
Security of Multithreaded Programs by Compilation

Gilles Barthe1, Tamara Rezk2, Alejandro Russo3, and Andrei Sabelfeld3

1 INRIA Sophia Antipolis, France
2 MSR-INRIA

3 Dept. of Computer Science and Engineering, Chalmers University of Technology, Sweden

Abstract. Information security is a pressing challenge for mobile code technolo-
gies. In order to claim end-to-end security of mobile code, it is necessary to es-
tablish that the code neither intentionally nor accidentally propagates sensitive
information to an adversary. Although mobile code is commonly multithreaded
low-level code, the literature is lacking enforcement mechanisms that ensure in-
formation security for such programs. This paper offers a modular solution to the
security of multithreaded programs. The modularity is three-fold: we give modu-
lar extensions of sequential semantics, sequential security typing, and sequential
security-type preserving compilation that allow us enforcing security for multi-
threaded programs. Thanks to the modularity, there are no more restrictions on
multithreaded source programs than on sequential ones, and yet we guarantee that
their compilations are provably secure for a wide class of schedulers.

1 Introduction

Information security is a pressing challenge for mobile code technologies. Current secu-
rity architectures provide no end-to-end security guarantees for mobile code: such code
may either intentionally or accidentally propagate sensitive information to an adversary.
However, recent progress in the area of language-based information flow security [22]
indicates that insecure flows in mobile code can be prevented by program analysis.

While much of existing work focuses on source languages, recent work has devel-
oped security analyses for increasingly expressive bytecode and assembly languages [4,
10, 16, 3, 5]. Given sensitivity annotations on inputs and outputs, these analyses prov-
ably guarantee noninterference [11], a property of programs that there are no insecure
flows from sensitive inputs to public outputs.

It is, however, unsettling that information flow for multithreaded low-level programs
has not been addressed so far. It is especially concerning because multithreaded byte-
code is ubiquitous in mobile code scenarios. For example, multithreading is used for
preventing screen lock-up in mobile applications [15]. In general, creating a new thread
for long and/or potentially blocking computation, such as establishing a network con-
nection, is a much recommended pattern [13].

This paper is the first to propose a framework for enforcing secure information flow
for multithreaded low-level programs. We present an approach for deriving security-
type systems that provably guarantee noninterference. On the code consumer side, these
type systems can be used for checking the security of programs before running them.

Our solution goes beyond guarantees offered by security-type checking to code con-
sumers. To this end, we have developed a framework for security-type preserving com-
pilation, which allows code producers to derive security types for low-level programs

1

from security types for source programs. This makes our solution practical for the sce-
nario of untrusted mobile code. Moreover, even if the code is trusted (and perhaps even
immobile), compilers are often too complex to be a part of the trusted computing base.
Security-type preserving compilation removes the need to trust the compiler, because
the type annotations of compiled programs can be checked directly at bytecode level.

The single most attractive feature of our framework is that security is guaranteed
by source type systems that are no more restrictive than ones for sequential programs.
This might be counterintuitive: there are covert channels in the presence of threads,
such as internal timing channels [28], that do not arise in a sequential setting. Indeed,
special primitives for interacting with the scheduler have been designed (e.g., [18]) in
order to control these channels. The pinnacle of our framework is that such primitives
are automatically introduced in the compilation phase. This means that source-language
programmers do not have to know about their existence and that there are no restric-
tions on dynamic thread creation at the source level. At the target level, the prevention
of internal timing leaks does not introduce unexpected behaviors: the effect of interact-
ing with the scheduler may only result in disallowing certain interleavings. Note that
disallowing interleavings may, in general, affect the liveness properties of a program.
Such a trade-off between between liveness and security is shared with other approaches
(e.g., [26, 28, 24, 25, 18]).

For an example of an internal timing leak, consider a simple two-threaded source-
level program, where hi is a sensitive (high) and lo is a public (low) variable:

if hi {sleep(100)}; lo := 1 ‖ sleep(50); lo := 0

If hi is originally non-zero, the last command to assign to lo is likely to be lo := 1. If hi
is zero, the last command to assign to lo is likely to be lo := 0. Hence, this program is
likely to leak information about hi into lo. In fact, all of hi can be leaked into lo via the
internal timing channel, if the timing difference is magnified by a loop (see, e.g., [17]).

In order for the timing difference of the thread that branches on hi not to make
a difference in the interleaving of the assignments to lo, we need to ensure that the
scheduler treats the first thread as “hidden” from the second thread: the second thread
should not be scheduled until the first thread reaches the junction point of the if. We
will show that the compiler enforces such a discipline for the target code so that the
compilation of such source programs as above is free of internal timing leaks.

Our work benefits from modularity, which is three-fold. First, the framework has
the ability to modularly extend sequential semantics. This grants us with language-
independence from the sequential part. Further, the framework allows modular exten-
sions of sequential security type systems. Finally, security type preserving compilation
is also a modular extension of the sequential counterpart.

To illustrate the applicability of the framework, we instantiate it with some sched-
uler examples. These examples clarify what is expected of a scheduler to prevent inter-
nal timing leaks. Also, we give an instantiation of the source language with a simple
imperative language, as well as an instantiation of the target language with a simple
assembly language that features an operand stack, conditions, and jumps. As we will
discuss, these instantiations are for illustration only: we expect our results to apply to
languages close to Java and Java bytecode, respectively.

2

Our approach pushes the feasibility of replacing trust assumptions by type checking
for mobile-code security one step further. It is especially encouraging that we inherit
the main benefit of recent results on enforcing secure information flow by security-type
systems [3]: compatibility with bytecode verification, and no need to trust the compiler.

2 Syntax and semantics of multithreaded programs

This section sets the scene by defining the syntax and semantics for multithreaded pro-
grams. We introduce the notion of secure schedulers that help dealing with covert chan-
nels in the presence of multithreading.

Syntax and program structure. Assume we have a set Thread of thread identifiers, a
partially ordered set Level of security levels, a set LocState of local states and a set
GMemory of global memories. The definition of programs is parameterized by a set of
sequential instructions SeqIns. The set of all instructions extends SeqIns by a dynamic
thread creation primitive start pc that spawns a new thread with a start instruction at
program point pc.

Definition 1 (Program). A program P consists of a set of program points P , with a
distinguished entry point 1 and a distinguished exit point exit, and an instruction map
insmapP : P \ {exit} → Ins, where Ins = SeqIns ∪ {start pc} with pc ∈ P \ {exit}.
We sometimes write P [i] instead of insmapP i.

Each program has an associated successor relation 7→⊆ P × P . The successor
relation describes possible successor instructions in an execution. We assume that exit
is the only program point without successors, and that any program point i s.t. P [i] =
start pc is not branching, and has a single successor, denoted by i + 1 (if it exists); in
particular, we do not require that i 7→ pc. As common, we let 7→? denote the reflexive
and transitive closure of the relation 7→ (similar notation is used for other relations).

Definition 2 (Initial program points). The set Pinit of initial program points is de-
fined as: {i ∈ P | ∃j ∈ P, P [j] = start i} ∪ {1}.

We assume the attacker level k ∈ Level partitions all elements of Level into low and
high elements. Low elements are no more sensitive than k: an element ` is low if ` ≤ k.
All other elements (including incomparable ones) are high. We assume that the set of
high elements is not empty. This partition reduces the set Level to a two-element set
{low , high}, where low < high , which we will adopt without loss of generality.

Programs come equipped with a security environment [5] that assigns a security
level to each program point and is used to prevent implicit flows [9]. The security envi-
ronment is also used by the scheduler to select the thread to execute.

Definition 3 (Security environment, low, high, and always high program points).

1. A security environment is a function se : P → Level.
2. A program point i ∈ P is low, written L(i), if se(i) = low ; high, written H(i),

if se(i) = high; and always high, written AH (i), if se(j) = high for all points j
such that i 7→? j.

3

Semantics. The operational semantics for multithreaded programs is built from an op-
erational semantics for sequential programs and a scheduling function that picks the
thread to be executed among the currently active threads. The scheduling function takes
as parameters the current state, the execution history, and the security environment.

Definition 4 (State).

1. The set SeqState of sequential states is a product LocState×GMemory of the local
state LocState and global memory GMemory sets.

2. The set ConcState of concurrent states is a product (Thread ⇀ LocState) ×
GMemory of the partial-function space (Thread ⇀ LocState), mapping thread
identifiers to local states, and the set GMemory of global memories.

It is convenient to use accessors to extract components from states: we use s.lst and
s.gmem to denote the first and second components of a state s. Then, we use s.act to
denote the set of active threads, i.e., s.act = Dom(s.lst). We sometimes write s(tid)
instead of s.lst(tid) for tid ∈ s.act. Furthermore, we assume given an accessor pc that
extracts the program counter for a given thread from a local state.

We follow a concurrency model [18] that lets the scheduler distinguish between
different types of threads. A thread is low (resp., high) if the security environment marks
its program counter as low (resp., high). A high thread is always high if the program
point corresponding to the program counter is always high. A high thread is hidden if
it is high but not always high. (Intuitively, the thread is hidden in the sense that the
scheduler will, independently from the hidden thread, pick the following low threads.)
Formally, we have the following definitions:

s.lowT = {tid ∈ s.act | L(s.pc(tid))}
s.highT = {tid ∈ s.act | H(s.pc(tid))}

s.ahighT = {tid ∈ s.act | AH (s.pc(tid))}
s.hidT = {tid ∈ s.act | H(s.pc(tid)) ∧ ¬AH (s.pc(tid))}

A scheduler treats different classes of threads differently. To see what guarantees are
provided by the scheduler, it is helpful to foresee what discipline a type system would
enforce for each kind of threads. From the point of view of the type system, a low
thread becomes high while being inside of a branch of a conditional (or a body of a
loop) with a high guard. Until reaching the respective junction point, the thread may
not have any low side effects. In addition, until reaching the respective junction point,
the high thread must be hidden by the scheduler: no low threads may be scheduled while
the hidden thread is alive. This prevents the timing of the hidden thread from affecting
the interleaving of low side effects in low threads. In addition, there are threads that are
spawned inside of a branch of a conditional (or a body of a loop) with a high guard.
These threads are always high: they may not have any low side effects. On the other
hand, such threads do not have to be hidden in the same way: they can be interleaved
with both low and high threads. Recall the example from Section 1. The intention is
that the scheduler treats the first thread (which is high while it is inside the branch) as
“hidden” from the second (low) thread: the second thread should not be scheduled until
the first thread reaches the junction point of the if.

4

We proceed to defining computation history and secure schedulers, which operate
on histories as parameters.

Definition 5 (History).

1. A history is a list of pairs (tid, `) where tid ∈ Thread and ` ∈ Level. We denote
the empty history by εhist.

2. Two histories h and h′ are indistinguishable, written h
hist∼ h′, if h|low = h′|low ,

where h|low is obtained from h by projecting out pairs with the high level in the
second component.

We denote the set of histories by History. We now turn to the definition of a secure
scheduler. The definition below is of a more algebraic nature than that of [18], but
captures the same intuition, namely that a secure scheduler: i) always picks an active
thread; ii) chooses a high thread whenever there is one hidden thread; and iii) only uses
the names and levels of low and the low part of histories to pick a low thread.

Definition 6 (Secure scheduler). A secure scheduler is a function pickt : ConcState×
History ⇀ Thread, subject to the following constraints, where s, s′ ∈ ConcState and
h, h′ ∈ History:

1. for every s such that s.lowT∪ s.highT 6= ∅, pickt(s, h) is defined, and pickt(s, h) ∈
s.act;

2. if s.hidT 6= ∅, then pickt(s, h) ∈ s.highT; and
3. if h

hist∼ h′ and s.lowT = s′.lowT, then 〈pickt(s, h), `〉 :: h
hist∼ 〈pickt(s′, h′), `′〉 ::

h′, where ` = se(s.pc(pickt(s, h))) and `′ = se(s′.pc(pickt(s′, h′))).

Example 1. Consider a round-robin policy: pickt(s, h) = rr(AT , last(h)), where AT =
s.act, and the partial function last(h) returns the identity of the most recently picked
thread recorded in h (if it exists). Given a set of thread ids, an auxiliary function rr
returns the next thread id to pick according to a round-robin policy. This scheduler is
insecure because low threads can be scheduled even if a hidden thread is present, which
violates req. 2 above.

Example 2. An example of a secure round-robin scheduler is defined below. The sched-
uler takes turns in picking high and low threads.

pickt(s, h) =

rr(ATL, lastL(h)),

if h = εhist or
h = (tid,L).h′ and ATH = ∅ and ATL 6= ∅ or
h = (tid,H).h′ and hidT = ∅ and ATL 6= ∅

rr(ATH , lastH (h)),
if hidT 6= ∅ or

h = (tid,H).h′ and ATL = ∅ and ATH 6= ∅ or
h = (tid,L).h′ and ATH 6= ∅

We assume that ATL and ATH are functions of s that extract the set of identifiers of
low and high threads, respectively, and the partial function last` returns the identity of
the most recently picked thread at level ` recorded in h, if it exists. The scheduler may
only pick active threads (cf. req. 1). In addition to the alternation between high and
low threads, the scheduler may only pick a low thread if there are no hidden threads
(cf. req. 2). The separation into high and low threads ensures that for low-equivalent
histories, the observable choices of the scheduler are the same (cf. req. 3).

5

pickt(s, h) = ctid s.pc(ctid) = i P [i] ∈ SeqIns
〈s(ctid), s.gmem〉 ;seq σ, µ σ.pc 6= exit

s, h ;conc s.[lst(ctid) := σ, gmem := µ], 〈ctid , se(i)〉 :: h

pickt(s, h) = ctid s.pc(ctid) = i P [i] ∈ SeqIns
〈s(ctid), s.gmem〉 ;seq σ, µ σ.pc = exit

s, h ;conc s.[lst := lst \ ctid , gmem := µ], 〈ctid , se(i)〉 :: h

pickt(s, h) = ctid s.pc(ctid) = i P [i] = start pc
freshtse(i)(s) = ntid s(ctid).[pc := i + 1] = σ′

s, h ;conc s.[lst(ctid) := σ′, lst(ntid) := λinit(pc)], 〈ctid , se(i)〉 :: h

Fig. 1. Semantics of multithreaded programs

P [i] ∈ SeqIns i `seq S ⇒ T

se, i ` S ⇒ T

P [i] = start pc se(i) ≤ se(pc)

se, i ` S ⇒ S

Fig. 2. Typing rules

To define the execution of multithreaded programs, we assume given a (determin-
istic) sequential execution relation ;seq⊆ SeqState × SeqState that takes as input a
current state and returns a new state, provided the current instruction is sequential.

We assume given a function λinit : P → LocState that takes a program point and
produces an initial state with program pointer pointing to pc. We also assume given a
family of functions fresht` that takes as input a set of thread identifiers and generates
a new thread identifier at level `. We assume that the ranges of fresht` and fresht`′ are
disjoint whenever ` 6= `′. We sometimes use fresht` as a function from states to Thread.

Definition 7 (Multithreaded execution). One step execution ;conc⊆ (ConcState ×
History)×(ConcState×History) is defined by the rules of Figure 1. We write s, h ;conc

s′, h′ when executing s with history h leads to state s′ and history h′.

The first two rules of Figure 1 correspond to non-terminating and terminating sequential
steps. In the case of termination, the current thread is removed from the domain of lst.
The last rule describes dynamic thread creation caused by the instruction start pc. A
new thread receives a fresh name ntid from freshtse(i) where se(i) records the security
environment at the point of creation. This thread is added to the pool of threads under
the name ntid . All rules update the history with the current thread id and the security
environment of the current instruction. The evaluation semantics of programs can be
derived from the small-step semantics in the usual way. We let main be the identity of
the main thread.

Definition 8 (Evaluation semantics). The evaluation relation ⇓conc⊆ (ConcState ×
History) × GMemory is defined by the clause s, h ⇓conc µ iff ∃s′, h′. s, h ;?

conc

s′, h′ ∧ s′.act = ∅ ∧ s′.gmem = µ. We write P, µ ⇓conc µ′ as a shorthand for
〈f, µ〉, εhist ⇓conc µ′, where f is the function {〈main, λinit(1)〉}.

6

3 Security policy
Noninterference is defined relative to a notion of indistinguishability between global
memories. For the purpose of this paper, it is not necessary to specify the definition of
memory indistinguishability.

Definition 9 (Noninterfering program). Let ∼g be an indistinguishability relation
on global memories. A program P is noninterfering if for all memories µ1, µ2, µ

′
1, µ

′
2:

µ1 ∼g µ2 and P, µ1 ⇓ µ′
1 and P, µ2 ⇓ µ′

2 implies µ′
1 ∼g µ′

2

4 Type system
This section introduces a type system for multithreaded programs as an extension of a
type system for noninterference for sequential programs. In Section 5, we show that the
type system is sound for multithreaded programs, in that it enforces the noninterference
property defined in the previous section. In Section 6, we instantiate the framework to
a simple assembly language.

Assumptions on type system for sequential programs. We assume given a set LType of
local types for typing local states, with a distinguished local type Tinit to type initial
states, and a partial order ≤ on local types. Typing judgments in the sequential type
system are of the form se, i `seq S ⇒ T, where se is a security environment, i is a
program point in program P , and S and T are local types.

Typing rules are used to establish a notion of typable program 4; typable programs
are assumed to satisfy several properties that are formulated precisely in Section 5.

Type system for multithreaded programs. The typing rules for the concurrent type sys-
tem have the same form as those of the sequential type system and are given in Figure 2.

Definition 10 (Typable multithreaded program). A concurrent program P is typable
w.r.t. type S : P → LType and security environment se, written se,S ` P , if

1. Si = Tinit for all initial program points i of P (initial program point of main
threads or spawn threads); and

2. for all i ∈ P and j ∈ P: i 7→ j implies that there exists S ∈ LType such that
se, i ` Si ⇒ S and Sj ≤ S.

5 Soundness
The purpose of this section is to prove, under sufficient hypotheses on the sequential
type system and assuming that the scheduler is secure, that typable programs are non-
interfering. Formally, we want to prove the following theorem:

Theorem 1. If the scheduler is secure and se,S ` P , then P is noninterfering.

Throughout this section, we assume that P is a typable program, i.e., se,S ` P ,
and that the scheduler is secure. Moreover, we state some general hypotheses that are
used in the soundness proofs. We revisit these hypotheses in Section 6 and show how
they can be fulfilled.

4 The notion of typable sequential program is a particular case of typable multithreaded program.

7

State equivalence. In order to prove noninterference, we rely on a notion of state equiv-
alence. The definition is modular, in that it is derived from an equivalence between
global memories ∼g and a partial equivalence relation ∼l between local states. (Intu-
itively, partial equivalence relations on local and global memories represent the obser-
vational power of the adversary.) In comparison to [3], equivalence between local states
(operand stacks and program counters for the JVM) is not indexed by local types, since
these can be retrieved from the program counter and the global type of the program.

Definition 11 (State equivalence). Two concurrent states s and t are:

1. equivalent w.r.t. local states, written s
lmem∼ t, iff s.lowT = t.lowT and for every

tid ∈ s.lowT, we have s(tid) ∼l t(tid).
2. equivalent w.r.t. global memories, written s

gmem∼ t, iff s.gmem ∼g t.gmem.
3. equivalent, written s ∼ t, iff s

gmem∼ t and s
lmem∼ t.

In order to carry out the proofs, we also need a notion of program counter equiva-
lence between two states.

Definition 12. Two states s and s′ are pc-equivalent, written, s
pc∼ s′ iff s.lowT =

t.lowT and for every tid ∈ s.lowT, we have s.pc(tid) = t.pc(tid).

Unwinding lemmas. In this section, we formulate unwinding hypotheses for sequential
instructions and extend them to a concurrent setting. Two kinds of unwinding statements
are considered: a locally respects unwinding result, which involves two executions and
is used to deal with execution in low environments, and a step consistent unwinding
result, which involves one execution and is used to deal with execution in high en-
vironments. From now on, we refer to local states and global memories as λ and µ,
respectively.

Hypothesis 1 (Sequential locally respects unwinding). Assume λ1 ∼l λ2 and µ1 ∼g

µ2 and λ1.pc = λ2.pc. If 〈λ1, µ1〉 ;seq 〈λ′
1, µ

′
1〉 and 〈λ2, µ2〉 ;seq 〈λ′

2, µ
′
2〉, then

λ′
1 ∼l λ′

2 and µ′
1 ∼g µ′

2.

In addition, we also need a hypothesis on the indistinguishability of initial local states.

Hypothesis 2 (Equivalence of local initial states). For every initial program point i, we
have λinit(i) ∼l λinit(i).

We now extend the unwinding statement to concurrent states; note that the hypothesis
s′.lowT = t′.lowT is required for the lemma to hold. This excludes the case of a thread
becoming hidden in an execution and not another (i.e., a high while loop).

Lemma 1 (Concurrent locally respects unwinding). Assume s ∼ t and hs
hist∼ ht and

pickt(s, hs) = pickt(t, ht) = ctid and s.pc(ctid) = t.pc(ctid). If s, hs ;conc s′, hs′

and t, ht ;conc t′, ht′ , and s′.lowT = t′.lowT, then s′ ∼ t′ and hs′
hist∼ ht′ .

The proof of this and other results can be found in the full version [7] of the paper.
We now turn to the second, so-called step consistent, unwinding lemma. The lemma

relies on the hypothesis that the current local memory is high, i.e., invisible by the
attacker. Formally, highness is captured by a predicate High lmem(λ) where λ is a local
state.

8

Hypothesis 3 (Sequential step consistent unwinding). Assume λ1 ∼l λ2 and µ1 ∼g µ2.
Let λ1.pc = i. If 〈λ1, µ1〉 ;seq 〈λ′

1, µ
′
1〉 and High lmem(λ1) and H(i), then λ′

1 ∼l λ2

and µ′
1 ∼g µ2.

Lemma 2 (Concurrent step consistent unwinding). Assume s ∼ t and hs
hist∼ ht and

pickt(s, h) = ctid and s.pc(ctid) = i and High lmem(s(ctid)) and H(i). If s, hs ;conc

s′, hs′ and s′.lowT = t.lowT, then s′ ∼ t and hs′
hist∼ ht.

The proofs of the unwinding lemmas are by a case analysis on the semantics of
concurrent programs.

The next function. The soundness proof relies on the existence of a function next that
satisfies several properties. Intuitively, next computes for any high program point its
minimal observable successor, i.e., the first program point with a low security level
reachable from it. If executing the instruction at program point i can result in a hidden
thread (high if or high while), then next(i) is the first program point such that i 7→?

next(i) and the thread becomes visible again.

Hypothesis 4 (Existence of next function). There exists a function next : P ⇀ P such
that the next properties (NeP) hold:

NePd) Dom(next) = {i ∈ P|H(i) ∧ ∃j ∈ P. i 7→? j ∧ ¬H(j)}
NeP1) i, j ∈ Dom(next) ∧ i 7→ j ⇒ next(i) = next(j)
NeP2) i ∈ Dom(next) ∧ j 6∈ Dom(next) ∧ i 7→ j ⇒ next(i) = j
NeP3) j, k ∈ Dom(next) ∧ i 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k ⇒ next(j) = next(k)
NeP4) j ∈ Dom(next) ∧ i, k 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k ⇒ next(j) = k

Intuitively, properties NeP1, NeP2, and NeP3 ensure that the next of instructions
within an outermost high conditional statement coincides with the junction point of
the conditional; in addition, properties NeP1, NeP2, and NeP4 ensure that the next of
instructions within an outermost high loop coincides with the exit point of the loop.

In addition to the above assumptions, we also need another hypothesis that relates
the domain of next to the operational semantics of programs. In essence, the hypothesis
states that, under the assumptions of the concurrent locally respects unwinding lemma,
either the executed instruction is a low instruction, in which case the program counter
of the active thread remains equal after one step of execution, or that the executed in-
struction is a high instruction, in which case the active thread is hidden in one execution
(high loop) or both (high conditional).

Hypothesis 5 (Preservation of pc equality). Assume s ∼ t; pickt(s, hs) = pickt(t, ht) =
ctid ; s(ctid).pc = t(ctid).pc; s, hs ;conc s′, hs′ ; and t, ht ;conc t′, ht′ . Then,
s′(ctid).pc = t′(ctid).pc; or s′(ctid).pc ∈ Dom(next); or t′(ctid).pc ∈ Dom(next).

The final hypothesis is about visibility by the attacker:

Hypothesis 6 (High hypotheses).

1. For every program point i, we have High lmem(λinit(i)).
2. If 〈λ, µ〉 ;seq 〈λ′, µ′〉 and High lmem(λ) and H(λ.pc) then High lmem(λ′).
3. If High lmem(λ1) and High lmem(λ2) then λ1 ∼l λ2.

Theorem 1 follows from the hypotheses above. For the proof details, we refer to the
full version of the paper [7].

9

e ::= x | n | e op e c ::= x := e | c; c | if e then c else c | while e do c | fork(c)

instr ::= binop op binary operation on stack
| push n push value on top of stack
| load x load value of x on stack
| store x store top of stack in variable x
| ifeq j conditional jump
| goto j unconditional jump
| start j creation of a thread

where op ∈ {+,−,×, /}, n ∈ Z, x ∈ X , and j ∈ P .

Fig. 3. Source and target language

P [i] = push n

se, i `seq st ⇒ se(i) :: st

P [i] = binop op

se, i `seq k1 :: k2 :: st ⇒ (k1 t k2 t se(i)) :: st

P [i] = store x se(i) t k ≤ Γ (x)

se, i `seq k :: st ⇒ st

P [i] = load x

se, i `seq st ⇒ (Γ (x) t se(i)) :: st

P [i] = goto j

se, i `seq st ⇒ st

P [i] = ifeq j ∀j′ ∈ reg(i), k ≤ se(j′)

se, i `seq k :: st ⇒ liftk(st)

Fig. 4. Transfer rules

6 Instantiation
In this section, we apply our main results to a simple assembly language with condi-
tional jumps and dynamic thread creation. We present the assembly language with a
semantics and a type system for noninterference but without considering concurrent
primitives and plug these definitions into the framework for multithreading. Then, we
present a compilation function from a simple while-language with dynamic thread cre-
ation into assembly code. The source and target languages are defined in Figure 3. The
compilation function allows us to easily define control dependence regions and junction
points in the target code. Function next is then defined using that information. More-
over, we prove that the obtained definition of next satisfies the properties required in
Section 5. Finally, we conclude with a discussion about how a similar instantiation can
be done for the JVM.

Sequential part of the language. The instantiation requires us to define the semantics
and a type system to enforce noninterference for the sequential primitives in the lan-
guage. On the semantics side, we assume that a local state is a pair 〈os, pc〉 where os is
an operand stack, i.e., a stack of values, and pc is a program counter, whereas a global
state µ is a map from variables to values. The operational semantics is standard and
therefore we omit it. We also define λinit(pc) to be the local state 〈ε, pc〉, where ε is the
empty operand stack.

The enforcement mechanism consists of local types which are stacks of security
levels, i.e., LType = Stack(Level); we let Tinit be the empty stack of security levels.
Typing rules are summarized in Figure 4, where liftk(st) denotes the point-wise exten-

10

sion of λk′. k t k′ to stacks of security levels, and reg : P ⇀ ℘(P) denotes the region
of branching points. We express the chosen security policy by assigning a security level
Γ (x) to each variable x.

Similarly to [4], the soundness of the transfer rules relies on some assumptions
about control dependence regions in programs. Essentially, these regions represent an
over-approximation of the range of branching points. This concept is formally intro-
duced by the functions reg : P ⇀ ℘(P) and jun : P ⇀ P , which respectively
compute the control dependence region and the junction point for a given instruction.
Both functions need to satisfy some properties in order to guarantee noninterference in
typable programs. These properties are known as SOAP properties [4]. In Section 6, we
will show that these properties can be guaranteed by compilation.

In the full version [7] we instantiate definitions of local and global state equivalences
to establish the soundness of the type system.

Concurrent extension. As shown in Definition 7, the concurrent semantics is obtained
from the semantics for sequential commands together with a transition for the instruc-
tion start. Moreover, the sequential type system in Figure 4 is extended by the typing
rules presented in Figure 2 to consider concurrent programs.

The proof of noninterference for concurrent programs relies on the existence of
the function next. Similarly to the technique of [6], we name program points where
control flow can branch or writes can occur. We add natural number labels to the source
language as follows:

c ::= [x := e]n | c; c | [if e then c else c]n | [while e do c]n | [fork(c)]n

This labeling allows us to define control dependence regions for the source code and
use this information to derive control dependence regions for the assembly code. We
introduce two functions, sregion and tregion, to deal with control dependence regions
in the source and target code, respectively.

Definition 13 (function sregion). For each branching command [c]n, sregion(n) is
defined as the set of labels that are inside of the command c except for those ones that
are inside of fork commands.

As in [6], control dependence regions for low-level code are defined based on the
function sregion and a compilation function. For a complete source program c, we de-
fine the compilation C(c) in Figure 5. We use symbol # to compute the length of lists.
Symbol :: is used to insert one element to a list or to concatenate two existing lists. The
current program point in a program is represented by pc. The function C(c) calls the
auxiliary function S which returns a pair of programs. The first component of that pair
stores the compiled code of the main program, while the second one stores the compila-
tion code of spawned threads. We now define control dependence regions for assembly
code and respective junction points.

Definition 14 (function tregion). For a branching instruction [c]n in the source code,
tregion(n) is defined as the set of instructions obtained by compiling the commands
[c′]n

′
, where n′ ∈ sregion(n). Moreover, if c is a while loop, then n ∈ tregion(n).

Otherwise, the goto instruction after the compilation of the else-branch also belongs to
tregion(n).

11

E(x) = load x E(n) = push n E(e op e′) = E(e) :: E(e′) :: binop op

S(x := e, T) = (E(e) :: store x, T)

S(c1; c2, T) = let (lc1, T1) = S(c1, T); (lc2, T2) = S(c2, T1);
in (lc1 :: lc2, T2)

S(while e do c, T) = let le = E(e); (lc, T ′) = S(c, T);
in (goto (pc + #lc + 1) :: lc :: le :: ifeq (pc−#lc−#le),

T ′)
S(if e then c1 else c2, T) = let le = E(e); (lc1, T1) = S(c1, T); (lc2, T2) = S(c2, T1);

in (le :: ifeq (pc + #lc2 + 2) :: lc2 :: goto (pc + #lc1 + 1) ::

lc1, T2)
S(fork(c), T) = let (lc, T ′) = S(c, T); in (start (#T ′ + 2), T ′ :: lc :: return)

C(c) = let (lc, T) = S(c, []); in goto (#T + 2) :: T :: lc :: return

Fig. 5. Compilation function

Junction points are computed by the function jun. The domain of this function consist
of every branching point in the program. We define jun as follows:

Definition 15 (junction points). For every branching point [c]n in the source program,
we define jun(n) = max{i|i ∈ tregion(n)}+ 1.

Having defined control dependence regions and junction points for low-level code,
we proceed to defining next. Intuitively, next is only defined for instructions that be-
long to regions corresponding to the outermost branching points whose guards involved
secrets. For every instruction i inside of an outermost branching point [c]n, we define
next(i) = jun(n). Observe that this definition captures the intuition about next given in
the beginning of Section 5. However, it is necessary to know, for a given program, what
are the outermost branching points whose guards involved secrets. With this in mind, we
extend one of the type systems given in [6] to identify such points. We add some rules
for outermost branching points that involved secrets together with some extra notations
to know when a command is inside of one of those points or not.

A source program c is typable, written `◦ c : E, if its command part is typable with
respect to E according to the rules given in Figure 6. The typing judgment has the form
`α [c]nα′ : E, where E is a function from labels to security levels. Function E can be
seen as a security environment for the source code which allows to easily define the
security environment for the target code. If R is a set of points, then liftk(E,R) is the
security environment E′ such that E′(n) = E(n) if n /∈ R and E′(n) = k t E(n) for
n ∈ R. For a given program c, labels(c) returns all the label annotations in c. Variable
α denotes if c is part of a branching instruction that branches on secrets (•) or public
data (◦). Variable α′ represents the level of the guards in branching instructions. The
most interesting rules are TOP−H−COND and TOP−H−WHILE . These rules
can be only applied when the branching commands are the outermost ones and when
they branch on secrets. Observe that such commands are the only ones that are typable
considering α = ◦ and α′ = •. Moreover, the type system prevents explicit (via as-
signment) and implicit (via control) flows [9]. To this end, the type system enforces the

12

`α c : E `α c′ : E

`α c ; c′ : E

` e : L `α c : E

`α [while e do c]nα : E

` e : L `α c : E `α c′ : E

`α [if e then c else c′]nα : E

` e : H `• c : E

`• [while e do c]n• : E

` e : H `• c : E `• c′ : E

`• [if e then c else c′]n• : E

`α c : E E = liftα(E, labels(c))

`α [fork(c)]nα : E

ASSIGN
` e : k k t E(n) ≤ Γ (x)

`α [x := e]nα : E

TOP-H-WHILE
` e : H `• c : E E = liftH(E, sregion(n))

`◦ [while e do c]n• : E

TOP-H-COND
` e : H `• c : E `• c′ : E E = liftH(E, sregion(n))

`◦ [if e then c else c′]n• : E

Fig. 6. Intermediate typing rules for high-level language commands

same constraints as standard security type systems for sequential languages (e.g., [29]).
Explicit flows are prevented by rule ASSIGN , while implicit flows are ruled out by de-
manding a security environment of level H inside of commands that branch on secrets.
The type system guarantees information-flow security at the same time as it identifies
the outermost commands that branch on secrets. Function next is defined as follows:

Definition 16 (function next). For every branching point c in the source program such
that `◦ [c]n• , we have that ∀k ∈ tregion(n).next(k) = jun(n).

This definition satisfies the properties from Section 5, as shown by the following lemma.

Lemma 3. Definition 16 satisfies properties NePd and NeP1–4.

Notice that one does not need to trust the compiler in order to verify that properties
NePd and NeP1–4 are satisfied. Indeed, these properties are intended to be checked
independently from the compiler by code consumers. We are now in condition to show
the soundness of the instantiation.

Corollary 1 (Soundness of the instantiation). Hypotheses 1–6 from Section 5 are sat-
isfied by the instantiation, and therefore the derived type system guarantees noninter-
ference for multithreaded assembly programs.

Hypotheses 1–3 follow from the unwinding lemmas of [5]; Hypothesis 4 from Lemma 3,
and Hypotheses 5 and 6 from the definitions of next and High lmem, respectively.

Type preserving compilation. The compilation of sequential programs is type-preserving,
as shown in previous work [6]. Our framework allows extending type-preservation to
multithreading. Moreover, it enables us to obtain a key non-restrictiveness result: al-
though the source-level type system is no more restrictive than a typical type system for

13

a sequential language (e.g., [29]), the compilation of (possibly multithreaded) typable
programs is guaranteed to be typable at low-level. Due to the lack of space, we only
give an instantiation of this result to the source and target languages of this section:

Theorem 2. For a given source-level program c, assume nf (c) is obtained from c by
replacing all occurrences of fork(d) by d. If command nf (c) is typable under the
Volpano-Smith-Irvine type system [29] then se,S ` C(c) for some se and S.

This theorem and Theorem 1 entail the following corollary:

Corollary 2. If command nf (c) is typable under the Volpano-Smith-Irvine type sys-
tem [29] then C(c) is secure.

Java Virtual Machine. The modular proof technique developed in the previous section
is applicable to a Java-like language. If the sequential type system is compatible with
bytecode verification, then the concurrent type system is also compatible with it. This
implies that Java bytecode verification can be extended to perform security type check-
ing. Note that the definition of a secure scheduler is compatible with the JVM, where
the scheduler is mostly left unspecified. Moreover, it is possible to, in effect, override an
arbitrary scheduler from any particular implementation of JVM with a secure scheduler
that keeps track of high and low threads as a part of an application’s own state (cf. [27]).

However, some issues arise in the definition of a concurrent JVM: in particular, we
cannot adapt the semantics and results of [3] directly, because the semantics of method
calls is big-step. Instead, we must rely on a more standard semantics where states in-
clude stack frames, and prove unwinding lemmas for such a semantics; fortunately, the
technical details in [4] took this route, and the same techniques can be used here.

Another point is that the semantics of the multithreaded JVM obtained by the
method described in Section 2 only partially reflects the JVM specification. In par-
ticular, it ignores object locks, which are used to perform synchronization throughout
program execution. Dealing with synchronization is a worthwhile topic for future work.

7 Related work
Information flow type systems for low-level languages, including JVML, and their rela-
tion to information flow type systems for structured source languages, have been studied
by several authors [4, 10, 16, 6, 3, 5]. Nevertheless, the present work provides, to the best
of our knowledge, the first proof of noninterference for a concurrent low-level language,
and the first proof of type-preserving compilation for languages with concurrency.

This work exploits recent results on interaction between the threads and the sched-
uler [18] in order to control internal timing leaks. Other approaches [26, 28, 24, 25] to
handling internal timing rely on protect(c) which, by definition, hides the internal
timing of command c. It is not clear how to implement protect() without modifying
the scheduler (unless the scheduler is cooperative [19, 27]). It is possible to prevent in-
ternal timing leaks by spawning dedicated threads for computations that involve secrets
and carefully synchronizing the resulting threads [17]. However, this implies high syn-
chronization costs. Yet other approaches prevent internal timing leaks in code by disal-
lowing any races on public data [30, 12]. However, they wind up rejecting such innocent
programs as lo := 0 ‖ lo := 1 where lo is a public variable. Still other approaches pre-
vent internal timing by disallowing low assignments after high branching [8, 2]. Less

14

related work [1, 23, 20, 21, 14] considers external timing, where an attacker can use a
stopwatch to measure computation time. This work considers a more powerful attacker,
and, as a price paid for security, disallows loops branching on secrets. For further related
work, we refer to an overview of language-based information-flow security [22].

8 Conclusions
We have presented a framework for controlling information flow in multithreaded low-
level code. Thanks to its modularity and language-independence, we have been able
to reuse several results for sequential languages. An appealing feature enjoyed by the
framework is that security-type preserving compilation is no more restrictive for pro-
grams with dynamic thread creation than it is for sequential programs. Primitives for
interacting with the scheduler are introduced by the compiler behind the scenes, and in
such a way that internal timing leaks are prevented.

We have demonstrated an instantiation of the framework to a simple imperative lan-
guage and have argued that our approach is amenable to extensions to object-oriented
languages. The compatibility with bytecode verification makes our framework a promis-
ing candidate for establishing mobile-code security via type checking.

Acknowledgment This work was funded in part by the Sixth Framework programme of
the European Community under the MOBIUS project FP6-015905.

References

1. J. Agat. Transforming out timing leaks. In Proc. ACM Symp. on Principles of Programming
Languages, pages 40–53, Jan. 2000.

2. A. Almeida Matos. Typing secure information flow: declassification and mobility. PhD
thesis, Ecole Nationale Supérieure des Mines de Paris, 2006.

3. G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-interference java bytecode
verifier. In R. D. Niccola, editor, European Symposium on Programming, Lecture Notes in
Computer Science. Springer, 2007.

4. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In M. Fähndrich, editor,
Proceedings of TLDI’05, pages 103–112. ACM Press, 2005.

5. G. Barthe, T. Rezk, and A. Basu. Security types preserving compilation. Journal of Computer
Languages, Systems and Structures, 2007.

6. G. Barthe, T. Rezk, and D. Naumann. Deriving an information flow checker and certifying
compiler for java. In SP ’06: Proceedings of the 2006 IEEE Symposium on Security and
Privacy (S&P’06), pages 230–242. IEEE Computer Society, 2006.

7. G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of multithreaded programs by
compilation. Technical report, Chalmers University of Technology, 2007. Located at
http://www.cs.chalmers.se/∼russo/esorics07full.pdf.

8. G. Boudol and I. Castellani. Noninterference for concurrent programs and thread systems.
Theoretical Computer Science, 281(1):109–130, 2002.

9. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

10. S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In R. Cousot, editor,
Proceedings of VMCAI’05, volume 3385 of LNCS, pages 346–362. Springer-Verlag, 2005.

11. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp.
on Security and Privacy, pages 11–20, Apr. 1982.

15

12. M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation of observational
determinism. In Proc. IEEE Computer Security Foundations Workshop, July 2006.

13. J. Knudsen. Networking, user experience, and threads. Sun Techni-
cal Articles and Tips http://developers.sun.com/techtopics/
mobility/midp/articles/threading/, 2002.

14. B. Köpf and H. Mantel. Eliminating implicit information leaks by transformational typing
and unification. In Formal Aspects in Security and Trust, Third International Workshop
(FAST’05), volume 3866 of LNCS, pages 47–62. Springer-Verlag, July 2006.

15. Q. H. Mahmoud. Preventing screen lockups of blocking operations. Sun Tech-
nical Articles and Tips http://developers.sun.com/techtopics/
mobility/midp/ttips/screenlock/, 2004.

16. R. Medel, A. Compagnoni, and E. Bonelli. A typed assembly language for non-interference.
In M. Coppo, E. Lodi, and G. Pinna, editors, Proceedings of ICTCS 2005, volume 3701 of
LNCS, pages 360–374. Springer-Verlag, 2005.

17. A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld. Closing internal timing channels
by transformation. In Asian Computing Science Conference (ASIAN’06), LNCS. Springer-
Verlag, 2007.

18. A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler. In Proc.
IEEE Computer Security Foundations Workshop, pages 177–189, July 2006.

19. A. Russo and A. Sabelfeld. Security for multithreaded programs under cooperative schedul-
ing. In Proc. Andrei Ershov International Conference on Perspectives of System Informatics,
LNCS. Springer-Verlag, June 2006.

20. A. Sabelfeld. The impact of synchronisation on secure information flow in concurrent pro-
grams. In Proc. Andrei Ershov International Conference on Perspectives of System Infor-
matics, volume 2244 of LNCS, pages 225–239. Springer-Verlag, July 2001.

21. A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed programs.
In Proc. Symp. on Static Analysis, volume 2477 of LNCS, pages 376–394. Springer-Verlag,
Sept. 2002.

22. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

23. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proc. IEEE Computer Security Foundations Workshop, pages 200–214, July 2000.

24. G. Smith. A new type system for secure information flow. In Proc. IEEE Computer Security
Foundations Workshop, pages 115–125, June 2001.

25. G. Smith. Probabilistic noninterference through weak probabilistic bisimulation. In Proc.
IEEE Computer Security Foundations Workshop, pages 3–13, 2003.

26. G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.
In Proc. ACM Symp. on Principles of Programming Languages, pages 355–364, Jan. 1998.

27. T. C. Tsai, A. Russo, and J. Hughes. A library for secure multi-threaded information flow in
Haskell. In Proc. of the 20th IEEE Computer Security Foundations Symposium, July 2007.
To appear.

28. D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. J. Com-
puter Security, 7(2–3):231–253, Nov. 1999.

29. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J.
Computer Security, 4(3):167–187, 1996.

30. S. Zdancewic and A. C. Myers. Observational determinism for concurrent program security.
In Proc. IEEE Computer Security Foundations Workshop, pages 29–43, June 2003.

16

