
International Journal of Information Security
https://doi.org/10.1007/s10207-022-00610-w

REGULAR CONTRIBUT ION

Are chrome extensions compliant with the spirit of least privilege?

Pablo Picazo-Sanchez1 · Lara Ortiz-Martin2 · Gerardo Schneider1 · Andrei Sabelfeld1

© The Author(s) 2022

Abstract
Extensions are small applications installed by users and enrich the user experience of browsing the Internet. Browsers expose
a set of restricted APIs to extensions. To be used, extensions need to list the permissions associated with these APIs in a
mandatory extension file named manifest. In particular, Chrome’s permission ecosystem was designed in the spirit of the least
privilege. Yet, this paper demonstrates that 39.8% of the analyzed extensions provided by the official Web Store are compliant
with the spirit of least privilege. Also, we develop: (1) a browser extension to make aware regular users of the permissions
the extensions they install; (2) a web app where extensions developers can check whether their extensions are compliant with
the spirit of the least privileged; and (3) a set of scripts that can be part of the vendors’ acceptance criteria such that when
developers upload their extensions to the official repositories, the scripts automatically analyze the extensions and generate
a report about the permissions and the usage.

Keywords Browser extensions · Web security · Privacy

1 Introduction

Extensions are small and powerful applications that users
can install in most web browsers to enrich the experience
of browsing the web. Concretely, extensions in Chromium-
based browsers (e.g., Chromium, Chrome, Opera, Brave, and
Edge) are classified into apps and browser extensions. Exten-
sions are stored in private repositories that most vendors
manage and users can install extensions from them. One such
example is Web Store, the largest browser extensions repos-
itory provided by Chrome containing 200,381 extensions as
of December 2019.

Google recently released a timeline to stop supporting
apps. The Web Store did not accept more apps since March
2020—the existing ones can be updated until June 2022. In
June 2021 the support for apps onWindows, Mac, and Linux
will be removed, and finally, the support on Chrome OS will
be ended by June 2022 [10]. In contrast, browser extensions
will still stay on course.

Extensions have to include, at least, one special and
mandatory file called manifest.json where the options

B Pablo Picazo-Sanchez
pablop@chalmers.se

1 Chalmers University of Technology, Gothenburg, Sweden

2 Madrid, Spain

and the configuration of the extensions are defined. In par-
ticular, one such option is the set of permissions that the
extensions have access to. Concretely, extension permissions
are used to determine which APIs are exposed to the exten-
sions. According to the official documentation provided by
Google, only apps and browser extensions can effectively
use the permissions they declare in the manifest [14,16]. The
way the extensions define permissions is by listing them in
the permissions or in the optional_permissions keys of
the manifest file.

There are three types of permissions:API,match patterns,
and manifest permissions. API permissions grant extensions
access to a specific API, e.g., cookies, and storage. Match
patterns are a particular case of regular expressions and pro-
vide access to a set of URLs, e.g., http://*/*, https://*/*,
and <all_urls>. Finally, manifest permissions are explicitly
defined in themanifest of the extensions andprovide access to
a particular capability, e.g., clipboardRead, clipboardWrite,
webRequest. Google considersAPI andmanifest permissions
equally, as there are no big differences between them.

Extensions cannot use all APIs that Chrome exposes.
For instance, both apps and browser extensions can use
chrome.cookies API by defining cookies permission. On
the contrary, chrome.hid API can only be used by apps (by
using the hid permission) whereas chrome.history only by
browser extensions. Therefore, we can classify extensions

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00610-w&domain=pdf
http://orcid.org/0000-0002-0303-3858


P. Picazo-Sanchez et al.

according to the API they have access to, i.e., the permis-
sions they define.

While this classification might make sense from a tech-
nical point of view, it does not say much for regular users.
For instance, when Alice is about to install an extension, she
is warned by the browser because the extension requires the
notifications permission. However, she is not warned when
the same extension requires both webRequest and webRe-
questBlocking permissions that can alter and block network
traffic, respectively. A list of permissions that warns the user
at installation time can be seen in Google’s online documen-
tation [18].

Chrome’s permission ecosystemwasdesigned in theSpirit
of Least Privilege (SoLP) [5]. The idea behind it was to limit
the number of available resources exposed to extensions due
to the sensitive information they can have access to. In addi-
tion to that, by defining specific permissions to extensions
and isolating their execution into separate environments—
also known as isolated worlds, the damage that malicious
extensions may cause is also bounded [5].

Even though we found several similarities between exten-
sion and Android permissions [12] like the existence of
a set of permissions that warns users, there are (at least)
two main differences between these systems: all-or-nothing
strategy and permission revocation. Extensions follow an all-
or-nothing strategy, i.e., users have to agree at installation
time on all the permissions the extension defines if they want
the extension to be installed. Once they are installed, exten-
sions can access the APIs that these permissions allow until
they are uninstalled.

The second big difference is the ability to revoke permis-
sions at runtime in Android apps, being this not possible
in extensions nowadays. Recently, Chrome implemented an
option by which users can define the scope of the extension,
being possible to limit the execution of the extension to “On
all sites,” “When you click the extension” and “On the site
you’re currently on.”

Contributions In this paper, we study in detail the per-
mission ecosystem of extensions. Although the existence
of overprivileged extensions has been pointed out in the
past [8,13,22,28,30], our work is the first systematic effort
to investigate the problem in depth. We conclude that, at
installation time, 48.3% of the scrutinized extensions (apps
+ browser extensions) are compliant with the SoLP while
8.5% are underprivileged. In more detail, our contributions
are:

– We analyze over 17,566 apps, 136,018 browser exten-
sions, and 17,343 themes, extracting the permissions they
define as well as the API calls they include in their files
and conclude that 54.7%, 37.8%, and 99.9%of each type,
respectively, are compliant with the SoLP (Sect. 5).

– We certify that 8.5% of the extensions are underpriv-
ileged, i.e., they contain JavaScript code to access to
restricted Chrome APIs without defining the required
permissions (Sect. 6).

– To spread our findings, we: (1) develop a browser
extension to aware regular users of the permissions the
extensions require; (2) create aweb appwhere extensions
developers can check whether an extension is compliant
with the SoLP, and; (3)make our scripts public to be inte-
grated as part of vendor’s acceptance criteria (Sect. 7).

The rest of this paper is organized as follows. We
introduce some concepts of browser extensions and the per-
mission ecosystem that Chrome implements in Sect. 2. We
extract permissions from the official documentation and from
Chromium’s source code and show which permissions can
be used by each type of extension (see Sect. 3). In Sect. 4,
we explain the methodology we follow to analyze browser
extensions. In Sect. 8, we present the threats to validity. We
discuss the limitations and future work in Sect. 9 whereas a
summary of the main proposals published on this field can
be seen in Sect. 10. Finally, Sect. 11 concludes the paper.

2 Extensions

Extensions are small applications that either add new func-
tionality to the browser or modify its appearance. In Chrome,
every extension stored in theWeb Store has its own unique 32
characters long identification that does not change across ver-
sions. Once a user starts the installation procedure, Chrome
downloads the .crx package of the extension to a temporal
directory, it extracts all the files and parses the only manda-
tory file, the manifest.json. Finally, Chrome detects the
family that the extension belongs, moves it to a permanent
directory, and installs it in the browser.

Chrome classifies extensions into two main groups: apps
and browser extensions (see Fig. 1). Apps are divided into
packaged and hosted; additionally, packaged are split into
legacy and platform. On the other hand, themes are a subset

Legacy

Extensions

Browser 
Extensions

Themes

Shared ModulesApps

Hosted

Bookmarks Platform

Packaged

Fig. 1 Taxonomy of extensions in Chromium-based browsers

123



Are chrome extensions compliant with the spirit of least privilege?

of browser extensions. Both apps and browser extensions can
share common resources by defining Shared Modules.

SharedModules are not extensions but common resources
(e.g., JavaScript, HTML, images, CSS) that can be accessed
by many browser extensions or apps. When the extension
imports the shared modules (by including a reserved path
_modules/<shared_module_id> in the root of the extension),
all the granted privileges of the extension are automatically
inherited by the shared modules’ resources. They cannot be
manually installed by users but are automatically installed
when another extension requires them. Similarly, when the
user uninstalls the extension that the shared module depends
upon, it is automatically uninstalled as well. They are iden-
tified by including the export key in the manifest file of the
extension.

For example, to include the script “foo.js” from a shared
modulewith ID<shared_module_id>, it can be used from the
extension as <script src="_modules/<shared_module_id

>/foo.js">. Being the full URL to resources like:chrome-
extension://<extension_id>/_modules/<
shared_module_id>/. However, after parsing all the
manifest files of our dataset, none of the analyzed extensions
use Shared Modules.

In the following, we explain in more detail both apps and
browser extensions.

2.1 Apps

Apps are standalone extensions (i.e., they do not cooperate
with other apps) that run in the browser with a dedicated
user interface. There are two types: hosted and packaged.
Hosted apps include in the manifest a URL that is launched
when the user opens themwhereas packaged apps contain all
the needed files to run the application in the .crx package.
The latest version of Google Chrome at the time of writing
(i.e., 97.0.4692.99) still allows users to install and use App
extensions.

Hosted Apps. Hosted apps are split into hosted and book-
marks. Hosted apps consist of the manifest file having: (i) the
URL to be launched; (ii) a list of associated URLs, and; (iii)
a list of permissions. They are identified by the app.launch.
web_url key in the manifest, which provides the URL that is
loaded when the user opens the app. Listing 1 shows part of
the manifest file of “WeVideo,” whose id in the Web Store is
okgjbfikepgflmlelgfgecmgjnmnmnnb, the most downloaded
hosted app. Bookmarks are hosted apps that Chrome creates
when the user selects “Add to desktop...” option. They can
only have any combination of background, clipboardRead,
clipboardWrite, geolocation, notifications, unlimitedStorage
permissions [20]. The last permission, i.e., unlimitedStorage,
needs to be declared in the manifest file of the extensions if
they need an unlimited quota for storing information. It com-
plements the storage which is limited by default to 5MB.

Therefore, there is no API call to the unlimitedStorage per-
mission and it should be seen as an extra option for the storage
permission.

Listing 1 Manifest of the most downloaded hosted app.

{"app": {

"launch": {

"web_url": "http://www.wevideo.com/

drive"

}

},

"default_locale": "en",

"icons": {

"128": "wevideo_128.png"

},

"manifest_version": 2,

"short_name": "WeVideo",

"version": "4.4.0",

...

}

Packaged Apps. There are two families, legacy (pack-
aged apps version (1) and platform (packaged apps version
(2) apps. Legacy apps look like a windowed wrapper around
a website and have the power of extension APIs. They are
identified by adding the app.launch.local_path key to the
manifest that identifies the resource that is loaded when the
app is opened (see Listing 2 for an example of the manifest
file of “Google Drawings” (whose id is mkaakpdehdafacod-
kgkpghoibnmamcme), the most downloaded packaged app
v1 in the Web Store). On the other hand, platform apps are
standalone applications that mostly run independently of the
browser, being able to run in the background with nowindow
interface. They are identified by adding the app.background
key in the manifest, providing the script that is executed
when the app is launched (an example of the manifest file of
“Postman” packaged app v2 whose id is fhbjgbiflinjbdgge-
hcddcbncdddomop can be seen in Listing 3).

Listing 2 Manifest of the most downloaded legacy app.

"default_locale": "en_US",

"manifest_version": 2,

"icons": {

"16": "icon_16.png",

"128": "icon_128.png"

},

"offline_enabled": true,

"app": {

"launch": {

"local_path": "main.html"

}

}

123



P. Picazo-Sanchez et al.

Listing 3 Manifest of the most downloaded platform app.

"app": {

"background": {

"scripts": ["background.js"]

}

},

"externally_connectable": {

"ids": ["∗"],
"matches": ["∗://∗.getpostman.com/∗"]

},

"permissions": [

"webview", "system.display",

"http://∗/∗", "https://∗/∗",
"contextMenus", "unlimitedStorage",

"storage", "fileSystem",

"fileSystem.write", "notifications",

"identity",

{"socket": [

"tcp−connect:∗:∗",
"tcp−listen:∗:∗"

]}

],

"manifest_version": 2,

2.2 Browser extensions

Browser extensions are basically composed of content scripts
and background pages. Content scripts are JavaScript files
executed in the webpage context, i.e., they have access to
the DOM. Background pages do not have direct access to
the DOM but to a powerful API the browser offers. The way
browser extensions are identified is by checking that none of
the following keys appear on the manifest file: app, export,
theme.

Themes. Themes are special browser extensions whose
purpose is to change the appearance of the browser. The
way they are identified is by including the theme key in the
manifest. The main difference for browser extensions is that
themes do not have HTML nor JavaScript files in the .crx
package.

3 Permissions vs API calls

Chrome splits extensions APIs into restricted and public
APIs. Public APIs are available to any extension, whereas, to
use restricted APIs, they need to declare some permissions
in the manifest. Chrome also differentiates permissions by
the type of extensions that can use them. For instance, only

Browser Extensions

Platform (v2)

Legacy (v1)

57

45
53

32
24

Hosted
13

Fig. 2 Permissions according to the type of extensions

browser extensions can use the downloads permission while
only platform apps can use the mdns1 permission.

In this section, we explain how permissions are mapped
to JavaScript APIs. For the experiments, we present in this
section, we used Chrome 79.0.3945.130.

3.1 Permissions

Source Code. Permissions are defined in four files hav-
ing 224, 99, 68, and 8 permissions, respectively. The first
file (api_permissions.h) contains all the permission
that Chrome has, i.e., all the permissions without distin-
guishing if they belong to extensions, websites, or internal
permission management. The second file (chrome_api
_permissions.cc) defines all the permissions con-
cerning the browser management, i.e., permissions that
JavaScript files coming from web servers or content scripts
injected by extensions can define and execute. The third
file (extensions_api_permissions.cc) defines the
set of permissions that extensions can use. Finally, the
chrome_apps_api_permissions.cc includes the
permissions that apps can define in the manifest.

Official documentation. Google provides a large amount
of documentation2 about extensions such as source code
examples, permissions,APIs, discussions, definitions, videos,
andmany other resources tomake extensions developers’ life
more pleasant.

We collected all the permission we found online and in
the source code, and included them all, in alphabetical order,
in the manifest file of (i) a browser extension; (ii) a packaged
v1 and v2 apps, and; (iii) a hosted app. As a result, browser
extensions can use a total of 57 permissions, packaged v1
45, packaged v2 53 whereas hosted apps only 14 permis-
sions (see Table 1). In Fig. 2, we can see that permissions of
packaged v1 apps are a subset of the browser extensions, the
number of commonpermissions between v2 andv1packaged
apps is 24 and between packaged v2 and browser extensions
is 32. Hosted permissions are at the intersection of all the
extensions with 14 permissions.

1 mdns is an API to discover services over mDNS, comprising a subset
of the features of the NSD spec: http://www.w3.org/TR/discovery-api/.
2 https://developer.chrome.com.

123

http://www.w3.org/TR/discovery-api/
https://developer.chrome.com


Are chrome extensions compliant with the spirit of least privilege?

Table 1 Extensions’ permissions

Extensions Permissions

Common AccessibilityFeatures, alarms, app.window, background, bookmarkManagerPrivate, clipboardRead, clipboardWrite,
commands, contextMenus, downloadsInternal, fileBrowserHandlerInternal, geolocation, idle, nativeMessaging,
newTabPageOverride, notifications, power, storage, system.cpu, system.display, system.memory, system.storage,
tts, unlimitedStorage

Browser extensions AccessibilityFeatures.modify, accessibilityFeatures.read, activeTab, bookmarks, browsingData, contentSettings,
cookies, debugger, declarativeContent, desktopCapture, desktopCapturePrivate, downloads, downloads.open,
downloads.shelf, fontSettings, gcm, history, identity, identity.email, management, pageCapture, printerProvider,
privacy, proxy, sessions, tabCapture, tabs, topSites, ttsEngine, webNavigation, webRequest, webRequestBlocking,
windows ∪ Common

Legacy (v1) ActiveTab, bookmarks, browsingData, contentSettings, cookies, debugger, fontSettings, history, management,
pageCapture, privacy, proxy, sessions, tabCapture, tabs, topSites, ttsEngine, webNavigation, webRequest,
webRequestBlocking, windows ∪ Common

Platform (v2) AccessibilityFeatures.modify, gcm, hid, identity, accessibilityFeatures.read, usb, app.window.alwaysOnTop,
app.window.fullscreen,app.window.fullscreen.overrideEsc, app.window.shape, appview, audioCapture, browser,
desktopCapture, desktopCapturePrivate, fileSystem, fileSystem.directory, fileSystem.retainEntries, fileSystem.write,
identity.email, mdns, mediaGalleries, pointerLock, printerProvider, serial, syncFileSystem, system.network,
videoCapture, webview ∪ Common

Hosted Apps AccessibilityFeatures, app.window, background, bookmarkManagerPrivate, clipboardRead, clipboardWrite,
commands, fileBrowserHandlerInternal, geolocation, downloadsInternal, newTabPageOverride, notifications,
storage, unlimitedStorage

3.2 API calls

Chrome exposes a set of APIs to extensions. To extract all
the APIs and perform a mapping between permissions and
JavaScript API calls, we parsed all the online documentation
and extracted all the methods, properties, and events for each
permission.We implemented a script that automatically gen-
erates the combination of all the permissions listed in Table 1
and systematically creates an extension with such combina-
tions in the permissions key of the manifest. After that, the
script automatically installs the extension with all the meth-
ods, events, and properties of the APIs and checks which
ones are executable given the permissions defined.

Some conclusions arisen from this mapping are:

Public APIs. There are permissions like app.runtime,
app.window, events, extension, permissions, i18n, exten-
sionTypes, types, windows that are not needed because
the APIs are public;
Manifest Keys. APIs like automation, ommibox,
bluetooth, devtools.∗, commands, bluetoothSocket,
and sockets.∗ do not have to be included in the per-
missions but as keys in the manifest [29].
Dependency Permissions. Some APIs require extra per-
missions apart from the ones needed to have access
to such API, e.g., to block HTTP requests, an exten-
sion needs webRequestBlocking apart from webRequest.
Another example is unlimitedStorage permission, which
increases the size of the local storage but depends on the
storage one.

Public Elements. There are methods, properties, and
events of restricted APIs that are public. As an exam-
ple, uninstallSelf() and getSelf() functions of the
management API are public.
NoAPI. There are permissionswithoutAPI. For instance,
the background permission makes Chrome run when the
user logs into the computer as well as keeping Chrome
running until the user explicitly quits it.
Host Permissions. By including a host permission,
i.e., the URL of a particular web page, domain, or
the <all_url> wildcard, it automatically allows the
extension to execute the APIs granted by cookies,
declarativeNetRequest, declarativeWebRequest, webRe-
quest permissions. Note that the information the exten-
sion will retrieve is concerning the host(s) defined in the
permissions key. Also, there are some APIs that can
be run by including different permissions, for instance,
chrome.webRequest API, can be run by defining the
webRequest permission but also the activeTab one.
Special Permissions. There are permissions likewebview
that allow extensions to use the <webview>...</webview
> HTML tag instead of granting access to a JavaScript
API.

4 Methodology

In this section, we explain in detail the methodology we used
to analyze extensions. We do not attempt to detect whether
they are malicious or not, but rather to demonstrate to what

123



P. Picazo-Sanchez et al.

extent extensions are compliant with the SoLP and provide
empirical evidence of it.

We split our analysis into three main tasks: Web Store
Scrapping, Mapping API-Permissions, and Static Analysis
(see Fig. 3). In the following, we explain in more detail each
one of these tasks.

Web Store Scraping As of December 2019, we crawled the
Web Store, Google’s official repository where extensions are
stored and distributed. We downloaded a dataset of 170,927
extensions, composed of 136,018 browser extensions, 17,566
apps and 17,343 themes (see Table 2). Regarding apps, 1221
are legacy, 6778 are platform, and 9567 are hosted. For
browser extensions, we show in Table 3 the category that they
belong to. Finally, even though we detected 26,879 themes
stored in the Web Store, we could download only those that
are free for the user, i.e., 17,343.

API calls vs Permissions We split the analysis into apps,
extensions, and themes. Despite them being stored and man-
aged similarly by the Web Store, we individually analyze
them because the way Chrome handles them is different and
so are the permissions—as we explained in Sect. 3. In this
work, we consider those permissions are part of either the
permission or optional_permissions keys of the manifest,
i.e., the ones listed in Table 1 for every type of exten-
sion. Therefore, APIs granted by automation, bluetooth,

Download 
Extensions

WebStore

Mapping 
API-Permissions

developer.chromeSource Code

AST

manifest

API callscrx

WebStore Scraping API calls vs Permissions

Static Analysis

Match U

Regex

Fig. 3 General overview of our analysis

Table 2 Dataset downloaded in December 2019

Type #Extensions

Apps Hosted 9567

Legacy (v1) 1221

Platform (v2) 6778

Browser extensions Browser extensions 136,018

Theme 17,343

Total 170,927

Table 3 Categories of the Web Store that the Browser Extensions of
the dataset belong to

Category #Extensions

Productivity 36,679

Fun 25,981

Photos 21,971

Web development 11,311

Communication 10,758

Accessibility 9568

Search tools 8061

Shopping 5690

News 2566

Blogging 1769

Sports 1664

Total 136,018

bluetoothLowEnergy, bluetoothSocket, browserAction, com-
mands, devtools.*, ommibox, pageAction, sockets.* keys are
not part of this study.

Static Analysis For the analysis of the extensions, we extract
not only the permissions they define in their manifest files
but also all the API calls they implement in either HTML or
JavaScript files.With this, we can check whether the API and
therefore the permissions might be used by extensions or not
at installation time.

To get the permissions of the extensions, we first parse
both the permissions and the optional_permissions keys
of the manifest. With this, we got a list of tentative APIs the
extensions might use. In parallel, we statically analyze all the
HTML and JavaScript files of the extensions to extract the
API calls they define.

To analyze the JavaScript files, we generate the Abstract
Syntax Tree (AST) of all the scripts by using Esprima3.
This allows us to detect all the CallExpression statements
and extract the privileged API the extensions include in
the source code. Note that this parser can also be done
with classical regular expressions, however, with ASTs we

3 https://esprima.org.

123

https://esprima.org


Are chrome extensions compliant with the spirit of least privilege?

can model more complex scenarios where, for example,
extensions define chrome as a variable before using any of
the available APIs, e.g., var aux = chrome; var aux2 =

cookies; var cc = aux.aux2.getAll();. By reconstruct-
ing such a CallExpression in the AST, we easily get that
the CallExpression is indeed var cc = chrome.cookies.

getAll().
For the HTML files, we used regular expressions to detect

API calls, inline JavaScript, and keywords like <webview>.
Figure 3 depicts a general overview of the process we fol-
lowed to analyze the extensions.

As we discuss later in Sect. 8, our analysis does not con-
sider complex forms of obfuscation, external code execution,
or extensions that use code generation functions like eval()
and setTimeout().

5 Overprivileged extensions

Previously, we performed a mapping between permissions
and APIs. Next, we analyze the extensions and detect those
which are potentially overprivileged. In what follows, we
provide a more precise definition of Well-privileged Exten-
sions.

Definition 1 Well-privileged extensions are extensions with
no more, no less permissions than those needed to fulfill the
functionality that they were implemented for. If they require
more permissions, they are overprivileged. If they require
less, they are underprivileged.

To identify the functionality of the extensions we might
need: 1) a formal specification of the functionality, and; 2)
a formal justification of why the required permissions are
needed to fulfill the functionality. However, checking this
is a complex problem that is in general undecidable (being
essentially a program verification problem).

Given these constraints, we provide a working definition
similar to Wang et al. [40], that allows us to identify exten-
sions compliant with the SoLP in a lightweight manner. We
define overprivileged extensions and extensions compliant
with the SoLP as follows.

Definition 2 An extension is overprivileged when there is at
least one permission in its manifest file whose API is not
defined in the source code of the extension at installation
time. We say that an extension is compliant with the SoLP
when is not overprivileged.

Data Preprocessing There are some direct actions we take
before we analyze any type of extension. In particular, we
directly mark extensions as:

Overprivileged: those with permissions that depend on
others to be used and they are not included, e.g., exten-

sions that include unlimitedStorage but do not define the
storage one. Other examples are downloads.open, down-
loads.shelf ;
SoLP: compliant with the Spirit of Least Privilege
those that do not define permissions, i.e., permission
∪ optional_permissions = ∅, or they do so but only
include URLs (or any host pattern matching).

After analyzing all the extensions of our dataset, we con-
clude that over 40% of them are compliant with the SoLP, or
in other words, there are over 60% of overprivileged exten-
sions (see Table 4).

5.1 Apps

In total, we got that 45.3% of the analyzed apps might be
overprivileged, thus having 54.7% compliant with the SoLP.
In more detail, there are 7962 possible overprivileged apps
where 2885 correspond to hosted and 5342 to packaged apps.
In more detail:

Hosted Apps. We extracted all permissions that hosted
apps have in their manifest files, run the data preprocessing
procedure explained earlier in this section, and analyzed the
remaining apps, concluding that 69.9% of hosted apps are
compliant with the SoLP while 2885 are potentially over-
privileged hosted app downloaded over 60M times.

Legacy Apps. After preprocessing the extensions, we got
704 apps with at least one permission. We analyzed the
remaining apps and concluded that there are 640 legacy apps,
downloaded over 3M times, that might be overprivileged.

Platform Apps. We analyzed 6778 extensions and con-
cluded that there are 2341 platform apps compliant with the
SoLP which approximately represent 34.5% of all the ana-
lyzed packaged v2 extensions. In other words, there are 4437
potentially overprivileged platforms being downloaded over
69M times.

5.2 Browser extensions

After the data preprocessing, we got that 80,470 extensions
might be overprivileged (59.2%) and therefore 55,548 are
compliant with the SoLP (40.8%). These potentially over-
privileged extensions have been downloaded over 900M
times.

We grouped browser extensions according to the cate-
gories they belong to in theWeb Store and show in Fig. 4 how
they are distributed. It is interesting to see how the number of
potentially overprivileged browser extensions per category is
larger than those compliantwith the SoLP in all the categories
but blogging, fun, and sports. It is also noticeable the number
of potentially overprivileged extensions in productivity and
photos categories, being these extensions one of the most

123



P. Picazo-Sanchez et al.

Table 4 Summary of
overprivileged extensions. SoLP
stands for Spirit of Least
Privilege compliant extensions

Type #Extensions #SoLP

Apps Hosted 9567 6,682 (69.9%)

Legacy (v1) 1221 581 (47.5%)

Platform (v2) 6778 2,341 (34.5%)

Browser extensions Browser extensions 136,018 55,548 (40.8%)

Theme 17,343 17,338 (99.9%)

Total 170,927 82,490 (48.3%)

Fig. 4 Potentially overprivileged browser extensions classified into
Web Store categories

downloaded ones—having approximately 488M and 107M
of downloads, respectively.

Overprivileged browser extensions usually ask for more
harmful permissions, i.e., permissions that pose privacy
issues such as cookies, bookmarks, and topSites, get control
over the extensions the user has (management) and inter-
cept and modify web requests webRequest, webNavigation,
webRequestBlocking). However, there is one special case:
tabs permission. Even though we do not have evidence, we
think that tabs permission is confusing for developers. The
reason is because tabs is only needed to get the “url,” the
“pendingUrl,” the “title,” and the “favIconUrl” properties of
a tab [15]. Yet, there are more than 80 methods and events
under this API that do not require the permission to be used.

The number of extensions compliant with the SoLP
that define and use network permissions (e.g., webRequest,
webRequestBlocking, webNavigation) is so low in compar-
ison to the potentially overprivileged extensions and the
consequences might be catastrophic. Extensions can alter,
block, or replicate and send any ongoing communication,
including the Content Security Policy (CSPs), without the
user being notified.

We analyzed the three most defined permissions of poten-
tially overprivileged extensions according to the category
they belong to in the Web Store and compared the results
with the extensions compliant with the SoLP.

In summary:

cookies permission is present in the top 10 of the most
used permissions of the potentially overprivileged exten-
sions in all the categories but “fun.” There are 18,991
browser extensions that define such a permission but
12,174 do not use it.
management is a common permission among potentially
overprivileged extensions in “Sport,” “Web develop-
ment,” “Productivity,” “Blogging” and “Communica-
tion” categories. Such a permission allows extensions to
enable, uninstall and configure other extensions the user
has. There are 3139 potentially overprivileged extensions
that define such a permission and do not use it.
webRequest is popular among browser extensions of all
categories (15,602), but 10,667 do not use it.

Themes.Despite themes should not have permissions, we
found out that 4 include them in their manifests. In Table 5,
we show the information we got from them. In particular,
the permissions are tabs, bookmarks, http://*/*, https://*/*,
activeTab, http://api.flickr.com/.Tocheckwhether the themes
are overprivileged, we manually deleted the permissions
from their manifest and demonstrated that the permissions
were indeed not needed and themes still changed the default
look & feel of the browser.

Permissions Evolution. We downloaded a new dataset
of browser extensions 6 months later and repeated the same
experiments; however, we could not find any new findings
(see Table 6 in Sect. 1).

6 Underprivileged extensions

In this section, we study howmany extensions have API calls
in their files bywhich they do not have enough permissions to
execute them, i.e., howmany extensions are underprivileged.
Chrome governs the access of browser extensions to privi-
leged APIs. However, extensions can take advantage of how
Chrome implements the privileged architecture to get private
informationwithout defining the corresponding permissions.

Here, we have to differentiate between background pages
and content scripts. When background pages call any privi-

123

http://api.flickr.com/


Are chrome extensions compliant with the spirit of least privilege?

Table 5 Themes stored in the Web Store. The third column (type of files) has the number of files of each type in parenthesis

Name Extension ID #Files Type of files Permissions

Krishna with Radha anglkkfahcceepncmdbjngjcmkagojhb 14 json(2), jpg(2),
png(8),
html(1), pak(1)

activeTab

Kinorul Theme fodejocmlfpendnjfbpamndoklajikhk 13 json(2), jpg(1),
png(9), html(1)

bookmarks, tabs, http://*/*, https://*/*

Premium-Black Dark Theme denonjmlifkgigajfggbbagckemhmphi 9 json(6), jpg(1),
png(2)

identity, https://www.googleapis.com/

My First Extension ddmjeblijdbbnjecbdclkldbccdjhcia 7 json(1), png(1),
html(3), js(1),
cc(1)

tabs, http://api.flickr.com/

Enrique Iglesias Theme cphepdgiboheikghhnjfhaemoilfjklp 6 json(2), jpg(1),
png(2), html(1)

tabs

(a) (b)

(c) (d)

Fig. 5 Underprivileged vs extensions compliant with the spirit of least privilege

123

https://www.googleapis.com/
http://api.flickr.com/


P. Picazo-Sanchez et al.

legedAPIwithout the corresponding permission, the browser
simply blocks such attempts and returns an error instead.
However, when these privileged APIs are accessed by con-
tent scripts, extensions can inherit the permissions that users
might have previously granted toweb pages and thus, retrieve
sensitive information without having to declare such permis-
sions at installation time.

One such example is the geolocation API. Exten-
sions that need to retrieve the user’s geolocation through
the API the browser offers (e.g., navigator.geolocation.
getCurrentPosition(geoSuccess);) would have to include
such permission in the manifest file, otherwise the browser
blocks theAPI request and generates a JavaScript error.How-
ever, if Alice has specifically granted a web page to get her
geolocation, and the extension runs on that page, then it can
call theAPI and have access toAlice’s geolocation bypassing
then the permissions ecosystem.

More precisely:

Definition 3 We say an extension is underprivileged when
there is at least an API call by which the extension does not
have enough privileges to execute it.

In more detail, for hosted apps we got that 18 out of 9567
are underprivilegedwhereas for packaged appswe found that
22 out of 1221 v1 (Legacy apps) and 1269 out of 6778 v2
(Platform apps) are so. Regarding browser extensions, we
detected 13,217 trying to execute restricted API without the
required permissions.

We extracted the most used API calls and generated plots
for hosted and packaged apps v1 (see Fig. 5a, b, respectively).
In general, we observed that the number of extensions com-
pliant with the SoLP and non-underprivileged extensions is
always larger than the underprivileged ones. From the secu-
rity point of view, this should always be the case because it
does not pose any extra security issue (note that extension
compliant with the SoLP might of course be malicious).

However, this is not the case for platform apps (packaged
v2) and browser extensions (see Fig. 5c, d, respectively).
Contrarily to hosted and legacy apps, the number of plat-
form apps that try to use socket, identity permissions and the
number of browser extensions that try to access the APIs
granted by geolocation, browser permissions is larger than
the legitimate extensions. The amount of extensions is sig-
nificant enough to be considered a development error.

The number of packaged v2 apps that try to use both
socket and identity permissions is almost the same, having
a common file that includes calls to chrome.identity.

getAuthToken() and the read(), create() and connect()

methods of the chrome.socket API.
From the experiments, we conclude that almost 82% of

underprivileged platform apps attempt to send and receive
data over the network using TCP and UDP connections
without consent (socket permission). This permission is not

common in apps compliant with the SoLP (around 0.5%
of them define and use it). Also, we observe a similar pat-
tern with identity permission, where 80% of underprivileged
platform apps try to get OAuth2 access tokens using such a
permission.

Regarding browser extensions, we observe that around
21% of the underprivileged ones, attempt to geolocate the
user (geolocation permission) whereas just 0.6% of those
compliant with the SoLP define and use that permission
correctly. This confirms that extensions try to bypass the
permission ecosystem. Similarly, almost 5% of the under-
privileged browser extensions attempt to access data stored
in the clipboard.

We notice that over 13% of the browser extensions try
to open new tabs using the (chrome.browser.openTab())
method—allowed by defining the browser permission. Such
a method used to be the way apps can open new tabs and
it is deprecated for browser extensions. For this reason, we
think that when developers migrated their apps to browser
extensions, they forgot to clean up and update the APIs con-
sequently.

Finally, we extracted how many browser extensions are
potentially overprivileged and underprivileged at the same
time, obtaining 11,563 in total.

7 Tools for users, developers, and vendors

To disseminate our findings, we release different solutions
depending on the target users4. That is, we differentiate
between non-technical users, browser extension developers,
and browser vendors.

For regular users,we provide a browser extension that they
can freely install in the browser. This extension analyzes the
extensions of the user by using the management permission
and retrieving the IDs of the already installed extensions.
Also, by using the same permission, when a new extension is
about to be installed, our extension can warn the user about
the possible risks and information the extension may have
access to. If the user agrees, the new installation will take
place otherwise itwill block the newextension to be installed.

Given the number of potentially overprivileged exten-
sions, we set up a web page with detailed information about
the analysis we carried out in this paper. Concretely, we
included all the analyzed extensions and show the reasons
why they are marked either as potentially overprivileged,
underprivileged, or both. We also included extensions that
are compliant with the spirit of least privilege.

Finally, we make all the scripts we used for the analysis
public. The scripts can be part of the browser extensions
development process so the developers can run the scripts

4 https://github.com/Pica4x6/SoLP.

123

https://github.com/Pica4x6/SoLP


Are chrome extensions compliant with the spirit of least privilege?

before releasing their extensions in order to be compliantwith
the spirit of least privileges and if not, how to achieve so.Also,
they can easily be included as part of the official repositories
and, show messages to the users who are about to install a
new extension—similar to the information that is currently
shown by Google like the rating, number of downloads, or
permissions that the extension requires to be installed.

8 Threats to validity

In this section, we present a systematic approach to validate
our results based on previous work [2,33]. In particular, we
focused on three main threats: 1) the replication of the results
so that future researchers can reproduce the results presented
in this paper; 2)3) generalizability, and; 4) the external valid-
ity of the results. The external validity means whether the
results can be generalized as well as it analyzes if the find-
ings of the study are of relevance for others. According to the
original authors, in the case of quantitative research (experi-
ments), this primarily relies on the chosen sample size [33].

Replicability In this paper, we study Chrome’s permis-
sion ecosystem by performing an in-depth study about how
extensions define and use permissions. To obtain how many
extensions are compliant with the spirit of least privilege, we
relied on Esprima, a third-party library to extract the AST of
the JavaScript files and used regular expressions to statically
extract API calls where it was not possible, i.e., HTML files.

Note that extensions developers canuse codingpatterns, or
techniques like external source code execution, classes emu-
lation and closures [25], and minimization to hide whether
an extension is trying to access a particular API. In addition,
extensions that try to obfuscate their behavior by code gener-
ation functions like eval(), Function(), setTimeout() and
document.write().

Regarding the dynamic code execution, we extracted the
CSP that extensions need to define in the manifest file in
case they want to use the eval() function to give an upper
limit of extensions that need further analysis.We got that less
than 33k browser extensions define it (24% of the browser
extensions). We are working on a prototype that allows us to
understand under which circumstances (e.g., triggers, user
actions, web pages, day time, location, etc.) the extensions
access the APIs.

Instead of relying on the official documentation, we
obtained a list of possible permissions defined inChromium’s
source code and automatically generated extensions with
a combination of all the permissions we found. After that,
we dynamically installed the extensions in the browser and
checked whether they could actually use the permissions the
documentation states. While most of the permissions match
with the official documentation, we found some slight differ-

ences. For instance, according to the official documentation,
the permissions hosted apps can define are: background,
clipboardRead, clipboardWrite, geolocation, notifications,
unlimitedStorage, unlimited_storage5 or a combination of
them [20]. However, we empirically observed that the per-
missions that hosted apps can use is larger (14 permissions
in total) than it is online stated (6).

Extensions that are marked as compliant with the spirit of
least privileged do not have false positives, meaning that they
haveone line of code that access a privilegedAPIgovernedby
a permission defined in the manifest file at installation time.
On the other hand, as we rely on static analysis, we may thus
have false negatives, subject to the precision of the analysis
when detecting overprivileged extensions. This limitation is
sharedwith the relatedwork that also leverages static analysis
(e.g., [4,6,21,34]). Therefore, some of the extensions marked
as potentially overprivileged would need further analysis to
claim whether they are indeed overprivileged or not.

Generability Given the popularity of Chrome, the exten-
sion ecosystem that this browser implements has become a
de facto standard. However, we realized that every browser
implements a different set of APIs and even different meth-
ods. In [7], most of the available APIs that the main
browsers implement (Chrome, Edge, Opera, and Safari) are
described and compared. Therefore, even though the theo-
retical approach can be used in other ecosystems, the results
presented in this paper cannot be generalized to the exten-
sions of other browsers, not even to those based on Chrome
like Edge and Opera.

External Validity Manually analyzing all the extensions
to validate our process is infeasible given the amount of
data. Instead, we randomly chose a subset of extensions and
manually analyzed them. To determine the sample size, we
followed the strategy presented by Israel [23]. In our case we
have a size population of 136,018 extensions so, according to
Israel, we need to manually analyze 662 extensions. In this
way, we meet 95% accuracy, 99% of the time, meaning that
our methodology marks extensions correctly according to
the permissions they define in the manifest file at installation
time.

The manual analysis of the extensions consisted in cer-
tifying that the output of both Esprima and regex matched
with the scripts the extensions include as well as checking
whether the APIs defined in the source code correspond to
the permissions defined in the manifest.

5 unlimited_storage is an Alias defined in the extensions/common/per-
missions/extensions_api_permissions.cc file for UnlimitedStorage per-
mission.

123



P. Picazo-Sanchez et al.

9 Discussion and limitations

Shared Modules. Despite we demonstrated that shared mod-
ules are not a popular option among extensions developers,
we see shared modules as a promising option to avoid dupli-
cated resources. We understand that developers cannot be
forced to use them but Google might perform a static anal-
ysis by checking the Hash of all the resources included in
the .crx package of the extension and 1) delete from the
package and add it to the “export” key of the manifest of the
extension. From the security point of view, this might also
be a huge improvement since it is well known that files like
jQuery are usually altered to include malware [27]. To solve
this problem, Google might statically analyze the extensions
looking for the external JavaScript libraries (e.g., jQuery,
react, d3.js, etc.), include a mechanism like Subresource
Integrity (SRI) to verify that these external resources have not
been altered, and automatically add them as shared modules
so that all the extensions use the samefile.Apart from that,we
argue that by using Shared Modules for common resources,
Google might implement a deduplication technique allowing
it to save space and optimize its resources [31,41].

Updates. We confirmed what the official documentation
says about updates and permissions. In particular, when
extensions are about to be updated, Chrome detects whether
the extension requires more permissions than before and if
so, a new alert is warned to the user. However, if the exten-
sion is already overprivileged but it does not have API calls
in the source code to use such APIs, but the update contains
the API calls to use such permissions the user will not be
aware of it [19]. This might be one of the reasons to give
more permissions to the extensions than needed in advance.
There are some actions that both Google and extensions
developers should adopt to avoid this problem and make
extensions more privacy and security compliant. Essentially,
everything revolves around the principle ofminimumpermis-
sions so extensiondevelopers shouldonly ask for permissions
when they need them. Our scripts will be released so devel-
opers can use them to be compliant with the spirit of least
privilege. On the other hand, our experiments might be
included as part of the acceptance process that Google per-
forms to decidewhether an extension is or is not allowed to be
stored in theWebStore.Bydoing so,Google can easily detect
whether an extension is overprivileged, reject the extension
and give feedback to the developer about how to avoid such
an issue. Since our experiments rely on static analysis of the
extensions’ source code, we measured the time needed to
analyze one extension which, on average, was of 2 s on a
MacBook Air.

Well-Formed Hosted Apps. Even though the purpose of
this paper is the analysis of the permission ecosystem for
extensions in Chrome, we performed an additional experi-
ment to check how many hosted apps fulfill the structural

constraints. According to the official documentation, hosted
apps “must contain an icon and a manifest that has details
about how the app should function. Note: Unlike extensions
and packaged apps, a hosted app has no access to the files
inside its .crx file.” We conclude that there are only 56 of
the 9567 which are well-formed according to the official
guidelines. In other words, 9511 hosted apps are not well-
formed and contain more files than they should have. We
leave for future work the question of how these files interact
with Chrome and whether they may affect the security and
privacy of the user. As an example, there is a hosted app6 that
has 18 files with a total size of 500 Mb.

Manifest V3. Google introduced in 2020 a new version
of the manifest file of the extensions; however, it was not
until January 2021 that Google started accepting extensions
with this new version in the Web Store. In this new ver-
sion, developers will have to define in advance under which
circumstances the extensions will retrieve the (sensitive)
information that somepermissions govern, the so-called rules
[17]. This is a promising step toward security since exten-
sionsmight be statically analyzed in advance by both,Google
and users. Even thoughwe strongly think this is a step toward
more secure and private browser extensions, we do not think
that it will solve the problem. The problem of whether the
extensions need a particular set of permissions to work will
remain, being still possible for an extension to get the his-
tory and share it with other parties as part of its functionality
despite its goal is just changing the color of the background.
To evaluate how this new version affects our analysis, we
downloaded a fresh dataset as of March 2021 and we did not
find any extension using this new version of the manifest file.

10 Related work

Permissions in extensions have been traditionally over-
looked.Most researchers extracted themost commonpermis-
sions of previously detected malicious extensions [1,13,22,
24,26,28] and concluded that they are overprivileged. How-
ever, as far as we know, this is the first in-depth study where
we (1) analyze the permissions ecosystem in Chrome; (2)
download and study more than 150 k Chrome extensions;
(3) automatically and empirically demonstrate how overpriv-
ileged the extensions are, and; (4) publicly release our scripts
to help users, developers, and Google to get feedback about
how extensions define and use permissions and guidelines to
be compliant with the principle of least privilege [5,32].

One of the first authors who analyzed the permissions
ecosystem on both Chrome and Android was Felt et al.
[12,13]. They were not focused on overprivileged extensions

6 ghgffeelgghaomkheipfdfakkedjjkok.

123



Are chrome extensions compliant with the spirit of least privilege?

or Android apps but on whether the permissions are effective
at protecting users. Regarding extensions, the authors used a
dataset of 1000 extensions concluding that 14.7% are over-
privileged. In our work, we not only used a dataset of more
than 150 k extensions but also concluded that the number
of extensions compliant with the spirit of least privilege is
48.3%. Our paper, similar to Felt’s works, relies on static
analysis to analyze the permissions of the extensions.

The main differences between our work and the reviewed
literature are that authors usually propose a new set of poli-
cies, rules or languages to detect, mitigate or avoid security
issues. For instance, malware detection [1,9,24,26,30,37],
fingerprinting [35,36,39] and advertising [3,38,42] are three
of the most common research topics in extensions. Contrar-
ily to these works, we focused on: final users, extensions
developers and extension official repositories. For users and
extensions developers, we released two solutions: a browser
extension and a web page where they can check whether
an extension is or is not compliant with the spirit of least
privilege, underprivileged, and some hints about how to be
compliantwith that principle.Our scripts can alsobe included
as part of the extensions vendor’s acceptance criteria.

Guha et al. [22] proposed a safe JavaScript language to
increase the security of extensions and access to the API.
Complementing this work, we first parsed the entire Web
Store and analyzed approximately 80% of the extensions
from the spirit of least privilege point of view. After such
analysis, other solutions can be implemented on the user’s
side like a mechanism that detects whether the extension is
overprivileged and automatically removes those permissions
which are not used at installation time.

Liu et al. [28] discussed the security model for exten-
sions in Chrome and showed how to perform large-scale bot
attacks, being the main cause of the coarse-grained privilege
management and the access to DOM elements. Ten years
later, we corroborated that extensions still suffer from the
same coarse-grained issues.

Aggarwal et al. [1] detected 218 spying browser exten-
sions that access private information and, after obfuscating it,
is sent to external servers. Authors analyzed the permissions
of such extensions and, despite the number of extensions
not being significant enough, the permissions of the spy-
ing extensions (tabs, cookies, storage, <all_urls>, history,
geolocation, activeTab) match with our analysis of overpriv-
ileged extensions.

Recently, some private security researchers released a tool
that automatically generates comprehensible security reports
[11]. They are motivated by the fact that extensions func-
tionality change over time without the users being notified,
e.g., “a malicious third party were to gain control of the
extension, perhaps by buying it from the developer or com-
promising the developer’s account. The third party could add
malicious code and push the new version out to existing users

without triggering another security review.” Under these cir-
cumstances, researchers developed a tool for security teams
of organizations that automatically parses the .crx files of
the extensions generating automatic reports.

11 Conclusions

In this paper, we analyzed the permissions of Chrome
extensions and determined whether they are overprivileged,
underprivileged, or both. We downloaded 170,927 from the
Web Store and got not only the permissions the extensions
define in the manifest files but also do we extracted the API
JavaScript calls that extensions have in the source code at
installation time.We concluded that 48.3% of the scrutinized
extensions are compliant with the spirit of least privilege
whereas 8.5% are underprivileged. Last but not least, we
developed (1) a browser extension to aware regular users of
the extensions they have installed; (2) an app where browser
extensions developers can checkwhether their extensions are
compliant with the spirit of least privileged, and; (3) a set of
scripts that can be part of the vendors’ acceptance criteria so
when developers upload their extensions, our scripts auto-
matically analyze the extensions and generate a report about
the permissions they define.

Funding Open access funding provided by Chalmers University of
Technology. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation, the Swedish Foundation for
Strategic Research (SSF), the Swedish Research Council (VR), and
Facebook.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A

We include in Table 6 a comparison of the top 10th most
used permissions of extensions in both datasets. In general,
we can see how potentially overprivileged extensions remain
proportionally with respect to the previous dataset.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


P. Picazo-Sanchez et al.

Table 6 Evolution of
permissions in browser
extensions of two datasets
downloaded with a separation of
6 months

#Rank Dataset 2019 Dataset 2020
Permission #Ext Permission #Ext

1st tabs 56,463 tabs 56,364

2nd activeTab 25,053 activeTab 27,173

3rd storage 20,204 storage 19,354

4th cookies 12,174 cookies 11,352

5th webRequest 10,667 webRequest 10,128

6th webRequestBlocking 8999 webRequestBlocking 8141

7th notifications 6817 notifications 6054

8th contextMenus 6661 contextMenus 5987

9th webNavigation 3229 management 2784

10th management 3139 webNavigation 2699

References

1. Aggarwal, A., Viswanath, B., Zhang, L., Kumar, S., Shah, A.,
Kumaraguru, P.: I spy with my little eye: analysis and detection
of spying browser extensions. In: Euro S&P, pp. 47–61 (2018)

2. Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., Chatzigeor-
giou, A.: Identifying, categorizing andmitigating threats to validity
in software engineering secondary studies. Inf. Softw. Technol.
106, 201–230 (2019)

3. Arshad, S., Kharraz, A., Robertson, W.: Identifying extension-
based ad injection via fine-grained web content provenance. In:
RAID, pp. 415–436 (2016)

4. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.:
VEX: vetting browser extensions for security vulnerabilities. In:
USENIX, pp. 339–354 (2010)

5. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers
from extension vulnerabilities. In: NDSS (2010)

6. Barua, A., Zulkernine, M., Weldemariam, K.: Protecting web
browser extensions from javascript injection attacks. In: ICECCS,
pp. 188–197 (2013)

7. Browser support for JavaScript APIs. https://developer.mozilla.
org/en-US/docs/Mozilla/Add-ons/WebExtensions/Browser_
support_for_JavaScript_APIs

8. Carlini, N., Felt, A.P., Wagner, D.: An evaluation of the google
chrome extension security architecture. In: USENIX, pp. 97–111
(2012)

9. Chen, Q., Kapravelos, A.: Mystique: uncovering information leak-
age from browser extensions. In: CCS, pp. 1687–1700 (2018)

10. Moving forward from chrome apps. https://blog.chromium.org/
2020/01/moving-forward-from-chrome-apps.html

11. CRXcavator: Democratizing chrome extension security. https://
duo.com/blog/crxcavator

12. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android
permissions demystified. In: CCS, pp. 627–638 (2011)

13. Felt, A.P., Greenwood, K., Wagner, D.: The effectiveness of appli-
cation permissions. In: USENIX WebApps, pp. 7–7 (2011)

14. Chrome app and extension permissions. https://support.google.
com/chrome/a/answer/7515036?hl=en

15. chrome.tabs. https://developer.chrome.com/extensions/tabs
16. Declare permissions. https://developer.chrome.com/extensions/

declare_permissions
17. Declare permissions. https://developer.chrome.com/docs/

extensions/reference/declarativeNetRequest/
18. Declare permissions and warn users. https://developer.chrome.

com/apps/permission_warnings

19. Extensions and apps in the chrome web store. https://developer.
chrome.com/webstore/apps_vs_extensions

20. Hosted apps. https://developer.chrome.com/webstore/hosted_apps
21. Guarnieri, S., Livshits, B.: GATEKEEPER: mostly static enforce-

ment of security and reliability policies for javascript code. In:
USENIX, pp. 151–168 (2009)

22. Guha,A., Fredrikson,M., Livshits,B., Swamy,N.:Verified security
for browser extensions. In: S&P, pp. 115–130 (2011)

23. Israel, G.D.: Determining sample size (1992)
24. Jagpal, N., Dingle, E., Gravel, J.P., Mavrommatis, P., Provos, N.,

Rajab, M.A., Thomas, K.: Trends and lessons from three years
fighting malicious extensions. In: USENIX, pp. 579–593 (2015)

25. Javascript closures. https://www.w3schools.com/js/js_function_
closures.asp

26. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Pax-
son, V.: Hulk: eliciting malicious behavior in browser extensions.
In: USENIX, pp. 641–654 (2014)

27. Kapravelos, A., Shoshitaishvili, Y., Cova, M., Kruegel, C., Vigna,
G.: Revolver: an automated approach to the detection of evasive
web-based malware. In: USENIX, pp. 637–652 (2013)

28. Liu, L., Zhang, X., Yan, G., Chen, S.: Chrome extensions: threat
analysis and countermeasures. In: NDSS (2012)

29. Manifest file format. https://developer.chrome.com/docs/
extensions/mv2/manifest/

30. Perrotta, R., Hao, F.: Botnet in the browser: understanding threats
caused by malicious browser extensions. IEEE Secur. Privacy
16(4), 66–81 (2018)

31. Picazo-Sanchez, P., Algehed, M., Sabelfeld, A.: Dedup.js: discov-
eringmalicious and vulnerable extensions by detecting duplication.
In: ICISSP, pp. 528–535 (2022)

32. Schneider, F.B.: Least privilege and more [computer security].
IEEE Secur. Privacy 1(5), 55–59 (2003)

33. Siegmund, J., Siegmund, N., Apel, S.: Views on internal and exter-
nal validity in empirical software engineering. In: ICSE, pp. 9–19
(2015)

34. Somé, D.F.: Empoweb: Empowering web applications with
browser extensions. In: S&P, pp. 227–245 (2019)

35. Starov, O., Laperdrix, P., Kapravelos, A., Nikiforakis, N.: Unnec-
essarily identifiable: quantifying the fingerprintability of browser
extensions due to bloat. In: WWW, pp. 3244–3250 (2019)

36. Starov, O., Nikiforakis, N.: Extended tracking powers: measuring
the privacy diffusion enabled by browser extensions. In: WWW,
pp. 1481–1490 (2017)

37. Starov, O., Nikiforakis, N.: Xhound: Quantifying the fingerprint-
ability of browser extensions. In: S&P, pp. 941–956 (2017)

38. Thomas, K., Bursztein, E., Grier, C., Ho, G., Jagpal, N., Kaprave-
los, A., Mccoy, D., Nappa, A., Paxson, V., Pearce, P., Provos, N.,

123

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Browser_support_for_JavaScript_APIs
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Browser_support_for_JavaScript_APIs
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Browser_support_for_JavaScript_APIs
https://blog.chromium.org/2020/01/moving-forward-from-chrome-apps.html
https://blog.chromium.org/2020/01/moving-forward-from-chrome-apps.html
https://duo.com/blog/crxcavator
https://duo.com/blog/crxcavator
https://support.google.com/chrome/a/answer/7515036?hl=en
https://support.google.com/chrome/a/answer/7515036?hl=en
https://developer.chrome.com/extensions/tabs
https://developer.chrome.com/extensions/declare_permissions
https://developer.chrome.com/extensions/declare_permissions
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://developer.chrome.com/apps/permission_warnings
https://developer.chrome.com/apps/permission_warnings
https://developer.chrome.com/webstore/apps_vs_extensions
https://developer.chrome.com/webstore/apps_vs_extensions
https://developer.chrome.com/webstore/hosted_apps
https://www.w3schools.com/js/js_function_closures.asp
https://www.w3schools.com/js/js_function_closures.asp
https://developer.chrome.com/docs/extensions/mv2/manifest/
https://developer.chrome.com/docs/extensions/mv2/manifest/


Are chrome extensions compliant with the spirit of least privilege?

Rajab, M.A.: Ad injection at scale: assessing deceptive advertise-
ment modifications. In: S&P, pp. 151–167 (2015)

39. Trickel, E., Starov, O., Kapravelos, A., Nikiforakis, N., Doupé,
A.: Everyone is different: client-side diversification for defend-
ing against extension fingerprinting. In: USENIX, pp. 1679–1696
(2019)

40. Wang, H., Liu, Z., Liang, J., Vallina-Rodriguez, N., Guo, Y., Li,
L., Tapiador, J., Cao, J., Xu, G.: Beyond google play: a large-scale
comparative study of chinese android app markets. In: IMC, pp.
293–307 (2018)

41. Xia,W., Jiang,H., Feng,D.,Douglis, F., Shilane, P.,Hua,Y., Fu,M.,
Zhang, Y., Zhou, Y.: A comprehensive study of the past, present,
and future of data deduplication. Proc. IEEE 104(9), 1681–1710
(2016)

42. Xing, X.,Meng,W., Lee, B.,Weinsberg, U., Sheth, A., Perdisci, R.,
Lee, W.: Understanding malvertising through ad-injecting browser
extensions. In: WWW, pp. 1286–1295 (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Are chrome extensions compliant with the spirit of least privilege?
	Abstract
	1 Introduction
	2 Extensions
	2.1 Apps
	2.2 Browser extensions

	3 Permissions vs API calls
	3.1 Permissions
	3.2 API calls

	4 Methodology
	5 Overprivileged extensions
	5.1 Apps
	5.2 Browser extensions

	6 Underprivileged extensions
	7 Tools for users, developers, and vendors
	8 Threats to validity
	9 Discussion and limitations
	10 Related work
	11 Conclusions
	Appendix A
	References




