else c2, E〉 → 〈c1, E〉

〈e, E〉 ⇒ false

〈if e then c1 else c2, E〉 → 〈c2, E〉

〈e, E〉 ⇒ true

〈while e do c done, E〉 → 〈c; while e do c done, E〉

〈e, E〉 ⇒ false

〈while e do c done, E〉 → E

〈e, E〉 ⇒ v

〈x := e, E〉 → E[x 7→ v]

ι1 ↓σ (v, ι2)

〈inσ x, (γ, ι1, ω)〉 → (γ[x 7→ v], ι2, ω)

γ[x] = v (v, ω1) ↑L ω2

〈outL x, (γ, ι, ω1)〉
v
→ (γ, ι, ω2)

γ[x] = v (v, ω1) ↑H ω2

〈outH x, (γ, ι, ω1)〉 → (γ, ι, ω2)

Table 2. Small-step semantics

public information, whereas inH models sources of secret information. Similarly, outL

models public sinks, i.e., sinks that the attacker can inspect, and outH models secret sinks.

c ::= skip | c1; c2 | if e then c1 else c2 | while e do c done | x := e | inσ x | outσ x

Semantics The semantics is defined as a small-step operational semantics, in order to
allow for the differentiation between infinitely producing programs and silent divergence.
In addition, computation steps that produce attacker observable behavior are decorated
with a representation of that behavior — in this case the values output using outL.

The environments, E, are extended to triples, (γ, ι, ω), where ι, and ω range over
pairs of lists of values (one for each security level) representing the available input to the
program, and the output of the program, respectively.

Let the pair 〈c, E〉 of a command and an environment be an evaluation context, and

let v̇ be a decoration, denoting v or nothing. A terminating transition, 〈c, E1〉
v̇
→ E2,

represents evaluation that terminates in one step and is read the command c terminates
in one step when evaluated in environment E1 yielding environment E2 and the possi-

ble observable behavior v̇. A non-terminating transition, 〈c1, E1〉
v̇
→ 〈c2, E2〉, represents

evaluation that does not terminate in one step of evaluation and is read the evaluation
context 〈c1, E1〉 yields in one step of evaluation the new evaluation context 〈c2, E2〉 and
the possible observable behavior v̇. The small-step semantics is defined in Table 2, where
(v · vL, vH) ↓L (v, (vL, vH)), (vL, v · vH) ↓H (v, (vL, vH)), (v, (vL, vH)) ↑L (v · vL, vH), and
(v, (vL, vH)) ↑H (vL, v · vH) provide shorthand notation for public and secret input and
output.

2.5.1. Low equivalence

For values and variable environments the low equivalence relation remains the same as
defined for TINI and TSNI above; for environments it must be extended to deal with the
input and output lists.



σ = L =⇒ v1 = v2

v1 ∼σ v2

∀x ∈ dom(Γ) . γ1(x) ∼Γ(x) γ2(x)
γ1 ∼Γ γ2

(v, v1) ∼ (v, v2)
γ1 ∼Γ γ2 ι1 ∼ ι2 ω1 ∼ ω2

(γ1, ι1, ω1) ∼Γ (γ2, ι2, ω2)

Two environments are low equivalent given with respect to a variable map if the variable
environments are low equivalent with respect to the variable map and the input and output
are low equivalent, i.e., that the public input and output lists are equal.

Technically, we could remove the demand that the public output lists be equal, since,
in the setting below, it is implied by the demand of equality of public observables.

2.5.2. Progress-insensitive vs. progress-sensitive noninterference

Let R range over execution contexts, 〈c, E〉, and environments, E. We define 〈c, E〉
v̇
⇒ R

to capture evaluation until observable output or termination with or without observable
output.

〈c1, E1〉 →
∗ 〈c2, E2〉 〈c2, E2〉

v
→ R

〈c1, E1〉
v
⇒ R

〈c, E1〉 →
∗ E2

〈c, E1〉 ⇒ E2

Let vs range over lists of values with · denoting the cons operation for lists. We extend
the above relation to capture evaluation with zero or more observables as follows.

〈c, E〉 ⇒ 〈c, E〉

〈c1, E1〉
v
⇒ 〈c2, E2〉 〈c1, E1〉

vs
⇒ 〈c2, E2〉

〈c1, E1〉
v·vs
⇒ 〈c2, E2〉

Note that ¬∃R, vs . 〈c, E〉
vs
⇒ R implies that 〈c, E〉 diverges silently. With this we can

formulate the evaluation relation for progress-insensitive and progress-sensitive nonin-
terference.

〈c, E〉
vs
⇒ R

〈c, E〉 ⇓ vs

〈c1, E1〉
vs
⇒ 〈c2, E2〉 ¬∃R, vs′ . 〈c2, E2〉

vs′
⇒ R

〈c, E〉 ⇓ vs · �

Progress-insensitive noninterference (PINI) PINI [3,7,21] demands the following
property. For two environments with equal public values, if the program can execute one
step producing some observable behavior, then either the program in the other environ-
ment diverges silently or produces the same observable behavior. Further, the rest of the
two respective executions preserves this stepwise property. This implies that the observ-
able behavior of the program in different low equivalent environments is independent of
secrets up to silent divergence.

In the following, let o range over list of values where the last element is allowed to be
� to indicate silent divergence. Two lists of observable behavior are progress-insensitive
(PI) indistinguishable if 1) they are equal, or 2) one is a divergence terminated prefix of
the other.

o1 'PI o2
def
= o1 = o2 ∨ (∃o, o′ . o1 = o · � ∧ o2 = o · o′) ∨ (∃o, o′ . o2 = o · � ∧ o1 = o · o′)



A program satisfies progress-insensitive noninterference if pairwise execution in low
equivalent environments results in PI-indistinguishable behavior, i.e., both executions
produce the same output, or both produce the same output up to the point where one
diverges.

PINI(c) = ∀E1, E2 . E1 ∼Γ E2 ∧ 〈c, E1〉 ⇓ o1 =⇒ ∃o2 . 〈c, E2〉 ⇓ o2 ∧ o1 'PI o2

Even though progress-insensitive noninterference closes the possibility of leaking
the secret in linear time in the size of the secret it is susceptible to the possibility of enu-
meration attacks, where the entire secret is leaked to the attacker. Consider the following
program

i := 0;
while i < maxNat do
out_L i;
if (i == secret) then (while true do skip done)

else skip;
i:=i+1

done

Askarov et al. [3] show in the sequential setting that, for uniformly distributed secrets,
the advantage of a polynomial-time attacker to learn the secret is negligible in the size
of the secret, making PINI appropriate for large uniformly distributed secrets such as
cryptographic keys. It is important to note, however, that concurrency empowers such
attacks to leak the secret in linear time in the size of the secret.

Progress-sensitive noninterference (PSNI) Similar to above, demanding that if one ex-
ecution makes progress, i.e., takes one step of execution with observable behavior, then
so does the other in addition to the above demands on stepwise matching of the public
observables. This corresponds to progress sensitive noninterference, since it forces the
progress of the program to be independent of secrets. PSNI subsumes TSNI for interac-
tive programs, since nontermination is formally equal to the absence of progress.

Two sequences of observations are progress-sensitive (PS) indistinguishable if they
are equal, i.e., we remove the possibility of one being a divergence terminate prefix of
the other, thus demanding that if one diverges then so must the other.

o1 ' o2
def
= o1 = o2

A program satisfies progress-sensitive noninterference if pairwise execution in low-
equivalent environments results in PS-indistinguishable behavior, i.e., they both produce
the same sequence of output, before possibly both diverging.

PINI(c) = ∀E1, E2 . E1 ∼Γ E2 ∧ 〈c, E1〉 ⇓ o1 =⇒ ∃o2 . 〈c, E2〉 ⇓ o2 ∧ o1 'PS o2

2.6. A note on compositionality and flow sensitivity

Secure composition allows for building secure components by combining secure com-
ponents, and is important for scalable security analysis regardless of the goal of the anal-



ysis, i.e., confidentiality, integrity or otherwise. Compositionality has been an important
topic in the context of programming languages [68,104,75,101,97,71] — for instance,
type systems are inherently compositional in that programs (statements and expression)
are typed by typing the subparts.

However, compositionality is typically not an intrinsic property of security defini-
tions. Rather, compositional security properties that imply the weaker non-compositional
security property are frequently formulated to enable proofs of correctness of composi-
tional enforcement methods.

2.6.1. Compositionality of TINI and TSNI

The formulations of TINI and TSNI above are compositional under the same variable
map with respect to sequential composition. We exemplify with the classical formulation
of the former.

T INIΓ(c1) ∧ T INIΓ(c2) =⇒ T INIΓ(c1; c2)

This fact is easy to see in the classical formulation, which is stated as the preservation of
low equivalence of the environments under execution. We must show that T INIΓ(c1; c2),
i.e

T INIΓ(c1; c2) = ∀E11, E12 . E11 ∼Γ E12 ∧

〈c1; c2, E11〉 ⇒ E21 ∧ 〈c1; c2, E12〉 ⇒ E22 =⇒ E21 ∼Γ E22

Thus, assume that (1) E11 ∼Γ E12, (2) 〈c1; c2, E11〉 ⇒ E21, and (3) 〈c1; c2, E12〉 ⇒ E22.
From (2) and (3) we have that there exists E′11, and E′12 such that (4) 〈c1, E11〉 ⇒ E′11,
(5) 〈c2, E′11〉 ⇒ E21, (6) 〈c1, E12〉 ⇒ E′12, and (7) 〈c2, E′12〉 ⇒ E22. From T INIΓ(c1)
together with (1), (4) and (6) we get that (8) E′11 ∼Γ E′12. Now, T INIΓ(c2) together with
(8), (5) and (7) allows us to conclude.

On the other hand, the formulation of PINI and PSNI are not compositional, since
they offer no guarantees on the produced environments, only on the observable behavior.
However, they can both be strengthened to become compositional by making the final en-
vironments observable behavior and demanding that they are low analogous to TINI and
TSNI. In the following, let CompPINI, and CompPSNI denote compositional versions of
PINI and PSNI obtained in this manner, respectively.

2.6.2. Flow sensitivity

Compositionality may come at the price of classifying some secure programs as insecure
(from the perspective of attacker observations). Consider, for instance, the following
program.

out_L l; l := h

While it is secure with respect to PINI and PSNI, i.e. with respect to attacker observa-
tions, when run on its own, it is insecure with respect to CompPINI and CompPSNI,
since the resulting environments are not low equivalent with respect to the initial vari-



able map. Indeed, the program cannot be securely composed with all other programs —
for instance, sequential composition of the program with itself would result in an inse-
cure program — it is secure on its own and can be securely composed with any program
considering l as secret.

A common way of weakening the demands while retaining compositionality is by
allowing the initial and final variable maps to differ. This is known as flow sensitivity,
since it allows the security map to change with the control flow. For brevity, we exemplify
flow sensitivity in terms of the classical formulation of TINI; flow-sensitive weakenings
of CompPINI and CompPSNI can be formed in a similar way.

T INIΓ1,Γ2 (c) = ∀E11, E12 . E11 ∼Γ1 E12 ∧

〈c, E11〉 ⇒ E21 ∧ 〈c, E12〉 ⇒ E22 =⇒ ∧E21 ∼Γ2 E22

With this formulation of TSNI the above example is secure with respect to the initial
variable map Γ1 = {l 7→ L, h 7→ H}, and the final variable map Γ2 = {l 7→ H, h 7→ H}.
This map also allows for sequential composition with any command secure with respect
to Γ2 as initial variable map. In general, the following holds for sequential composition.

T INIΓ1,Γ2 (c1) ∧ T INIΓ2,Γ3 (c2) =⇒ T INIΓ1,Γ3 (c1; c2)

The correctness argument is analogous to the one above.
Further strengthenings of the compositionality result can be obtained. For instance,

consider not demanding equality on the intermediate variable map, but rather variable
map inclusion ⊇,

Γ1 ⊇ Γ2 ⇐⇒ ∀x ∈ dom(Γ2) . Γ1(x) = Γ2(x)

where Γ1 ⊇ Γ2 should be read as Γ1 includes Γ2 in the sense that environments that are
low equivalent with respect to Γ1, are also low equivalent with respect to Γ2, i.e.,

E1 ∼Γ1 E2 ∧ Γ1 ⊇ Γ2 =⇒ E1 ∼Γ2 E2

With this we can formulate that, for the sequence c1; c2, the demands by c2 are
included in guarantees of c1, expressed as follows.

T INIΓ1,Γ2 (c1) ∧ Γ2 ⊇ Γ3 ∧ T INIΓ3,Γ4 (c2) =⇒ T INIΓ1,Γ4 (c1; c2)

Again, the correctness argument is analogous.

2.7. Information flow and concurrency

Concurrency poses an important challenge for information flow security. In addition to
forcing progress sensitivity, parallel composition of secure programs is not necessarily
secure. One reason for this is internal timing channels. Consider the following program
in which both sub-programs satisfies noninterference, but when run in parallel they leak
the secret h to the public variable l.



if h {sleep(100)}; l = 1 | sleep(50); l = 0

Smith and Volpano [108] investigate a notion of possibilistic noninterference. Pos-
sibilistic noninterference states that the possible low outputs of the program should not
vary as high inputs are varied. However, possibilistic noninterference is only meaningful
for a very restricted set of probabilistic schedulers. Sabelfeld and Sands [104] consider a
form of probabilistic noninterference for a language with dynamic thread creation. They
show how to define security for a wide class of schedulers, not excluding deterministic
schedulers. Mantel and Sabelfeld [70] investigate a timing-sensitive security property for
multithreaded programs, later extended to the distributed setting [71]. Sabelfeld [96] con-
siders bisimulation based formulations of confidentiality for multi-threaded programs,
focusing on formulations for timing- and probability-sensitive confidentiality. Sabelfeld
derives relationships between scheduler specific, scheduler independent and strong con-
fidentiality. Roscoe [87] investigates confidentiality properties in a process-calculus set-
ting. A notion low-view determinism is presented, which demands that abstracted pub-
licly observable results are deterministic and, thus, independent of secret inputs.

2.8. Information flow and interactive/reactive programs

Clark and Hunt investigate noninterference for interactive programs [31] and find that
for deterministic interactive programs attacker strategies — functions that produce new
input based on the previous communication history [81] — do not have to be employed.
Castellani et al. [74] study noninterferences for a class of synchronous reactive programs,
introducing a concept of instant to handle the absence of signals. Bohannon et al. [21]
explore a spectrum of different definitions of secure information flow for reactive pro-
grams, in the setting of an event driven sequential language. In continued work, Bohan-
non and Pierce [20] formalize the core functionality of a Web browser in a model called
Featherweight Firefox.

2.9. Erasure

The notion of information erasure is related to information flow. For instance, crypto-
graphic devices might be required to erase secret keys once they are done using them, or
an online retailer might be obliged to erase customer data after the transaction is done.

Chong and Myers [27] investigate the semantics of policies for information erasure
in the setting of a non-interactive language, but without giving a method of enforcing
the policies. Hunt and Sands [50] show that erasure policies can be encoded as flow-
sensitive noninterference in the setting of an interactive language, and propose a type
system enforcing the policies. Del Tedesco et al. [36] show how ideas from dynamic taint
analysis can be used to track sensitive data through a program and provide on-demand
erasure.

2.10. Declassification

For many applications a complete separation between secret and public is too restrictive.
Consider for instance the login screen of an operating system — when a user tries logging
in the response of the system gives away information about the password. If access is
refused we know that the attempted password was not the correct one. Even though



this gives away partial information about the password, we deem this secure. Another
important class of examples is data aggregation. Consider for instance a program that
computes average salaries — even though each individual salary may be secret we might
want to be able to publish the average.

Clearly, we need a way to declassify information, i.e., lowering the security clas-
sification of selected information. Sabelfeld and Sands [102] identify four different di-
mensions of declassification, what is declassified, who is able to declassify, where the
declassification occurs and when the declassification takes place.

what As illustrated above, it is important to be able to specify what information is de-
classified, e.g., the four last digits of a credit card number, the average salary.
Policies for partial release must guarantee an upper limit on what information is
released.

who Another important aspect is who controls the release of information. This pertains
to information integrity — if the attacker is able to control what information is
declassified he might be able to mount a laundry attack, i.e., unintended leaks
hidden by the systems declassification policy.

where Sabelfeld and Sands identify two principal forms of release locality. Related to
the what and when dimension, the where dimension is the most immediate inter-
pretation of where in terms of code locality. The other form is level locality, de-
scribing where information may flow relative to the security levels of the system.

when The temporal dimension of declassification pertains to when information is
leaked. Sabelfeld and Sands identify three classes of temporal release classifica-
tions, Time-complexity based, Probabilistic and Relative. The two former are re-
lated. Time-complexity based states that information will not be released until, at
the earliest, after a certain time; typically as an asymptotic notion relative to the
size of the secret. With probabilistic considerations one can talk about the prob-
ability of a leak being very small. The class of relative temporal policies are on
the other hand related to program correctness. It controls when declassification
can occur relative to other (possibly abstract) events in the system. For example:
“downgrading of a software key may occur after confirmation of payment has been
received.”

Works that address the what dimension Lowe [61] investigates a quantifying informa-
tion flow, where the capacity of channels is formulated in terms of the number of differ-
ent behaviors of a high level user that can be distinguished by a low level user. Clark et
al. [33,32] investigate an information theoretic approach to bounding the interference in a
while language with iteration.Sabelfeld and Myers [99] introduce the notion of syntactic
escape hatches to delimit the amount of information released. An escape hatch formed
by an expression and, semantically, the information allowed to be released is character-
ized by the expression interpreted in the initial memory. Li and Zdancewic [58] present
the concept of relaxed noninterference that mainly addresses the what dimension and,
to a lesser extent, the where dimension. Giacobazzi and Mastroeni [44,45] introduce ab-
stract noninterference, a parameterization of noninterference over an abstract interpreta-
tion modeling the power of the attacker. Di Pierro et al. [41] consider a quantitative ap-
proach to information flow and declassification in PCCP. Information leakage is allowed
via a notion of process similarity, and the quantitative measure is related to the number
of statistical tests needed to distinguish between process behaviors.



Works that address the who dimension The who dimension of declassification has been
investigated in the context of robustness [78,4], which controls on whose behalf declassi-
fication may occur. Lux and Mantel [62] investigate a bisimulation-based condition that
helps expressing who (or, more precisely, what input channels) may affect declassifica-
tion. Myers and Liskov [76] model ownership in the decentralized label model, where
declassification is considered safe if it is performed by the owner of the information.

Works that address the where dimension Matos and Boudol [73] introduce the concept
of non-disclosure in the setting of concurrent ML. They introduce a local flow policy that
allows the computation in the scope of such a declaration to implement information flow
according to the local policy. Mantel and Sands [72] investigate the use of intransitive
noninterference to control where in the classification lattice declassification is allowed
— in combination with a syntactic construction for declassification they address both
aspects of where. Intransitive noninterference [88,85,89,67] allows for policies where
information may flow indirectly between two security levels, but not directly.

Works that address the when dimension Time-complexity based information declassi-
fication prevents the information from being released until, at the earliest, after a certain
time.

Volpano and Smith [115] introduce the notion of relative secrecy. The idea is that the
attacker cannot learn the secret in polynomial time. DiPierro et al. [41] consider a purely
probabilistic notion of approximate noninterference, where a system is considered secure
if the chance of an attacker making distinctions is smaller than some constant ε. Chong
and Myers [26] investigate security policies, expressed in a logic form, which address
when information is released. Recently, Magazinius et al. [64] have proposed support
for decentralized policies with possible mutual distrust for tracking information flow in
mashups. Their model of composite delimited release guarantees that a piece of data may
be released only if all origins that own the data agree that it can be released.

Multidimensional declassification Mantel and Reinhard [69] address the what and
where dimensions of declassification. Their security condition for where combines both
code locality and where in the lattice — the latter in similar spirit to intransitive noninter-
ference. In addition they provide two different escape hatch based security conditions for
what. Askarov and Sabelfeld [6] consider the what and where dimension of information
release policies. They present a system based on delimited release which achieves the
where dimension by using accumulated escape hatches. Banerjee et al. [11] investigate
an expressive policy language for when, what and where policies. In addition, Baner-
jee et al. [13] offer an abstraction based declassification that represents the declassifica-
tion policy as an abstraction of the secret inputs. A program that satisfies the policy is
guaranteed not to expose distinctions within a partition.

Knowledge-based formulations Recently a knowledge-based formulation has gained
popularity, e.g., [42,5,24,22,23,7]. The attacker knowledge given a certain observable
behavior is the set of all initial memories that produces the same observable behavior.

Knowledge-based information-flow security supersedes noninterference; both PINI
and PSNI have natural interpretations in terms of knowledge. By defining progress
knowledge — the knowledge the attacker gains by observing progress — PINI can be for-
mulated by demanding that the knowledge of the attacker minus the progress knowledge
remains constant under execution. Even easier is PSNI which is achieved by demanding



that attacker knowledge does not change during execution. The original work [5] focused
on the where dimension of declassification but has late been extended to control the what
dimension by applying the ideas of delimited release.

3. Integrity

Where confidentiality is a relatively well understood concept, what is meant by integrity
is still partly unexplored. It is clear that there are different facets of integrity. Birgirsson
et al. [19] identify different facets of integrity.

As Dual to Confidentiality Integrity in the area of information flow often means that
trusted output is independent from untrusted input [18]. This is dual to the classical
models of confidentiality, where public output is required to be independent from
secret input.

As Generalized Invariants and Program Correctness Integrity in the area of access
control [105] is concerned with improper/unauthorized data modification. The fo-
cus is on preventing data modification operations, when no modification rights are
granted to a given principal. Integrity in the context of fault-tolerant systems is
concerned with preservation of actual data. For example, a desired property for a
file transfer protocol on a lossy channel is that the integrity of a transmitted file
is preserved, i.e., the information at both ends of communication must be iden-
tical (which can be enforced by detecting and repairing possible file corruption).
Integrity in the context of databases often means preservation of some important
invariants, such as consistency of data and uniqueness of database keys. The list
of different interpretations of integrity can be continued, including rather general
notions as integrity as expectation of data quality and integrity as guarantee of ac-
curate data and meaningful data [105,83]. Seeking to clarify the area of integrity
policies, Li et al. [55] suggest a classification for data integrity policies into in-
formation flow, data invariant and program correctness policies. In a similar spirit,
Guttman [47] identifies causality and invariance policies as two major types of data
integrity policies. Furthermore, Birgirsson et al. argue that integrity via invariance
is itself multi-faceted. For example, the literature (cf. [55]) features formalizations
of invariance as predicate preservation (predicate invariance), which is not directly
compatible with invariance of memory values (value invariance). Sabelfeld and
Myers [98] observe that integrity has an important difference from confidentiality:
a computing system can damage integrity without any external interaction, sim-
ply by computing data incorrectly. Thus, strong enforcement of integrity requires
proving program correctness. Birgirsson et al. generalize the notion of invariants,
so that it can describe predicate and value invariance, as well as program correct-
ness.

Dimensions of confidentiality-dual integrity There are many situations where we might
wish to upgrade the integrity levels of data. This is known as endorsement. When viewed
as dual to confidentiality, the dimensions for declassification can also be applied to en-
dorsement:



What The what dimension can be studied with essentially the same semantics and thus
deals with what parts of information are endorsed. Interestingly, Li and Zdancewic
[57] in a study of the dualization of relaxed noninterference [56], discuss some
non-dual aspects of policies, stemming from whether the code itself is trusted or
not.

When Temporal endorsement is common in certain scenarios. For example, if you
choose to trust some low integrity data only after a digital signature has been ver-
ified. Other, complexity-theoretic notions are perhaps less natural in the integrity
setting. Although one is able to say that, e.g., “low integrity data remains untrusted
in any polynomial time computation”, it is less obvious how this kind of property
might be useful.

Where Both policy locality and code locality are natural for endorsement. For policy
locality we may wish to ensure that untrusted data only becomes trusted by fol-
lowing a particular path (i.e., intransitive noninterference). From the point of view
of code locality it is again natural to require that endorsement only takes place at
the corresponding points in the program.

Who The who dimension is interesting because the notion already embodies a form
of integrity. Robust declassification, for example, argues that low integrity data
should not effect the decision of what gets declassified [77]. For integrity we might
thus define a notion of robust endorsement to mean that the decision to endorse
data should not itself be influenced by low integrity data. This approach can benefit
from a non-dual treatment of endorsement. Because the potentially dangerous op-
erations like declassification and endorsement are privileged operations, it might
make sense to apply similar, not dual constrains.

Li et al. [55] discuss unifying policies for confidentiality and integrity in the context
of the DLM. They offer a comparison between different models: the binary model, the
write model, the trust model and the distrust model. Zdancewic and Myers [118] inves-
tigate the interaction between declassification and integrity. They introduce the concept
of robust declassification, classification that cannot be influenced by the attacker. The
demand is that declassification is only done in high integrity context. This prevents an
attacker from laundering information. Myers et al. [77], present a generalization to ro-
bust declassification to include endorsement, thus giving a better account for the interac-
tion between confidentiality and integrity. Askarov and Myers [4] introduce a semantic
framework for declassification and endorsement. They investigate the power the attacker
gains from declassification and introduce novel security conditions for checked endorse-
ments and robust integrity. Chong and Myers [28] discuss an extension of robustness to
systems with mutual distrust and show how the DLM can be used to characterize the
power of an arbitrary attacker.

4. Information-flow enforcement

Historically, dynamic techniques are the pioneers of the area of information flow
(e.g., [43]). They prevent explicit flows (as in public = secret) in program runs. In ad-
dition, they also address implicit flows (as in if secret then public = 1) by enforcing a
simple invariant of no public side effects in secret contexts, i.e., in the branches of con-



ditionals and loops with secret guards. These techniques, however, come without sound-
ness arguments.

In their seminal work, Denning and Denning [39] suggest a static alternative for
information-flow analysis. They argue that static analysis removes runtime overhead for
security checks. This analysis prevents both explicit and implicit flows statically. The
invariant of no public side effects in secret context is ensured by a syntactic check: no
assignments to public variables are allowed in secret contexts. Denning and Denning do
not discuss soundness, but Volpano et al. [116] show soundness by proving termination-
insensitive noninterference, when they cast Denning and Denning’s analysis as a security
type system.

Later work is dominated by the use of static techniques for information flow [98].
The common wisdom appears to be that dynamic approaches are not a good match for se-
curity since monitoring a single path misses public side effects that could have happened
in other paths.

In this light, it might be surprising that it is possible for purely dynamic enforcement
to be as secure as Denning-style static analysis [100]. The key factor is termination.
Denning-style static analysis are typically progress-insensitive (i.e., they ignore leaks
via the termination behavior of the program). Thus, they satisfy termination-insensitive
noninterference [116], which ignores the channel for signals via the termination of the
program. If the monitor, by stopping the underlying program, can introduce nontermina-
tion, this feature can be used for collapsing information channels into the progress chan-
nel. The implicit-flow channel is one example: stopping the execution at an attempt of a
public assignment in secret context is in fact sufficient for termination-sensitive security.

Progress-sensitive noninterference is attractive, but rather difficult to guarantee. Typ-
ically, strong restrictions (such as no loops with secret guards [113]) are enforced. Pro-
gram errors exacerbate the problem. Even in languages like Agda [80], where it is im-
possible to write nonterminating programs, it is possible to write programs that terminate
abnormally: for example, with stack overflow. Generally, abnormal termination due to
resource exhaustion, is a channel for leaks that can be hard to counter.

The information flow tools Jif [79], FlowCaml [107] and the SPARK Examiner
[14,25] avoid these problems by targeting termination-insensitive noninterference. The
price is that the attacker may leak secrets by brute-force attacks via the termination chan-
nel. But there is formal assurance that these are the only possible attacks. Askarov et
al. [3] show that if a program satisfies progress-insensitive noninterference, then the at-
tacker may not learn the secret in polynomial running time in the size of the secret; and,
for uniformly-distributed secrets, the probability of guessing the secret in polynomial
running time is negligible. For small secrets this might not be satisfactory, calling for
treating large and small secrets differently [37].

4.1. Static vs. dynamic enforcement

Static techniques have benefits of reducing runtime overhead and dynamic techniques
have the benefits of permissiveness, which is of particular importance in dynamic appli-
cations, where freshly generated code is evaluated. This setting is becoming increasingly
more important with the growing use of web browsers as application platforms, since the
client side language, JavaScript, is a highly dynamic language.

First, JavaScript is dynamically typed, meaning that type checking is performed at
runtime. This allows for a more liberal type system, at the expense of runtime overhead.



This also entails that programs may not exhibit static types, which forces dynamic or
hybrid analyses.

Second, JavaScript allows the redefinition of functions, methods and prototypes —
both user defined and built-in. This presents major challenges for information-flow secu-
rity, since programs can be included by other programs. Thus, a program cannot assume
to run in the standard environment — it may have been included by another program that
has modified the standard environment, or it might include other programs that must be
prohibited from doing so.

Third, the dynamic code evaluation feature of JavaScript provides a particular chal-
lenge. Dynamic code evaluation evaluates a given string using the eval function. Static
analysis is bound to be conservative when analyzing programs that include eval, since
the strings to be evaluated are typically not known at the time of analysis.

For example, it is not possible to statically determine if a program using eval is
secure without being too conservative, since the parameter of eval might not be known
at the time of analysis or might be subject to change. Moreover, in a heterogeneous
environment as the Web, it is also difficult to assume properties about third-party scripts.

Another example to illustrate permissiveness of dynamic techniques is the program
if l < 0 then l = 1 else l = h, where l and h are variables that store public and
secret values, respectively. Static analysis, as traditional type systems [116], rejects this
program as insecure due to the presence of the explicit flow l = h. In contrast, some
dynamic techniques are able to accept executions of the program when l < 0 holds [100].
On the security side, however, both Denning-style analysis and dynamic enforcement
have the same guarantees: progress-insensitive noninterference [100].

However, if progress-sensitive noninterference is desired, the absence of side effects
of traces not taken becomes, indeed, hard to guarantee dynamically.

4.2. Static analysis

The predominant static technique for enforcing secure information flow statically is the
use of type systems, e.g. [82,116,76,48,108,17,114,1,104,119,12,86].

In a security-typed language, the types of program variables and expressions are
augmented with annotations that specify policies on the use of the typed data. Denning-
style analyses prohibit implicit information flows by keeping track of the security level
of the control, frequently known as the security level of the program counter and disal-
lowing public side effects in secret contexts. This enforcement scheme is know as flow-
insensitive, since it does not allow the security classification of program locations to
vary.

In contrast, Hunt and Sands [49] investigate flow-sensitive type systems for a small
while language. The type systems are parameterized over the choice of flow lattice for
which the powerset lattice of program variables is shown to provide a principal typ-
ing. In addition Hunt and Sands show how to transform any flow-sensitive program into
an equivalent program typable in a flow-insensitive type system. The concept of flow-
sensitive information-flow security goes back to Banerjee and Amtoft [2], with the en-
forcement phrased as a Hoare logic rather than a type system.

Statically enforcing confidentiality With respect to practical implementations of
information-flow security, Denning-style analyses form the core for information flow
tools Jif [79], FlowCaml [107] and the SPARK Examiner [14,25]. Askarov and Sabelfeld



[8] present a novel treatment of secure exception handling. They allow secret exceptions
to be uncaught given that they always are caught or always uncaught, and show that
this is sound with respect to termination insensitive noninterference. Broberg and Sands
investigate expressive dynamic information-flow policies — flow-locks — and present a
type system for an ML like language [22], subsequently recast using a knowledge based
definition [23] and extended to a role-based multi-principal settings [24].

Smith and Volpano [108] show how a strengthening of the type system for sequential
programs [116] by disallowing looping on secrets is sufficient for ensuring security under
purely nondeterministic schedulers. Sabelfeld [96] proposes a type based analysis for
multi-threaded programs in the presence of synchronization. The type system excludes
the possibility of synchronizing on secret data — directly or indirectly — in branches
of high conditionals. Russo and Sabelfeld [91] present a type system that guarantees
security for a wide class of schedulers for languages with dynamic threads. To achieve
this the language is augmented with a pair of commands hide and unhide that move
threads between different queues. By disallowing low threads to be scheduled while there
are pending high threads internal timing leaks are prevented.

Castellani et al. [74] present a type system guaranteeing noninterference in a sim-
ple imperative reactive language. Bohannon et al. [21] explore different definitions of
noninterference for reactive programs and define a simple reactive language with an
information-flow type system to demonstrate the viability of the approach.

Matos and Boudol [73] introduce a local flow policy that allows the computation in
the scope of such to implement information flow according to the local policy and design
a type and effect system that enforces this policy. In addition by particularizing the case
where the alternatives in a conditional branching both terminate Matos and Boudol show
that typing of terminations leaks can be improved. Sabelfeld and Myers [99] introduce
the notion of syntactic escape hatches to delimit the amount of information released. An
escape hatch is formed by an expression and, semantically, the information allowed to be
released is characterized by the expression interpreted in the initial memory. Sabelfeld
and Myers present a type system for enforcing delimited release. The type system tracks
the variables taking part in declassification and demands that those variables are not the
target of update before the declassification statement. Askarov and Sabelfeld [6] extend
the notion of delimited release with code locality and present a type system that enforces
the new notion by disallowing declassification in secret contexts. Li and Zdancewic [58]
present the concept of relaxed noninterference that mainly addresses the what dimension
and to a lesser extent the where dimension enforced via a type system. The soundness
theorem of the type system ensures that, if a program is well-typed, then there exists a
proof of the security goal for the program. Mantel and Reinhard [69] present a security
type system to enforce security with respect to the what and where dimensions of de-
classification, where their security condition for where combines both code locality and
lattice locality.

Statically enforcing integrity Myers et al. [77] present a generalization to robust de-
classification to include endorsement, thus giving a better account for the interaction be-
tween confidentiality and integrity and present a type based enforcement. The enforce-
ment is based on only high-integrity data being allowed to be declassified and that de-
classification might only occur in a high-integrity context. Chong and Myers [28] dis-
cuss an extension of robustness to systems with mutual distrust and present a type based
enforcement. The type system relies on the fact that both the decision to declassify and



the information to be declassified are high-integrity and that the decision to endorse in-
formation must be of high integrity. Tripp et al. [109] present TAJ, a tool for scalable
static taint analysis for Web applications. Being an industrial tool aimed at being able to
handle existing complex Web applications no correctness argument is given.

4.3. Dynamic and hybrid analysis

One alternative is purely dynamic enforcement (e.g., [43,112,7,100]), that performs dy-
namic security checks similar to the ones enforced by static analysis. For example, an as-
signment is allowed by the monitor if the level of the assigned variable is high whenever
there is a high variable on the right-hand side of the assignment (tracking explicit flows)
or in case the assignment appears inside of a high conditional or while loop (tracking
implicit flows). This mechanism dynamically keeps a simple invariant of no assignment
to low variables in high context.

As previously noted it has been shown (e.g., [9,100,7,93]) that purely dynamic mon-
itors can enforce the same security property as Denning-style static analysis: termination-
insensitive noninterference. In addition, Sabelfeld and Russo [100] prove that sound
purely dynamic information-flow enforcement is more permissive than static analysis in
the flow-insensitive case (where variables are assigned security levels at the beginning of
the execution and this assignment is kept unchanged during the execution).

Purely dynamic enforcement Shroff et al. [106] develop a monitor to track explicit and
implicit information flow. The monitor is parameterized over a set of dependencies to
track implicit flow. This set can either be computed statically or dynamically at the ex-
pense of possibly interfering runs while the monitor collects all dependencies. Russo and
Sabelfeld [93] investigate securing timeout instructions in Web applications against in-
ternal timing leaks. They propose a monitor using a generalization of security contexts
to include time. This way code snippets to be run at time t are run in the associated se-
curity context. Askarov and Sabelfeld [7] investigate dynamic tracking of policies for
information release, or declassification, for a language with dynamic code evaluation
and communication primitives. Russo and Sabelfeld [93] show how to secure programs
with timeout instructions using execution monitoring. Furthermore, Russo et al. [94] in-
vestigate monitoring information flow in dynamic tree structures. Austin and Flanagan
[9] present a dynamic analysis for secure information flow. They apply a no-sensitive-
upgrade strategy — on an attempt to assign to a public variable in secret context, the
public variable is marked as one that cannot be branched on later in the execution —
to avoid the pitfalls of flow-sensitivity and dynamic enforcement. Austin and Flanagan
[10] relaxe the no-sensitive-upgrade strategy to a permissive upgrade, where variables
are allowed to be upgraded before the secret context, in which they are assigned to.

Hybrid enforcement Fusion of static and dynamic techniques is becoming increasingly
popular [54,106,53,111]. These techniques offer benefits of increasing permissiveness
because more information on the actual execution trace is available at runtime, while
keeping runtime overhead moderate as some static information can be gathered before
the execution. Russo and Sabelfeld [92] show formal underpinnings of the tradeoff be-
tween dynamism and permissiveness of flow-sensitive monitors. They also present a gen-
eral framework for hybrid monitors that is parametric in the monitor’s enforcement ac-
tions (blocking, outputting default values, and suppressing events). LeGuernic et al. [54]



consider a dynamic automaton based monitor for confidentiality. The monitor is a hy-
brid between dynamic and static enforcement; during execution abstractions of events
are sent to the monitor which uses the abstraction to prohibit both explicit and implicit
flows. LeGuernic [53] develops a hybrid monitor for concurrent programs. The monitor
uses abstractions of program events, e.g., the modified variables of non-taken branches,
the set of variables that must be locked for bodies of secret conditionals. Ligatti et al. [60]
present a general framework for security policies that can be enforced by monitoring and
modifying programs at runtime. They introduce edit automata that enable monitors to
stop, suppress, and modify the behavior of programs. Chugh et al. [30] present a hybrid
approach to handling dynamic execution. Their approach is staged into two stages. First,
the information-flow properties for the available code is examined and a set of residual
syntactic checks to be applied to the dynamic code is generated. Once the dynamic code
is to be evaluated the residual checks are applied.

Code transformation In addition to execution monitors there exists a line of work that
statically or dynamically filters, rewrites or wraps the code to enforce different properties
[63]. Devriese and Piessens [40] consider enforcing noninterference by running multiple
runs of the program, one for each security level. The idea is that you first perform the
public computation, replacing any secret values with dummies. Thereafter you run the
secret computation under certain restrictions. For a secure program this preserves the
semantics of the original program and enforces noninterference. Phung et al. [84] con-
sider an approach to modifying JavaScript code to become self protecting. The method is
lightweight in the sense that it does not rely on browser modifications or runtime rewrit-
ing. Magazinius et al. [65] improve on [84] by removing a number of identified vulner-
abilities and making the policy language more accessible to the policy writer. Chudnov
and Naumann [29] presents a provably correct inlining of a dynamic flow-sensitive mon-
itor. They prove security and transparency by connecting the inlined monitor with a VM
monitor, known to have the desired security properties. Magazinius et al. [66] investigate
on-the-fly inlining of a dynamic monitor to handle dynamic code evaluation. With re-
spect to concurrency Barthe et al. [16] present a compositional transformation that closes
internal timing channels in multithreaded programs with semaphores. Jang et al. [51]
consider a rewriting based technique and tool for finding insecure information flow in
existing Web applications. The empirical study performed by the authors indicates that
steps must be taken to mitigate the privacy threat from covert flows in browsers.

4.4. Libraries

In addition to external information-flow analyses, i.e., analyses implemented outside of
the target programming langue, a line of work strives towards achieving similar guaran-
tees by exploiting existing programming language features [95,90,90]. This has the ad-
vantage that the existing programming language infrastructure can be used without any
modifications.

Conti and Russo [95] show how to provide a taint mode via a library in Python.
The library is able to keep track of tainted values for several built-in classes and sup-
ports propagation of taint information. The library uses decorators as a noninvasive ap-
proach to mark source code with no or minimal modification in the code. A line of work
investigates information flow libraries for Haskell. Li and Zdancewic [59] present a li-
brary for secure information flow in Haskell, providing a starting point for this line of



work. Russo et al. [90] provide a library for secure information flow in Haskell using
monads. The library provides combinators for declassification related to the who, when
and what dimensions. Tsai, Hughes and Russo[110] present an extension to [59] adding
side-effectful computations and threads. DelTedesco et al. [36] implement information
erasure as a Python library building on ideas for dynamic taint analysis.

5. Conclusion

We have given an overview of the state-of-the-art in confidentiality and integrity poli-
cies and their enforcement. Our presentation of the confidentiality and integrity policies
is based on a systematic formalization of four dominant formulations of noninterfer-
ence: termination-insensitive, termination-sensitive, progress-insensitive, and progress-
sensitive, cast in the setting of two minimal while languages. In the account of
information-flow enforcement, we have discussed highlights from static, dynamic, and
hybrid program analysis for security, as well as security enforcement by libraries.
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