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Abstract: Browser extensions are popular web applications that users install in modern browsers to enrich the user
experience on the web. It is common for browser extensions to include static resources in the form of HTML,
CSS, fonts, images, and JavaScript libraries. Unfortunately, the state of the art is that each extension ships
its own version of a given resource. This paper presents DeDup.js, a framework that incorporates similarity
analysis for achieving two goals: detecting potentially malicious extensions during the approval process, and
given an extension as input, DeDup.js discovers similar extensions. We downloaded three snapshots of the
Google Chrome Web Store during one year totaling more than 422k browser extensions and conclude that over
50% of the static resources are shared among the extensions. By implementing an instance of DeDup.js, we
detect more than 7k extensions that should not have been published and were later deleted. Also, we discover
more than 1k malicious extensions still online that send user’s queries to external servers without the user’s
knowledge. Finally, we show the potential of DeDup.js by analyzing a set extensions part of CacheFlow, a
recently discovered attack. We detect 53 malicious extensions of which 36 Google has already taken down and
the rest are investigated.

1 Introduction

Browser extensions are small web applications that
modern browsers allow users to install for enriching
their experience when surfing the Web.Chrome’s Web
Store, the repository where Chrome’s extensions are
installed from, have over 188k extensions with more
than 1B downloads (Extension Monitor, 2021).

Browser extensions have a compulsory file in brow-
ser extensions called the manifest. Additionally, exten-
sions can include as many static files as needed, e.g.,
HTML, CSS, JavaScript, fonts, and images. Develop-
ers upload the extensions to vendors’ repositories to
be stored, checked, and publicly distributed.

Browser Extension Distribution. In Chrome, Google
only allows users to install extensions from Google’s
Web Store. When a user selects the extension to be
installed, Chrome downloads, unpacks, and installs it
automatically. If the user installs another extension
with similar files, they are duplicated in the file system.
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Code Duplication in Browser Extensions. Reusing
pieces of source code is a common practice in soft-
ware development (Gabel and Su, 2010), with 93% of
the JavaScript code on GitHub cloned (Lopes et al.,
2017). However, massive code reuse is also a major
security threat as such cloning propagates bugs and
vulnerabilities (Roy et al., 2009).

This paper puts a spotlight on the problem of
code duplication in browser extensions. We propose
DeDup.js, a novel approach that enables us to discover
malicious as well as benign-but-vulnerable extensions
by leveraging deduplication.

DeDup.js: Hardening Approval Process. When
developers publish their extensions in the Web
Store, these go through an automatic review and, in
some cases, some manual checks (Google, 2021a;
Dev.Opera, 2021). If during this process, vendors mark
the extension as malicious (Google, 2021e) or if it vi-
olates the security policies (Google, 2021d; Google,
2021b), it might be removed, blocked, and returned
back to the developer. In this paper, we propose a mod-
ule called Approval Process which leverages DeDup.js
as follows. Once vendors detect an extension to be ma-
licious, DeDup.js automatically looks for extensions



with similar files in the repository, discovering similar
ones. Also, when a new extension is uploaded, the
module outputs two values: Deletion and Malware
similarity scores that indicate how similar the new ex-
tension is to other previously deleted and malicious
ones, thus providing vendors with more information
about the new extension.

Since it is difficult to know the reason why exten-
sions are deleted from the Web Store (e.g., malware,
discontinuation, and compatibility), we run an instance
of this module and use as input three snapshots of the
Store we downloaded at three different times in 2020.
We give empirical evidence that previously deleted
extensions have a great impact on analyzing new ex-
tensions and demonstrate how this module can be used
to detect malicious extensions. By manually analyzing
the output of this module, we identify a set of over 1k
active extensions that redirect users’ queries to exter-
nal servers without the users noticing, clearly violating
the privacy policy of browser extensions.

DeDup.js: Discovering. We input DeDup.js with 17
malicious extensions that implement a recently dis-
covered attack named CacheFlow (Avast, 2021). By
leveraging deduplication, we detected and reported
to Google 53 malicious extensions of which 36 have
already been taken down and the rest are investigated,
demonstrating how security researchers might benefit
from our framework.

Our contributions. To our knowledge, this is the first
paper that presents an approach to discover potentially
malicious as well as vulnerable-but-benign extensions
due to their similarities. In more detail:

• We present DeDup.js, an approach that detects
similarities in browser extensions (Section 3).

• In a large-scale empirical study with browser exten-
sions we demonstrate how DeDup.js detect shared
resources and reduced the number of JavaScript to
analyze from 1.8M to 117k files (Section 5.1).

• We show how vendor’s approval process can be
improved by applying DeDup.js, providing them
with more information (Section 5.2).

• Using as input the IDs of the extensions that im-
plement a recently discovered attack (nic.cz, 2021;
Avast, 2021), we discover 53 new malicious exten-
sions (Section 5.3).

Coordinated disclosure. We reported to Google all
the malicious extensions detected in our empirical
study as well as our methodology. Chrome Web Store
team removed many of them while some others are
still under investigation.

2 Browser Extensions

The amount of sensitive information that extension
can retrieve from the user is invaluable. Not only they
inject content scripts in all the web pages the users
see (e.g., defining "<all_urls>" or "http://*/*",
"https://*/*" patterns) to get all the information
displayed, but also background pages can use the
most powerful API the browser exposes to extensions.
These permission go from cookies, network capabili-
ties, and history to managing other extensions the users
have installed in the browser. Thus, the detection of
malicious and vulnerable browser extensions at early
stages, once they are publicly available for users, is a
challenge among researchers.

We differentiate between malicious and benign-
but-vulnerable extensions. While both types can leak
sensitive information, the main difference is that the
former are developed to attack the security and privacy
of the users whereas the latter do so unintentionally.

Depending on the context where the scripts of the
extensions run, the security implications vary. To un-
derstand how, we differentiate between:
Content scripts Are directly injected into a copy of

the DOM that the browser keeps updated for each
extension.

Background pages Are JavaScripts with access to
protected APIs (e.g., history, cookies, network traf-
fic). Chrome isolates these scripts from the DOM
and the content scripts.

WARs Scripts defined as Web Accessible Resources
(WARs) can be fetched by any other script running
in the browser by using the public link that the
browser assigns to every WARs of the extensions.

3 DeDup.js Architecture

DeDup.js can be deployed in extensions repositories
like the Chrome Web Store. We do not require any
structural change nor any user interaction. In more
detail, in DeDup.js (see Figure 1) we define two main
parts: 1) data gathering and filtering, and; 2) modules.

Data Gathering and Filtering. During this first step,
DeDup.js uses as input a browser extension and auto-
matically extracts all the static files the extension has.
DeDup.js splits the static files into two main sets, one
with JavaScript files and another one with CSS, fonts,
HTML, and images.

Modules. Due to its architecture, DeDup.js allows
extra functionality, what we call modules. Modules
can work independently, share information, and/or
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Figure 1: Architecture of DeDup.js.

use other’s outputs as input. In particular, DeDup.js
includes by default three main modules: 1) Deduplica-
tion; 2) Approval Process, and; 3) Discovering. In the
following, we explain in more detail each module.

3.1 Modules

Deduplication. This is the main module that DeDup.js
implements and it is in charge of detecting similar
files in browser extensions and keeping track of those
files in a database for further analysis. DeDup.js can
specify predefined methods for determining when two
files are equivalent or even adding ad-hoc ones. For
example, DeDup.js currently supports comparing the
Subresource Integrity (SRI) hash of two files but other
more accurate methods of comparing files can also be
easily accommodated (we discuss this in Section 6).

Approval Process. This module analyzes extensions
looking for similarities with both known malware and
previously deleted extensions (see Figure 2). DeDup.js
extracts the static files of the extension and checks
whether they are in the deduplication database or not.
It finally outputs two values “Malware Similarity” and
“Deleted Similarity” that correspond to how similar the
extension is to other extensions previously identified
as malware or deleted from the Web Store.

Vendors can include this module as part of their ap-
proval process (Google, 2021a; Dev.Opera, 2021). If
so, it automatically analyzes extensions when they are
uploaded by developers to the Web Store and provides
vendors with useful insights and information to accept
or to perform further security analysis.

The goal of this module is not automatically ac-
cepting or rejecting extensions when they are up-
loaded by developers nor detecting malicious exten-
sions. DeDup.js aims at helping vendors with this,
sometimes tedious, task since vendors perform some
automatic and manually checks (Google, 2021a) or in
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Figure 2: Approval Process module of DeDup.js.

some cases, just manual analysis (Dev.Opera, 2021)
by providing a confident and automatic mechanism
that prioritizes soundness over completeness. That is,
with this module, vendors will be provided with high
confidence information about the files that an exten-
sion shares with other already deleted or malicious
extensions. Therefore, further security analysis should
be performed to mark extensions as malicious or not.

Discovering. DeDup.js automatically analyzes all the
extensions stored in the Web Store and provides a
sorted list of extensions that share files with the one
used as input. This module is specially useful when
the input extension is either malicious or vulnerable
as it outputs similar extensions to that one. If more
information is provided, e.g., the malicious file that
makes an extension to be malicious, DeDup.js can
retrieve a list of extensions that not only include such
a file but also those that use the file similarly.

4 A Proof-of-Concept
Implementation

We implemented a proof-of-concept of DeDup.js in
Python on a Linux computer with Intel(R) Core(TM)
i7-4790 CPU @3.60GHz, 16GB of RAM. In the fol-
lowing, we explain the implementation decisions we



Table 1: Deleted extensions between snapshots.

Snapshots Dec 2019 July 2020 Dec 2020

Dec 2019 – 12,443 13,919
July 2020 – 11,148

took to deploy such an instance and thus, facilitate the
reproduction of the results presented in this paper.

4.1 Data Gathering and Filtering

We downloaded 3 snapshots of the Web Store within
a year and analyzed them independently. The first
dataset belongs to December 2019 having 133,365
and 314GB. The second one is from July 2020 and
has 138,895 extensions totaling 327GB. Finally, we
downloaded the last dataset in December 2020 having
149,783 and 292GB. In total, we analyzed over 1TB of
data corresponding to over 422k browser extensions.

To crawl the Web Store, we followed the same
methodology for the three snapshots. First, we re-
trieved the sitemap of the Store and extracted the list
of browser extensions. Second, we decompressed each
extension and extracted both the manifest and all the
files to be analyzed afterwards by DeDup.js.

Regarding the static files, we restricted ourselves
to CSS, fonts, HTML, images and JavaScript. Because
both fonts and images can have many different formats,
DeDup.js uses ttf, otf, woff and woff2 extensions
as fonts whereas for images, it uses jpg, jpeg, png, gi
f, bmp, g2 and ico files. Note that the analysis might
be expanded with additional static files and formats.

4.2 Modules

Deduplication. We configured DeDup.js to use hash
functions and more concretely SRI to detect whether
static resources are the same or not. This is a conser-
vative decision since we are forcing our framework
to only detect files that are strictly the same. Even
though this is an advantage for some static resources
like CSS, fonts, and images, it might not be for HTML
and JavaScript files. For these resources, other alterna-
tives like sdhash (Roussev, 2010) or ssdeep (Kornblum,
2006) could have been implemented, but the reality is
that the final results do not differ from the ones we got
with our methodology in the Deduplication module.

For the clustering, we set up a local instance of
PostgreSQL to store all the results the code clone pro-
cess generates, i.e., the id of the extensions, the SRI of
the files and their names. In total, it took us 5 hours to
run this entire process.

Hardening the Approval Process. Since it is diffi-
cult to know the reason why a browser extension was

Table 2: Deduplicated files of December 2019 snapshot with
133,365 browser extensions.

Files Repeated Saved Space (GB)

CSS 334,563 (7.0GB) 233,059 (4.7GB) 67.0%
Fonts 138,560 (8.6GB) 123,444 (7.1GB) 82.5%
HTML 243,144 (1.1GB) 100,671 (0.4GB) 33.6%
Images 1,797,985 (248.6GB) 903,174 (102.1GB) 41.0%
JavaScript 1,654,482 (48.6GB) 1,144,358 (22.8GB) 46.9%

TOTAL 4,168,734 (313.9GB) 2,504,706 (137.1GB) 43.6%

Table 3: Deduplicated files of July 2020 snapshot with
138,895 browser extensions.

Files Repeated Saved Space (GB)

CSS 339,642 (7.1 GB) 243,276 (5.0GB) 71.0%
Fonts 141,045 (8.6 GB) 126,595 (7,1GB) 82.9%
HTML 265,404 (1.3GB) 105,687 (0.4GB) 39.8%
Images 1,801,581 (273.5 GB) 897,304 (109.9GB) 40.2%
JavaScript 1,661,680 (46.8 GB) 1,190,478 (23.7GB) 50.7%

TOTAL 3,943,948 (336GB) 2,457,653 (145.7GB) 43.3%

deleted from the Web Store (e.g., malware, discontin-
uation, and compatibility), we used the first snapshot
as the initial dataset. We next performed the differ-
ence between the other two to know which extensions
were in common and which ones were deleted. We
included the number of deleted extensions between
the three snapshots in Table 1. Finally, we assume all
the deleted extensions to be malware. This is the most
conservative decision since DeDup.js has to analyze
more extensions than initially needed.

If DeDup.js were deployed by vendors, they can
filter extensions and label them as either “Deleted Ex-
tensions” or “Malware Extensions”, speeding up this
process and not analyzing unnecessary extensions.

Discovering. For this module, we restricted ourselves
to show how it can be used to track and discover un-
caught malicious extensions still in the Web Store. We
used as input 17 browser extensions that implement a
recently discovered attack called CacheFlow (Avast,
2021)

5 Empirical Results

In the following, we explain in more detail the results
we got from the instance of DeDup.js we deployed.

5.1 Deduplication

CSS, fonts, HTML, images. After analyzing over
422k browser extensions, we observed that even
though browser extensions varied the amount and the
size of shared resources over a year, DeDup.js remains
stable detecting common files. We checked this by
comparing the space that shared files have in CSS,
fonts, HTML and images over time (see Tables 2 to 4).

Using the last snapshot as an example, we extracted



Table 4: Deduplicated files of December 2020 snapshot with
149,783 browser extensions.

Files Repeated Saved Space (GB)

CSS 352,354 (8.6GB) 234,134 (5.6GB) 66.4%
Fonts 158,137 (10.7GB) 137,660 (8,5GB) 87.0%
HTML 265,404 (1.3GB) 105,687 (0.4GB) 39.8%
Images 1,935,035 (218.6GB) 897,296 (75.5GB) 46.3%
JavaScript 1,874,275 (63.1GB) 1,300,455 (26.7GB) 69.3%

TOTAL 4,585,205 (302.3GB) 2,675,232 (116.7GB) 58.3%

the most common shared files of each one of the ana-
lyzed static resources, CSS, fonts, HTML, and images
and sorted these lists by those files which are heavier
in terms of size in the disk. We see how by creat-
ing Shared Modules (Google, 2021c) of the analyzed
repeated static resources (CSS, fonts, HTML, and im-
ages) DeDup.js can save over 85GB of space.

JavaScript. JavaScripts are the files that increase on
each dataset; however, the total size does not, being
the last dataset the one with more files and less size.

Focusing on the last dataset (Dec 2020), from
149,783 browser extensions, there are 1,874,275
JavaScript files. We computed the SRIs of the content
and obtained 573,820 different scripts, meaning that
there are over 1,3M repeated files. From the repeated
files, we realized that there are only 117,093 different
scripts, being around 9% of the repeated files. With
this simple yet powerful methodology based on SRI,
DeDup.js reduced the number of JavaScript files to
analyze from 1.87M files to 117k files approximately.

Takeaway: DeDup.js implements a novel method that
allows vendors to detect repeated files among exten-
sions. We are conservative in our decision and imple-
mented a method based on hash algorithms, SRI, to
detect whether two files are similar or not. We showed
how over 50% of the files of the extensions are shared
among others and how DeDup.js can reduce the num-
ber of JavaScripts to analyze from over 1.8M to 117k.

5.2 Hardening the Approval Process

We analyzed 12,443 extensions corresponding to the
extensions that are in the first snapshot and are not
in the second one. One of the first groups of exten-
sions that draw our attention was composed of 1,769
extensions with one common content script named
search_rdir.js. Such a file is automatically in-
jected when the user visits any of the URIs defined
in the manifest file (see Listing 1). Once the script
is injected, it redirects the search queries that users
perform to external servers without the users noticing
it. Interestingly, DeDup.js detected that there is one
extension1 that renamed that file to search_dir.js

1dmnbnekngkimbdpmaimkficpllbahbpm

and is still online, evidencing that DeDup.js can detect
variations of extensions that either intentionally or un-
intentionally try to bypass the approval process that
Google in this case performs.

"matches": ["*://search.yahoo.com/
search*", "*://duckduckgo.com/*", "

*://www.google.com/search*", "*://
www.bing.com/search*", "*://gl−
search.com/*", "*://redirect.
lovelytab.com/*", "*://str−search.
com/*"],

Listing 1: Manifest of extensions with search_rdir.js script.

After that, we analyzed all the extensions and
sorted the list by the Malware Similarity score. We
notice that there are 4 files always in common, i.e.,
sweetalert2.js and postit.min.js and popper
.min.js and tingle.min.js. In additiona to that,
by anlayzing the manifest files of the extensions, we
found out that a big set of them (2,433) also require
the webRequestBlocking permission (440 in Dec 2019;
1,280 in July, and; 713 in Dec 2020).

By manually analyzing some of them, we found a
subset of 1,374 extensions that redirect all the queries
of the users—similar to previous extensions—but us-
ing the background page (js/main.js) of the exten-
sions instead of content scripts (328 in Dec 2019, 962
in July 2020 and 412 in Dec 2020). Also, DeDup.js
detected a new subset of 199 extensions in July’s snap-
shot where they redirect the queries the users perform
by using js.js instead. This number increased in Dec
2020 totaling 232 extensions.

There is another subset of extensions that start per-
forming maliciously after a given amount of time. We
realized that there is one extension that includes a file
named background.js.The peculiarity of this file is
that, after 5 days of the installation of the extension,
it starts redirecting the queries that the users perform
to an external web page(http://www.lovelychrometa
b.com/?a=gsp_nevada_00_00_ssg10&q=) encoded in
base64 (see Listing 2). It turned out that this file was
shared among 4 extensions in December 2019 but
such a number increased in July’s dataset up to 281
extensions whereas all of them were deleted in the last
dataset. However, to our surprise, 5 new extensions
with such a file were published again in Dec 2020. We
also found slight variations of this bakground.js file
where the queries of the user are sent to another server
instead (https://localspeedtest.com/results.php?q=).

if (matchPattern && searchQuery) {

return {redirectUrl: ’${atob("

aHR0cDovL3d3dy5sb3ZlbHljaHJvbWV

0YWIuY29tLz9hPWdzcF9uZXZhZGFfM

http://www.lovelychrometab.com/?a=gsp_nevada_00_00_ssg10&q=
http://www.lovelychrometab.com/?a=gsp_nevada_00_00_ssg10&q=


DBfMDBfc3NnMTAmcT0=")}${

searchQuery}’};}

Listing 2: User’s queries redirection in background.js

Finally, DeDup.js detected a different set made of
4,415 unique extensions (4,330 in Dec 2019; 4,396
in July, and; 3,520 in Dec 2020) where 1,045 are still
online as of mid-January 2021. In this case, exten-
sions share a file named search-overwrite.js in
charge of redirecting the traffic to external servers.
Also, DeDup.js detected multiple variants of the
search-overwrite.js file (11 in Dec 2019; 10 in
July, and; 6 in Dec 2020).

Takeaway: Detecting malware is a recurrent problem
where DeDup.js finds a direct application due to the
approval process module it includes. By running an
instance of DeDup.js, we showed how vendors could
have caught, at least, over 7k malicious extensions
early on during the automatic approval process of the
extensions. Also, we detected more than 1k new exten-
sions similar to previously deleted extensions from the
Web Store still online that steal user’s search queries.

5.3 Discovering: CacheFlow Attack

CacheFlow is an attack discovered by the Czech na-
tional security team in December 2020 (nic.cz, 2021).
Two months later Avast security researchers detected
in total 17 malicious extensions for Chrome that were
available in the Web Store since 2018 and downloaded
by more than 3M users (Avast, 2021) that were exploit-
ing it. Concretely, the extensions hid their Command
and Control (C&C) traffic in a covert channel using the
Cache-Control HTTP header of their analytics requests
where the payload was injected. With this, extensions
had a backdoor to execute remote code from the C&C
as well as getting analytics information from the users.

We show the potential that DeDup.js has with a
real example. By using as input the public list of IDs
that Avast released, we discovered 53 new malicious
extensions of which 29 are still online. We manually
analyzed them and conclude that the attack is still
ongoing with slight variations. The purpose of these
malicious extensions goes from providing quick access
to news websites2 to an extension that claims to “help
users use Facebook more conveniently”3.

Similar to the initially reported CacheFlow ex-
tensions, these group of malicious extensions that
DeDup.js found, check and send the installation time

2ohafompdpdflhjajfhdcjlbjihgdcioc, ngfmaegenln-
mgcbalfikhkmgimkedlkb

3djfbfhmfeenbkdffimkcagbiimjelgne

to the C&C every time the extensions fetch the news—
which is exactly 200ms after the background page
(background/main.js) is executed We observed that
if in the response body of the C&C there is a field
called new_constants, the original information pro-
vided in constants.js is overwritten.

Among the list of news that the server provides,
we discovered that the C&C is sending arbitrary
JavaScript code that the extensions execute (see List-
ing 3). In this case, it sends a snippet that modifies the
local storage of the user; however, any other harmful
code could be sent instead.

foSelectorDescription: ".ev"

foSelectorTitle: ".al"

selectorImagesSettings: "try{\n\tif(

window.localStorage && !window.

localStorage.showNotif)\n\t{\n\t\

twindow.localStorage.showNotif=1;\n

\t\tchrome.storage && chrome.

storage.local && chrome.storage.

local.set({\"push\":false})\n\t}\n}

catch(e){}"

Listing 3: Payload sent by the C&C.

Finally, extensions execute the eval() hidden in
a clever way: they call a function with a parameter
e, e = this.propertyName.substr(1)+ constants.
foSelectorTitle.substr(1);, which is indeed the
string "eval" (see Listing 3). We detected over 10
extensions with such source code or a variation of it.

As an example, using as input the extension
lgjogljbnbfjcaigalbhiagkboajmkkj, DeDup.js detected
8 files (6 .png, 1 .html, and 1 .js) in common with
other 6 extensions—being one of them part of the
CacheFlow set. We manually analyzed and installed
each one of these 5 new and already available exten-
sions in the Web Store and indeed corroborated that
all of them can execute remote code in the client’s
machine after receiving it from the C&C as explained
before. Note that after this process, we got 5 malicious
extensions that should be analyzed to get similarities
with new ones. However, we think that this example
demonstrates how DeDup.js can help researchers in
detecting new malicious extensions, and therefore, we
restricted ourselves to the first level of similarity.

Takeaway: Due to the information gathered and
computed in the Deduplication module, the Discover-
ing module is where DeDup.js exhibits its potential.
As an example, DeDup.js discovered (and we manu-
ally analyzed afterwards) that all the extensions in our
most recent dataset sharing meoptin.js are malware.
Similar cases are extensions sharing options.html,
download_big.png, thankyou.css, and pdf.gif.



We reported all the extensions that we manually an-
alyzed to Google and many of them were deleted al-
ready whereas others are under investigation.

6 Discussion & Limitations

In what follows, we discuss the main limitations that
DeDup.js has and how we are working on an extension
of the framework to address them.

Deduplication. The DeDup.js instance we imple-
mented relies on SRI to detect similar files. Although
this could be initially a coarse-grained code clone de-
tection mechanism based on the whole-file where mali-
cious developers can easily bypass by generating small
changes like introducing random blank spaces, the re-
ality is that DeDup.js drastically reduced the number
of libraries to be analyzed going from 1,874,275 to
117,093 in the last dataset we have (as of December
2020)—meaning that 91% of the JavaScripts of the
extensions are repeated and therefore concluding that
the SRI works for our purpose. Determining whether
two files are the same is out of the scope of this paper
and is an entire research topic itself in formal methods
and program verification called program equivalence
(Badihi et al., 2020).

Evasion Techniques. Malware tends to reuse the same
piece of software, especially the one that performs the
exploits (Calleja et al., 2019). Even though we could
not find evidence of extensions implementing evasion
techniques, we cannot ignore it.Since DeDup.js relies
on SRI, developers might be tempted to bypass it. Yet,
this is not the case of benign-but-vulnerable extensions,
where developers are not aware of the vulnerabilities
introduced (being malicious otherwise). However, for
malicious extensions, the consequence is that both
Malware and Deleted scores will be lower than they
should be. We implemented DeDup.js modularly such
that replacing the actual SRI algorithm and incorpo-
rating fuzzy hashing techniques like sdhash (Roussev,
2010) or ssdeep (Kornblum, 2006) will be as easy as
including such new libraries.

Approval Process. The goal of DeDup.js is not to
automatically detect malicious extensions but rather
provide an automatic mechanism that alerts vendors
about extensions that look similar to previously dele-
ted and malicious ones. Thus, we do not include any
statistical classification analysis (i.e., sensitivity and
specificity). This initial version of DeDup.js does not
take into account the severity of the vulnerability, i.e.,
an extension could just share one extremely vulnerable
file out of 100 files and the Malware similarity will

output 1%. We understand that during this process,
completeness is not as important as soundness, and
therefore, DeDup.js prioritizes soundness. Having said
that, we plan to expand DeDup.js to allow vendors to
include the severity of the vulnerabilities such that
the Approval Process module not only outputs both
Malware and Deletion Similarity values but also how
dangerous the extensions are. In addition to that, we
are developing an additional module that can automat-
ically detect and classify both the vulnerabilities that
extensions expose (vulnerable extensions) as well as
the attacks they might exploit (malicious extensions).

7 Related Work

Security of browser extensions is paramount due to the
sensitivity of the information that they manipulate.

In Chrome, many works have been proposed using
dynamic analysis. Hulk (Kapravelos et al., 2014) an-
alyzes extensions based on honey pages and a fuzzer
to fire event handlers that extensions rely upon. Exten-
sionGuard (Chang and Chen, 2016) is a dynamic taint
system that prevents extensions from leaking sensitive
information to web pages by modifying the source
code of the extensions. Mystique (Chen and Kaprave-
los, 2018) performs a taint analysis of the information
flow in browser extensions. A recent study (Pante-
laios et al., 2020) detected 64 malicious extensions by
analyzing the comments and ratings of the users.

In code clone detection, researchers have mainly
focused on statically-typed languages (e.g., (Kamiya
et al., 2002; Bowman and Huang, 2020; Li et al.,
2016; Kim et al., 2017)). A recent study showed
that JavaScript exhibits different clone properties and
cloning practices, as well as reporting that developers
duplicate code intentionally (Cheung et al., 2016). We
relied on hash functions as code detection since we not
only analyze source code but also other resources like
CSS, fonts, and images. However, DeDup.js may bene-
fit from fuzzy hashing techniques like sdhash (Roussev,
2010) or ssdeep (Kornblum, 2006). Having said that,
DeDup.js is general enough that classical code cloning
tools like LICCA (Vislavski et al., 2018) can be also
added to the Deduplication module.

Complementing the prior work, we present
DeDup.js, a framework that detects malicious browser
extensions based on by leveraging deduplication. With
DeDup.js a vast majority of malicious extensions can
be caught during the acceptance process (Section 5.2)
without modifying the browser’s engine nor falling
into computational overhead that dynamic analysis
originates (Chang et al., 2008).



8 Conclusions

Our work puts a spotlight on the problem of discover-
ing malicious and vulnerable browser extensions by
detecting duplication. To address the problem, we
presented DeDup.js, an approach that incorporates
similarity analysis for achieving two goals: detecting
potentially malicious extensions during the approval
process and discovering malicious extensions.

We implemented and deployed an instance of
DeDup.js and analyzed more than 422k browser exten-
sions stored in the Web Store over a year. In summary,
DeDup.js: 1) detected more than 7k extensions that
should not have been published in the Web Store. Also,
we found more than 1k malicious extensions still on-
line that send user’s queries to external servers without
the user’s knowledge, and; 2) detected 53 malicious
extensions of which 36 Google has already taken down
and the rest are investigated. We did so by using as
input 17 already known malicious extensions IDs, thus
demonstrating how DeDup.js can change the game of
malware detection in browser extensions.
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