
Securing Class Initialization

Keiko Nakata1 and Andrei Sabelfeld2

1 Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
2 Chalmers University of Technology, Gothenburg, Sweden

Abstract. Language-based information-flow security is concerned with specify-
ing and enforcing security policies for information flow via language constructs.
Although much progress has been made on understanding information flow in
object-oriented programs, the impact of class initialization on information flow
has been so far largely unexplored. This paper turns the spotlight on security
implications of class initialization. We discuss the subtleties of information prop-
agation when classes are initialized and propose a formalization that illustrates
how to track information flow in presence of class initialization by a type-and-
effect system for a simple language. We show how to extend the formalization to
a language with exception handling.

1 Introduction

Language-based concepts and techniques are becoming increasingly popular in the con-
text of security [Koz99,SMH00,WAF00,SM03,Ler03,MSL+08,Cro09,Fac09] because
they provide an appropriate level of abstraction for specifying and enforcing applica-
tion and language-sensitive security policies. Popular examples include Java stack in-
spection [WAF00], which enforces a stack-based access-control discipline, and Java
bytecode verification [Ler03], which traverses bytecode and verifies its type safety, as
well as web language-based mechanisms such as Caja [MSL+08], ADsafe [Cro09],
and FBJS [Fac09], which use program transformation and language subsets in order to
enforce sandboxing and separation properties.

Language-based information-flow security [SM03] is concerned with specifying
and enforcing security policies for information flow via language constructs. There
has been much recent progress on understanding information flow in languages of in-
creasing complexity [SM03], and, consequently, information-flow security tools for lan-
guages such as Java, ML, and Ada have emerged [MZZ+10,Sim03,Sys10]. In particu-
lar, information flow in object-oriented languages has been an area of intensive develop-
ment [Mye99,BS99,BCG+02,ABF03,BFLM05,BN05,ABB06,Nau06,BRN06,HS09].
However, it is surprising that the impact of class initialization, being an important aspect
of object-oriented programs, has received scarce attention in the context of security. In
a language like Java, class initialization is lazy: classes are loaded as they are first used.
This introduces challenges for information-flow tracking, in particular when class ini-
tialization may trigger initialization of other classes, which, for example, may include
superclasses. Additional complexity is introduced by exceptions raised during initial-
ization. Exceptions may be exploited to leak secret information.

1

Because of its power, Java’s class loading mechanism [LB98] is a target for our
model. A class is loaded, linked and initialized lazily on demand when the class is ac-
tively used for the first time [LY99] 3. Moreover the programmer may define application-
specific loading policies. Class loading constitutes one of the most compelling features
of the Java platform.

This paper turns the spotlight on security implications of class initialization (and
loading and liking, which are prerequisites for initialization). We discuss the subtleties
of information propagation when classes are initialized. The key issue is that class ini-
tialization may perform side effects (such as opening a file or updating the memory).
The side effects may be exploited by the attacker who may deduce from these side ef-
fects which classes have been (not) initialized, which is sometimes sufficient to learn
secret information.

We propose a formalization that illustrates how to track information flow in pres-
ence of class initialization by a type-and-effect system for a simple language. By en-
suring that classes may not be initialized inside conditionals and loops that branch on
secret data, the type-and-effect system guarantees security in a form of noninterfer-
ence [GM82]. We show how to extend the formalization to a language with exception
handling. The only approach we are aware of that actually considers class initializa-
tion in the context of information-flow security is Jif [Mye99,MZZ+10]. However, Jif’s
restrictions on code initialization are rather severe: this code is restricted to simple con-
stant manipulation that may not raise any exceptions. Our treatment of class initializa-
tion is more liberal than Jif’s and yet we demonstrate that it is secure. We argue that
this liberty is sometimes desired in scenarios such as server-side code.

2 Background

This section presents informal considerations that lead up to a formalization in the fol-
lowing sections. For illustration purposes, we use a simple subset of Java with classes
that contain static fields. We assume variables and class fields are partitioned into high
(secret) and low (public). We assume that l and h are typical low and high variables, re-
spectively. The security goal is to prevent programs from leaking initial values of secret
data into final values of public data. The context corresponds to a body of a conditional
or loop. We say that the context is high if the guard depends on a secret (i.e., contains a
secret variable or field) and low otherwise.

Consider the following two class definitions for class names C and D with low
fields g and f , respectively:

class C { g = 1 }
class D { f = 1/C.g }

Certainly the above definitions may be considered secure since no high data is involved.
However, an attempt to instantiate an object of D may lead to an information leak:

P0 : C.g := 0;
if h = 0 then new D else skip

3 The JVM specification permits the large flexibility as to the timing of loading and linking. But
these activities must appear as if they happen on the class’s (or interface’s) first active use.

2

Indeed, the above program results in an error only when the high variable h initially
contains 0, in which case the classD is initialized. Note that in the terminology we have
introduced, the initialization occurs in high context. The attacker learns about the secret
value of h by observing the termination behavior.

It is illustrative to compare the above program that leaks through termination be-
havior with the following one that does not:

P1 : new D;
C.g := 0;
if h = 0 then new D else skip

In this latter program, D is initialized before the assignment. More importantly, D has
been initialized before it is used in high context: the second use does not incur any
initialization activities.

In Java, when initialization of a class has completed abnormally by throwing some
exception, the class is marked as erroneous. Initialization of a class in an erroneous
state is not possible [LY99, Ch. 2] 4. This makes initialization failure persistent in the
sense that when initialization of a class failed on it first (active) use, then it will fail on
the second use irrespective of the state in which the second initialization is attempted 5.
Catching initialization errors introduces a delicate scenario of information leaks. For
instance, consider the following program:

P2 : C.g := 0;
if h = 0 then (try new D catch skip) else skip;
C.g := 1;
new D

The above program again results in an error only when the high variable h initially
contains 0. The next variation of the example shows how to exploit this flow so that the
resulting program always terminates normally and reflects the initial value of h in the
final value of l. Standard security type systems (e.g., [Mye99,PS03,HS06,AS09]) allow
liberate handling of exceptions raised by expressions that are independent of secret data,
as long as these expressions are used in public context. Since seemingly neither class
definitions ofC norD involves high variables, one may be tempted to consider possible
errors caused by initializing D as low. However, the following program illustrates the
subtlety of the problem:

P3 : C.g := 0;
if h = 0 then (try new D catch skip) else skip;
C.g := 1;
try new D; l := 1 catch l := 0

The above program successfully terminates irrespective of the initial value at h, and the
final value at l indicates whether h was 0 or not.

4 To be precise, the Class object representing the class is labeled as erroneous.
5 Initialization may recover for instance by resorting to garbage collection. But normally a class

is eligible for unloading when the running application has no reference to the class.

3

Security might be compromised within correct, i.e., error-free, programs. Moreover
class hierarchy also may impact on the security: before a class is initialized, its super-
classes are initialized. For instance, consider class definitions below, involving only low
fields.

class C0 { g = 1 }
class D0 { f = C0.g++ }
class D1 extends D0 {}

The next program leaks the initial value of h into the final value of C0 .g .

P4 : new C0;
if h = 0 then new D1 else skip

Combining the two previous programs yields a scenario, where class hierarchy and
persistence of initialization failure cooperate to leak information:

class C0 { g = 1 }
class D0 { f = 1/C0.g }
class D1 extends D0 {}

P5 : C0.g := 0;
if h = 0 then (try new D1 catch skip) else skip;
C0.g := 1;
try new D0; l := 1 catch l := 0

Again the resulting program always terminates normally and reflects secret input values
in the public results.

The bottom line is that class initialization may perform side effects, causing in-
formation to leak. One rather conservative approach to securing class initialization is
to eliminate any possibilities of side effects during initialization and disallow errors
due to initialization to be caught, an approach taken in Jif [Mye99,MZZ+10]. This ap-
proach rules out, among other, read and write access to instance as well as static fields,
method calls and object creation during initialization. For example, a static field of a
reference type may only be initialized to null, which would exclude some standard Java
APIs [Sun], such as (java.lang.)Boolean and String, etc. Indeed Jif restricts (class) field
initializers to simple constant manipulation that may not raise any exceptions. While
it is rarely good practice to catch initialization errors within ordinary methods, such
as methods in libraries, there are several scenarios where it is good practice to catch
them, such as in server applications to avoid crashing the entire system due to third
party applications or to log messages. For instance, Fortress, the primary product from
the Excalibur software project [Exc], catches LinkageError and rethrows an object of a
subclass of Exception, which may in turn be caught and logged.

This paper goes ahead to propose and formalize a different approach: we restrict
class initialization in high contexts but allows side effects during initialization. Section 4
develops a type-and-effect system for a simple language, defined in Section 3. The type-
and-effect system ensures a class has been initialized before it is used in high contexts
and, as we show, guarantees information-flow security. Moreover, Section 5 shows how
to scale our approach, when initialization errors are permitted to be caught. Section 6
discusses related work, and Section 7 concludes.

4

3 Language

We define the language for our formal study by the following syntax:

Expressions e ::= n | x | e0 op e1 | C.f
Statements s ::= skip | s0; s1 | x := e | C.f := e | if e then st else sf

| while e do st
Class definitions CL ::= class C {f0 = e0, . . . , fk = ek}

Metavariables x, n,C and f range over variables, integers, class names and field names,
respectively. We assume given a binary partial operator op on integers, i.e., op may
signal an error. We write n0 op n1 = • when op signals an error on operands n0
and n1. A class definition class C {f0 = e0, . . . , fk = ek} declares a class name C
consisting of the (static) fields fi’s with ei’s being initializing expressions. Then a class
table CT is a (finite) mapping from class names to class definitions. A program is a
pair (CT , s) of a class table and a statement. To lighten the notation, we assume a fixed
class table CT hereafter.

A state (or store), ranged over by σ, maps variables to integers and class names
to abstract class objects. An abstract class object, or simply class object, denotes the
loaded status of a class name C in a state σ: C is uninitialized in σ when σ(C) = ◦;
initialization is in progress or has been successfully completed when σ(C) = {f0 =
n0, . . . , fk = nk}, where fi’s are the fields of the class C; C has failed to initialize
when σ(C) = •. We write uninitialized(σ) to denote the set of uninitialized classes
in σ, i.e., {C | σ(C) = ◦}, initialized(σ) the set of classes of which initialization
is in progress or has been completed in σ, i.e., {C | σ(C) = {f1 = n1, . . . , fk =
nk} for some f1, . . . , fk, n1, . . . , nk, and failed(σ) the set of classes that have failed
to initialize, i.e., {C | σ(C) = •}. When the context ensures C is in initialized(σ),
we may write σ(C.f) to denote f -field of the class object for C in σ, i.e., σ(C.f) = n
where σ(C) = {. . . , f = n, . . .}, and σ[C.f 7→ n] to denote the update of f -field of
the class object for C in σ by n.

Evaluation of expressions is given in Fig. 1. The relation (σ, e) ↓ (σ′, n) states that
the expression e in the state σ evaluates to the result n with the state being σ′. The
relation (σ, e) ↑ σ′ states that evaluating the expression e in the state σ fails in the state
σ′, signaling an error.

The inference rules in Fig. 1 are straightforward except those for reading from a field
of a class. Both read and write access to a field of a class C triggers initialization of C.
Class initializer ρ(C, σ), to be defined below, initializes the class C in the state σ. If the
initialization is in progress or has been successfully completed, written ρ(σ,C) ↓ σ′, σ′
contains a class object for C and evaluation of C.f returns f -field of the class object. If
the initialization fails, written ρ(σ,C) ↑ σ′, so does the evaluation of C.f .

The small-step operational semantics for the statements is given in Fig. 2. The one-
step reduction relation 〈σ, s〉 → 〈σ′, s′〉 states that in the state σ the statement s one-step
reduces to s′ with the next state being σ′. The relation 〈σ, s〉 → 〈σ′, •〉 states that the
statement s in the state σ signals an error in the state σ′. We write 〈σ, s〉 ↓ σ′, stating
that s in the initial state σ successfully terminates in the final state σ′. Or, 〈σ, s〉 ↓ σ′
if 〈σ, s〉 →∗ 〈σ′, skip〉, where →∗ denotes the reflexive and transitive closure of →.

5

(σ, n) ↓ (σ, n) (σ, x) ↓ (σ, σ(x))

(σ, e0) ↓ (σ′, n0) (σ′, e1) ↓ (σ′′, n1) n0 op n1 = n

(σ, e0 op e1) ↓ (σ′′, n)

(σ, e0) ↑ σ′

(σ, e0 op e1) ↑ σ′
(σ, e0) ↓ (σ′, n0) (σ′, e1) ↑ σ′′

(σ, e0 op e1) ↑ σ′′

(σ, e0) ↓ (σ′, n0) (σ′, e1) ↓ (σ′′, n1) n0 op n1 = •
(σ, e0 op e1) ↑ σ′′

ρ(σ,C) ↓ σ′

(σ,C.f) ↓ (σ′, σ′(C.f))

ρ(σ,C) ↑ σ′

(σ,C.f) ↑ σ′

Fig. 1. Expression evaluation

Similarly we write 〈σ, s〉 ↑ σ, stating that s in the initial state σ abnormally terminates
at the state σ′. Or, 〈σ, s〉 ↑ σ′ if 〈σ, s〉 →∗ 〈σ′, •〉.

The inference rules for the one-step reduction relation are again straightforward.
Assignment to a field of a class triggers initialization of the class, and thus may fail if
the initialization fails.

Finally Fig. 3 defines the class initializer. If initialization of the class has been ini-
tiated and has not failed, i.e., σ(C) = {f0 = n0, . . . , fn = nk}, then the initializer
immediately returns. This covers both the cases that initialization is in progress and that
initialization has been successfully completed. If initialization has previously failed,
therefore the class object is in erroneous state, i.e., σ(C) = •, then initialization is not
possible. Otherwise, the initialization is initiated: the fields are first set to default val-
ues, namely 0, then updated according to their initializing expressions. The initialization
may fail, in which case the class object is marked erroneous.

4 Specifying and Enforcing Security

We now introduce a security condition for our language and then develop a security
type system for statically guaranteeing this condition.

4.1 Security condition

As before, we assume a simple security lattice [Den76] consisting of only two levels
low (public) and high (secret), with low @ high . Metavariables ` and pc range over
security levels. Then a security environment Γ is a finite mapping from variables and
pairs (C, f) of a class name and a field name of the class to their security levels. We
extend Γ to expressions by assuming an expression is mapped to the least upper bound
of the security levels that occur in it. Again, for the sake of notational simplicity, we
assume a fixed security environment Γ in what follows.

6

(σ, e) ↓ (σ′, n)

〈σ, x := e〉 → 〈σ′[x 7→ n], skip〉

(σ, e) ↓ (σ′, n) ρ(σ′, C) ↓ σ′′

〈σ,C.f := e〉 → 〈σ′′[C.f 7→ n], skip〉

(σ, e) ↑ σ′

〈σ,C.f := e〉 → 〈σ′, •〉
(σ, e) ↓ (σ′, n) ρ(σ′, C) ↑ σ′′

〈σ,C.f := e〉 → 〈σ′′, •〉

〈σ, skip; s〉 → 〈σ, s〉
〈σ, s0〉 → 〈σ′, s′0〉

〈σ, s0; s1〉 → 〈σ′, s′0; s1〉
〈σ, s0〉 → 〈σ′, •〉
〈σ, s0; s1〉 → 〈σ′, •〉

(σ, e) ↓ (σ′, n) n 6= 0

〈σ, if e then st else sf 〉 → 〈σ′, st〉
(σ, e) ↓ (σ′, 0)

〈σ, if e then st else sf 〉 → 〈σ′, sf 〉
(σ, e) ↓ (σ′, n) n 6= 0

〈σ,while e do st〉 → 〈σ′, st;while e do st〉
(σ, e) ↓ (σ′, 0)

〈σ,while e do st〉 → 〈σ′, skip〉

(σ, e) ↑ σ′

〈σ,Q[e]〉 → 〈σ′, •〉
where Q ::= x := [] | if [] then st else sf | while [] do st

Fig. 2. Operational semantics for statements

σ(C) = {f0 = n0, . . . , fk = nk}
ρ(σ,C) ↓ σ

σ(C) = •
ρ(C, σ) ↑ σ

σ(C) = ◦ CT (C) = class C {f0 = e0, . . . , fk = ek}
〈σ[C 7→ {f0 = 0, . . . , fk = 0}], C.f0 := e0; . . . ;C.fk := ek〉 ↓ σ′

ρ(σ,C) ↓ σ′

σ(C) = ◦ CT (C) = class C {f0 = e0, . . . , fk = ek}
〈σ[C 7→ {f0 = 0, . . . , fk = 0}], C.f0 := e0; . . . ;C.fk := ek〉 ↑ σ′

ρ(C, σ) ↑ σ′[C 7→ •]

Fig. 3. Class initialization

7

Two states σ and σ′ are low-equivalent, written σ =low σ′, if they agree on low
variables and fields and on class objects. Formally, σ =low σ′ if the following three
conditions hold:

– for any x such that Γ (x) = low , σ(x) = σ′(x);
– uninitialized(σ) = uninitialized(σ′), initialized(σ) = initialized(σ′), and also

failed(σ) = failed(σ′);
– for any C and f such that Γ (C, f) = low and C is in initialized(σ), σ(C.f) =
σ′(C.f).

We adopt a commonly-used baseline policy of termination-insensitive noninterfer-
ence [VSI96,SM03,PS03]. Intuitively, a program satisfies noninterference if for any
two initial memories that agree on public data, whenever the program runs that start
in these memories terminate, then these runs result in the memories that also agree
on public data. This policy is an appropriate fit for batchjob programs, where leaks
due to (non)termination are ignored because they may leak at most one bit per execu-
tion [AHSS08].

Definition 1. A statement s satisfies termination-insensitive noninterference if, for any
low-equivalent states σ0 and σ1, 〈σ0, s〉 ↓ σ′0 and 〈σ1, s〉 ↓ σ′1 imply σ′0 =low σ′1.

4.2 Type system

Class initialization potentially performs low side effects. Therefore, we are going to
prohibit class initialization in high contexts. Our type system essentially performs a
must-analysis: a class must have been initialized before it is used in high contexts.

Fig. 4 presents typing rules for expressions. The judgment pc ` e : δ ↪→ δ′ states
that the expression e is typable at the security level pc with the effect type δ ↪→ δ′. The
pretype δ and the posttype δ′, respectively, represent the classes that must have been
initialized before and after the expression is evaluated. Effectively pc ` e : δ ↪→ δ′ is
read that the class names that occur in e must be in δ when pc is high , and δ′ is the
union of the class names that occur in e and δ. The type system may be made more
permissive by computing, for each class C, the set of the classes that are necessarily
initialized during the initialization of C.

Fig. 5 presents typing rules for statements. The judgment pc ` s : δ ↪→ δ′ is
read similarly to that for expressions. For example, the rule for assignment prevents
explicit flows (such as l := h), implicit flows [DD77] via control structure (as in if h =
0 then l := 0 else l := 1) in a standard fashion [DD77,VSI96,SM03]. In addition,
the effect type information is propagated from the expression to command level, and
class initialization in high contexts is ruled out. For the posttype of if-statement, we
take the intersection of the posttypes of the branches, collecting classes that must have
been initialized irrespective of which branch is taken. Similarly, the posttype of while-
statement only includes classes initialized by evaluating the boolean guard, since the
loop-body might not be executed at all.

To state soundness with respect to the security condition, we must ensure that the
type environment Γ is consistent with the class table CT .

8

pc ` n : δ ↪→ δ pc ` x : δ ↪→ δ

pc ` e0 : δ ↪→ δ0 pc ` e1 : δ ↪→ δ1

pc ` e0 op e1 : δ ↪→ δ0 ∪ δ1

low ` C.f : δ ↪→ δ ∪ {C}
C ∈ δ

high ` C.f : δ ↪→ δ

Fig. 4. Typing of expressions

Definition 2. A type environment Γ is well-formed with respect to a class table CT
if, for any class name C and a field f of C, Γ (e) v Γ (C, f) where CT (C) =
class C {. . . , f = e, . . .}.

The existence of a well-formed environment ensures typability of the class table.
The type system is sound with respect to termination-insensitive noninterference:

Lemma 1. Suppose Γ is well-formed with respect to CT . If pc ` s : δ ↪→ δ′ and
σ0 =low σ1 and δ ⊂ initialized(σ0) ∪ failed(σ0) and 〈σ0, s〉 ↓ σ′0 and 〈σ1, s〉 ↓ σ′1,
then δ′ ⊆ initialized(σ′0) ∪ failed(σ′0) and σ′0 =low σ′1.

Corollary 1. If pc ` s : ∅ ↪→ δ then s satisfies noninterference.

pc ` skip : δ ↪→ δ

pc ` e : δ ↪→ δ′ Γ (e) v Γ (x) pc v Γ (x)
pc ` x := e : δ ↪→ δ′

low ` e : δ ↪→ δ′ Γ (e) v Γ (C.f)
low ` C.f := e : δ ↪→ δ′ ∪ {C}

C ∈ δ high ` e : δ ↪→ δ′ Γ (e) v Γ (C.f) high v Γ (C.f)
high ` C.f := e : δ ↪→ δ′

pc ` s0 : δ0 ↪→ δ1 pc ` s1 : δ1 ↪→ δ2

pc ` s0; s1 : δ0 ↪→ δ2

pc ` e : δ ↪→ δ′ pc t Γ (e) ` st : δ′ ↪→ δ0 pc t Γ (e) ` sf : δ′ ↪→ δ1

pc ` if e then st else sf : δ ↪→ δ0 ∩ δ1

pc ` e : δ ↪→ δ′ pc t Γ (e) ` st : δ′ ↪→ δ′′

pc ` while e do st : δ ↪→ δ′

Fig. 5. Typing of statements

9

5 Exception Handling

〈σ, try skip catch s〉 → 〈σ, skip〉

〈σ, s0〉 → 〈σ′, s′0〉
〈σ, try s0 catch s1〉 → 〈σ′, try s′0 catch s1〉

〈σ, s0〉 → 〈σ′, •〉
〈σ, try s0 catch s1〉 → 〈σ′, s1〉

Fig. 6. Operational semantics for exception handling

pc ` n : δ ↪→ δ :: low pc ` x : δ ↪→ δ :: low

pc ` e0 : δ ↪→ δ0 :: `0 pc ` e1 : δ ↪→ δ1 :: `1

pc ` e0 op e1 : δ ↪→ δ0 ∪ δ1 :: pc t `0 t `1 t Γ (e0) t Γ (e1)

low ` C.f : δ ↪→ δ ∪ {C} :: Γ (C)

C ∈ δ
high ` C.f : δ ↪→ δ :: high

Fig. 7. Typing of expressions for exception handling

This section extends our system with an exception handling mechanism. The Java
virtual machine throws an object that is an instance of a subclass of LinkageError when
a loading, linkage, preparation, verification or initialization error occurs [GJSB96, Ch.
11]. LinkageError is a subclass of Error, rather than Exception. Error is designed in
principle to indicate serious problems, and ordinary applications, such as library pro-
grams, are not expected to catch Error . However, as we argued in Section 2, there are
several scenarios where catching Error is desirable such as in server applications to
avoid crashing the entire system or to log messages. Therefore, we are motivated to de-
velop a security type system which allows errors due to class initialization to be caught,
while rejecting attacks that leak information through exception handling.

5.1 Operational semantics

We extend the syntax of the statements with try s0 catch s1, whose operational seman-
tics is given in Fig. 6.

10

pc ` skip : δ ↪→ δ :: low

pc ` e : δ ↪→ δ′ :: ` Γ (e) v Γ (x) pc v Γ (x)
pc ` x := e : δ ↪→ δ :: `

low ` e : δ ↪→ δ′ :: ` Γ (e) v Γ (C.f)
low ` C.f := e : δ ↪→ δ′ ∪ {C} :: ` t Γ (C)

C ∈ δ high ` e : δ ↪→ δ′ :: ` Γ (e) v Γ (C.f) high v Γ (C.f)
high ` C.f := e : δ ↪→ δ′ :: high

pc ` s0 : δ0 ↪→ δ1 :: `0 pc t `0 ` s1 : δ1 ↪→ δ2 :: `1

pc ` s0; s1 : δ0 ↪→ δ2 :: `0 t `1

pc ` e : δ ↪→ δ′ :: `
Γ (e) t ` t pc ` st : δ′ ↪→ δ0 :: `0 Γ (e) t ` t pc ` sf : δ′ ↪→ δ1 :: `1

pc ` if e then st else sf : δ ↪→ δ0 ∩ δ1 :: ` t `0 t `1

pc ` e : δ ↪→ δ′ :: ` Γ (e) t ` t pc ` st : δ′ ↪→ δ′′ :: `′

pc ` while e do st : δ ↪→ δ′ :: ` t `′

pc ` s0 : δ ↪→ δ′ :: `0 pc t `0 ` s1 : δ ↪→ δ′ :: `1

pc ` try s0 catch s1 : δ ↪→ δ′ :: `1

Fig. 8. Typing of statements for exception handling

5.2 Type system

Fig. 7 and Fig. 8 give typing rules for expressions and statements, respectively. We ex-
tend the type environment Γ to map class names to the security levels of the exceptions
that may be raised during initialization. We have to adjust the definition of well-formed
type environments:

Definition 3. A type environment Γ is well-formed with respect to a class table CT if,
for any class name C and a field name f of C such that CT (C) = class C {. . . , f =
e, . . .}, we have

– Γ (e) v Γ (C, f);
– if low ` e : δ ↪→ δ′ :: ` then ` v Γ (C).

We note that initialization failure of a class having high fields may be low and a
class having only low fields may be high, as the following example illustrates:

class C0 { g = 4, f = 1 op 0 }
class C1 { g = 1 op 0, f = 1 }
class C2 { f = C1.f }

A type environment Γ such that Γ (C0) = Γ (C0, f) = Γ (C1, f) = Γ (C2, f) = low
and Γ (C1) = Γ (C2) = Γ (C0, g) = Γ (C1, g) = high is well-formed with respect to
the class table corresponding to the above class definitions.

11

Having noticed the above subtlety, the typing rules in Fig. 7 and Fig. 8 are straight-
forward adaptation from type systems that track information flow in the presence of
exceptions (e.g., [Mye99,PS03,HS06,AS09]). The new form of judgment pc ` e : δ ↪→
δ′ :: ` for expressions (resp. pc ` s : δ ↪→ δ′ :: ` for statements) indicates the level ` of
an exception that the expression e (resp. the statement s) may throw in the context pc.

For expression typing, pc ` e : δ ↪→ δ′ :: low is derivable if either e does not throw
an exception, or else pc is low and for any classC that occurs in e, Γ (C) = low and, for
any subexpression e′ of e that is an operand of op, Γ (e′) = low . Suppose Γ (x) = high ,
for instance, then high ` x : ∅ ↪→ ∅ :: low and low ` x op n : ∅ ↪→ ∅ :: high are
derived. Notice that the security level of x is propagated to the security level of an
exception only if the value of x may affect whether or not an exception is thrown.

We look at the inference rules for typing of statements. Since skip does not throw
an exception, its exception level is low. The exception level of an assignment x := e
is that of the expression e at pc. For the exception level of an assignment to a field of
a class, C.f := e at low program context, we take the upper bound of the exception
level of e at low and Γ (C). More importantly, the exception level of C.f := e in
high program context is necessarily high , even if e does not throw an exception. This
is because initialization of C may be triggered and fail, if it has previously failed, as
illustrated by the following program, where f is low and g is high.

class C { f = 1/0, g = 1 }
try C.f := 1 catch skip;
try (if h = 0 then C.g := 0 else skip) catch l := 1

The above program is insecure and indeed rejected by our type system.
For the sequence statement, we prohibit s1 from performing side effects lower than

the level of exceptions that s0 may throw. Rules for if- and while-statements are similar.
The exception levels of the boolean guards are propagated to branches. In try-statement,
the catch clause must not perform side effects lower than the exception level of the try
block. Note that the exception level of the whole statement is `1, the exception level of
the catch clause.

Proposition 1. If pc ` s : ∅ ↪→ δ :: ` then s satisfies noninterference.

We now come back to the examples in Section 2. Since none of the class definitions
from Section 2 involves high fields, they are typable with respect to an obvious type
environment Γ mapping all the classes and class-field pairs to low. We keep the con-
vention that Γ (l) = low and Γ (h) = high . All the programs but P1 are not typable.
For P1, we have low ` P1 : ∅ ↪→ {D} :: high . Note that the programs P0, P1 and P2

satisfy noninterference, but P3, P4 and P5 do not (assuming the operational semantics
is appropriately extended to take class hierarchy into account.)

6 Related Work

A survey [SM03] on language-based information-flow security contains an overview of
the area. Most related to ours is work on tracking information flow in object-oriented
languages and on information-flow controls in the presence of exceptions.

12

Objects To the best of our knowledge, the only information-flow mechanism that ad-
dresses class initialization is the one implemented by Jif [Mye99,MZZ+10], a compiler
for Java extended with security types. As discussed earlier, Jif is rather conservative
about class initialization code. This code is restricted to simple constant manipulation
that may not raise any exceptions. As mentioned earlier, sometimes it is desirable to lift
these restrictions.

Much other work has been done on information-flow security for object-oriented
languages. Although none of the approaches directly addresses problems with class
initialization, we nevertheless discuss some recent highlights.

Barthe and Serpette [BS99] present a type system for enforcing information-flow
security in a simple object-oriented language based on the Abadi–Cardelli functional
object calculi [AC96]. Bieber et al. [BCG+02] apply model-checking for securing in-
formation flow in smartcard applets.

Avvenuti et al. [ABF03] suggest an information-flow analysis in a language similar
to Java bytecode. Bernardeschi et al. [BFLM05] check information-flow security in Java
bytecode by a combination of program transformation and bytecode verification. These
two approaches assume fixed security levels for classes. This might not be a flexible
choice since it forces all instances and attributes to conform to the class level. Another
concern is the scalability of this choice in presence of inheritance.

Banerjee and Naumann [BN05] show how to guarantee noninterference by a type-
based analysis for a Java-like imperative language with objects. Amtoft et al. [ABB06]
present a flow-sensitive logic for reasoning about information flow in the presence of
pointers. Naumann [Nau06] investigates invariant-based verification of information-
flow properties in a language with heaps. Barthe and Rezk [BR05] consider type-based
enforcement of secure information flow in Java bytecode-like languages. Barthe et
al. [BRN06] extend this work to derive an information-flow certifying compiler for
a Java-like language.

Hammer and Snelting [HS09] develop a flow-sensitive, context-sensitive, and object-
sensitive framework for controlling information flow by program dependence graphs.
This approach takes advantage of similarities of information-flow and slicing analyses.

Exceptions As noted earlier, our treatment of exception handling draws on standard
approaches from the literature (which we extend with the must-analysis). The intuition
is if an occurrence of an exception in a statement may carry sensitive information,
then there must be no publicly-observable side effects in either the code that handles
the exception or in the code between the statement and the exception-handling block.
Jif [Mye99,MZZ+10] implements such a discipline. Based on a similar discipline, Pot-
tier and Simonet [PS03] propose a sound treatment of exceptions for ML.

Barthe and Rezk [BR05] treat a single type of exceptions in a JVM-like language.
Barthe et al. [BPR07] extend this approach to multiple types of catchable exceptions.
Connecting this with security-type preserving compilation, Barthe et al. [BRN06] show
how to securely compile a source language with a single type of catchable exceptions
to the low-level language of Barthe and Rezk [BR05].

Hedin and Sands [HS06] prove a noninterference property for a type system that
tracks information flow via class-cast and null-pointer exceptions in a language with
non-opaque pointers. Askarov and Sabelfeld [AS09] show how to achieve permissive

13

yet secure exception handling by providing the choice for each type of exception: ei-
ther the traditional discipline discussed above or by consistently disallowing to catch
exceptions. The actual choice for each kind of exception is given to the programmer.

7 Conclusion

Seeking to shed light on a largely unexplored area, we have presented considerations for
and a formalization of secure class initialization. Our considerations highlight that class
initialization poses challenges for security since controlling (the order of) side effects
performed by class initialization is challenging. Hence, great care needs to be taken
by information-flow enforcement mechanisms to guarantee security. One path, taken
by Jif [Mye99,MZZ+10], is to severely restrict class initialization code so that it may
only manipulate constants in an exception-free manner. Arguing that it is sometimes
too restrictive, we have explored another path: allow powerful initialization code, but
disallow class initialization inside conditionals and loops that branch on secret data.
This approach has the advantage that the side effects in class initialization do not have
to be predicted since they may not carry sensitive information in the first place: the
attacker may not deduce anything interesting from observing these side effects anyway.

Our formalization demonstrates the idea by a type-and-effect system for a simple
language that enforces noninterference. To the best of our knowledge, it is the first
formal approach to the problem of secure class initialization. (Soundness of Jif’s class
initialization is yet to be established.)

Future work includes an extension to handle class hierarchies. We believe our ap-
proach of ruling out class initialization in high contexts is sound in the presence of
class hierarchies. To extend our technical results to class hierarchies, we only need to
adjust the operational semantics so that when a class is initialized, all its (uninitialized)
super classes are initialized. Based on the results of the paper, we are currently work-
ing on more sophisticated type systems that allow initialization of high classes in high
contexts.

Acknowledgments K. Nakata acknowledges the support of action IC0701 of COST, the
Estonian Centre of Excellence in Computer Science, EXCS, financed mainly by ERDF,
and the Estonian Science Foundation grant no. 6940. A. Sabelfeld is supported by the
Swedish research agencies SSF and VR.

References

[ABB06] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object-
oriented programs. In Proc. ACM Symp. on Principles of Programming Languages,
pages 91–102, 2006.

[ABF03] M. Avvenuti, C. Bernardeschi, and N. De Francesco. Java bytecode verification for
secure information flow. SIGPLAN Notices, 38(12):20–27, 2003.

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer-Verlag, New York, 1996.

14

[AHSS08] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninter-
ference leaks more than just a bit. In Proc. European Symp. on Research in Computer
Security, volume 5283 of LNCS, pages 333–348. Springer-Verlag, October 2008.

[AS09] A. Askarov and A. Sabelfeld. Catch me if you can: Permissive yet secure error han-
dling. In Proc. ACM Workshop on Programming Languages and Analysis for Security
(PLAS), June 2009.

[BCG+02] P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, and G. Zanon. Checking secure interactions
of smart card applets: extended version. J. Computer Security, 10(4):369–398, 2002.

[BFLM05] C. Bernardeschi, N. De Francesco, G. Lettieri, and L. Martini. Checking secure
information flow in java bytecode by code transformation and standard bytecode ver-
ification. Software: Practice and Experience, 34:1225–1255, 2005.

[BN05] A. Banerjee and D. A. Naumann. Stack-based access control and secure information
flow. Journal of Functional Programming, 15(2):131–177, March 2005.

[BPR07] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-interference java
bytecode verifier. In Proc. European Symp. on Programming, LNCS. Springer-Verlag,
2007.

[BR05] G. Barthe and T. Rezk. Non-interference for a jvm-like language. In Proc. Types in
Language Design and Implementation, pages 103–112, 2005.

[BRN06] G. Barthe, T. Rezk, and D. Naumann. Deriving an information flow checker and
certifying compiler for java. In Proc. IEEE Symp. on Security and Privacy, pages
230–242, 2006.

[BS99] G. Barthe and B. Serpette. Partial evaluation and non-interference for object calculi.
In Proc. FLOPS, volume 1722 of LNCS, pages 53–67. Springer-Verlag, November
1999.

[Cro09] D. Crockford. Making javascript safe for advertising. adsafe.org, 2009.
[DD77] D. E. Denning and P. J. Denning. Certification of programs for secure information

flow. Comm. of the ACM, 20(7):504–513, July 1977.
[Den76] D. E. Denning. A lattice model of secure information flow. Comm. of the ACM,

19(5):236–243, May 1976.
[Exc] Excalibur. Documentation and Software available at http://excalibur.

apache.org/index.html.
[Fac09] Facebook. FBJS. http://wiki.developers.facebook.com/index.

php/FBJS, 2009.
[GJSB96] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification.

Addison-Wesley, 1996.
[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE

Symp. on Security and Privacy, pages 11–20, April 1982.
[HS06] D. Hedin and D. Sands. Noninterference in the presence of non-opaque pointers. In

Proc. IEEE Computer Security Foundations Workshop, pages 255–269, 2006.
[HS09] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and object-sensitive

informationflow control based on program dependence graphs. International Jour-
nal of Information Security, 8(6):399–422, December 2009. Supersedes ISSSE and
ISoLA 2006.

[Koz99] D. Kozen. Language-based security. In Proc. Mathematical Foundations of Computer
Science, volume 1672 of LNCS, pages 284–298. Springer-Verlag, September 1999.

[LB98] S. Liang and G. Bracha. Dynamics class loading in the Java virtual machine. In Proc.
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications, pages 36–44, 1998.

[Ler03] X. Leroy. Java bytecode verification: algorithms and formalizations. J. Automated
Reasoning, 30(3–4):235–269, 2003.

15

[LY99] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Addison-
Wesley, second edition edition, 1999.

[MSL+08] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active content in
sanitized javascript, 2008.

[Mye99] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. ACM
Symp. on Principles of Programming Languages, pages 228–241, January 1999.

[MZZ+10] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java informa-
tion flow. Software release. Located at http://www.cs.cornell.edu/jif,
2001–2010.

[Nau06] D. Naumann. From coupling relations to mated invariants for checking information
flow. In Proc. European Symp. on Research in Computer Security, pages 279–296.
Springer-Verlag, 2006.

[PS03] F. Pottier and V. Simonet. Information flow inference for ML. ACM TOPLAS,
25(1):117–158, January 2003.

[Sim03] V. Simonet. The Flow Caml system. Software release. Located at http://
cristal.inria.fr/˜simonet/soft/flowcaml, July 2003.

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.
Selected Areas in Communications, 21(1):5–19, January 2003.

[SMH00] F. B. Schneider, G. Morrisett, and R. Harper. A language-based approach to security.
In Informatics—10 Years Back, 10 Years Ahead, volume 2000 of LNCS, pages 86–101.
Springer-Verlag, 2000.

[Sun] Java 2 platform, standard edition 5.0, API specification. Available at http://
java.sun.com/j2se/1.5.0/docs/api/.

[Sys10] Praxis High Integrity Systems. Sparkada examinar. Software release. http://www.
praxis-his.com/sparkada, 2010.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J.
Computer Security, 4(3):167–187, 1996.

[WAF00] D. S. Wallach, A. W. Appel, and E. W. Felten. The security architecture for-
merly known as stack inspection: A security mechanism for language-based systems.
ACM Transactions on Software Engineering and Methodology, 9(4):341–378, Octo-
ber 2000.

16

