
Architectures for Inlining Security Monitors in
Web Applications

Jonas Magazinius, Daniel Hedin, and Andrei Sabelfeld

Chalmers University of Technology, Gothenburg, Sweden

Abstract. Securing JavaScript in the browser is an open and challenging prob-
lem. Code from pervasive third-party JavaScript libraries exacerbates the prob-
lem because it is executed with the same privileges as the code that uses the
libraries. An additional complication is that the different stakeholders have dif-
ferent interests in the security policies to be enforced in web applications. This
paper focuses on securing JavaScript code by inlining security checks in the code
before it is executed. We achieve great flexibility in the deployment options by
considering security monitors implemented as security-enhanced JavaScript in-
terpreters. We propose architectures for inlining security monitors for JavaScript:
via browser extension, via web proxy, via suffix proxy (web service), and via in-
tegrator. Being parametric in the monitor itself, the architectures provide freedom
in the choice of where the monitor is injected, allowing to serve the interests of
the different stake holders: the users, code developers, code integrators, as well
as the system and network administrators. We report on experiments that demon-
strate successful deployment of a JavaScript information-flow monitor with the
different architectures.

1 Introduction
JavaScript is at the heart of what defines the modern browsing experience on the web.
JavaScript enables dynamic and interactive web pages. Glued together, JavaScript code
from different sources provides a rich execution platform. Reliance on third-party code
is pervasive [32], with the included code ranging from format validation snippets, to
helper libraries such as jQuery, to helper services such as Google Analytics, and to
fully-fledged services such as Google Maps and Yahoo! Maps.
Securing JavaScript Securing JavaScript in the browser is an open and challenging
problem. Third-party code inclusion exacerbates the problem. The same-origin policy
(SOP), enforced by the modern browsers, allows free communication to the Internet
origin of a given web page, while it places restrictions on communication to Internet
domains outside the origin. However, once third-party code is included in a web page,
it is executed with the same privileges as the code that uses the libraries. This gives rise
to a number of attack possibilities that include location hijacking, behavioral tracking,
leaking cookies, and sniffing browsing history [21].
Security policy stakeholders An additional complication is that the different stakehold-
ers have different interests in the security policies to be enforced in web applications.
Users might demand stronger guarantees than those offered by SOP when it is not de-
sired that sensitive information leaves the browser. This makes sense in popular web

1



applications such as password-strength checkers and loan calculators. Code developers
clearly have an interest in protecting the secrets associated with the web application.
For example, they might allow access to the first-party cookie for code from third-party
services, like Google (as needed for the proper functioning of such services as Google
Analytics), but under the condition that no sensitive part of the cookie is leaked to the
third party. Code integrators might have different levels of trust to the different inte-
grated components, perhaps depending on the origin. It makes sense to invoke different
protection mechanisms for different code that is integrated into the web application. For
example, an e-commerce web site might include jQuery from a trusted web site without
protection, while it might load advertisement scripts with protection turned on. Finally,
system and network administrators also have a stake in the security goals. It is often
desirable to configure the system and/or network so that certain users are protected to
a larger extent or communication to certain web sites is restricted to a larger extent.
For example, some Internet Service Providers, like Comcast, inject JavaScript into the
users’ web traffic but so far only to display browser notifications for sensitive alerts1.
Secure inlining for JavaScript This paper proposes a novel approach to securing Java-
Script in web applications in the presence of different stakeholders. We focus on secur-
ing JavaScript code by inlining security checks in the code before it is executed. A key
feature of our approach is focusing on security monitors implemented, in JavaScript,
as security-enhanced JavaScript interpreters. This, seemingly bold, approach achieves
two-fold flexibility. First, having complete information about a given execution, security-
enhanced JavaScript interpreters are able to enforce such fine-grained security policies
as information-flow security [37]. Second, because the monitor/interpreter is itself writ-
ten in JavaScript, we achieve great flexibility in the deployment options.
Architectures for inlining security monitors As our main contribution, we propose ar-
chitectures for inlining security monitors for JavaScript: via browser extension, via web
proxy, via suffix proxy (web service), and via integrator. While the code extension and
proxy techniques themselves are well known, their application to security monitor de-
ployment is novel. Being parametric in the monitor itself, the architectures provide
freedom in the choice of where the monitor is injected, allowing to serve the interests
of the different stake holders: users, code developers, code integrators, as well as system
and network administrators.

We note that our approach is general: it applies to arbitrary security monitors, im-
plemented as JavaScript interpreters. The Narcissus [13] project provides a baseline
JavaScript interpreter written in JavaScript, an excellent starting point for supporting
versatile security policies.

Our evaluation of the architectures explores the relative security considerations.
When introducing reference monitoring, Anderson [3] identifies the following prin-
ciples: (i) the monitor must be tamperproof (monitor integrity), (ii) the monitor must be
always invoked (complete mediation) [39], and (iii) the monitor must be small enough
to be subject to correctness analysis (small trusted computing base (TCB)) [39, 35].
Overall, the requirements often considered in the context of monitoring are that the
monitor must enforce the desired security policy (soundness) and that the monitor is
transparent to the applications (transparency). Soundness is of higher priority than

1
https://gist.github.com/ryankearney/4146814

2



transparency in our setting. Our methods of deployment do not rely on transparency to
provide security guarantees. Even if the application is able to detect that it is running
in the monitor, this knowledge cannot be used to circumvent the monitor given that
the monitor is sound (if this was possible the monitor is by definition not sound). Of
course, if the application is able to detect that it is monitored it might chose to only
expose benign behavior in order to escape detection. In either case, the user is protected
from attacks. Note the relation of the soundness to Anderson’s principles: while the
principles do not automatically imply soundness, they facilitate establishing soundness.
Transparency requirements are often in place for reference monitors to ensure that no
new behaviors are added by monitors for any programs, and no behaviors are removed
by monitors when the original program is secure.

Since the architectures are parametric in the actual monitor, we can draw on the
properties of the monitor to guarantee the above requirements. It is essential for sound-
ness and transparency that the monitor itself supports them. In our consideration of
soundness for security, we assume the underlying monitors are sound (as natural to ex-
pect of such monitors). This implies that dealing with such features as dynamic code
evaluation in JavaScript is already covered by the monitors. We note that monitor in-
tegrity, and complete mediation are particularly important in our security considerations
because they are crucially dependent on the choice of the architecture. Our security con-
siderations for the architectures are of general nature because of the generality of the
security policies we allow.

Roadmap We study the relative pros and cons of the architectures. The goal of the study
is not to identify a one-fits-all solution but to highlight the benefits and drawbacks for
the different stakeholders. With this goal, we arrive at a roadmap to be used by the
stakeholders when deciding on what architecture to deploy.

Instantiation To illustrate the usefulness of the approach, we present an instantiation
of the architectures to enforce secure information flow in JavaScript. Information-flow
control for JavaScript allows tracking fine-grained security policies for web applica-
tions. Typically, information sources and sinks are given sensitivity labels, for example,
corresponding to the different Internet origins. Information-flow control prevents ex-
plicit flows, via direct leaks by assignment commands, as well as implicit flows via the
control flow in the program.

Our focus on information flow is justified by the nature of the JavaScript attacks
from the empirical studies [21, 32] that demonstrate the current security practices fail
to prevent such attacks as location hijacking, behavioral tracking, leaking cookies, and
sniffing browsing history. Jang et al. [21] report on both explicit and implicit flows ex-
ploited in the empirical studies. Further, inlining by security-enhanced interpreting is a
particularly suitable choice for tracking information flow in JavaScript, because alterna-
tive approaches to inlining suffer from scalability problems, as discussed in Section 5.

Our instantiation shows how to deploy JSFlow [19, 18], an information-flow moni-
tor for JavaScript by Hedin et al., via browser extension, via web proxy, and via suffix
proxy (web service). We report on security and performance experiments that illustrate
successful deployment of a JavaScript information-flow monitor with the different ar-
chitectures.

3



2 Architectures
This section presents the architectures for inlining security monitors. We describe four
different architectures and report on security considerations, pros and cons, including
how the architectures reflect the demands of the different stakeholders. In the following
we contrast the needs of the private user and the corporate user; the latter representing
the network and system administrators as well.

2.1 Browser extension
Modern browsers allow for the functionality of the browser to be enriched via exten-
sions. By deploying the security monitor via a browser extension it is possible to enforce
properties not normally enforced by browsers. A browser extension is a program that is
installed into the browser in order to change or enrich the functionality. By employing
a method pioneered by Zaphod [31] it is possible to use the monitor as JavaScript en-
gine. The basic idea is to turn off JavaScript and have the extension traverse the page
once loaded using the monitor to execute the scripts. This method leverages that the
implementation language for extensions and the monitor is JavaScript.

It is illuminating to contrast deployment via browser extension with directly instru-
menting the browser (e.g., [40, 22, 17]). While the latter may provide performance ben-
efits it is also monitor specific. Each monitor leads to a different instrumented browser,
which is a significant undertaking. In this sense, browser instrumentation is comparable
to implementation of a new monitor. The browser extension, on the other hand, is para-
metric over the monitor allowing different monitors to be used with the same extension.
While potentially slower than an instrumented browser it also offers greater flexibility.
Security considerations From a security perspective, one of the main benefits of this
deployment method is strong security guarantees. Since the JavaScript engine is turned
off, no code is executed unless explicitly done by the extension. During execution the
scripts are passed as data to the monitor, and are only able to influence the execution
environment implemented by the monitor and not the general execution environment.
This ensures the integrity of the monitor and complete mediation. In addition, this also
guarantees that the deployment method is sound given that the monitor is sound.

However, by running the monitor as an extension, the monitor is run with the same
privileges as the browser. Compared to the other methods of deployment this means that
a faulty monitor not only jeopardizes the property enforced by the monitor, but might
jeopardize the integrity of the entire browser.
Pros and cons Regardless of whether the user is private or corporate, browser exten-
sions provide a simple install-once deployment method. From the corporate perspec-
tive, central management of the extension and its policies can easily be incorporated
into standard system maintenance procedures. Important for the private user, the fact
that the extension is installed locally in the browser of the user makes it possible to
give the user direct control over what security policies to enforce on the browsed pages
without relying on and trusting other parties.

A general limitation of this approach is that browser extensions are browser specific.
This is less of an issue for corporate users than for private users. In the former case it is
common that browser restrictions are already in place, and corporations have the assets
to make sure that extensions are available for the used platform. In the latter case, a
private user may be discouraged by restrictions imposed by the extension.

4



2.2 Web proxy

Deployment via browser extension entails being browser dependent and running the se-
curity monitor with elevated privileges. The web proxy approach addresses these con-
cerns by including to monitor in the page, modifying any scripts on the page to ensure
they are run by the monitor. All modern browsers support relaying all requests through
a proxy. A proxy specific to relaying HTTP requests is referred to as a web proxy. The
web proxy acts as a man-in-the-middle, making requests on behalf of the client. In the
process, the proxy can modify both the request and the response, making it a convenient
way to rewrite the response to include the monitor in each page. Doing so makes the
method more intrusive to the HTML content, but less intrusive to the browser.

Security considerations For the monitor to guarantee security, all scripts bundled with
the page must be executed by the monitor. The scripts can either be inline, i.e., included
as part of the HTML page, or external, i.e., referenced in the HTML page to be down-
loaded from an external source. Inline scripts appear both in the form of script-tags as
well as inline event handlers, e.g., onclick or onload. Apart from including the monitor
in all browsed pages, all scripts, whether inline or external, must be rewritten by the
web proxy to be executed by the monitor.

External scripts are rewritten in their entirety, whereas inline scripts must be identi-
fied within the page and rewritten them individually. As opposed to a browser extension
that replaces the JavaScript engine, the monitor is executed by the engine of the browser
in the context of the page. This is the same context in which all scripts bundled with the
page are normally executed.

Unlike deployment via extension, omissions in this process breaks complete medi-
ation, which risks undermining the integrity of the monitor; any script not subjected to
the rewriting process is run in the same execution environment as the monitor. This
assumes that there are no exploitable differences between the HTML parser used for
rewriting and the parser of the browser. While this might be an issue in current browsers,
with the introduction of standardized parsing in HTML5 we believe that this is a tran-
sient problem.

Under the assumption that all scripts are rewritten appropriately complete mediation
is achieved. Complete mediation is required for both integrity and soundness, while
the two latter are strongly related. Soundness is guaranteed by the soundness of the
underlying monitor and complete mediation, given that the integrity of the monitor
is guaranteed. This must, however, be the case, since the soundness of the monitor
guarantees that no scripts executed by the monitor are able to jeopardize the integrity of
the monitor. Thus, threats against the integrity of the monitor must come from scripts
not run by the monitor, contradicting the assumption of complete mediation.

Unlike deployment via extension, special consideration is required for HTTPS con-
nections, as HTTPS is designed to prevent the connection from being eavesdropped or
modified in transit. To solve this the web proxy must establish two separate HTTPS
connections, one with the client and one with the target. The client’s request is passed
on to the connection with the target and the rewritten response to the client. This puts
considerable trust in the proxy, since the proxy has accesses to all information going to
and from the user, including potentially sensitive or secret data. In addition, access to
the unencrypted data significantly simplifies tampering unless additional measures are

5



deployed. Whether including the proxy into the trusted computing base is acceptable or
not depends on the situation.
Pros and cons In the corporate setting deployment via web proxy is appealing; it is
common to use corporate proxies for filtering, which means that the infrastructure is
already in place and trusted. Additionally, the use of proxies allows for easy central
administration of security policies.

For the private user, however, the situation is different. Even though important con-
siderations of extensions are addressed, e.g., browser dependency, and monitor privilege
increase, adding the proxy to the trusted computing base might be a significant issue.
Unless the private user runs and administers the proxy himself he might have little rea-
son to trust the proxy with the ability to access all communicated information. This
is especially true when the user visits web sites that he trusts more than the proxy. In
such cases it could make sense to turn off the proxy, which, while possible, requires
reconfiguring the browser.

2.3 Suffix proxy (service)
The extension and the web proxy deployment methods unconditionally applies the mon-
itor to all visited pages. Suffix proxies can be used to provide selective monitoring, i.e.,
where the user can select when to use the monitor. Suffix proxies can be thought of as
a service that allows the user to select which pages to proxy on demand — only pages
visited using the suffix proxy will be subjected to proxying.

A suffix proxy is a specialized web proxy, with a different approach to relaying the
request. The suffix proxy takes advantage of the domain name system (DNS) to redirect
the request to it. Wildcard domain names allow all requests to any subdomain of the
domain name to resolve to a single domain name, i.e., in DNS terms *.proxy.domain ⇒
proxy.domain.

Typically, the user navigates to a web application associated with the proxy and
enters the target URL, e.g., http://google.com/search?q=sunrise, in an
input field. To redirect the request to the proxy, the target domain name is altered
by appending the domain name of the proxy, making the target domain a subdomain
of the proxy domain, e.g., http://google.com.proxy.domain/search?q=
sunrise. The suffix proxy is set up so that all requests to any subdomain are directed
to the proxy domain. A web application on the proxy domain is set up to listen for such
subdomain requests. When a request for a subdomain is registered, it is intercepted by
the web application. The web application strips the proxy domain from the URL, leav-
ing the original target URL, and makes the request on behalf of the client. As with the
web proxy, relaying the request to the target URL gives the suffix proxy an opportunity
to modify and include the monitor in the response.
Security considerations In the suffix proxy, not only the content is rewritten but also
the headers of the incoming request and the returned response. Certain headers, like the
Host and Referrer headers of the request, include the modified domain name and need
to be rewritten to make the proxy transparent. Similarly, in the response, some headers,
for instance Location, contain the unmodified target URL and need to be rewritten to
include the monitor domain.

As the web proxy, the suffix proxy must ensure that all scripts bundled with a page
are executed by the monitor. The procedure to rewrite scripts is much the same as for

6



the web proxy. However, in order to guarantee complete mediation, the suffix proxy
must also rewrite the URLs to external scripts to include the proxy domain, in addition
to rewriting inline scripts in a page. Otherwise the script will not be requested through
the monitor which will prevent it from being rewritten and thereby it will execute along-
side the monitor.

Identical to the web proxy, soundness and integrity is guaranteed by complete me-
diation together with soundness of the monitor. See Section 2.2 above for a longer
discussion.

A consequence of modifying the domain name is that the domain of the target URL
no longer matches the modified URL, making them two separate origins as per the
same-origin policy. This implies that all information in the browser specific to the target
origin, e.g., cookies and local storage, are no longer associated with the modified origin,
and vice versa. This results in a clean separation between the proxied and unproxied
content.

Altering the domain name has another interesting effect on the same-origin policy.
Modern web browsers allow relaxing of the same-origin policy for subdomains. Docu-
ments from different subdomains of the same domain can relax their domains by setting
the document.domain attribute to their common domain. In doing so, they set aside
the restrictions of the same-origin policy and can freely access each others resources
across subdomains. This means that two pages of separate origins loaded via the proxy,
each relaxing their domain attribute to the domain of the proxy, can access each others
resources across domains. This is problematic for monitors that rely on the same-origin
policy to enforce separation between origins. However, the flexibility of disabling the
same-origin policy opens up for monitors aimed at replacing the same-origin policy
with policies that are more appropriate for the given scenario. For example, given es-
tablished trust between a number of sites it is possible for a monitor to disable the
same-origin policy between these sites, while leaving it enabled, or even strengthened
(via, e.g., information flow tracking), for any sites outside the set of mutually trusting
sites. Note that a monitor is always able to refuse relaxation by preventing scripts from
changing the domain attribute; what the suffix proxy enables is the ability for moni-
tors to modify and even disable the same-origin policy by allowing JavaScript to relax
the domain. Clearly, if this is done, care must be taken not to introduce any security
breaches.

Similar to the web proxy, HTTPS requires special consideration. For the suffix
proxy, however, the situation is slightly simpler. Given that the suffix proxy builds on
DNS wildcards, it is sufficient to issue a certificate for all subdomains of the proxy do-
main, e.g., *.proxy.domain. Such a wildcard certificate is valid for all target URLs
relayed through the proxy.
Pros and cons In the corporate setting the suffix proxy does not offer any advantages
over a standard web proxy. Giving corporate users control over the decision whether or
not to use the proxy service opens up for mistakes.

From the perspective of a private user suffix proxies can be very appealing. Given
that the suffix proxy is hosted by a trusted party, e.g., the user’s ISP, the proxy can
provide additional security for any web page. At the same time the user retains simple
control over which pages are proxied. At any point, the user can opt out from the proxy
service by not using it.

7



On the technical side, while sharing a common foundation, there are several differ-
ences between a suffix proxy compared to a traditional web proxy. The differences lie,
not in how the monitor is included in the page, but in the way the proxy is addressed.
A consequence of the use of wildcard domain names is that the suffix proxy requires
somewhat more rewriting than the web proxy in order to capture all requests.

Additionally, the suffix proxy can ensure that only resources relevant to security
are relayed via the proxy, whereas a traditional web proxy must cover all requests. This
both reduces the load on the proxy service, as well as the overhead for the end user, thus
benefiting both the user and the service provider. This is not possible in a web proxy,
that must relay all requests, but a suffix proxy provides the means to do so.

2.4 Integrator
Modern web pages make extensive use of third-party code to add features and function-
ality to the page. The code is retrieved from external resources in the form of JavaScript
libraries. The third-party code is considered to be part of the document and is executed
in the same context as any other script included in the document. Executing the code
in the context of the page gives the code full access to all the information of the page,
including sensitive information such as form data and cookies. Granting such access
requires that the code integrator must trust the library not to abuse this privilege. To a
developer, an appealing alternative is to run untrusted code in the monitored context,
while running trusted code outside of the monitor.

Integrator-driven monitor inclusion is suitable for web pages that make use of third-
party code. The security of the information contained on the web page relies not only
on the web page itself, but also on the security of all included libraries. To protect
against malicious or compromised libraries, an integrator can execute part of, or all of
the code in the monitor. Unlike the other deployment alternatives, that consider all code
as untrusted, this approach requires a line to be drawn between trusted and untrusted
code. The code executing outside of the monitor is trusted with full access to the page
and the monitor state, and the untrusted code will be executed by the monitor, restricted
from accessing either. This can be achieved by manually including the monitor in the
page and loading the third-party code either through the suffix proxy, or from cached
rewritten versions of the code. This approach allows for a well defined, site-specific
policy specification. The monitor is set up and configured with policies best suiting the
need of the site.

An important aspect of integrator-driven monitor inclusion is the interaction be-
tween trusted and untrusted code. The trusted code executing outside the monitor can
interact with the code executed in the monitor. This way, the trusted code can share spe-
cific information with the library, that the library requires to execute. There are different
means of introducing this information to the monitor. The most rudimentary solution is
to evaluate expressions in the monitor, containing the information in a serialized form.
The monitor can also provide an API for reading and writing variables, or calling func-
tions in the monitor. This simplifies the process and makes it less error-prone. A more
advanced solution is a set of shared variables that are bidirectionally reflected from one
context to the other when their values are updated.
Security considerations One security consideration that arises is the implication of
sharing information between the trusted and untrusted code. It might be appealing to

8



simplify sharing of information between the two by reflecting a set of shared variables
of one into the other. However, automatically reflecting information from one context
to the other, will have severe security implications in terms of confidentiality as well
as monitor integrity. If the execution of trusted code depends on a shared variable, the
untrusted code can manipulate the value to control the execution. Thus, for security
reasons, any sharing of information with the untrusted code must be done manually by
selectively and carefully introducing the information in the monitored context.

It should be noted that since the trusted code is running along side the monitor, it
can access and manipulate the state of the monitor and thereby the state of the untrusted
code. It is impossible for the monitored code to protect against such manipulation. The
integrator approach allows web developers to make use of untrusted code in trusted
pages in a secure way. Thus, regardless of manually or automatically wrapping the
untrusted code it is the responsibility of the integrator to ensure complete mediation.
In the former case by making sure to wrap all untrusted code, and in the latter case
by ensuring that eventual parser differences do not compromise mediation. Since the
integrator approach provides complete mediation for untrusted code only, it is important
that the trusted code does not break the integrity of the monitor. If this would occur
soundness cannot be guaranteed, since the integrity breach could potentially allow for
the untrusted code to break out of the monitor. However, if the trusted code does not
break the integrity of the monitor, the integrator approach guarantees soundness and
integrity with respect to the untrusted code in a similar manner to the proxy approach,
see Section 2.2.
Pros and cons This developer-centric approach gives the integrator full control over
the configuration of the monitor and the policies to enforce. From the perspective of a
user this approach is not intrusive to the browser, requires no setup or configuration,
and provides additional security for the user’s sensitive information. However, it also
limits the user’s control over which policies are applied to user information.

A benefit of the integrator-driven approach over the proxies is potential performance
gains. While the proxies for all code on the page to run monitored, the integrator-driven
approach lets the integrator select what is monitored and what is not.

As previously stated, sharing information between trusted and untrusted code in a
secure manner requires manual interaction. This implies that the developer must to some
degree understand the inner workings of the monitor and the implications of interacting
with the monitor.

2.5 Summary of architectures

We have discussed four architectures for deployment. The differences between the ar-
chitectures decides which architecture is better suited for different stakeholders and sit-
uations. The first three architectures were targeted to end users and were distinguished
by their appeal to corporate and private users, whereas the last architecture was targeted
on code developers.

Deployment via extension offers potentially stronger security guarantees at the price
of running the monitor with the privilege of the browser, while the web proxy and suffix
proxy approached were more susceptible to mistakes in the rewriting procedure. In the
extension failing to identify a script leads to the script not executing, while in the proxies

9



unidentified scripts would execute alongside the monitor, potentially jeopardizing its
integrity. However, deployment via proxies requires someone to run and administer the
proxies. For the corporate user the corporation is a natural host for such services, while
the private user might lack such a trusted 3rd party. See Table 1 for a summary of how
the architectures best suit each stakeholder. The results of the table are not firm. Rather
they are recommendations based on the properties of the deployment methods and the
needs of the different stakeholders in general.

For the corporate user we argue that deployment via web proxy may be the most
natural method: it allows for simple centralized administration and, since it is common
to use corporate proxies, the infrastructure might already be in place. As a runner up,
deployment via extension is a good alternative deployment method, while the suffix
proxy is the least attractive solution from a corporate perspective. The latter allows the
user to select when to use the service, which opens up for security issues in case the
user forgets to use the service.

For the private user we argue that deployment via extension is the most appealing
method: after an initial installation it allows for local administration without the need
to run additional services or rely on trusted 3rd parties. An interesting alternative for
the private user is to use the suffix proxy. For web sites the private user trusts less than
the provider of the suffix proxy service, the suffix proxy allows for increased security
on a per web site basis. The web proxy is the least attractive means of deployment for
the private user. From the private user’s perspective the web proxy offers essentially the
same guarantees as the extension, while either encumbering her to run her own proxy
or rely on a 3rd party.

Browser
extension

Web
proxy

Suffix
proxy

Integrator
driven

Corporate user X
Private user X X
Developer X

Table 1: Suitability of architectures with respect to
different stakeholders.

Finally, for the developer using
the monitor as a library provides the
possibility to include untrusted code
safely using the monitor, while allow-
ing trusted code to run normally. This
allows for security, while lowering the
performance impact by only monitoring
potentially malicious parts of the pro-
gram.

3 Implementation
This section details our implementations of the architectures from Section 2. The code
is readily available and can be obtained from the authors upon request.

3.1 Browser extension
The browser extension is a Firefox extension based on Zaphod [31], a Firefox extension
that allows for the use of experimental Narcissus [13] engine as JavaScript engine.
When loaded, the extension turns off the standard JavaScript engine by disallowing
JavaScript and listens for the DOMContentLoaded event. DOMContentLoaded is
fired as soon as the DOM tree construction is finished. On this event the DOM tree is
traversed twice. The first traversal checks every node for event handlers, e.g., onclick,
and registers the monitor to handle them. The second traversal looks for JavaScript
script nodes. Each found script node is pushed onto an execution list, which is then

10



processed in order. For each script on the execution list, the source is downloaded and
the monitor is used to execute the script; any dynamically added scripts are injected into
the appropriate place on the execution list.

The downside of this way of implementing the extension is that the order in which
scripts are executed is important. When web pages are loaded, the scripts of the pages
are executed as they are encountered while parsing the web page. This means that the
DOM tree of the page might not have been fully constructed when the scripts execute.
Differences in the state of the DOM tree can be detected by scripts at execution time.
Hence, to guarantee transparency the execution of scripts must occur at the same times
in the DOM tree construction as they would have in the unmodified browser. This can
be achieved using DOM MutationEvent [41] instead of the DOMContentLoaded
event. The idea is to listen to any addition of script nodes to the DOM tree under the
construction, and execute the script on addition. However, due to performance rea-
sons the DOM MutationEvents are deprecated, and are being replaced with DOM
MutationObserver [42]. It is unclear whether the MutationObserver can be
used to provide transparency, since events are grouped together, i.e., the mutation ob-
server will not necessarily get an event each time a script is added — to improve per-
formance single events may bundle several modifications together.

However, the exact order of loading is not standardized and differs between browsers.
This forces scripts to be independent of such differences. Thus, using the method of ex-
ecuting scripts on the DOMContentLoaded event is not necessarily a problem in
practice.

Further, since extension run with the same privileges as the browser certain pro-
tection mechanism are in place to protect the browser from misbehaving extensions.
Those restrictions may potentially clash with the selected monitor. One example of
this is document.write. The effect of document.write is [23] to write a string
into the current position of the document. For security reasons, extensions are prohib-
ited from calling document.write. Intuitively, document.write writes into the
character stream that is fed to the HTML parser, which can have drastic effects on
the parsing of the page. In a monitor it is natural to implement document.write
by at some point calling the document.write of the browser. The alternative is to
fully implement document.write, which would entail taking the interaction be-
tween the content written by document.write, the already parsed parts of the page
and the remaining page into account. The inability to provide full functionality of
document.write does not jeopardize the security, as argued in the introduction.
Rather, it may prevent certain pages to execute properly. The consensus in the commu-
nity is that document.write has few valid use cases, all pertaining to the inclusion
of various entities during page load (calling document.write on a fully loaded
page overwrites the entire page). One arguably reasonable use of document.write
to include style sheets that only work when JavaScript is enabled. Another common
use of document.write, that is broadly considered bad style, is to include scripts
synchronously onto the page. Both approaches work by executing document.write
with very specific strings as parameters, e.g.,

document.write(
’<script src="http://somesite.com/script.js"></’ + ’script>’)

In such cases it is a simple matter to identify the attempt at inclusion, and mimic the
appropriate behavior.

11



The extension consists of 1200 lines of JavaScript and XUL code.

3.2 Web proxy
The web proxy is implemented as an HTTP-server. When the proxy receives a request
it extracts the target URL and in turn requests the content from the target. Before the
response is delivered to the client, the content is rewritten to ensure that all JavaScript
is executed by the monitor.

In HTML, where JavaScript is embedded in the code, the web proxy must first
identify the inline code in order to rewrite it. Identifying inline JavaScript in HTML
files is a complex task. Simple search and replace is not satisfactory due to the browser’s
error tolerant parsing of HTML-code, meaning that the browser will make a best-effort
attempt to make sense of malformed fragments of HTML. It would require the search
algorithm to account for all parser quirks in regard to malformed HTML, a task which
is at least as complex as actually parsing the document. Consider the example below:

<script>0</script/> HTML </script>
<script>0</script./> alert(JavaScript) </script>
<p>a<sCript/"=/ src=//t.co/abcde a= >b</p></script c<p>d

The first line will be interpreted as a script followed by the text HTML, the second
line as a script that alerts the string JavaScript, and the third will display ac and d in
two separate paragraphs and load a script from an external domain.

In the web proxy, Mozilla’s JavaScript-based HTML-parser dom.js [16], is used
to parse the page. HTML parsing is standardized in the HTML5 specification. The
dom.js parser is HTML5 compliant and parses the HTML the same as any HTML5
compliant browser. In the case that the browser is not HTML5 compliant, or if there
are implementation flaws, there may be ways to circumvent the rewriting in the proxy
by exploiting such parsing mismatches. However, as browser vendors are implementing
according to the specification to an increasing degree, these types of attacks are to be
less likely.

After the page has been parsed, the DOM-tree can be traversed to properly localize
all inline script code. All occurrences of JavaScript code are rewritten as outlined in
the code snipped below, wrapped in a call to the monitor. Because all instances of the
modified script code will reference the monitor, the monitor must be added as the first
script to be executed.

Rewriting JavaScript requires converting the source code to a string that can be fed
to the monitor. The method JSON.stringify() provides this functionality and will
properly escape the string to ensure that it is semantically equivalent when interpreted
by the monitor. The code string is then enclosed in a call to the monitors interpreter, as
shown below:

code = ’Monitor.eval(’ + JSON.stringify(code) + ’)’;

The implementation consists of 256 lines of JavaScript code.

3.3 Suffix proxy (service)
The web proxy serves as a foundation for the suffix proxy. The suffix proxy adds with
an additional step of rewriting to deal with external resources. Since the suffix proxy is
referenced by altering the domain name of the target, the proxy must ensure that relevant
resources, e.g., scripts, associated with the target page are also retrieved through the

12



proxy. Resources with relative URLs requires no processing, as they are relative to
the proxy domain and will by definition be loaded through the monitor. However, the
URLs of resources targeting external domains must be rewritten to include the proxy
domain. Similarly, links to external pages must include the domain of the proxy for the
monitor. The external references are identified in the same manner as inline JavaScript,
by parsing the HTML to a DOM-tree and traversing the tree. When found, the URL is
substituted using a regular expression.

Another difference to the web proxy relates to the use of non-standard ports. The
web proxy will receive all requests regardless of the target port. The suffix proxy,
on the other hand, only listens to the standard ports for HTTP and HTTPS, port 80
and 443 respectively. The port in a URL is specified in conjunction to, but not in-
cluded in the domain. Hence any URLs specifying non-standard ports would attempt
to connect to closed ports on the proxy server. A solution to this problem is to in-
clude the port as part of the modified domain name. To prevent clashing with the tar-
get domain or the proxy domain, the port number is included between the two, e.g.,
http://target.domain.com.8080.proxy.domain/. This does not clash with the target do-
main because the top domain of the target domain cannot be numeric. Neither does it
clash with the proxy domain because it is still a subdomain of the proxy domain. The
implementation consists of 276 lines of JavaScript code.

4 Instantiation
This section presents practical experiments made by instantiating the deployment ar-
chitectures with the JSFlow [19, 18] information-flow monitor. JSFlow is a tool that ex-
tends the formalization of a dynamic information flow tracker [20] to the full JavaScript
language and its APIs. We briefly describe the monitor and discuss security and perfor-
mance experiments.

Since the deployment approaches are parametric in the choice of monitor, we limit
our interest to properties that relate to the approaches rather than the monitors. In par-
ticular, for the performance experiments we measure the time from issuing the request
until the response is fully received, since the performance after that point depends en-
tirely on the monitor, and for the security experiments we focus on results that are more
generally interesting and not depending on the specific choice of monitor.
Monitor JSFlow is a dynamic information-flow monitor that tags values with runtime
security labels. The security labels default to the origin of the data, e.g., user input is
tagged user, but the labels can be controlled by the use of custom data attributes in
the HTML. The default security policy is a strict version of the same-origin policy,
where implicit flows, and flows via, e.g., image source attributes, are taken into ac-
count. Whenever a potential security violation has been encountered the monitor stops
the execution with a security error. Implemented in JavaScript, the monitor supports full
ECMA-262 (v5) [12] including the standard API and large parts of the browser-specific
APIs such as the DOM APIs. JSFlow supports a wide variety of information-flow poli-
cies, including tracking of user input and preventing it from leaving the browser, as used
in the security experiments below.
Security experiments Our experiments focus on password-strength checkers. After the
user inputs a password, the strength of the password is computed according to some
metric, and the result is displayed to the user, typically on a scale from weak to strong.

13



This type of service is ubiquitous on the web, with service providers ranging from
private web sites to web sites of national telecommunication authorities.

Clearly, the password needs to stay confidential; The strength of the password is ir-
relevant if the password is leaked. We have investigated a number of password-strength
services. Our experiments identify services that enforce two types of policies: (i) allow
the password to be sent back to the origin web site, but not to any other site (suitable for
server-side checkers); and (ii) disallow the password to leave the browser (suitable for
client-side checkers). The first type places trust on the service provider not to abuse the
password, while the second type does not require such trust, in line with the principle
of least privilege [39]. Note that these policies are indistinguishable from SOP’s point
of view because it is not powerful enough to express the second type.

One seemingly reasonable way to enforce the second type of policy is to isolate the
service, i.e., prevent it from performing any communication. While effective, such a
stern approach risks breaking the functionality of the service. It is common that pages
employ usage statistics tracking such as Google Analytics. Google Analytics requires
that usage information is allowed to be gathered and sent to Google for aggregation.
Using information-flow tracking, we can allow communication to Google Analytics but
with the guarantee that the password will not be leaked to it.

We have investigated a selection of sites2 that fall into the first category, and a selec-
tion of sites3 that fall into the second category. Of these, it is worth commenting on two
sites, one from each category. Interestingly, the first site, https://testalosenord.
pts.se/, is provided by the Swedish Post and Telecom Authority. The site contains a
count of how many passwords have been submitted to the service, with over 1,000,000
tried passwords so far. We are in contact with the authority to help improve the se-
curity and usability of the service. The second, http://www.getsecurepassword.
com/CheckPassword.aspx, is an example of a web site that uses Google Analytics.
The monitor rightfully allows communication to Google while ensuring the password
cannot be leaked anywhere outside the browser.

The benefit of the architectures for the scenario of password-strength checking is
that users can get strong security guarantees either by installing an extension, using a
web proxy, or a suffix proxy. In the latter two cases, the system and network administra-
tors have a stake in deciding what policies to enforce. Further, the integrator architecture
is an excellent fit for including a third-party password-strength checker into web pages
of a service, say a social web site, with no information leaked to the third party.
Performance experiments Since the approaches are parametric in the choice of monitor,
we are interested in evaluating the performance of each approach rather than the perfor-
mance of the employed monitor. We measure the time from issuing the request until the
response is fully received, as the performance after that point depends entirely on the
monitor. We measure the average overhead introduced by architectures compared to a
reference sample of unmodified requests. The overhead is measured against two of the

2
https://testalosenord.pts.se/, http://www.lbw-soft.de/, http://www.inutile.ens.

fr/estatis/password-security-checker/, https://passfault.appspot.com/password_
strength.html, and http://geodsoft.com/cgi-bin/pwcheck.pl.

3
http://www.getsecurepassword.com/CheckPassword.aspx, http://www.passwordmeter.

com/, http://howsecureismypassword.net, https://www.microsoft.com/en-gb/
security/pc-security/password-checker.aspx, https://www.grc.com/haystack.htm,
and https://www.my1login.com/password-strength-meter.php.

14



password-strength checkers listed previously, namely passwordmeter.com, over
HTTP, and testalosenord.pts.se, over HTTPS. This measures the additional
overhead introduced by the deployment method. Three out of the four architectures are
evaluated; the browser extension, the web proxy, and the suffix proxy. The overhead of
the integrator architecture is specific to the page that implements it, and is therefore not
comparable to the other three. The browser extension does not begin executing until the
browser has received the page and has begun parsing it, therefore its response time is
the same as with the extension disabled. Due to the rewriting mechanism being closely
related, the web proxy and the suffix proxy show similar results.

Measurements (ms) Average (ms) Delta (ms) Overhead (%)
Reference 434, 420, 445, 443 435 0 0%
Browser extension 434, 420, 445, 443 435 0 0%
Web proxy 638, 690, 681, 781 697 +262 +60.2%
Suffix proxy 663, 775, 689, 694 705 +270 +62.0%

Table 2: Architecture overhead passwordmeter.com
Proxy Measurements (ms) Average (ms) Delta (ms) Overhead (%)
Reference 114, 240, 103, 104 140 0 0%
Browser extension 114, 240, 103, 104 140 0 0%
Web proxy 372, 308, 311, 305 324 +184 +131.4%
Suffix proxy 316, 314, 324, 333 321 +181 +129.2%

Table 3: Architecture overhead testalosenord.pts.se
The tests were performed in the Firefox browser on the Windows 7 64 bit SP1 operating
system on a machine with an Intel Core i7-3250M 2.9 GHz CPU, and 8 GB of memory.

5 Related work
We first discuss the original work on reference monitors and their inlining, then inlining
for information flow, and, finally, inlining security checks in the context of JavaScript.
Inlined reference monitors Anderson [3] introduces reference monitors and outlines the
basic principles, recounted in Section 1. Erlingsson and Schneider [15, 14] instigate the
area of inlining reference monitors. This work studies both enforcement mechanisms
and the policies that they are capable of enforcing, with the focus on safety properties.
Inlined reference monitors have been proposed in a variety of languages and settings:
from assembly code [15] to Java [10, 11, 9].

Ligatti et al. [25] present a framework for enforcing security policies by monitoring
and modifying programs at runtime. They introduce edit automata that enable monitors
to stop, suppress, and modify the behavior of programs.
Inlining for secure information flow Language-based information-flow security [37]
features work on inlining for secure information flow. Secure information flow is not a
safety property [29], but can be approximated by safety properties (e.g., [6, 38, 4]).

Chudnov and Naumann [7] have investigated an inlining approach to monitoring
information flow in a simple imperative language. They inline a flow-sensitive hybrid
monitor by Russo and Sabelfeld [36]. The soundness of the inlined monitor is ensured
by bisimulation of the inlined monitor and the original monitor.

Magazinius et al. [28] cope with dynamic code evaluation instructions by inlining
on-the-fly. Dynamic code evaluation instructions are rewritten to make use of auxiliary

15



functions that, when invoked at runtime, inject security checks into the available string.
The inlined code manipulates shadow variables to keep track of the security labels of
the program’s variables. In similar vein, Bello and Bonelli [5] investigate on-the-fly
inlining for a dynamic dependency analysis. However, there are fundamental limits in
the scalability of the shadow-variable approach. The execution of a vast majority of
the JavaScript operations (with the prime example being the + operation) is dependent
on the types of their parameters. This might lead to coercions of the parameters that,
in turn, may invoke such operations as toString and valueOf. In order to take
any side effects of these methods into account, any operation that may case coercions
must be wrapped. The end result of this is that the inlined code ends up emulating the
interpreter, leaving no advantages to the shadow-variable approach.
Inlining for secure JavaScript Inlining has been explored for JavaScript, although fo-
cusing on simple properties or preventing against fixed classes of vulnerabilities. A
prominent example in the context of the web is BrowserShield [34] by Reis et al. to
instrument scripts with checks for known vulnerabilities.

Yu et al. [44] and Kikuchi et al. [24] present an instrumentation approach for Java-
Script in the browser. Their framework allows instrumented code to encode edit auto-
mata-based policies.

Phung et al. [33] and Magazinius et al. [27] develop secure wrapping for self-
protecting JavaScript. This approach is based on wrapping built-in JavaScript methods
with secure wrappers that regulate access to the original built-ins.

Agten et al. [2] present JSand, a server-driven client-side sandboxing framework.
The framework mediates attempts of untrusted code to access resources in the browser.
In contrast to its predecessors such as ConScript [30], WebJail [1], and Contego [26],
the sandboxing is done purely at JavaScript level, requiring no browser modification.

Despite the above progress on inlining security checks in JavaScript, achieving
information-flow security for client-side JavaScript by inlining has been out of reach
for the current methods [40, 8, 43, 21, 17] that either modify the browser or perform the
analysis out-of-the-browser.

6 Conclusions
Different stakeholders have different interests in the security of web applications. We
have presented architectures for inlining security monitors, to take into account the
security goals of the users, system and network administrators, and service providers
and integrators. We achieve great flexibility in the deployment options by considering
security monitors implemented as security-enhanced JavaScript interpreters. The archi-
tectures allow deploying such a monitor in a browser extension, web proxy, or web
service. We have reported on the security considerations and on the relative pros and
cons for each architecture. We have applied the architectures to inline an information-
flow security monitor for JavaScript. The security experiments show the flexibility in
supporting the different policies on the sensitive information from the user. The perfor-
mance experiments show reasonable overhead imposed by the architectures.

Future work is focused on three promising directions. First, JavaScript may occur
outside script elements, e.g., as part of css, SVG or Flash. Ignoring JavaScript outside
script elements potentially opens up for bypassing the security policies. One possible
solution to this is to disallow JavaScript from occurring outside normal script tags,

16



either by removing it of turning off the enabling features (e.g., Flash). Even though
such a method might seem drastic it is conceivable due to the limited proliferation of
JavaScript outside normal scripts. Nevertheless, to provide a more complete solution,
we aim to investigate extending the approaches presented in this paper to handle such
JavaScript. Second, recall that the integrator architecture relies on the developer to es-
tablish communication between the monitored and unmonitored code. With the goal to
relieve the integrator from manual efforts, we develop a framework for secure commu-
nication that provides explicit support for integrating and monitored and unmonitored
code. Third, we pursue instantiating the architectures with a monitor for controlling
network communication bandwidth.

Acknowledgments Thanks are due to Christian Hammer for useful feedback. This work
was funded by the European Community under the ProSecuToR and WebSand projects
and the Swedish agencies SSF and VR.

References

1. S. V. Acker, P. D. Ryck, L. Desmet, F. Piessens, and W. Joosen. Webjail: least-privilege
integration of third-party components in web mashups. In Proc. of ACSAC’11, 2011.

2. P. Agten, S. V. Acker, Y. Brondsema, P. H. Phung, L. Desmet, and F. Piessens. JSand:
complete client-side sandboxing of third-party JavaScript without browser modifications. In
R. H. Zakon, editor, ACSAC’12, pages 1–10. ACM, 2012.

3. J. P. Anderson. Computer security technology planning study. Technical report, Deputy for
Command and Management System, USA, 1972.

4. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis. In Proc.
ACM Workshop on Programming Languages and Analysis for Security (PLAS), June 2009.

5. L. Bello and E. Bonelli. On-the-fly inlining of dynamic dependency monitors for secure
information flow. In Proc. of FAST’11, pages 55–69, 2011.

6. G. Boudol. Secure information flow as a safety property. In Proc. of FAST’08.
7. A. Chudnov and D. A. Naumann. Information flow monitor inlining. In Proc. of CSF’10.
8. R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for JavasCript. In

M. Hind and A. Diwan, editors, PLDI, pages 50–62. ACM, 2009.
9. M. Dam, G. L. Guernic, and A. Lundblad. Treedroid: a tree automaton based approach to

enforcing data processing policies. In Proc. of ACM CCS’12, pages 894–905, 2012.
10. M. Dam, B. Jacobs, A. Lundblad, and F. Piessens. Security monitor inlining for multi-

threaded java. In Proc. of ECOOP’09, pages 546–569, 2009.
11. M. Dam, B. Jacobs, A. Lundblad, and F. Piessens. Provably correct inline monitoring for

multithreaded java-like programs. Journal of Computer Security, 18(1):37–59, 2010.
12. ECMA International. ECMAScript Language Specification, 2009. Version 5.
13. B. Eich. Narcissus—JS implemented in JS. http://mxr.mozilla.org/mozilla/

source/js/narcissus/, 2011.
14. U. Erlingsson. The inlined reference monitor approach to security policy enforcement. PhD

thesis, Cornell University, Ithaca, NY, USA, 2004.
15. U. Erlingsson and F. B. Schneider. Sasi enforcement of security policies: a retrospective. In

Proc. of NSPW’99, pages 87–95, 1999.
16. A. Gal. dom.js. https://github.com/andreasgal/dom.js.
17. W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a web browser with

flexible and precise information flow control. In Proc. of ACM CCS’12, Oct. 2012.
18. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow. Software release. Located at

http://chalmerslbs.bitbucket.org/jsflow, Sept. 2013.

17



19. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking Information Flow in
JavaScript and its APIs. In SAC. ACM, Mar. 2014.

20. D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In Proc. IEEE
Computer Security Foundations Symposium, pages 3–18, June 2012.

21. D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of privacy-violating infor-
mation flows in JavaScript web applications. In Proc. of ACM CCS’10, Oct. 2010.

22. S. Just, A. Cleary, B. Shirley, and C. Hammer. Information Flow Analysis for JavaScript. In
Proc. of PLASTIC ’11.

23. J. Kesselman. Document Object Model (DOM) Level 2 Core Specification, 2000.
24. H. Kikuchi, D. Yu, A. Chander, H. Inamura, and I. Serikov. Javascript instrumentation in

practice. In Proc. of APLAS’08, pages 326–341, 2008.
25. J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms for run-time

security policies. International Journal of Information Security, 4:2–16, 2005.
26. T. Luo and W. Du. Contego: Capability-based access control for web browsers - (short

paper). In Proc. of TRUST’11, pages 231–238, 2011.
27. J. Magazinius, P. H. Phung, and D. Sands. Safe wrappers and sane policies for self protecting

javascript. In Proc. of NordSec’10, pages 239–255, 2010.
28. J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dynamic security monitors.

Computers & Security, 31(7):827–843, 2012.
29. J. McLean. A general theory of composition for trace sets closed under selective interleaving

functions. In Proc. IEEE Symp. on Security and Privacy, pages 79–93, May 1994.
30. L. A. Meyerovich and V. B. Livshits. Conscript: Specifying and enforcing fine-grained se-

curity policies for javascript in the browser. In Proc. of IEEE S&P’10, 2010.
31. Mozilla Labs. Zaphod add-on for the Firefox browser. http://mozillalabs.com/

zaphod, 2011.
32. N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, C. Kruegel,

F. Piessens, and G. Vigna. You are what you include: large-scale evaluation of remote
JavaScript inclusions. In Proc. of ACM CCS’12, pages 736–747, Oct. 2012.

33. P. H. Phung, D. Sands, and A. Chudnov. Lightweight self-protecting javascript. In Proc. of
ASIACCS’09, pages 47–60, 2009.

34. C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir. Browsershield: Vulnerability-
driven filtering of dynamic html. ACM Trans. Web, 1(3):11, 2007.

35. J. M. Rushby. Design and verification of secure systems. In Proc. SOSP’81, 1981.
36. A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In Proc.

IEEE Computer Security Foundations Symposium, pages 186–199, July 2010.
37. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected

Areas in Communications, 21(1):5–19, Jan. 2003.
38. A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the roller coaster of

information-flow control research. In Proc. PSI’09, LNCS. Springer-Verlag, June 2009.
39. J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proc.

of the IEEE, 63(9):1278–1308, Sept. 1975.
40. P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-site scripting

prevention with dynamic data tainting and static analysis. In Proc. of NDSS’07, Feb. 2007.
41. W3C. Document Object Model (DOM) Level 3 Events Specification. http://www.w3.

org/TR/DOM-Level-3-Events/.
42. W3C. DOM4 W3C Working Draft 6. http://www.w3.org/TR/dom/.
43. A. Yip, N. Narula, M. Krohn, and R. Morris. Privacy-preserving browser-side scripting with

BFlow. In EuroSys’09, pages 233–246, New York, NY, USA, 2009. ACM.
44. D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumentation for browser security.

In Proc. ACM Symp. on Principles of Programming Languages, pages 237–249. ACM, 2007.

18


