
Bridging Language-Based and Process Calculi Security?

Riccardo Focardi1, Sabina Rossi1, and Andrei Sabelfeld2

1Dipartimento di Informatica, Università Ca’ Foscari di Venezia, 30172 Venezia, Italy
E-mail: {focardi,srossi}@dsi.unive.it

2Dept. of Computer Science, Chalmers University of Technology, 41296 Göteborg, Sweden
E-mail: andrei@cs.chalmers.se

Abstract. Language-based and process calculi-based information security are
well developed fields of computer security. Although these fields have much in
common, it is somewhat surprising that the literature lacks a comprehensive ac-
count of a formal link between the two disciplines. This paper develops such a
link between a language-based specification of security and a process-algebraic
framework for security properties. Encoding imperative programs into a CCS-
like process calculus, we show that timing-sensitive security for these programs
exactly corresponds to the well understood process-algebraic security property
of persistent bisimulation-based nondeducibility on compositions (P BNDC).
This rigorous connection opens up possibilities for cross-fertilization, leading to
both flexible policies when specifying the security of heterogeneous systems and
to a synergy of techniques for enforcing security specifications.

1 Introduction

As computing systems are becoming increasingly complex, security challenges become
increasingly versatile. In the presence of such challenges, we believe that practical se-
curity solutions are unlikely to emerge from a single theoretical framework, but rather
need to be based on a combination of different specialized approaches. The goal of this
paper is to develop a flexible way of specifying the security of heterogeneous systems—
using a combination of programming language-based definitions and process-algebraic
ones. The intention is to be able to specify security partly by language-based security
models (e.g., for parts of the system that are implemented by code with no commu-
nication) and partly by process-algebraic models (e.g., communication-intensive parts
of the system). This combined approach empowers us with a synergy of techniques for
enforcing security properties (e.g., combining security type systems with process equiv-
alence checking) to analyze parts of the system separately and yet establish the security
of the entire system.

Language-based information security [26] and process calculus-based information
security [7, 24] are well developed fields of computer security. Although process calculi
are programming languages, there are different motivations and traditions in address-
ing information security by the two communities. While the former is concerned with
preventing secret data from being leaked through the execution of programs, the latter

? This work was supported by the EU-FET project MyThS (IST-2001-32617).

deals with preventing secret events from being revealed through the execution of com-
municating processes. Although these fields have much in common (e.g., both rely on
noninterference [11] as a baseline security policy stating that secrets do not interfere
with the attacker-observable behavior of the system), it is somewhat surprising that the
literature lacks a comprehensive account of a formal link between the two disciplines
(which in particular means that it has not been established whether the interpretations
of noninterference by the two disciplines are compatible).

This paper develops a rigorous link between a language-based specification of secu-
rity for imperative programs and a process-algebraic framework of security properties.
More specifically, we link two compositional security properties: a timing-sensitive se-
curity characterization for a simple imperative language and a persistent security char-
acterization for a CCS-like process calculus. We achieve this connection through the
following steps: (i) we uniform the semantics of the imperative language to the standard
Labelled Transition System semantics of process calculi, by making read/write memory
actions explicitly observable as labelled transitions; (ii) based on this semantics, we
formalize low level observations in the imperative language in terms of a bisimulation
relation; (iii) we encode the programming language into the process calculus, ensuring
a lock-step semantic relation between the source and target languages; we prove that the
new bisimulation notion for the imperative language is preserved by the encoding; (iv)
this tight relation reveals some unexpected uniformities allowing us to precisely iden-
tify what the program security characterization corresponds to in the process-calculus
world: it turns out to be the well understood property of persistent bisimulation-based
nondeducibility on compositions (or P BNDC).

Such a link opens up various possibilities for cross-fertilization, leading to flexible
policies when specifying the security of complex systems and to a rich combination of
techniques for enforcing security specifications. Finding exactly what property from the
family of process-algebraic properties [7, 9] corresponds to the language-based timing-
sensitive security sheds valuable light on the nature of the language-based property. As
a direct benefit, the results of this paper enable us to use security checkers based on
process-equivalence checking (such as CoSeC [6] and CoPS [22], with the latter one
based precisely on P BNDC) for certifying language-based security.

For clarity, this paper uses a simple sequential language. However, it is a distributed
setting that will enable us to fully capitalize on the formal connection. Indeed, the se-
curity specifications for both the source (imperative) and target (process algebraic) lan-
guages are compositional [27, 9]. Because the source-language security specification is
suitable for both multithreaded [27] and distributed [25, 20] settings, we are confident
that the formal link established in this paper can be generalized to a distributed scenario,
where different components can be analyzed with specialized techniques. For example,
communication-intensive parts of the system (where conservative language-based se-
curity mechanisms for the source language such as type systems are too restrictive) can
be analyzed at the level of the target language, gaining on the precision of the analysis.

The rest of the paper is organized as follows. Section 2 presents the source imper-
ative language Imp and the target process-algebraic language VSPA. Section 3 devel-
ops an encoding of the source language into the target language and demonstrates a
semantic relation between Imp’s programs and their VSPA’s translations. Section 4 es-

2

tablishes a formal connection between the security properties of the two languages. The
paper closes by discussing related work in Section 5 and conclusions and future work
in Section 6.

2 The source language and target calculus

In this section, we present Imp, the source imperative language, and VSPA, the target
process calculus, along with security definitions for the respective languages.

2.1 The Imp programming language

We consider a simple sequential programming language, Imp [29], described by the
following grammar:

B,Exp ::= F (Id , . . . , Id)

C ::= stop | skip | Id := Exp | C; C | if B then C else C | while B do C

Let C, D, . . . range over commands (programs), Id , Id 1, . . . range over identifiers
(variables), B, B1, . . . , Exp,Exp1, . . . range over boolean and arithmetic expressions,
respectively, F, F1, . . . range over function symbols, and, finally, v, v1, . . . range over
the set of basic values Val . For simplicity, but without loss of generality, we assume
that exactly one function symbol occurs in an expression.

A configuration is a pair 〈|C, s|〉 of a command C and a state (memory) s. A state
s is a finite mapping from variables to values. The small-step semantics are given by
transitions between configurations, defined by standard transition rules (for reference,
we display these rules in Figure 4 of the appendix). Arithmetic and boolean expressions

are executed atomically by ↓ transitions. The
tick
→ transitions are deterministic. The

general form of a deterministic transition is 〈|C, s|〉
tick
→ 〈|C ′, s′|〉. Here, one step of

computation starting with a command C in a state s gives a new command C ′ and
a new state s′. There are no transitions from configurations that contain the terminal
program stop. We write [Id 7→ v]s for the state obtained from s by setting the image of
Id to v. For example, the assignment rule

〈|Exp, s|〉 ↓ v

〈|Id := Exp, s|〉
tick
→ 〈|stop, [Id 7→ v]s|〉

describes one step of computation that leads to termination with the state updated ac-
cording to the value of the expression on the right-hand side of the assignment.

Security specification We assume that the set of variables is partitioned into high and
low security classes corresponding to high and low confidentiality levels. Note that our
results are not specific to this security structure (which is adopted for simplicity)—a
generalization to an arbitrary security lattice is straightforward. Variables h and l will
denote typical high and low variables respectively. Two states s and t are low-equal
s =L t if the low components of s and t are the same.

3

Confidentiality is preserved by a computing system if low-level observations reveal
nothing about high-level data. The notion of noninterference [11] is widely used for
expressing such confidentiality policies. Intuitively, noninterference means that low-
observable behavior is unchanged as high inputs are varied. The indistinguishability
of behavior for the attacker can be represented naturally by the notion of bisimulation
(e.g., [7, 27]). The following definition is recalled from [27]:

Definition 1. Strong low-bisimulation uL is the union of all symmetric relations R

such that if C R D then for all states s and t such that s =L t whenever 〈|C, s|〉
tick
→

〈|C ′, s′|〉 then there exist D′ and t′ such that 〈|D, t|〉
tick
→ 〈|D′, t′|〉, s′ =L t′, and C ′ R D′.

Intuitively, two programs C and D are strongly low-bisimilar if varying the high parts
of memories at any point of computation does not introduce any difference between
the low parts of the memories throughout the computation. Protecting variations at any
point of computation results in a rather restrictive security condition. However, this
restrictiveness is justified in a concurrent setting (which is the ultimate motivation of
our work) when threads may introduce secrets into high memory at any computation
step. Based on this notion of low-bisimulation, the following definition of security is
given in [27]:

Definition 2. A program C is secure if and only if C uL C.

Examples Because the underlying low-bisimulation is strong, or lock-step, it captures
timing-sensitive security of programs. Below, we exemplify different kinds of informa-
tion flow handled by the security definition:

l := h This is an example of an explicit flow. To see that this program is insecure ac-
cording to Definition 2, take some s and t that are the same except s(h) = 0 and

t(h) = 1. Since 〈|l := h, s|〉
tick
→ 〈|stop, [l 7→ 0]s|〉 and 〈|l := h, t|〉

tick
→ 〈|stop, [l 7→

1]t|〉 hold, the resulting memories are not low-equal. Because these are the only
possible transitions for both configurations, we have l := h 6uL l := h. Thus, the
program is deemed insecure.

if h > 0 then l := 1 else l := 0 This exemplifies an implicit flow [4] through branch-
ing on a high condition. If the computation starts with low-equal memories s and t
that are the same except s(h) = 0 and t(h) = 1, then, after one step of computation
(the test of the condition), the memories are still low-equal. However, after another
computation step they become different in l (0 or 1, depending on the initial value
of h). Because these are the only possible transitions for configurations with both s
and t, the program is not self-low-similar and thus is insecure.

while h > 0 do h := h − 1 Assuming the worst-case scenario, an attacker may ob-
serve the timing of program execution. The attacker may learn the value of h
from the timing behavior of the program above. This is an instance of a timing
covert channel [18]. The program is rightfully rejected by Definition 2. Indeed,
take some s and t that are the same except s(h) = 1 and t(h) = 0. We have

〈|while h > 0 do h := h − 1, s|〉
tick
→ 〈|h := h − 1; while h > 0 do h :=

h − 1, s|〉
tick
→ 〈|while h > 0 do h := h − 1, [h 7→ 0]s|〉

tick
→ 〈|stop, [h 7→ 0]s|〉

4

but 〈|while h > 0 do h := h − 1, t|〉
tick
→ 〈|stop, t|〉 6

tick
→ with no transition from the

latter configuration to match the transitions of the previous sequence.

The examples above are insecure. Here is an instance of a secure program:

if h = 1 then h := h + 1 else skip Indeed, neither the low part of the memory nor the
timing behavior depends on the value of h. A suitable symmetric relation that
makes this program low-bisimilar to itself is, e.g., the relation {(if h = 1 then h :=
h + 1 else skip, if h = 1 then h := h + 1 else skip), (h := h + 1, skip), (skip, h :=
h + 1), (h := h + 1, h := h + 1), (skip, skip), (stop, stop)}.

2.2 The VSPA calculus

The Value-passing Security Process Algebra (VSPA, for short) is a variation of Milner’s
value-passing CCS [21], where the set of visible actions is partitioned into high-level
actions and low-level ones in order to specify multilevel-security systems.

Let E, E1, E2, . . . range over processes, x, x1, x2, . . . range over variables, and c,
c1, c2, . . . range over channels. As for Imp, let B, B1, . . . , Exp,Exp1, . . . range over
boolean and arithmetic expressions, respectively, F, F1, . . . range over function sym-
bols, and, finally, v, v1, . . . range over the set of basic values Val . (The set of basic
values Val , and boolean/arithmetic expressions are the same as in Imp.) The syntax of
VSPA processes is defined as follows:

E ::= 0 | c(x).E | c̄(Exp).E | τ.E | E1 + E2 | E1|E2 | E \ R | E[g] |
A(Exp1, . . . ,Expn) | if B then E1 else E2

B,Exp ::= F (x1, . . . , xn)

Each constant A is associated with a definition A(x1, . . . , xn)
def
= E, where x1, . . . , xn

are distinct variables and E is a VSPA process whose only free variables are x1, . . . , xn.
R is a set of channels and g is a function relabeling channel names. Finally, the set of
channels is partitioned into high-level channels H and low-level ones L.

Intuitively, 0 is the empty process that does nothing; c(x).E is a process that reads a
value v ∈ Val from channel c assigning it to variable x; c(Exp).E is a process that eval-
uates expression Exp and sends the resulting value as output over c; E1 +E2 represents
the nondeterministic choice between the two processes E1 and E2; E1|E2 is the parallel
composition of E1 and E2, where executions are interleaved, possibly synchronized on
complementary input/output actions, producing an internal action τ ; E \R is a process
E prevented from performing inputs and outputs over channels in R; E[g] is the pro-
cess E whose channels are renamed via the relabeling function g; A(Exp1, ...,Exp

n
)

behaves like the respective definition where the variables x1, · · · , xn are substituted
with the results of expressions Exp1, · · · ,Expn; finally, if B then E1 else E2 behaves
as E1 if B evaluates to True and as E2, otherwise.

We denote by E the set of all VSPA processes and by EH the set of all high-level
processes, i.e., those constructed only using channels in H . The operational semantics
of VSPA processes are majorly standard (and can be found in Figure 5 of the appendix).
We implicitly equate processes whose expressions are substituted by the corresponding

5

values, e.g., c(F (v1, . . . vn)).E is the same as c(v).E if F (v1, . . . vn) = v. This corre-
sponds to the ↓ expression evaluation of Imp.

The weak bisimulation relation [21] equates two processes if they are able to mu-
tually simulate each other step by step. Weak bisimulation does not care about inter-
nal τ actions. We will use the following auxiliary notations. We write E

a
=⇒ E′ if

E(
τ
→)∗

a
→ (

τ
→)∗E′. Moreover, we let E

â
=⇒ E′ stand for E

a
=⇒ E′ in case a 6= τ ,

and for E(
τ
→)∗E′ in case a = τ (note that

τ
=⇒ requires at least one τ labeled transition

while
τ̂

=⇒ means zero or more τ labeled transitions).

Definition 3 (Weak bisimulation). A symmetric binary relation R ⊆ E × E over pro-
cesses is a weak bisimulation if whenever (E, F) ∈ R and E

a
→ E′, then there exists

F ′ such that F
â

=⇒ F ′ and (E′, F ′) ∈ R.

Two processes E, F ∈ E are weakly bisimilar, denoted by E ≈ F , if there exists a
weak bisimulation R containing the pair (E, F). The relation ≈ is the largest weak
bisimulation and it is an equivalence relation [21].

Persistent BNDC security In [9] we give a notion of security for VSPA processes
called Persistent BNDC, where BNDC stands for Bisimulation-based Nondeducibility
on Compositions. BNDC [5] is a generalization to concurrent processes of noninter-
ference [11], consisting of checking a process E against all high-level processes Π .
Formally:

Definition 4 (BNDC). Let E ∈ E . E ∈ BNDC iff ∀ Π ∈ EH , E \ H ≈ (E|Π) \ H .

Intuitively, BNDC requires that high-level processes Π have no effect at all on the
(low-level) execution of E.

In order to introduce Persistent BNDC (P BNDC) we define a new observation
equivalence where high-level actions may be ignored, i.e., they may be matched by
zero or more τ actions. An action a is high if a is either an input c(v) or an output c(v),
over a high-level channel c ∈ H . Otherwise, a is low. We write ã to denote â if a is low,
and a or τ̂ if a is high. We can now define weak bisimulation up to high, by just using
ã in place of â, thus allowing high-level actions to be simulated by (possibly empty)
sequences of τ ’s.

Definition 5 (Weak bisimulation up to high). A symmetric binary relation R ⊆ E×E
over processes is a weak bisimulation up to high if whenever (E, F) ∈ R and E

a
→ E′,

then there exists F ′ such that F
ã

=⇒ F ′ and (E′, F ′) ∈ R.

We say that two processes E, F are weakly bisimilar up to high, written E ≈\H F , if
(E, F) ∈ R for some weak bisimulation up to high R.

Definition 6 (P BNDC). Let E ∈ E . E ∈ P BNDC iff E \ H ≈\H E.

Intuitively, P BNDC requires that forbidding any high-level activity (by restriction) is

equivalent to ignoring it. For example, process E
def
= h.l̄ + l̄ is P BNDC since the high

level input h is simulated, in E \ H , by not moving. Indeed, the high level activity is

6

not visible to the low level users who can only observe the low level output l̄. Notice
that this secure process allows some low level actions to follow high actions.

It has been proved [9] that P BNDC corresponds to requiring BNDC over all the
possible reachable states. This is why we call it Persistent BNDC.

Proposition 1 ([9]). E ∈ P BNDC iff ∀ E ′ reachable from E, E ′ ∈ BNDC .

Note that P BNDC is similarly spirited to Imp’s security definition. In particular, the
Π process in BNDC corresponds to the possibility for arbitrary changes in the high
part of state over the computation. Further, persistence in P BNDC corresponds to
requiring strong low-bisimulation on reachable Imp commands. There are also obvious
differences, highlighting the specifics of the application domains of the two security
specifications: P BNDC is concerned with protecting the occurrence of high events
whereas program security protects high memories. Nevertheless, in Section 4 we will
arrive at a result that formally links program security and P BNDC .

It is worth noticing that P BNDC satisfies a number of useful compositionality prop-
erties and is much easier to check than BNDC, since no quantification over all possible
high-level processes is required.

Example To illustrate the above definitions, we give a very simple example of an
insecure process. In particular, we show an indirect flow due to the possibility for a
high-level user to lock and unlock a process:

E
def
= hlock.hunlock.l + l

where hlock and hunlock are high-level channels and l is a low-level one. (To sim-
plify we are not even sending values over channels.) At a first glance, process E seems
to be secure as it always performs l before terminating, thus low-level users should
deduce nothing of what is done at the high level. However, a high-level user might lock
the process through hlock and never unlock it, thus leading to an unexpected behavior
since l would be locked too. This ability for a high-level user to synchronize with a
low-level one constitutes an indirect information flow and is detected by P BNDC since

E
hlock
→ hunlock.l cannot be simulated by E \ H . In fact, E \ H can execute neither

high-level actions nor τ ones, thus the only possibility it has to simulate hlock is not
moving. However, this simulation is fine as long as the reached states are bisimilar up
to high, i.e., hunlock.l ≈\H E \H , but this cannot be true since only the latter process
can immediately execute the low-level action l.

3 Mapping Imp into VSPA

With the source and target languages in place, this section develops an encoding of the
former into the latter. The encoding is done in two steps: enriching Imp’s semantics with
process calculi-style environment interaction rules and encoding the extended version of
Imp into VSPA. A lock-step relation of Imp’s executions with their VSPA’s translations
guarantees that the encoding is semantically adequate.

7

s(Id) = v

〈|C, s|〉
eget

Id
(v)

→ 〈|C, s|〉
〈|C, s|〉

eput
Id

(v)
→ 〈|C, [Id 7→ v]s|〉

〈|C, s|〉
a
→ 〈|C′, s′|〉 a /∈ R

〈|C, s|〉 \ R
a
→ 〈|C′, s′|〉 \ R

Fig. 1. Semantic rules for environment

3.1 Extending Imp semantics

The original definition of strong low-bisimulation (Definition 1) implicitly takes into
account an environment that is capable of both reading from and writing to the state at
any point of computation. Alternatively, and rather naturally, we can represent this envi-
ronment explicitly, by the semantic rules for reading and modifying the state, depicted
in Figure 1. Reading the value v of a variable Id is observable by an action eget

Id
(v);

writing the value v to Id is observable by an action eput
Id

(v). (We adopt the process
calculi convention of using ·̄ to denote output actions.)

Assume a ∈ {tick, eget·(·), eput·(·)}. Action a is high (a ∈ H) if for some high
variable Id we have either a = eget

Id
(·) or a = eput

Id
(·). Otherwise, a is low (a ∈

L). High and low actions represent high and low environments, respectively. Similarly
to VSPA’s restriction, we define a restriction on actions in the semantics for Imp, also
shown in Figure 1. For a set of actions R, an R-restricted configuration 〈|C, s|〉 \ R
behaves as 〈|C, s|〉 except that its communication on actions from R is prohibited. The
restriction is helpful for relating the extended semantics to Imp’s original semantics:
configuration 〈|C, s|〉 \ {eget

Id
(v), eput

Id
(v) | Id is a variable and v ∈ Val} behaves

under the extended semantics exactly as 〈|C, s|〉 under the original semantics.
These extended semantics of Imp are useful for different reasons: (i) they make

read/write actions on the state explicitly observable as labeled transitions. This is much
in the style of Labeled Transition System semantics for process calculi, where all one
can observe is the action related to the transition (i.e., the label). The uniform semantic
style helps us proving a semantic correspondence in Section 3.2. (ii) Further, the ex-
tended semantics allow us to characterize the security of Imp programs using a notion
of bisimulation up to high, similar to the one defined for VSPA. As a matter of fact, in
Section 4, we show how security of Imp programs can be equivalently expressed in the
style of P BNDC, facilitating the proof that the security of Imp programs is the same as
P BNDC security of their translations into VSPA.

3.2 Translation

In this section we translate Imp into VSPA. This is based on the translation described
by Milner in [21], with the following important modifications: (i) We make explicit the
fact that the external (possibly hostile) environment can manipulate the shared memory
but cannot directly interact with a program. This is achieved by equipping registers
(i.e., processes implementing Imp variables) with read/write channels accessible by the
environment. All the other channels are “internalized” through restriction operators. (ii)
Also, we use a lock to guarantee the atomicity of expression evaluations. In fact, Imp
expressions are evaluated in one atomic step. Since expression evaluation is translated

8

into a process which sequentially accesses registers in order to read the actual variable
values, to regain atomicity we need to guarantee that variables are not modified during
this reading phase.

The language we want to translate contains program variables, to which values may
be assigned, and the meaning of a program variable Id is a “storage location”. We
therefore begin by defining a storage register holding a value v as follows:

Reg(v)
def
= putx.Reg(x) + getv.Reg(v)

+lock.(eputx.unlock.Reg(x) + unlock.Reg(v))

+lock.(egetv.unlock.Reg(v) + unlock.Reg(v))

(We shall often write put(x) as putx etc.) Thus, via get the stored value v may be
read from the register, and via put a new value x may be written to the register. Ac-
tions eget and eput are intended to model the interactions of an external observer
with the register. Notice that before and after such actions, we require that lock and
unlock are executed, respectively. These two additional actions are used to guarantee
mutual exclusion on the memory between expression evaluations and the environment.
This implements the atomic expression evaluation of Imp. We also have an (abstract)
time-out mechanism, that nondeterministically unlocks the registers. This is necessary
to avoid blocking the program by the environment via refusing to accept eget or to
execute eput after the lock has been grabbed. As a matter of fact, we want the envi-
ronment to interact with the registers without interfering in any way with the program
execution. The (global) lock is implemented by the process:

Lock
def
= lock.unlock.Lock

For each program variable Id , we introduce a register Reg Id (y)
def
= Reg(y)[gId], where

gId is the relabeling function {put
Id

/put, get
Id

/get, eput
Id

/eput, eget
Id

/eget}.
This representation of registers—or program variables—as processes is fundamen-

tal to our translation; it indicates that resources like variables, as well as the programs
which use them, can be thought of as processes, so that our calculus can get away with
the single notion of process to represent different kinds of entity.

There is no basic notion of sequential composition of processes in our calculus, but
we can define it. To do this, we introduce a convention that processes may indicate their
termination by a distinguished channel done. More precisely, we say that a process is
well-terminating if it cannot do any further move after performing done; as we will see,
the processes which arise from translating Imp commands are all well-terminating ones,
and this is achieved by terminating them with done.0 (written Done) instead of just 0.
We are now in position to define a combinator Before for sequential composition:

P Before Q
def
= (P [b/done]|b.Q) \ {b}

where b is a new name, so that no conflict arises with the done action performed by
Q. It is easy to see that Before preserves well-termination, i.e., if P and Q are well-
terminating then so is P Before Q.

9

Just as a command of the language will be a well-terminating process, so an expres-
sion of the language will “terminate” by yielding up its results via the special channel
res, not used by processes. If P represents such an expression, then we may wish an-
other process Q to refer to the result by using the value variable x. To this end, we
define another combinator, Into:

P Into(x) Q(x)
def
= (P |res(x).Q(x)) \ {res}

Notice that Q(x) is parametric on x and Into binds this variable to the result of the
expression P . Notice also that we do not need to relabel res to a new channel, as we
did with the special channel done. As a matter of fact, Q(x) is a process and not an
expression, thus it does not use channel res to communicate with sibling processes
and no conflict is ever possible. Notice that Q(x) might use res into a nested Into

combinator. In this case, however, res would be inside the scope of a restriction thus
not be visible at this external Into level. (See below for an example.)

The translation function T of Imp commands into VSPA processes is given in Fig-
ure 2. Intuitively, each expression F (Id 1, . . . Idn) is translated into a process which
collects the values of registers Id 1, . . . Idn and returns F (x1, . . . , xn) over channel
res. A state s, i.e., a finite mapping associating each variable Id1, . . . , Idm to val-
ues s(Id1), . . . , s(Idm) is translated into the parallel composition of the relative regis-
ters. The translation of commands is then straightforward. Notice that before and after
each expression evaluation we lock and release the global lock so that the environ-
ment cannot interact with the memory while expressions are evaluated. This achieves
atomic expression evaluations as in Imp. Configurations 〈|C, s|〉 are translated as the
parallel composition of the global Lock and the translations of C and s. ACC s =
{put

Id1
, get

Id1
, . . . , put

Idm
, get

Idm
, lock, unlock} is the set of all channels used

by commands to access registers, plus the lock commands. Thus, the restriction over
ACC s∪{done} aims both at internalizing all the communications between commands
and registers and at removing the last done action. Notice that the environment chan-
nels eput

Id
and eget

Id
are not restricted and, together with tick, they are the only

observable actions of T [[〈|C, s|〉]]. Finally, R-restricted configurations are translated by
simply restricting the translation on R.

The interaction of the translation of a configuration with the environment is reflected
in the diagram in Figure 3. Channels as lock and put

Id
are for internal interaction and

so they are hidden from the environment. On the other hand, channels eget
Id

, eput
Id

,
and tick are observable from outside—they allow the environment to observe and
change the low part of the state and observe the timing behavior of the execution via
the channel tick. We assign security levels to observable actions as expected: eput

Id

and eget
Id

are high if and only if the corresponding Imp variable Id is high. All the
other observable actions, including tick, are low. (The security level of unobservable
actions makes no difference for the security definition.)

Examples As before, we assume that h is a high variable and l is a low one. These
variables are represented by processes Reg

h
(s(h)) and Reg

l
(s(l)) for some state s.

10

T [[F (Id1, . . . Idn)]] = get
Id1

x1. · · · .get
Idn

xn.res(F (x1, . . . , xn)).0

T [[s]] = Reg
Id1

(s(Id1))| . . . |Reg
Idm

(s(Idm))

T [[stop]] = 0

T [[skip]] = lock.tick.unlock.Done

T [[Id := Exp]] = lock.T [[Exp]] Into(x) (put
Id

x.tick.unlock.Done)
T [[C1; C2]] = T [[C1]] Before T [[C2]]

T [[if B then C1 else C2]] = lock.T [[B]] Into(x) (if x then tick.unlock.T [[C1]]
else tick.unlock.T [[C2]])

T [[while B do C]] = Z

where Z
def
= lock.T [[B]] Into(x) (if x then tick.unlock.T [[C]] Before Z

else tick.unlock.Done)

T [[〈|C, s|〉]] = (T [[s]] | T [[C]] | Lock) \ ACC s ∪ {done}
T [[〈|C, s|〉 \ R]] = T [[〈|C, s|〉]] \ R

Fig. 2. Translation of commands

�

H

Low environmentHigh environment

eput
����

eget
����

�

����

L
eget

����

eput
����

tick

Translation

Fig. 3. Translation of an Imp configuration

Consider the program l := h. This program is translated into:

T [[l := h]] =lock.T [[h]] Into(x) (put
l
x.tick.unlock.Done)

=(lock.get
h
x.resx.0 | res(x).(put

l
x.tick.unlock.done.0)) \ {res}

The process grabs the lock, fetches the value of h into x, passes it on the res channel
to the process that puts the value into the register for l, performs a tick action, and
releases the lock. (Notice that expression h can be seen as ID(h) where ID is the
identity function over Val .)

11

Suppose s′ = [l 7→ s(h)]s. It is helpful to track the execution of the translation of
the configuration 〈|C, s|〉 in a step-by-step fashion:

T [[〈|l := h, s|〉]] = (T [[s]] | T [[l := h]] | Lock) \ ACC s ∪ {done}

=(T [[s]] | (lock.gethx.resx.0 | res(x).(putlx.tick.unlock.done.0)) \ {res}

| Lock) \ ACC s ∪ {done} (by definition of T [[l := h]])
τ
→(T [[s]] | (gethx.resx.0 | res(x).(putlx.tick.unlock.done.0)) \ {res}

| unlock.Lock) \ ACC s ∪ {done} (by synchronization on lock)
τ
→(T [[s]] | (ress(h).0 | res(x).(putlx.tick.unlock.done.0)) \ {res}

| unlock.Lock) \ ACC s ∪ {done} (fetching the value s(h) of h from Regh)
τ
→(T [[s]] | (0 | (putls(h).tick.unlock.done.0)) \ {res}

| unlock.Lock) \ ACC s ∪ {done} (passing s(h) on res)
τ
→(T [[s′]] | (0 | (tick.unlock.done.0)) \ {res}

| unlock.Lock) \ ACC s′ ∪ {done} (updating Reg l with s(h); new state is s′)
tick
→ (T [[s′]] | (0 | unlock.done.0)) \ {res}

| unlock.Lock) \ ACC s′ ∪ {done} (performing tick)
τ
→(T [[s′]] | (0 | done.0)) \ {res} | Lock) \ ACC s′ ∪ {done} (unlocking)

≈(T [[s′]] | 0 | Lock) \ ACC s′ ∪ {done} (bisimilarity)

=T [[〈|stop, s′|〉]] (definition of translation)

Note that we have demonstrated that T [[〈|l := h, s|〉]]
ˆtick

=⇒ P for such P that P ≈
T [[〈|stop, s′|〉]]. We will prove a general result on the semantic correspondence between
Imp programs and their VSPA translations later in this section.

Another example is the program if h > 0 then l := 1 else l := 0. This program is
translated into:

T [[if h > 0 then l := 1 else l := 0]]

=lock.T [[h > 0]] Into(x)

(if x then tick.unlock.T [[l := 1]] else tick.unlock.T [[l := 0]])

=(lock.gethx.res(x > 0).0 | res(x).

(if x then tick.unlock.T [[l := 1]] else tick.unlock.T [[l := 0]])) \ {res}

=(lock.gethx.res(x > 0).0 | res(x).

(if x then tick.unlock.

(lock.res1.0 | res(x).(putlx.tick.unlock.done.0)) \ {res}

else tick.unlock.

(lock.res0.0 | res(x).(putlx.tick.unlock.done.0)) \ {res})) \ {res}

In Section 4 we revisit both example translations and discuss their VSPA security.

Semantic correspondence The following propositions state the semantic correspon-
dence between any R-restricted configuration 〈|C, s|〉 \ R and its translation T [[〈|C, s|〉 \

12

R]]. Let Env = {eget·(·), eput·(·)} denote the set of all the possible environment
actions.

Proposition 2. Given an R-restricted configuration cfg = 〈|C, s|〉\R, with R ⊆ Env , if

cfg
a
→ cfg ′ then there exists a process P ′ such that T [[cfg]]

â
=⇒ P ′ and P ′ ≈ T [[cfg ′]].

Moreover, when a = tickwe have that T [[cfg]]
τ̂

=⇒ P̃
tick
−→ P ′ and P̃ ≈ tick.T [[cfg ′]].

Intuitively, every (possibly restricted) Imp configuration move is coherently simulated
by its VSPA translation, in a way that the reached process is weakly bisimilar to the
translation of the reached configuration. Moreover, for tick moves, the translation
T [[cfg]] always reaches a state equivalent to tick.T [[cfg ′]] before actually performing
the tick. Intuitively, this is due to the fact that the lock is released only after tick is
performed. Notice that if R = ∅ there is no restriction at all. Thus, Proposition 2 is
applicable to unrestricted configurations, too.

Next proposition is about the other way around: each process which is weakly
bisimilar to the translation of a (restricted) Imp configuration cfg always moves to pro-
cesses weakly bisimilar to either T [[cfg ′]] or tick.T [[cfg ′′]], where cfg ′ and cfg ′′ are
reached from cfg by performing the expected corresponding actions. As for previous
proposition, tick.T [[cfg ′′]] represents an intermediate state reached before performing
the actual tick action.

Proposition 3. Given an R-restricted configuration cfg = 〈|C, s|〉 \ R, with R ⊆ Env ,
and a process P

– if P ≈ T [[cfg]] and P
τ
→ P ′ then either P ′ ≈ P or P ′ ≈ tick.T [[cfg ′]] and

cfg
tick
→ cfg ′;

– if P ≈ T [[cfg]] and P
a
→ P ′ with a 6= τ, tick, then either P ′ ≈ T [[cfg ′]] and

cfg
a
→ cfg ′ or P ′ ≈ tick.T [[cfg ′′]] and cfg

a
→ cfg ′ tick

→ cfg ′′.

Proofs of the above propositions are by structural induction on Imp commands and
by case analysis. We omit them for lack of space but we sketch the proof of the most
interesting case (expression evaluation and assignment) in Lemma 1 (Appendix).

4 Security correspondence

In this section we study how the security of Imp programs relates to the security of
VSPA processes. First, we give a notion of weak bisimulation up to high in the Imp
setting, which allows us to characterize the security of Imp programs in a form which
is very close to P BNDC. Then, we show that this new characterization of Imp program
security exactly corresponds to requiring P BNDC of program translations into VSPA.
More specifically, we prove that a program C is secure if and only if its translation
T [[〈|C, s|〉]] is P BNDC for all states s. Finally, we give some examples of P BNDC
applied to translations of Imp programs.

13

P BNDC-like security characterization for Imp In order to define weak bisimulation
up to high, similarly to what we have done for VSPA, we define the operation ã to be a
in case a is low; and a or null (which means no action) in case a is high. This naturally
leads to a notion of bisimulation up to high for Imp programs:

Definition 7. A symmetric binary relation R on (possibly restricted) configurations is
a bisimulation up to high if whenever cfg1 R cfg2 and cfg1

a
→ cfg ′

1, there exists cfg ′
2

such that cfg2
ã
→ cfg ′

2 and cfg ′
1 R cfg ′

2.

We write u\H for the union of all bisimulation up to high. This definition brings us
close to the nature of the process-algebraic security specification from Section 2.2. Us-
ing bisimulation up to high and restriction we can faithfully represent the original defi-
nition of strong low-bisimulation. The following proposition states the correspondence
between strong low-bisimulation (defined on the tick actions of the original semantics)
and bisimulation up to high (defined on the extended semantics) with restriction:

Proposition 4. We have C uL D if and only if for all s we have 〈|C, s|〉 u\H 〈|D, s|〉\H
and 〈|C, s|〉 \ H u\H 〈|D, s|〉.

Proof. A straightforward proof (relying on no assumptions about Imp’s syntax) is given
in the appendix. ut

As a direct consequence, the security of Imp programs can be expressed in a “P BNDC
style” as follows:

Corollary 1. A program C is secure if and only if 〈|C, s|〉 u\H 〈|C, s|〉 \ H for all s.

Program security is P BNDC The following theorem shows that weak bisimulation
up to high is preserved in the translation from Imp to VSPA. This is the core result that
allows us to prove that security of Imp programs exactly corresponds to P BNDC of
their translations in VSPA.

Theorem 1. Let cfg1 = 〈|C, s|〉 \ R and cfg2 = 〈|D, t|〉 \ R′, with R, R′ ⊆ H , be two
configurations (possibly) restricted over high level actions. It holds that cfg 1 u\H cfg2

if and only if T [[cfg1]] ≈\H T [[cfg2]].

Proof. The proof is given in the appendix. ut

This theorem has the flavor of a full-abstraction result (cf. [1]) for the indistinguisha-
bility relation ≈\H . As a corollary of the theorem, we receive a direct link between
program security and P BNDC security:

Corollary 2. Program C is secure if and only if its translation T [[〈|C, s|〉]] is P BNDC

for all states s.

Proof. By Corollary 1, C is secure if and only if 〈|C, s|〉 u\H 〈|C, s|〉 \ H for all s. By
Theorem 1, 〈|C, s|〉 u\H 〈|C, s|〉\H if and only if T [[〈|C, s|〉]] ≈\H T [[〈|C, s|〉\H]]. Since,
by definition, T [[〈|C, s|〉\H]] = T [[〈|C, s|〉]]\H , we have T [[〈|C, s|〉]] ≈\H T [[〈|C, s|〉]]\H ,
and thus T [[〈|C, s|〉]] is P BNDC for all s. ut

14

Examples Recall from Section 2.1 that the program l := h is rejected by the security
definition for Imp. Recall from Section 3.2 that

T [[l := h]] = (lock.get
h
x.resx.0 | res(x).(put

l
x.tick.unlock.done.0)) \ {res}

To see that this translation is rejected by P BNDC, take a state s that, for example, maps
all its variables to 0. We want to demonstrate that T [[〈|l := h, s|〉]] \ H 6≈\H T [[〈|l :=
h, s|〉]]. Varying the high variable from 0 to 1 on the right-hand side can be done by the

transition T [[〈|l := h, s|〉]]
eput

h
(1)

→ F for some process F . If the translation were secure
then this transition would have to be simulated up to H by T [[〈|l := h, s|〉]] \ H . Such
a transition would have to be a τ̂ transition because eput

h
(1) is a high transition, but

T [[〈|l := h, s|〉]]\H is restricted from high actions. Therefore, T [[〈|l := h, s|〉]]\H would
reduce to some process E, whose register for h remains 0.

By the definition of weak bisimulation up to H , we would have E \ H ≈\H F .
Let subsequent actions correspond to traversing the two processes passing put

l
(0)

and put
l
(1), respectively, and reaching unlock. Note that actions on internal channels

lock, get
h
, res, put

l
are hidden from the environment. However, as an effect of the

latter action, the register for l will store different values. Even though the tick actions
can still be simulated, this breaks bisimulation because the externally visible action
get

l
(0) by the successor of E (after unlock) cannot be simulated by the successor of

F (after unlock).
Further, recall from Section 2.1 that the program if h > 0 then l := 1 else l := 0 is

rejected by Imp’s security definition. In Section 3.2 we saw that

T [[if h > 0 then l := 1 else l := 0]] =

(lock.gethx.res(x > 0).0 | res(x).

(if x then tick.unlock.

(lock.res1.0 | res(x).(putlx.tick.unlock.done.0)) \ {res}

else tick.unlock.

(lock.res0.0 | res(x).(putlx.tick.unlock.done.0)) \ {res})) \ {res}

The information flow from h > 0 to l is evident in the translation. The result of in-
specting the expression h > 0 is sent on the channel res. When this result is received
and checked, either it triggers the process that puts 1 in the register for l or a similar
process that puts 0 to that register.

As above, the VSPA translation fails to satisfy P BNDC. Varying the high state by
a high environment action eput

h
(·) in the beginning leads to different values in the

register for l. This difference can be observed by low environment actions eget
l
(·).

5 Related work

A large body of work on information-flow security has been developed in the area of
programming languages (see a recent survey [26]) and process calculus (e.g., [7, 24, 23,
12, 17]). While both language-based and process calculus-based security are relatively
established fields, only little has been done for understanding the connection between
the two.

15

A line of work initiated by Honda et al. [13] and pursued by Honda and Yoshida [14,
15] develops security type systems for the π-calculus. The use of linear and affine types
gives the power for these systems to soundly embed type systems for imperative multi-
threaded languages [28] into the typed π-calculus. This direction is appealing as it leads
to automatic security enforcement mechanisms by security type checking. Neverthe-
less, automatic enforcement comes at the price of lower precision. Our approach opens
up possibilities for combining high-precision security verification (such as equivalence
checking in process calculi [22]) with type-based verification. Steps in this direction
have been made in other settings (e.g., [16, 2, 30], however, not treating timing-sensitive
security.

Giambiagi and Dam’s work on admissible flows [3, 10] illustrates a useful synergy
of an imperative language and a CCS-like process calculus. The assurance provided by
admissible flows is that a security protocol implementation (written in the imperative
language) leaks no more information than prescribed in the specification (written in the
process calculus).

Mantel and Sabelfeld [20] have suggested an embedding of a multithreaded and
distributed language into MAKS [19], an abstract framework for modeling the security
of event-based systems. The translation of a program is secure (as an event system)
if and only the program itself is secure (in the sense that the program satisfies self-
low-similarity). While this work offers a useful connection between language-based
and event-based security, it is inherently restricted to expressing event systems as trace
models. In the present work, the security of both the source and target languages is
defined in terms of bisimulation. This enables us to capture additional covert channels,
that exhibit information leaks, e.g., through deadlock behavior [7], which trace-based
models generally fail to detect.

Our inspiration for handling timing-sensitive security stems from the work by Fo-
cardi et al. [8], where explicit tick events are used to keep track of timing in a scenario
of a discrete-time process calculus.

6 Conclusion and future work

We have established a formal connection between a language-based and a process calcu-
lus security definition of information security. Concretely, we have shown that a timing-
sensitive security definition corresponds to P BNDC , persistent bisimulation-based
nondeducibility on compositions. Thereby, we have identified a point in the space of
process calculus-based definitions [7] that exactly corresponds to compositional timing-
sensitive language-based security.

Drawing on Milner’s work [21], we have developed a generally useful encoding of
an imperative language into a CCS-like calculus. We expect that this encoding will be
helpful for both future work on information security topics as well as other topics that
necessitate representation of programming languages in process calculus.

This paper sets solid ground for future work in the following directions:

Security policies We have used as a starting point a timing-sensitive language-based
security specification. This choice has allowed us to establish a tight, timing-sensitive,

16

correspondence between computation steps in the imperative language and the actions
of processes. However, it is important to consider a full spectrum of attackers, including
the attacker that may not observe (non)termination. Future work includes weakening
security policies and investigating the relation between the two kinds of security for a
termination-insensitive attacker.

Concurrency and distribution Concurrency and distribution are out of scope for this
paper for lack of space. However, the technical machinery is already in place to add
multithreading and distribution to the imperative language (for example, the program
security characterization is known to be compositional for Imp with dynamic thread
creation [27]). We conjecture that in presence of concurrency, P BNDC will remain to
correspond to the language-based security definition. We expect parallel compositions
of Imp threads to be encoded by parallel compositions of VSPA processes. In this case,
the security correspondence result would be a consequence of the compositionality of
the two properties. We anticipate the security correspondence to hold without major
changes in the encoding. The effect of distribution features in both source and target
languages is certainly a worthwhile topic for future work. An extension of the source
language with channel-based communication [25] is a natural point for investigating
the connection to process calculi security. As a matter of fact, P BNDC has been
specifically developed for communicating processes, thus it should be applicable even
when channels are used both for communication and for manipulating memories.

Modular security According to the vision we stated in the introduction, for the security
analysis of heterogeneous systems we need heterogeneous, scalable techniques. The key
to scalability is modular analysis that allows analyzing parts of a systems in isolation
and plug together secure components together. That the resulting system is secure is
guaranteed by compositionality results. While compositionality properties for Imp and
VSPA have been studied separately, we intend to explore the interplay between the two.
In particular, we expect to obtain stronger compositionality results for the image of
secure imperative programs in VSPA than for regular VSPA processes.

References

1. M. Abadi. Protection in programming-language translations. In Proc. International Collo-
quium on Automata, Languages, and Programming, volume 1443 of LNCS, pages 868–883.
Springer-Verlag, July 1998.

2. D. Clark, C. Hankin, and S. Hunt. Information flow for Algol-like languages. Journal of
Computer Languages, 28(1):3–28, April 2002.

3. M. Dam and P. Giambiagi. Confidentiality for mobile code: The case of a simple payment
protocol. In Proc. IEEE Computer Security Foundations Workshop, pages 233–244, July
2000.

4. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

5. R. Focardi and R. Gorrieri. A Classification of Security Properties for Process Algebras.
Journal of Computer Security, 3(1):5–33, 1994/1995.

17

6. R. Focardi and R. Gorrieri. The Compositional Security Checker: A Tool for the Verifica-
tion of Information Flow Security Properties. IEEE Transactions on Software Engineering,
23(9):550–571, 1997.

7. R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Information Flow).
In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design, volume
2171 of LNCS, pages 331–396. Springer-Verlag, 2001.

8. R. Focardi, R. Gorrieri, and F. Martinelli. Information flow analysis in a discrete-time process
algebra. In Proc. IEEE Computer Security Foundations Workshop, pages 170–184, July
2000.

9. R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts. In Proc. of the
IEEE Computer Security Foundations Workshop, pages 307–319. IEEE Computer Society
Press, 2002.

10. P. Giambiagi and M.Dam. On the secure implementation of security protocols. In Proc.
European Symp. on Programming, volume 2618 of LNCS, pages 144–158. Springer-Verlag,
April 2003.

11. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp.
on Security and Privacy, pages 11–20, April 1982.

12. M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous pi-
calculus. ACM TOPLAS, 24(5):566–591, 2002.

13. K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed process be-
haviour. In Proc. European Symp. on Programming, volume 1782 of LNCS, pages 180–199.
Springer-Verlag, 2000.

14. K. Honda and N. Yoshida. A uniform type structure for secure information flow. In Proc.
ACM Symp. on Principles of Programming Languages, pages 81–92, January 2002.

15. K. Honda and N. Yoshida. Noninterference through flow analysis. Journal of Functional
Programming, 2005. To appear.

16. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow. Science of
Computer Programming, 37(1–3):113–138, 2000.

17. N. Kobayashi. Type-based information flow analysis for the pi-calculus. Technical Report
TR03-0007, Tokyo Institute of Technology, October 2003.

18. B. W. Lampson. A note on the confinement problem. Comm. of the ACM, 16(10):613–615,
October 1973.

19. H. Mantel. Possibilistic definitions of security – An assembly kit –. In Proc. IEEE Computer
Security Foundations Workshop, pages 185–199, July 2000.

20. H. Mantel and A. Sabelfeld. A unifying approach to the security of distributed and multi-
threaded programs. J. Computer Security, 11(4):615–676, September 2003.

21. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
22. C. Piazza, E. Pivato, and S. Rossi. CoPS - Checker of Persistent Security. In Proc. Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of Systems,
volume 2988 of LNCS, pages 144–152. Springer-Verlag, March 2004.

23. F. Pottier. A simple view of type-secure information flow in the pi-calculus. In Proc. IEEE
Computer Security Foundations Workshop, pages 320–330, June 2002.

24. P. Ryan. Mathematical models of computer security—tutorial lectures. In R. Focardi and
R. Gorrieri, editors, Foundations of Security Analysis and Design, volume 2171 of LNCS,
pages 1–62. Springer-Verlag, 2001.

25. A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed programs.
In Proc. Symp. on Static Analysis, volume 2477 of LNCS, pages 376–394. Springer-Verlag,
September 2002.

26. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, January 2003.

18

27. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proc. IEEE Computer Security Foundations Workshop, pages 200–214, July 2000.

28. G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.
In Proc. ACM Symp. on Principles of Programming Languages, pages 355–364, January
1998.

29. G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT Press,
Cambridge, MA, 1993.

30. N. Yoshida, K. Honda, and M. Berger. Linearity and bisimulation. In Proc. Foundations
of Software Science and Computation Structure, volume 2303 of LNCS, pages 417–433.
Springer-Verlag, April 2002.

Appendix

This appendix reports the semantic rules for Imp and VSPA, as well as the proofs of the
main results presented in the paper.

Semantics of the source and target languages Figures 4 and 5 depict the semantics
rules for the source language Imp and the target language VSPA.

Semantic correspondence The following lemma shows that the translation of expres-
sions and assignment is correct in the sense that every evaluation in Imp is simulated in
the VSPA translation and vice-versa.

Lemma 1. Given a state s,

1. if 〈|Id := Exp, s|〉
tick
→ 〈|stop, s′|〉 then there exists a process P such that T [[〈|Id :=

Exp, s|〉]]
τ̂

=⇒
tick
→ P where P ≈ T [[〈|stop, s′|〉]];

2. if 〈|Id := Exp, s|〉
a
→ 〈|Id := Exp, s′|〉, with a 6= tick, then there exists a process

P such that T [[〈|Id := Exp, s|〉]]
â

=⇒ P where P ≈ T [[〈|Id := Exp, s′|〉]];

3. if T [[〈|Id := Exp, s|〉]]
τ̂

=⇒ P , then
– either P ≈ T [[〈|Id := Exp, s|〉]]

– or 〈|Id := Exp, s|〉
tick
→ 〈|stop, s′|〉 and P ≈ tick.T [[〈|stop, s′|〉]].

4. if T [[〈|Id := Exp, s|〉]]
â

=⇒ P , with a 6= tick, τ , then
– either 〈|Id := Exp, s|〉

a
→ 〈|Id := Exp, s′|〉 and P ≈ T [[〈|Id := Exp, s′|〉]],

– or 〈|Id := Exp, s|〉
a
→ 〈|Id := Exp, s′|〉

tick
→ 〈|stop, s′′|〉 and P ≈ tick.

T [[〈|stop, s′′|〉]].

Proof. To prove 1, observe that 〈|Id := Exp, s|〉
tick
→ 〈|stop, s′|〉 if and only if s′ = [Id 7→

v]s and 〈|Exp, s|〉 ↓ v. Now,

T [[〈|Id := Exp, s|〉]]

= (T [[s]] | lock.T [[Exp]] Into(x) (put
Id

x.tick.unlock.Done)
| Lock) \ ACC s ∪ {done}

τ
→ (T [[s]] | T [[Exp]] Into(x) (put

Id
x.tick.unlock.Done)

| unlock.Lock) \ ACC s ∪ {done}

= (T [[s]] | (T [[Exp]] | res(x).put
Id

x.tick.unlock.Done) \ {res}
| unlock.Lock) \ ACC s ∪ {done}

19

〈|skip, s|〉
tick
→ 〈|stop, s|〉

〈|Exp, s|〉 ↓ v

〈|Id := Exp, s|〉
tick
→ 〈|stop, [Id 7→ v]s|〉

〈|C1, s|〉
tick
→ 〈|stop, s′|〉

〈|C1; C2, s|〉
tick
→ 〈|C2, s′|〉

〈|C1, s|〉
tick
→ 〈|C′

1, s
′|〉

〈|C1; C2, s|〉
tick
→ 〈|C′

1; C2, s′|〉

〈|B, s|〉 ↓ True

〈|if B then C1 else C2, s|〉
tick
→ 〈|C1, s|〉

〈|B, s|〉 ↓ False

〈|if B then C1 else C2, s|〉
tick
→ 〈|C2, s|〉

〈|B, s|〉 ↓ True

〈|while B do C, s|〉
tick
→ 〈|C; while B do C, s|〉

〈|B, s|〉 ↓ False

〈|while B do C, s|〉
tick
→ 〈|stop, s|〉

Fig. 4. Small-step deterministic semantics of Imp commands

c(x).E
c(v)
−→ E[v/x] c(v).E

c(v)
−→ E τ.E

τ
−→ E

E1
a

−→ E′

1

E1 + E2
a

−→ E′

1

E2
a

−→ E′

2

E1 + E2
a

−→ E′

2

E1
a

−→ E′

1

E1|E2
a

−→ E′

1|E2

E2
a

−→ E′

2

E1|E2
a

−→ E1|E′

2

E1
c(v)
−→ E′

1 E2
c(v)
−→ E′

2

E1|E2
τ

−→ E′

1|E
′

2

E
a

−→ E′

E[g]
g(a)
−→ E′[g]

E
a

−→ E′ a /∈ R

E \ R
a

−→ E′ \ R

E[v1/x1, . . . , vn/xn]
a

−→ E′ A(x1, . . . , xn)
def
= E

A(v1, . . . , vn)
a

−→ E′

E1
a

−→ E′

1

if True then E1 else E2
a

−→ E′

1

E2
a

−→ E′

2

if False then E1 else E2
a

−→ E′

2

Fig. 5. VSPA operational semantics

20

First, notice that registers T [[s]] are locked by the program, since there is no possibil-
ity of executing the lock action. Thus, T [[s]] can only interact with the other parallel
processes (via synchronizations) and not with the environment. Moreover, the process
res(x).put

Id
x.tick.unlock.Done can only move after T [[Exp]] computes the expres-

sion and returns the result via channel res. By definition of T [[Exp]], we know that
this happens only as the last action performed by T [[Exp]]. So, the whole execution of
T [[Exp]] is performed in parallel with locked registers and T [[Exp]] and T [[s]] are the
only processes that can synchronize (all the other processes are blocked until the value
is returned on channel res). By induction on expression structure it is now easy to prove
that T [[Exp]] will return value v such that 〈|Exp, s|〉 ↓ v. Formally, ∃Q such that:

(T [[s]] | (T [[Exp]] | res(x).put
Id

x.tick.unlock.Done) \ {res}
| unlock.Lock) \ ACC s ∪ {done}

τ̂
=⇒ Q ≈ (T [[s]] | (resv.0 | res(x).put

Id
x.tick.unlock.Done) \ {res}
| unlock.Lock) \ ACC s ∪ {done}

τ̂
=⇒

tick
→ (T [[s′]] | (0 | unlock.Done) \ {res} | unlock.Lock) \ ACC s ∪ {done}

≈ (T [[s′]] | 0 | Lock) \ ACC s ∪ {done}

= T [[〈|stop, s′|〉]]

The other cases of this lemma are analogously proved, by observing that the execution

sequence above is the only one possible for T [[〈|Id := Exp, s|〉]] to perform
τ̂

=⇒
tick
→ . ut

Security correspondence In order to prove the faithfulness result for the two bisimu-
lations for Imp (Proposition 4) we will need a few straightforward lemmas:

Lemma 2. For all low variables l and values v whenever 〈|C, s|〉 u\H 〈|D, t|〉 \ H then
〈|C, [l 7→ v]s|〉 u\H 〈|D, [l 7→ v]t|〉 \ H .

Lemma 3. For all high variables h and values v whenever 〈|C, s|〉 u\H 〈|D, t|〉\H then
〈|C, [h 7→ v]s|〉 u\H 〈|D, t|〉 \ H .

Lemma 4. If 〈|C, s|〉 u\H 〈|D, t|〉 \ H then 〈|C, s|〉 \ H u\H 〈|D, t|〉 \ H .

Proposition 4. We have C uL D if and only if for all s we have 〈|C, s|〉 u\H 〈|D, s|〉\H
and 〈|C, s|〉 \ H u\H 〈|D, s|〉.

Proof. ⇒: Let us first show that C uL D for some C and D implies 〈|C, s|〉 u\H

〈|D, s|〉 \ H and 〈|C, s|〉 \ H u\H 〈|D, s|〉 for all s. Assume C uL D. Define the relation
R as follows:

{(〈|E, v|〉, 〈|F, w|〉 \ H) | E uL F & v =L w}∪

{(〈|E, v|〉 \ H, 〈|F, w|〉) | E uL F & v =L w}

Clearly, 〈|C, s|〉 R 〈|D, s|〉 \ H and 〈|C, s|〉 \ H R 〈|D, s|〉 for all s (taking s = v = w,
C = E, and D = F in the definition above). In order to show 〈|C, s|〉 u\H 〈|D, s|〉 \ H

21

and 〈|C, s|〉 \ H u\H 〈|D, s|〉 for all s, we need to show R is a bisimulation up to high.
First, R is symmetric by definition. Second, suppose 〈|E, v|〉 R 〈|F, w|〉 \ H (entailing
E uL F and v =L w) and 〈|E, v|〉

a
→ 〈|E′, v′|〉. We need to show that there exist F ′ and

w′ such that 〈|F, w|〉 \H
ã
→ 〈|F ′, w′|〉 \ H and 〈|E′, v′|〉 R 〈|F ′, w′|〉 \ H .

If a = tick then by the definition of strong low-bisimulation there exist F′ and w′

such that 〈|F, w|〉
tick
→ 〈|F ′, w′|〉, E′

uL F ′, and v′ =L w′. This implies 〈|F, w|〉 \ H
tick
→

〈|F ′, w′|〉 \ H because tick is a low action. We receive 〈|E ′, v′|〉 R 〈|F ′, w′|〉 \ H .

If a = eget
l
(n) for some low variable l and value n, we have 〈|E, v|〉

eget
l
(n)

→

〈|E, v|〉. Because v =L w, we have v(l) = w(l) = n and 〈|F, w|〉\H
eget

l
(n)

→ 〈|F, w|〉\H ,
which means that the low labels are matched and the configurations are unchanged (and
still related by R). The case of a = eput

l
(n) for some low variable l and value n is

treated similarly.
The two remaining cases for a are high actions eget

h
(n) and eput

h
(n) for some

high variable h. Recalling the definition of ã, it is sufficient to show that 〈|E′, v′|〉 R
〈|F, w|〉 \ H , i.e., a high action is simulated by a null action. The case a = eget

h
(n),

is straightforward as E = E ′ and v = v′. In case a = eput
h
(n), E = E′ and

v′ = [h 7→ n]v. So, v′ =L w, and therefore 〈|E, v′|〉 R 〈|F, w|〉 \ H .
Note that we have so far assumed a particular form of the starting configurations

related by R, namely 〈|E, v|〉 R 〈|F, w|〉\H . The other possible form 〈|E, v|〉\H R 〈|F, w|〉
is resolved analogously.

⇐: Let us now show that 〈|C, s|〉 u\H 〈|D, s|〉 \ H and 〈|C, s|〉 \ H u\H 〈|D, s|〉 for
all s implies C uL D. Define the relation R as follows:

{

(E, F) | ∀t. 〈|E, t|〉 u\H 〈|F, t|〉 \ H & 〈|E, t|〉 \ H u\H 〈|F, t|〉
}

Note that C R D and R is symmetric. It remains to show that R is a strong low-

bisimulation. Suppose E R F and v =L w so that 〈|E, v|〉
tick
→ 〈|E′, v′|〉. We need to

show that there exist F ′ and w′ such that 〈|F, w|〉
tick
→ 〈|F ′, w′|〉, v′ =L w′, and E′ R F ′.

By Lemma 3, we have 〈|E, v|〉 u\H 〈|F, w|〉 \ H and 〈|E, v|〉 \ H u\H 〈|F, w|〉.

Thus, there exist F ′ and w′ such that 〈|F, w|〉 \ H
tick
→ 〈|F ′, w′|〉 \ H and 〈|F, w|〉

tick
→

〈|F ′, w′|〉 so that 〈|E′, v′|〉 u\H 〈|F ′, w′|〉 \ H and 〈|E′, v′|〉 \ H u\H 〈|F ′, w′|〉. Note
that this implies that v′ =L w′, because the environment’s reading operations for low
variables must be the same for both v′ and w′. It remains to show that E ′ R F ′, i.e.,
∀u. 〈|E′, u|〉 u\H 〈|F ′, u|〉 \ H & 〈|E′, u|〉 \ H u\H 〈|F ′, u|〉. By Lemma 4, we have
〈|E′, v′|〉 \H u\H 〈|F ′, w′|〉 \ H , which, by the transitivity of the relation u\H , implies
〈|E′, v′|〉 u\H 〈|F ′, w′|〉 \ H u\H 〈|E′, v′|〉 \ H u\H 〈|F ′, w′|〉. Subsequent application
of Lemma 2 (to reset the low parts of v′ and w′ to the low part of u), Lemma 3 (to reset
the high part of v′ in 〈|E′, v′|〉 and w′ in 〈|F ′, w′|〉 to the high part of u), and Lemma 4
(to reset the high part of v′ in 〈|E′, v′|〉 \ H and t′ in 〈|F ′, w′|〉 \ H to the high part of u)
results in 〈|E′, u|〉 u\H 〈|F ′, u|〉 \ H u\H 〈|E′, u|〉 \ H u\H 〈|F ′, u|〉, which completes
the proof. ut

22

Theorem 1. Let cfg1 = 〈|C, s|〉 \ R and cfg2 = 〈|D, t|〉 \ R′, with R, R′ ⊆ H , be two
configurations (possibly) restricted over high level actions. It holds that cfg 1 u\H cfg2

if and only if T [[cfg1]] ≈\H T [[cfg2]].

Proof. ⇒) Let cfg1 and cfg2 be two restricted configurations such that cfg1 u\H cfg2.
In order to prove that T [[cfg 1]] ≈\H T [[cfg2]] it is sufficient to show that

S = {(E, F) | E ≈ T [[cfg1]], F ≈ T [[cfg2]] and cfg1 u\H cfg2} ∪

{(E, F) | E ≈ tick.T [[cfg1]], F ≈ tick.T [[cfg2]] and cfg1 u\H cfg2}

is a weak bisimulation up to high ≈\H . We first consider the case E ≈ T [[cfg1]], F ≈
T [[cfg2]].

– Suppose that E
τ
→ E′. By the hypothesis that E ≈ T [[cfg 1]], there exists E′′ such

that T [[cfg1]]
τ̂

=⇒ E′′ and E′ ≈ E′′. By repeatedly applying Proposition 3, either

E′′ ≈ T [[cfg1]] or there exists a configuration cfg′1 such that cfg1
tick
−→ cfg ′

1 and
E′′ ≈ tick.T [[cfg ′

1]].

• if E′′ ≈ T [[cfg1]] we are done since E ′ ≈ E′′ and thus (E′, F) ∈ S;

• if cfg1
tick
−→ cfg ′

1 and E′′ ≈ tick.T [[cfg ′
1]], by the hypothesis that cfg1 u\H

cfg2, there exists a configuration cfg′2 such that cfg2
tick
→ cfg ′

2 and cfg ′
1 u\H

cfg ′
2. By Proposition 2, there exists a process F ′′ such that T [[cfg2]]

τ̂
=⇒ F ′′

and tick.T [[cfg ′
2]] ≈ F ′′. By the hypothesis that F ≈ T [[cfg2]], there exists F ′

such that F
τ̂

=⇒ F ′ and F ′ ≈ F ′′. Hence, by definition of S, (E′, F ′) ∈ S.

– Suppose now that E
a
→ E′ with a 6= τ, tick. By the hypothesis that E ≈ T [[cfg 1]],

there exists E′′ such that T [[cfg1]]
â

=⇒ E′′ and E′ ≈ E′′. By repeatedly applying
Proposition 3, either E ′′ ≈ T [[cfg ′

1]], with cfg1
a

−→ cfg ′
1 or E′′ ≈ tick.T [[cfg ′′

1]]

with cfg1
a

−→ cfg ′
1

tick
−→ cfg ′′

1 .

• if E′′ ≈ T [[cfg ′
1]], with cfg1

a
−→ cfg ′

1 by the hypothesis that cfg1 u\H cfg2,

there exists a configuration cfg′2 such that cfg2
ã
→ cfg ′

2 and cfg ′
1 u\H cfg ′

2.

By Proposition 2, there exists a process F ′′ such that T [[cfg2]]
ã

=⇒ F ′′ and
T [[cfg ′

2]] ≈ F ′′. By the hypothesis that F ≈ T [[cfg2]], there exists F ′ such that

F
ã

=⇒ F ′ and F ′ ≈ F ′′. Hence, by definition of S, (E′, F ′) ∈ S.

• if E′′ ≈ tick.T [[cfg ′′
1]] with cfg1

a
−→ cfg ′

1
tick
−→ cfg ′′

1 , by the hypothesis that

cfg1 u\H cfg2, there exist two configurations cfg′2 and cfg ′′
2 such that cfg2

ã
→

cfg ′
2
tick
→ cfg ′′

2 and cfg ′′
1 u\H cfg ′′

2 . By repeatedly applying Proposition 2, there

exists a process F ′′ such that T [[cfg2]]
ã

=⇒ F ′′ and tick.T [[cfg ′′
2]] ≈ F ′′. By

the hypothesis that F ≈ T [[cfg 2]], there exists F ′ such that F
ã

=⇒ F ′ and
F ′ ≈ F ′′. Hence, by definition of S, (E′, F ′) ∈ S.

23

The case E ≈ tick.T [[cfg1]], F ≈ tick.T [[cfg2]] is straightforward, since τ tran-
sitions leave E equivalent to itself and tick transitions just move E and F to E ′ ≈
T [[cfg1]] and F ′ ≈ T [[cfg2]], respectively.

⇐) Let cfg1 and cfg2 be two configurations such that T [[cfg1]] ≈\H T [[cfg2]]. In order
to prove that cfg1 u\H cfg2 it is sufficient to show that

S = {(cfg1, cfg2) | T [[cfg1]] ≈\H T [[cfg2]]}

is a bisimulation up to high u\H . In fact, suppose that cfg1
a
→ cfg ′

1. By Proposition 2,

there exists a process E ′ such that T [[cfg]]
â

=⇒ E′ and E′ ≈ T [[cfg ′
1]]. By the hypoth-

esis that T [[cfg1]] ≈\H T [[cfg2]], there exists a process F ′ such that T [[cfg2]]
ã

=⇒ F ′

and E′ ≈\H F ′. By repeatedly applying Proposition 3 we have that either there exists

a configuration cfg′2 such that cfg2
ã

−→ cfg ′
2 and F ′ ≈ T [[cfg ′

2]], or there exist two con-

figurations cfg′2 and cfg ′′
2 such that cfg2

ã
→ cfg ′

2
tick
→ cfg ′′

2 and F ′ ≈ tick.T [[cfg ′
2]]. We

show that the latter case is impossible since T [[cfg ′
1]] ≈ E′ ≈\H F ′ ≈ tick.T [[cfg ′

2]],
but tick.T [[cfg ′

2]] cannot simulate any low level environment actions performed by
T [[cfg ′

1]]. Thus we have that F ′ ≈ T [[cfg ′
2]] and so T [[cfg ′

1]] ≈ E′ ≈\H F ′ ≈ T [[cfg ′
2]]

which implies T [[cfg ′
1]] ≈\H T [[cfg ′

2]]. Hence (cfg ′
1, cfg

′
2) ∈ S. ut

24

