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Abstract. This paper explores information-flow control for batch-job programs
that are allowed to be re-run with new input provided by the attacker. We ar-
gue that directly adapting two major security definitions for batch-job programs,
termination-sensitive and termination-insensitive noninterference, to multi-run
execution would result in extremes. While the former readily scales up to multiple
runs, its enforcement is typically over-restrictive. The latter suffers from insecu-
rity: secrets can be leaked in their entirety by multiple runs of programs that are
secure according to batch-job termination-insensitive noninterference. Seeking to
avoid the extremes, we present a framework for specifying and enforcing multi-
run security in an imperative language. The policy framework is based on track-
ing the attacker’s knowledge about secrets obtained by multiple program runs.
Inspired by previous work on robustness, the key ingredient of our type-based
enforcement for multi-run security is preventing the dangerous combination of
attacker-controlled data and secret data from affecting program termination.

1 Introduction

Imagine a scenario of a web service with a medical database at the back-end. Ana-
lysts are allowed to access the database through a web interface. The goal is to allow
deriving interesting statistics (say, by age groups or by larger residential areas) but dis-
allow leaking sensitive information about individuals. In this scenario, the server-side
program that accommodates queries has two inputs: one is the database itself, which
contains sensitive data and which is not controlled by the attacker, and the other one
is a public query that originates from a possibly malicious analyst. For the program to
function, it must have access to the entire database. At the same time, it must not reveal
sensitive data about individual entries in the database. Hence, we are interested in se-
curing information flow from secret inputs to public outputs. This problem arises both
when the code is written by non-malicious developers, in which case we want prevent
accidental leaks, and when the code is supplied by untrusted third parties, when we
want to prevent malicious leaks. Settling for the worst case, we do not appeal to trust
assumptions.

Language-based information-flow security [31] is focused on providing strong secu-
rity guarantees for underlying programs. In the context of confidentiality, it is intended
to prevent information flow from secret inputs to public outputs. The dominating base-
line security policy is noninterference [14, 19] that requires that a variation of secret
input does not result in a variation of public outputs.

However, the state of the art in the area consists of two extremes. One extreme is
batch-job program models, where programs are run only once and where the initial
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memory is the only input and the final memory is the only output. A large body of re-
search on language-based information-flow security is limited to batch-job models. In a
language-based setting, noninterference has been largely considered for batch-job mod-
els [40, 31]. Major efforts on information flow in functional [28], object-oriented [43,
8, 20], concurrent [37, 42, 30], and other languages [31] assume a batch-job model.

While securing batch-job programs without being over-restrictive is feasible, the
assumption that programs are run only once is often too strong. The other extreme
is fully interactive programs with channels for input/output communication. While this
model is more powerful, securing interactive programs is notoriously hard: intermediate
observations can be exploited to leak information [2].

This paper explores middle ground between the extremes: batch-job programs that
are allowed to be re-run with new input provided by the attacker. We believe this model
captures many practical scenarios such as the medical database above. Our attacker
model allows issuing queries to the database as described by a batch-job program whose
secret input is the database and public input is the attacker-controlled part of the query.
The goal is to prevent the attacker from learning sensitive information by re-running the
program with modified public parameters and observing the public outcome.

Leaks via termination behavior of programs turn out to be the bottleneck for gener-
alizing batch-job style security to multiple runs. We argue that directly adapting two ma-
jor security definitions for batch-job programs, termination-sensitive and termination-
insensitive noninterference, to multi-run execution would result in further extremes.
The former, termination-sensitive noninterference [39, 31], readily scales up to multiple
runs. This definition demands that the public outcome and termination behavior of the
underlying program do not depend on secret data. No run leaks any information about
secrets, and so we can safely re-run programs. Thus, batch-job termination-sensitive
security implies multiple-run security. However, enforcing termination-sensitive non-
interference withing being overly restrictive is far from trivial. Typically, enforcement
mechanisms (e.g., [39]) place Draconian restrictions whenever abnormal termination is
possible in sensitive context. For example, no sensitive data is allowed in loop guards.

The latter, termination-insensitive noninterference [40, 31], where secrets are al-
lowed to affect termination behavior, suffers from insecurities in the multi-run case. Let
us illustrate the problem with examples. The program

while h do skip (1)

where h contains a secret, is deemed secure. Termination-insensitive noninterference
quantifies over all possible input memories that agree on the public part and makes
sure that terminating runs agree on the public part of the final memories. The termina-
tion behavior is not considered to have a significant effect, even though the termination
depends on secret data. Although the condition quantifies over possible runs, its guar-
antees are only about differences between two single runs. The implicit assumption is
that the program is run only once. A common argument is that if a batch-job program
that satisfies termination-insensitive noninterference is run only once, then it leaks at
most one bit [2].

With the same rationale, flavors of this program are also accepted by mainstream
information-flow security tools Jif [26], FlowCaml [35], and the SPARK Examiner [9,
12] for Java, Caml, and Ada, respectively.
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Similarly, the program

while h = l do skip (2)

where h contains a secret and l is an attacker-controlled public variable, is also consid-
ered secure.

However, the single-run assumption is in many cases inadequate. As in the database
scenario above, attackers are often capable of re-running the program. Further, in a
smartcard setting, the attacker may try to leak the secret key by multiple attempts of
feeding public inputs and observe the properties of public outputs. A web attacker can
initiate multiple runs of a server-side computation that involves secrets by providing a
request with public input. Similarly, the attacker can initiate multi-run computation on
the client side of an honest user by providing scripts that keep re-running after recover-
ing from divergence (rather straightforward to accomplish with the modern browsers’
interpretation of JavaScript). A recent exploit of ASP.NET analyzes the difference be-
tween error messages of multiple requests to collect information for a padding oracle
attack [29].

This ability does not make a difference for program 1 (given the value of the secret
is unchanged between the runs), but it is fatal for program 2: the attacker can learn
the entire secret by brute-force guessing the value of h with different choices for l.
Multi-run leaks are particularly devastating for single-run secure programs like:

while h&&l do skip (3)

where && is the bitwise “and” operation. By walking through the bits of h in subse-
quent runs, the attacker can learn the entire value in linear time (of the bit-size of the
secret) bit-by-bit. Thus, secrets can be leaked in their entirety by multiple runs of pro-
grams that are single-run secure. A quick experiment with a Jif-certified program that
contains a termination leak of this kind shows that it is straightforward to leak one se-
cret bit per second even on a modest modern desktop machine (tested with Jif 3.0). This
implies that a credit card number can be leaked within a minute. The Jif program and a
simple Python script that exploits its termination leak are shown in Appendix B.

Seeking to avoid the extremes, we present a framework for specifying and enforcing
multi-run security. For specification, we are inspired on knowledge-based attacker mod-
els [17, 4]. The policy framework is based on tracking the attacker’s knowledge about
secrets obtained by multiple program runs. The multi-run setting for such a framework
is novel. The framework supports possibilities for intended information release (illus-
trated by examples below). Further, it connects to quantitative security, where we reason
about how many bits of information can be leaked by multiple program runs.

For enforcement, we are inspired by previous work on robustness [41, 25, 3]. The
key ingredient of our type-based enforcement for multi-run security is preventing the
dangerous combination of attacker-controlled data and secret data from affecting pro-
gram termination. It is particularly gratifying that we can draw on the type system for
robustness for enforcing a policy that it has not been designed for. This connection
leads us to clean enforcement, providing a simple solution to a nontrivial problem of
multi-run security.
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For information-flow tracking, we deploy data labels that combine confidentiality
and integrity information. Confidentiality distinguishes secret information from pub-
lic by high and low confidentiality labels. Integrity distinguishes untrusted information
from trusted by low and high integrity labels. For confidentiality the use of high in-
formation is more restrictive: secrets may not leak to public; and dually for integrity
use of low is restricted: untrusted data may not affect trusted. Typically, lattices [16]
are used to reason about more complex structures than low/high for confidentiality and
integrity. Of particular interest of us are product lattices that combine confidentiality
and integrity labels. In the example of a product lattice that combines two low/high
lattices, the top element is high confidentiality and low integrity. Data at this level is
most restrictive to use. The bottom element is low confidentiality and high integrity,
which may arbitrarily affect data at other levels. Integrity plays a key role for the en-
forcement: the enforcement ensures that combinations of high-confidentiality (secret)
and low-integrity (attacked-controlled) data do not affect the termination behavior.

As foreshadowed above, we extend our approach to specify and track intentional
information release (or declassification). The extended enforcement guarantees that the
program does not release more information than described by escape-hatch [32] ex-
pressions. The purpose of escape hatches is to describe what is allowed to be released.
The job of the underlying security condition is to ensure than nothing else about secret
data may be learned by the attacker. For example, program

l := h%4 (4)

releases two least-significant bits about the secret variable h. When this is desired, it
is expressed in our framework by the escape-hatch expression h%4. The type system
accommodates intentional release by labeling escape-hatch expressions as low confi-
dentiality and high integrity. Hence, the program above is accepted while, for example,
program

l := h%6 (5)

is rejected because the type system detects a mismatch with the escape hatch h%4.
Next, assuming the same escape-hatch policy h%4, consider the following program:

while h%4 + l do skip (6)

This program may also release two least-significant bits about h. Indeed, the attacker
may experiment by supplying inputs −2, −1, and 0 for l and observing whether the
program diverges. Our type system rightfully accepts this program because the loop
guard h%4+ l has low integrity and low confidentiality, inheriting its restrictions from
variable l (recall that h%4 is labeled as low confidentiality and high integrity, which is
least restrictive).

A final example illustrates how intended declassification is distinguished from un-
intended. Assuming the escape-hatch policy h, consider the program

h := h′; l := h (7)

that attempts to leak the initial value of h′ by laundering its value through the declas-
sified (syntactic) variable h. This program is rejected because the enforcement mecha-
nism detects that a variable involved in declassification has been modified.
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2 Security condition

This section presents some key definitions, in particular the definition of when we con-
sider programs multi-run secure. Command c represents a deterministic program in the
rest of the paper. As before, h and l represent secret (high) and public (low) variables.
Without loss of generality, we treat a program as a function of two inputs (secret and
public) coming from some finite domain D, to the set D ∪ {⊥}. The result c(h, l) ex-
presses the observed low output of the program, with the special value ⊥ representing
nontermination.

Definition 1 (Single-run knowledge). Let c be a program taking two inputs, a fixed
secret one vh and a (non-fixed) public one vl each from some domain D, and yielding
a public output c(vh, vl) ∈ D ∪ {⊥}.

An attacker (with full knowledge of c itself) is allowed to execute c, providing the
public input vl and observing only the public output c(vh, vl). The attacker’s knowledge
of the (fixed) secret input is then represented by the set of values that would lead to the
observed outcome. This set is written as:

kvh(c, vl) = {x ∈ D | c(x, vl) = c(vh, vl) }

Programs with more than two inputs are modeled by collecting all secret and public
inputs into two separate tuples, and similar for programs which have more than one
output.

Note that by allowing c(vh, vl) to take the special value ⊥ (meaning that c has an
infinite derivation for those inputs), we make nontermination observable. This is im-
portant because in reality, nontermination can for example be (approximately) inferred
from programs that time out.

Assume an attacker has some previous knowledge of h, represented by the set
K0 ⊆ D. Then the attacker is potentially able to increase that knowledge (which cor-
responds to shrinking the set of possibilities) by running the program. The attacker’s
new knowledge will be the single-run knowledge intersected with the previous knowl-
edge. Repeating this process (possibly with different low inputs) results in a sequence
of increasing knowledge (decreasing sets of possibilities). For an attacker with no initial
knowledge we can simply start with K0 = D. Obviously, a program may potentially
leak more if the attacker gets the chance to invoke it multiple times and has control over
some of the input.

The maximum knowledge attainable by the attacker is the result of the above pro-
cess repeated for every possible low input. Note that this models a powerful attacker,
as the number of possibilities is exponential in the bit-size of the input. This maximum
knowledge, or multi-run knowledge is now defined as follows.

Definition 2 (Multi-run knowledge). Let c, vh, vl, and D be as in Definition 1. The
attacker’s knowledge about vh produced by multiple runs of program c is defined as:

Kvh(c) =
⋂

vl∈D

kvh(c, vl)
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To highlight the contrast between multi-run knowledge and single-run knowledge
captured by the definitions, we come back to the examples from Section 1. Assume
D = {0, . . . , 255}. Recall program 1:

while h do skip

The single-run knowledge kvh(c, vl) for this program is {0}, when c(vh, vl) = vl, and
{1, . . . , 255}, when c(vh, vl) = ⊥. The multi-run knowledge Kvh(c) is {0}, when
vh = 0, and {1, . . . , 255}, when vh 6= 0, which directly corresponds to the two cases
for the single-run knowledge. Recall now program 2:

while h = l do skip

The single-run knowledge kvh(c, vl) for this program is {0, . . . , vl − 1, vl + 1, . . . , 255},
when c(vh, vl) = vl, and {vl}, when c(vh, vl) = ⊥. However, the multi-run knowledge
Kvh(c) is simply {vh}, which corresponds to leaking all of vh into variable l. The inter-
section in the definition of multi-run knowledge corresponds to traversing all possible
low inputs in the attempt to match them to vh, which is a worst-case model for multi-run
attackers.

Now that we have definitions of attacker knowledge obtained after running the
program, we wish to express a policy which sets limits on this knowledge. A knowl-
edge policy states a lower bound on the attacker’s uncertainty by partitioning the in-
put domain into classes. Each class lists values that must remain indistinguishable to
the attacker. In other words, the attacker may identify from which class the secret in-
put comes, but any more precision is disallowed. This view corresponds to partial re-
lease [14, 33] of information. This leads to the following definition.

Definition 3 (Knowledge-policy). A knowledge policy P for an input with domain D
is a partition of D into classes Pi:

P = {P1, . . . , Pn} Pi ⊆ D i 6= j =⇒ Pi ∩ Pj = ∅ P1 ∪ . . . ∪ Pn = D

For a value v ∈ D we write [[v]]P to represent the class of P to which v belongs.

Note that as a partition of D, a policy represents an equivalence relation on values. Two
values are equivalent if they come from the same class. This equivalence relation is
often referred to as an indistinguishability relation [14, 33].

We illustrate the definition with simple examples. A policy that allows the attacker
no knowledge is simply P = {D}. A policy that allows full knowledge is {{x} |x ∈
D}. If D is the set of unsigned 8-bit integers, then a policy that allows the attacker to
know the parity of the secret is:{

{0, 2, . . . , 254}, {1, 3, . . . , 255}
}
.

We are now ready to state the formal definition of multi-run secure programs.

Definition 4 (Multi-run security). Let c be a program that takes a secret input vh and
an arbitrary public, attacker-controlled input. c is multi-run secure (or simply secure)
with respect to a knowledge policy P if and only if [[vh]]P ⊆ Kvh(c).

6



Observe that multi-run security with policy {D} corresponds to termination-sensitive
noninterference [39, 31] for single runs, which prevents the termination behavior of the
program (as well as its public output) from being affected by secrets.

Recall programs 4 and 5 from Section 1. Program 4 (l := h%4) is secure for all high
input with respect to the policy P = {{0, 4, . . . } , {1, 5, . . . }} , {2, 6, . . . } , {3, 7, . . . }.
Indeed, the multi-run knowledge from running the program has to be one of the four
sets in the policy because the attacker only learns the two least-significant bits.

On the other hand, program 5 (l := h%6) is insecure for all high input according
to the policy P . To illustrate this, take vh = 0. The multi-run knowledge K0(c) is
{0, 6, . . . }, while [[0]]P = {0, 4, . . . } which is clearly not contained in the knowledge.

As we are interested in an enforcement mechanism that allows limited leaks through
the termination channel, Definition 4 will serve as the basis for a relaxed definition
which we apply to the enforcement mechanism presented in Section 3. This relaxation
draws on ideas from quantitative security. Smith [36] defines the notion of vulnera-
bility V (X), which is the worst-case probability of guessing the value of secret X
by an adversary in one try. The measure of information quantity is then defined as
− log V (X). Based on the intuition “information leaked = initial uncertainty - remain-
ing uncertainty”, Smith defines information leakage and shows that for deterministic
programs and uniformly distributed secrets it amounts to log |S|, where |S| is the size
of the set of possible public outputs given the public input is fixed. The intuition is that
the more different observations the attacker can observe, the more secret information
about might leaked through them. In the multi-run case, the size of the set of possi-
ble outputs translates to the number of indistinguishability classes for the high input,
which, in effect, is the number of different values Kvh(c) can take when vh varies. This
is in line with Lowe [23], who measures the number of secret behaviors distinguished
by an attacker in a nondeterministic setting. This motivation brings us to the following
definition of security of programs that operate on uniformly distributed secrets:

Definition 5 (k-bit security). Let c be a program that takes a uniformly distributed
secret input vh and an arbitrary public, attacker-controlled input vl. c is k-bit secure if
k = log n and Kvh(c) takes at most n distinct values as vh varies.

For example, program 1 is 1-bit secure because there are only two possibilities for
Kvh(c) as vh varies. On the other hand, program 2 is k-secure, where k is the bit size
of h because Kvh(c) ranges over all possible singleton sets as vh varies.

1-bit security is a particularly interesting case. Intuitively it means that an attacker
can at most infer that vh is in some set A or that it is in A’s complement. In an extreme
case, either set might contain only one element, meaning the attacker would know the
exact value of that particular vh, but since there are only two possible “knowledges”
this is equivalent to the attacker being allowed only one boolean test on the secret.

Ultimately we will prove that our enforcement mechanism is multi-run secure with
respect to a policy, with the relaxation that 1-bit leaks are allowed. For simplicity we
combine Definition 4 and the 1-bit version of Definition 5 as follows.

Definition 6 (1-bit security w.r.t. a policy). Assume c, vh, vl are as in Definition 5,
and P is a knowledge policy. We say that c is 1-bit secure with respect to P if and only

7



n ∈ D, x ∈ Vars, op ∈ {+,−, . . . }
e ::= n |x | e op e
c ::= skip |x := e | c; c | if e then c else c | while e do c

Fig. 1. Syntax

if for each class Pi ∈ P , Kvh(c) takes at most two distinct values (knowledges) K1,K2

as vh varies within Pi, and furthermore Pi ⊆ K1 ∪K2.

In other words, Kvh(c) can vary arbitrarily for vh from different indistinguishability
classes, but within each class we only allow for revealing one additional bit of infor-
mation. The last part ensures that an attacker cannot otherwise exclude any values from
the policy class of the secret, any value considered impossible in one knowledge must
be considered possible according to the other knowledge.

3 Enforcement

We illustrate our approach to enforcement for an imperative language. To keep the
exposition clear, we have deliberately chosen a simple language, but the ideas here scale
to more complex languages. Figure 1 shows the syntax of the language. Expressions
take literals from a finite domain D (e.g., 32-bit integers) and variables from a set Vars .
We present a type system for this language such that typable programs are robust against
multi-run attacks that try to magnify single-run termination leaks into leaking more than
one bit. The type system represents a static analysis, conveniently referring to security
labels for variables and expressions as security types.

We will continue to treat programs as functions D×D → D∪{⊥}, and in concrete
examples the inputs will be represented by the variables h and l. The final value of l
will be the output for terminating programs.

The important feature of this type system is that it does not allow looping on ex-
pressions that both depend on secrets and attacker input. Thus we need to consider
both the confidentiality and integrity levels of expressions at the same time. To achieve
this we label variables with labels from the following product lattice L that combines
confidentiality and integrity. HL

HH LL

LH

Here a label lists first the confidentiality level and then the in-
tegrity level. For example, the attacker provided input l has level LL
(low confidentiality, low integrity) since it is both known and con-
trolled by the attacker, and the secret input h has level HH since
it is neither. An expression combining a secret with untrusted input
will be assigned level HL (high confidentiality, low integrity). We
use the standard symbols v,t, etc. for lattice operators. This lattice has been used for
enforcing robust declassification [41, 25, 3], which demands that the attacker may not
affect what is released by programs by ensuring that only high-integrity data can be
declassified, and only in a high-integrity context. The work on robust declassification
is a direct inspiration for our treatment of the termination channel in multi-run security.
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SKIP
pc ` skip

ASSIGN
lev(e) t pc v lev(x)

pc ` x := e
SEQ

pc ` c1 pc ` c2
pc ` c1; c2

IF
pc t lev(e) ` c1 pc t lev(e) ` c2

pc ` if e then c1 else c2
WHILE

pc t lev(e) ` c pc t lev(e) 6= HL

pc ` while e do c

Fig. 2. Typing rules

However, as we explain in Section 4, the policy that robust declassification enforces is
rather different from our security model. Our observation that connects robust declassi-
fication with multi-run security enables us to cleanly reuse the enforcement technique,
but still requires us to show soundness with respect to our security goals.

3.1 Enforcing 1-bit security

We start by showing that with a simple type system, we can make sure that typable pro-
grams cannot be used to magnify termination leaks beyond the traditional one-bit limit.
The core idea is that the type system prevents information that is a mix of secrets and
untrusted inputs from affecting termination behavior, by disallowing it in loop guards.

We equip the set of variables with a function giving the label of each variable,
label : Vars → L. For expressions in general we define the function lev, assigning each
expression with its security level. Function lev is defined as follows, pattern matching
on the form of expression:

lev(n) = LH lev(x) = label(x) lev(e1 op e2) = lev(e1) t lev(e2)

While variables have their corresponding label as a level, literals are always low confi-
dentiality and high integrity, as we assume the program source to be public but trusted.
Other expressions take the least upper bound of their component levels.

Figure 2 gives the typing relation. The typing context consists only of the level of the
program counter, pc. This level represents expressions on which the control flow context
depends, namely if and while guards. If a command c is typable under context pc,
written pc ` c, the intention is that c does not leak when executed, even if the execution
itself is conditioned on data of level pc or higher. Branches of an if-command must be
typable under the outer pc level joined with the level of the guard expression (rule IF).
The rule ASSIGN uses this to prevent implicit flows: assignments to a variable are only
allowed when both the expression and the program counter are below or at the same
level as the level of the assigned variable.

The rule WHILE propagates the level of the guard in the same way as IF, but in addi-
tion requires that the guard expression joined with the context pc is strictly below HL.
The intention here is to prevent the attacker from selectively inducing nontermination
that depends on the secret.

For example, program 1
while h do skip
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is typable, because the level of the guard is HH . As we show below, this implies that it
only leaks one bit and the attacker is not able to change termination behavior by varying
the public input. Same goes for program

while l do skip

since although the attacker can control termination, it does not reveal anything about
the secret. The level of the guard here is LL. However program 2

while h = l do skip

is not typable, as the level of the guard is HL. Indeed, recall that the attacker is able to
try different inputs until one is found that corresponds to the secret, in which case the
whole of h is revealed.

Our goal is to prove that the type system enforces that programs leak at most one bit
(via a termination leak) even in the multi-run setting. To prove that typable programs
leak at most one bit, we will start by excluding leaks other than termination leaks. This
means that terminating programs satisfy noninterference, i.e., the observable output
is independent of the secret input. First, we show that programs typable with a high-
confidentiality pc cannot modify the low output.

Lemma 1. Let c be a program. If HL ` c or HH ` c, then for any choice of vh, vl ∈ D,
if c(vh, vl) 6= ⊥ then c(vh, vl) = vl.

The proofs of this lemma and other statements can be found in Appendix A.
We now establish noninterference for terminating runs.

Lemma 2. Assuming a typable program c and ignoring diverging runs, c satisfies non-
interference:

∀vh, vh′, vl ∈ D : if c(vh, vl) 6= ⊥ 6= c(vh
′, vl) then c(vh, vl) = c(vh

′, vl).

In particular, the above lemma tells us that (ignoring nonterminating runs), the
single-run knowledge is unaffected by variation in the secret input. Thus, considering
nontermination, the attacker can only observe one of two results, meaning the program
only leaks one bit. The following lemma shows that this extends to the multi-run case,
by showing that either termination depends only on the secret, or only on the public
input. This means that the attacker can not improve their knowledge of vh beyond the
one bit already leaked, by varying the public input.

Lemma 3. Assume c is a typable program. Then for arbitrary vh, vh′, vl, vl′ ∈ D either
one of the following condition holds.

1. Fixing the secret input, varying the public input reveals nothing:

kvh(c, vl) = kvh(c, vl
′)

2. Fixing the public input, varying the secret input reveals nothing:

kvh(c, vl) = kvh′(c, vl)

10



The basic idea of the proof for this lemma, is that using Lemma 2 and assuming that
neither condition holds, we can find a pair of high and low inputs that cause the program
to diverge, while either of them can be combined with other inputs to cause the program
to terminate successfully. By looking at the guard for the loop that causes divergence,
its value must be governed by both high and low data, and so it cannot possibly have
been allowed by the type system. Thus the assumption that neither condition holds must
be false. As before, the full proof is presented in Appendix A.

We can now use the above results to prove that typable programs leak at most one
bit.

Theorem 1. Assume c is a typable program. Then c leaks at most one bit, i.e., for all
vh ∈ D there are at most two distinct values for Kvh .

3.2 Enforcing general knowledge policies

We now draw on ideas of delimited release [32] to change our type system so that it en-
forces a general knowledge policy. Delimited release specifies a declassification policy
as a set of expressions called escape hatches. Such expressions can refer to secret vari-
ables, but their computed values may be assigned to public variables. Thus, an escape
hatch defines what secret information may be declassified as public. Note that the value
of an escape hatch is not released automatically, but the program can use it to compute
low confidentiality information that is then released explicitly as the public output.

The knowledge policy, a partition of D, is specified with an expression eP . In terms
of delimited release, this expression is an escape hatch, and to focus on the interesting
ideas for this paper we assume it is the only one. Since the point of a policy expression
is to partition the input space of h, any useful policy expression will only depend on h.
Thus, we consider escape hatches that only involve high variables and generate policies
from escape hatches as follows:

Definition 7. An expression e, involving no other variables than h, generates a knowl-
edge policy P as follows:

P = {P1, . . . , Pn}
where for all v and v′ we have e(v) = e(v′) if and only if [[v]]P = [[v′]]P .

In order to support knowledge policies, we extend the type system with the possi-
bility of declassification. The escape hatch expression is explicitly declassified to have
the level LH , even though it may involve high confidentiality or low integrity variables.
We adapt the definition of lev accordingly:

lev(e) =


LH if e = eP or e = n

label(x) if e 6= eP and e = x

lev(e1) t lev(e2) if e 6= eP and e = e1 op e2

The only typing rule that needs to be changed from Figure 2 is the one for assign-
ment, which disallows updates to any variable involved in the escape hatch:

ASSIGN
lev(e) t pc v lev(x) x 6∈ vars(eP )

pc ` x := e
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This is done in order to prevent information about the secret input being laundered
through the escape hatch and is standard in delimited release [32]. See Program 7 for
an example of laundering.

If the high input is a tuple of multiple high inputs, as described earlier, the ASSIGN
rule should simply require that x is not one of them. We have left it as is in the interest
of readability.

We return to the examples of Section 1 to illustrate the soundness and precision of
the enforcement. Program 1 is still typable independently of escape hatches. Programs 2
and 3 are rightfully rejected in the absence of escape hatches because they might leak
the entire secret. Given the escape hatch h%4, the secure programs 4 and 6 are accepted
by the type system because declassification relabels h%4 to LH , which is under LL
in the lattice, the label of l. Given the same escape hatch, the insecure program 5 is
rejected because h%6 of type HH is assigned to variable l of type LL. Program 7 is
also rejected because variable h (which is involved in an escape hatch) is modified.

The soundness of the type system is guaranteed by the following theorem.

Theorem 2. Assume c is a typable program and eP is an escape hatch that induces a
policy P . Then c is 1-bit secure with respect to the policy P .

4 Related work

Language-based information-flow security is a large and continuously-evolving field [31].
We focus on discussing most related work on knowledge-based security, interactive se-
curity, and declassification policies.

Knowledge-based security Dima et al. [17] consider sets as representation of attacker’s
knowledge in nondeterministic systems. Askarov and Sabelfeld [4] present a knowledge-
based condition of gradual release for declassification, as well as enforcement for a
language with communication primitives. Gradual release allows the knowledge of the
attacker to increase only when the program passes a declassification point.

Van der Meyden [38] expresses intransitive noninterference policies using a classi-
cal model of knowledge in terms of different agents’ views of the world [18].

Banerjee et al. [7] enhance the knowledge-based representation of attackers with
powerful program specification policies. As a result, they are able to express declassifi-
cation policies of both what can be released and where in the code.

Askarov and Sabelfeld [5] use knowledge to describe both termination-insensitive
and -sensitive security definitions with possibilities of expressing of what can be re-
leased and where, as well as dynamic enforcement for a language with dynamic code
evaluation and communication primitives.

Broberg and Sands [11] describe paralocks, a knowledge-based framework for ex-
pressing versatile declassification policies, including role-based policies.

Demange and Sands [15] allow tuning sensitivity to (non)termination depending on
the size of the secret that is involved in loop guards: looping is disallowed when loop
guards depend on secrets of small size.

None of the above approaches model the attacker’s knowledge obtained by running
the program multiple times.
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Interactive security Multi-run security is related to interactive security. In particular,
multi-run security of a batch-job program c that operates on secret variable h and public
variable l can be related to single-run security of the following interactive program:

h′ := h; while 1 do (in(l); c; out(l);h := h′)

where h′ is an auxiliary variable. This encoding allows us for direct comparison with
security definitions of interactive programs.

Le Guernic et al. [22] as well as Askarov and Sabelfeld [4] ignore diverging runs
of interactive programs, which, as pointed out previously [7, 2], always allows program
like c in the encoding above to be arbitrarily insecure.

ONeil et al. [27] investigate termination-sensitive security for programs that inter-
act with input/output strategies, where strategies are represented as functions that com-
pute the next input to the program based on the previous communication history. Being
termination-sensitive and declassification-free, their condition rejects all of programs 1–
7 from Section 1, if plugged to the encoding above.

Clark and Hunt [13] show that for deterministic programs, it makes no difference
whether the user is represented by a strategy or an input/output stream. Askarov et
al. [2] and Bohannon et al. [10] consider stream-based termination-insensitive security.
However, as shown in [2], brute-force attacks similar to programs 2–3 are allowed.

Köpf and Basin [21] propose an information-theoretic model for multi-run secu-
rity in the context of side-channel attacks. The timing side channel can be thought of
as a generalization of the termination channel as nontermination manifests itself as
long-lasting computation for a real-world attacker. Their model is based on refining the
attacker’s knowledge over multiple runs, well in line with our approach. However, as
the motivation of Köpf and Basin’s model is quantitative information leaks, they reason
about finite numbers of runs and explore the space between our single-run and multi-run
security definitions. Further, their enforcement is of rather different nature from ours: it
is based on quantitative approximation using greedy heuristic.

Askarov and Sabelfeld [5] explore stream-based definitions for both termination-
insensitive and -sensitive security in the presence of declassification policies. However,
similar to the approaches above, the termination-sensitive condition rejects programs
all of programs 1–7 and the termination-insensitive condition allows attacks 2–3, when
plugged to the encoding above.

We have studied extensions of the multi-run secure type system presented here to
interactive programs. Maintaining the 1-bit guarantee of termination-insensitive en-
forcement across all high inputs is non-trivial, as any public side effect (both input
and output) will reveal information about the program counter to an attacker. If such
an effect appears after a potentially diverging loop on high data, this will already leak
one bit before the program has stopped. We envision that full integration of robust de-
classification and delimited release for interactive programs might be promising in this
direction (see the discussion of dimensions of declassification below), but we expect
problems with permissiveness of the enforcement. This indicates a fundamental trade-
off between interactivity and security. Our paper identifies a niche, where it is possible
to gain permissiveness without sacrificing security.

13



Declassification As mentioned earlier, our declassification policy is an adaptation of
delimited release [32]. Similarly to Askarov and Sabelfeld [5], we derive knowledge
sets from escape-hatch expressions. The treatment of integrity by the type system is
inspired by robust declassification [41, 25, 3]. Robust declassification guarantees that
the attacker may not affect what is released by programs by ensuring that only high-
integrity data can be declassified, and only in high-integrity context. In a similar spirit,
our type system demands that loop context and guards may not mix high confidential
data with attacker-controlled data.

In order to prevent unintended laundering of secrets, delimited release ensures that
values of escape-hatch expressions do not change within a single run. In general, this
guarantee does not extend over multiple runs, which potentially provides a laundering
opportunity if the expression depends on data that is provided by an attacker, or is
otherwise non-deterministic between runs. We avoid this issue at its root by not allowing
non-secrets in escape hatches.

As we have foreshadowed earlier, we are able to cleanly reuse the robust declas-
sification enforcement technique. However, note that we cannot automatically extract
soundness guarantees from soundness results for robust declassification (e.g., [25]). The
reason is that robust declassification addresses the where dimension of declassification:
ignoring exactly what is leaked, but making sure the active attacker may not affect the
declassification mechanism to leak more than the passive attacker. In contrast, our de-
classification policies are strict about what is leaked: the escape hatches describe the
upper bound on leaks in programs.

Other, less related, work on declassification is described in a recent overview of the
area [34]. The overview is organized by the dimensions of declassification.

5 Conclusions

We have showed how that extremes of insecurity (as with termination-insensitive nonin-
terference) and over-restrictiveness of enforcement (as with termination-sensitive non-
interference) can be avoided when generalizing batch-job security to multiple runs.
Addressing the problem, we have presented a knowledge-based framework for spec-
ifying and enforcing multi-run security policies. The policy framework includes possi-
bilities for declassification. The type-based enforcement tracks both confidentiality and
integrity labels and guarantees multi-run security.

We expect interesting implications of our result for multi-threaded programs. The
termination channel can be magnified in single-run multi-threaded programs in a fash-
ion similar to using multiple runs of sequential programs. Assume we have as many
threads as there are bits in secret h. Then, the multi-threaded program, where individual
thread i is described as follows

Ti : (while h&&bi do skip); out(i)

where bi contains all zeros in the boolean representation except for bit i, leaks the entire
secret in a single run. Our type-based enforcement can be straightforwardly applied to
prevent this kind of leaks by considering the thread-dependent data bi as low integrity.
We expect that whenever a collection of threads is typable according to our type system,

14



then the multi-threaded program that consists of the collection of threads is both single-
run and multi-run secure (for a notion of possibilistic [24, 37, 33] security suitable for
reasoning about nondeterministic programs).

As mentioned earlier, the termination channel can be seen as an instance of the
timing side channel as nontermination manifests itself as long-lasting computation for
a real-world attacker. We can offer protection against timing attacks that is similar to the
protection against termination attacks: when the computation does not mix secret and
attacker-controlled data in branch guards, then the timing leaks cannot be magnified.
Otherwise, we resort to such existing approaches as cross-copying [1] and predictive
black-box mitigation [6].

Note that there is nothing fundamental about our enforcement being static. We ex-
pect a dynamic mechanism, such as a monitor for delimited-release like policies by
Askarov and Sabelfeld [5] to be easily adaptable to dynamically track both confiden-
tiality and integrity in order to enforce our security condition.

Although the paper operates on a simple two-level security lattice, we do not antic-
ipate difficulties with extending our approach to arbitrary lattices. Requiring the con-
fidentiality level of a loop guard to be bounded by its integrity level gives us a way
to prevent the dangerous mix of high-confidentiality and low-integrity data to affect
the termination behavior. Other future work focuses on expressing multi-run security
for richer languages. Further, we plan to extend the framework to take into account
modifications of secret data between program runs. We are also exploring decentralized
security policies by knowledge-based representations of multiple attackers.
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Appendix A: Proofs

Proof of Lemma 1. By induction on typing derivation, c contains no assignments to l,
since those are rejected by the constraint on pc in typing rule ASSIGN. Since nontermi-
nation is excluded, the output can only be the initial value of l, namely vl. 2

Proof of Lemma 2. We prove the lemma by induction on the structure of the program.

Case c = skip The statement holds because c(vh, vl) = vl for any vh, vl.

Case c = x := e The case obviously holds when x 6= l. Otherwise, since c is typable
under some pc, we know that lev(e) t pc v lev(l) = LL. In particular lev(e) is either
LH or LL. From the definition of lev it is easy to show that e does not contain the high
input, so the value of e must be the same whether the high input is vh or vh′.

Case c = c1; c2 Since c is typable under pc, then so are c1 and c2. By induction
we have that c1(vh, vl) = c1(vh

′, vl), let’s call this intermediate low output vl′′. Then
c(vh, vl) = c2(vh, vl

′′), which again by induction is equal to c2(vh
′, vl

′′) = c(vh
′, vl).
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Case c = if e then c1 else c2 By induction the theorem holds for both branches
c1 and c2. If lev(e) is LL or LH , the value of e is unaffected by the secret input being
vh or vh′, so in either case the same branch is selected and the theorem holds.

If lev(e) is HL or HH then, since both branches are typable under pc t lev(e),
Lemma 1 gives that ci(vh, vl) = ci(vh

′, vl) = vl for both i = 1 and i = 2.

Case c = while e do c Since we know that c terminates, we can write any program
of this form as a sequence of sufficiently many if -statements with the same guard
and body. This case can thus be reduced to the cases for conditionals and sequential
composition. 2

Proof of Lemma 3. Assume that condition 2 does not hold, i.e., kvh(c, vl) 6= kvh′(c, vl)
for some choice of vh, vl and vh

′. Lemma 2 gives that if both terminate, then c(vh, vl)
and c(vh

′, vl) return the same value. Thus there are only two observable outcomes, that
value or⊥. Given our assumption, we thus know that one of the runs diverges. Relabel-
ing if necessary, we can assume that c(vh, vl) = ⊥.

Now assume that there is a choice of vl′ such that condition 1 also does not hold.
If we can show this leads to a contradiction, either assumption is false and the theo-
rem holds. Since c(vh, vl) = ⊥, this must mean that c(vh, vl′) terminates. Based on
our assumptions, the facts can be summarized as follows: c(vh, vl) does not terminate;
c(vh

′, vl) terminates; and c(vh, vl
′) terminates.

Consider the while loop that causes c(vh, vl) to diverge, and in particular its guard
expression e. We start by noting that if lev(e) v HH then its valuation can not be
affected by the value of l. This is easy to prove (for expressions in general) from our
type system, but laborious so for the sake of our discussion we leave out a precise proof.
Symmetrically, if lev(e) v LL then its value can not depend on the value of h.

The typing rule for loops guarantees that the guard expression is not HL, so either
we have e v HH or e v LL. In the first case, c(vh, vl′) cannot terminate, since e will
always evaluate to the same values (it is evaluated many times) as in c(vh, vl). In the
second case, c(vh′, vl) must similarly diverge.

Both cases contradict at least one of our assumptions, so one of them is false. 2

Proof of Theorem 1. The proof is by contradiction. Assume that there are three values
vh1, vh2, vh3 that would generate three distinct multirun knowledges. If we can show
that at least two of Kvhi

(c), for i = 1, 2, 3, must coincide then we have the contradiction
we need. If v1, . . . , vn is an enumeration of D, then we can write the three multi-run
knowledges as follows.

Kvh1
(c) = kvh1

(c, v1) ∩ kvh1
(c, v2) ∩ · · · ∩ kvh1

(c, vn)
Kvh2

(c) = kvh2
(c, v1) ∩ kvh2

(c, v2) ∩ · · · ∩ kvh2
(c, vn)

Kvh3
(c) = kvh3

(c, v1) ∩ kvh3
(c, v2) ∩ · · · ∩ kvh3

(c, vn)

Consider any “column” from this layout, say kvhi
(c, vk) for some k and i = 1, 2, 3.

If the (single-run) knowledges in this column are not all equal, we start by noting that
there can be only two possibilities. Lemma 2 gives that if c(vhi, vk) terminates, then the
result is unique, so only that value and ⊥ can be observed, and thus only two distinct
knowledges are possible in the column. Let’s call them A and B and say kvh1

(c, vk) =
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kvh2
(c, vk) = A and kvh3

(c, vk) = B (we can rearrange the indexes if necessary).
Now Lemma 3 tells us that since the knowledges differ by altering the secret input, they
cannot differ by altering the low input. This means that in this case all the single-run
knowledges in the same “row” are the same and we obtain that Kvh1

(c) = Kvh2
(c) =

A and Kvh3
(c) = B. Note that it is enough for only one column to contain different

values to force this equality in the rows.
On the other hand, if each column has three equal knowledges, then it is clear that

Kvh1
(c) = Kvh2

(c) = Kvh3
(c). In either case at least two of them must be equal. 2

Proof of Theorem 2. To profe this theorem, we apply the same approach as for Theo-
rem 1. This includes proving a modified version of Lemma 2 where instead of letting
high inputs be arbitrary, we restrict them to one indistinguishability class of the policy.
We’ll note the use of these lemmas, and how their proofs differ from above, as we use
them.

First we observe that during any derivation of the program c, the variable h remains
constant and equal to vh, since the modified type system disallows updates to it. This in
turn means, that since eP mentions no variables besides h, that it also remains constant.
We can use this to show that ignoring diverging runs, c is non-interferent when secrets
are taken from the same policy class. I.e.

∀vh, vh′, vl ∈ D :

if c(vh, vl) 6= ⊥ 6= c(vh
′, vl) and [[vh]]eP = [[vh

′]]eP
then c(vh, vl) = c(vh

′, vl).

where [[v]]eP represents the value of eP when the variable h is assigned the value v.
The notation becomes clear when one considers the fact that this value represents the
policy indistinguishability class of v. The proof of this statement is the same as the
proof of Lemma 2, with a minor change: In the case for assignment, one must note that
the typing judgement LL ` x := eP holds, regardless of lev(x). This case is harmless,
since the extra condition of [[vh]]eP = [[vh

′]]eP provides that the same value will be
assigned in both cases. A similar argument must, and can easily be made for Lemma 1.

After establishing this, the rest of the proof follows exactly the same argument as
the proof of Theorem 1. We assume towards a contradiction, that there exists three
secret inputs vh1, vh2, vh3, all belonging to the same security class, which give rise
to three distinct multi-run knowledges Kvh1

,Kvh2
,Kvh3

. We arrange their definitions
as intersections of single-run knowledges as above, and note that either each single-
run knowledge in a particular column is the same (i.e. the observed outcome does not
depend on the secret input) or that all single-run knowledges in one line are equal (the
observed outcome does not depend on the public input). In the latter case, all multi-
run knowledges must be equal, and in the second one the non-interference above for
terminating runs thus gives that there can be only two observable outputs. 2

Appendix B: Multi-run exploit

The following type-safe Jif [26] program contains a termination leak that can be ampli-
fied to leak more bits with multiple runs.
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public class Leaky {

public Leaky() {}

public static void main{}(principal p, String[]{} args)
throws (SecurityException)

{
int{Alice:} secret = 42;
int{} input;

try {
input = Integer.parseInt(args[0]);
while (0 != (secret & (1 << input))) { }

}
catch (NullPointerException ignored) {}
catch (ArrayIndexOutOfBoundsException ignored) {}
catch (NumberFormatException ignored) {}

}

}

A simple Python program can be used to make the 32 invocations of the above
program needed to leak the complete secret.
import subprocess, time, sys, os

JIF_DIR = "../../../jif-3.3.1"

def run_with_timeout(command, timeout):
proc = subprocess.Popen(command, bufsize=0,

stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

start = time.time()
while start + timeout > time.time() and proc.poll() is None:

time.sleep(0.1)

if proc.poll() is None:
proc.terminate()
return None

out, err = proc.communicate()
return out, err, proc.returncode

if __name__ == "__main__":
secret = 0
for bit in range(32):

print "Checking bit %d... " % bit,
r = run_with_timeout(

["jif",
"-classpath", os.path.join(JIF_DIR, "tests"),
"Leaky", str(bit)],
1)

if r is None:
# This indicates timeout, assume non-termination
secret = secret | (1 << bit)
print "1"

else:
# This indicates normal termination
print "0"

print "Secret is: %d" % secret
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