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Abstract—To achieve end-to-end security in a system built
from parts, it is important to ensure that the composition of secure
components is itself secure. This work investigates the composi-
tionality of two popular conditions of possibilistic noninterference.
The first condition, progress-insensitive noninterference (PINI),
is the security condition enforced by practical tools like JSFlow,
Paragon, sequential LIO, Jif, FlowCaml, and SPARK Examiner.
We show that this condition is not preserved under fair parallel
composition: composing a PINI system fairly with another PINI
system can yield an insecure system. We explore constraints that
allow recovering compositionality for PINI. Further, we develop a
theory of compositional reasoning. In contrast to PINI, we show
what PSNI behaves well under composition, with and without
fairness assumptions. Our work is performed within a general
framework for nondeterministic interactive systems.

I. INTRODUCTION

Modularity and compositionality are essential for the de-
sign and construction of modern computing systems. A major
challenge is secure composition: to achieve end-to-end security
in a system built from parts, it is important to ensure that
the composition of secure components is itself secure. Secure
composition is particularly intricate because security condi-
tions are often fragile under system behavior modifications.
Adding, removing, or modifying a single trace or event can
break the security of a system [32].

This paper studies the foundations of secure composition.
Our focus is on specifying confidentiality (or dual flavors
of integrity [9], [10]) by defining what constitutes secure
information flow through computing systems.

a) State of the art in security for interactive systems:
Given the importance of the subject, it is not surprising that
literature has explored security of communicating systems and
their composition in assorted settings, discussed in detail in
Section VI. Unfortunately, the models underlying previous
frameworks on formalising and enforcing secure information
flow [4], [12], [21], [34], [37], [42], [51] are all very dif-
ferent, and largely lacking relative comparison. Models range
from memory-to-memory transformers, memory-to-output-
stream transformers, input-to-output-stream transformers, and
input-output-trace emitters. The frameworks make different
fundamental assumptions, e.g. determinism, synchronous com-
munication, environment totality, and fixed interaction pattern,
leading to different notions of observation and environment.

For example, security has been addressed in reactive
systems (e.g., [2], [12], [43]). The reactive system models
considered exercise a restrictive pattern of communication,
where the system waits for an input, and once an input has been
received it proceeds with executing an appropriate handler until
completion, possibly producing some output on the way. Event

systems have been a focus of several previous approaches
(e.g., [28], [29], [54], [57]). Events in the early work have
different levels of sensitivity with the goal of protecting both
presence and content of events but not distinguishing between
the two. Interaction patterns in some of this work are fixed;
Wittbold and Johnson [54] assume the pattern of receiving a
secret and a public event, followed by sending a secret and
public event. With process calculi as the underlying models,
a line of work (e.g., [19], [22], [23], [40], [46], [47]) studies
secure interaction, inheriting concrete features from the process
calculus and not distinguishing between the sensitivity of
presence and content of events. More general, and closer to
our work, are formalizations that operate on labeled transition
systems [16], [37], [42]. However, these model environments as
strategies, which are separate from the computational model.
Strategies are total, i.e., can always receive and send messages.

Thus, key questions that have not been addressed by
previous work are: (i) what is an appropriate general model
of security of interactive systems, (ii) how to distinguish
sensitivity of message presence and content in such a model,
(iii) how do we model environments as part of the system, and
(iv) how do we provide flexible ways for composing systems.

b) Progress-sensitive and progress-insensitive security:
The focus of our work is two popular security conditions. The
first condition, progress-insensitive noninterference (PINI) [3],
[4], [12], prevents information leaks from secret sources to
public sinks, but allows secrets to affect progress of public
computation. Thanks to the liberty it provides for handling
loop constructs, this condition is a popular target for such prac-
tical security tools as JSFlow [21], Paragon [14], sequential
LIO [51], Jif [34], FlowCaml [50], and SPARK Examiner [6].
The second condition is progress-sensitive noninterference
(PSNI) [4], [12], [37], [43], which does not allow leaks via
progress. The advantage of PSNI is that it provides stronger
security guarantees that is not susceptible to laundering secrets
by brute-force attacks [3] or re-running programs [11]. An
important question that has not been answered by previous
work is (v) how do PINI and PSNI behave under composition?

c) Contributions: Motivated by questions (i)-(v), this
paper delivers the following contributions. The first contri-
bution is a general security framework to model security of
interactive systems. Given the diversity of previous work,
our goal is to avoid “another information-flow model” with
no relation to previous approaches. This motivates us to
systematize and generalize the work in the area so far. We
obtain full generality by adopting labeled transition systems as
the underlying model. Our asynchronous input-output-stream
emitters (Definition II.6) can model nondeterminism, non-
blocking input, and arbitrary interaction patterns. In contrast



to previous work, environments are interactive systems, a
significant generalization of previous work. The expressive-
ness of the environment model is key for compositionality
results. Unifying the assumptions on environments and systems
provides us with a generic system model. More importantly,
it also paves the way for secure composition thanks to the
possibility that systems and environments can be manipulated
interchangeably. The second contribution is combinators for
composing systems. The combinators allow flexibility in how
exactly composed components can interact with each other.
This is in contrast to previous work where composition is
typically restricted to a single way. The third contribution
allows us further generality in the modeling of interaction: we
distinguish between the sensitivity of message presence and
message content without restricting communication paradigms.
The fourth contribution is the study of compositionality for
PINI and PSNI. We find that PINI is not preserved under fair
parallel composition: composing a PINI system fairly with
another PINI system can yield an insecure system, and thus,
compositionality of PINI relies fundamentally on unfairness.
We explore constraints that allow recovering compositionality
for PINI. Further, we develop a theory of compositional rea-
soning. In contrast to PINI, we show what PSNI behaves well
under composition, with and without fairness assumptions.

d) Organization: The rest of the paper proceeds as
follows. Section II presents the general setting of interactive
systems, as specified by labeled transition systems. Section III
presents the security definitions. Section IV establishes com-
positionality properties for a core of combinators, with and
without fairness assumptions. Section V demonstrates the
generality of our results by providing a rich language of secure
combinators. Section VI reports on related work. Section VII
offers conclusions and points to worthwhile future work.

II. INTERACTIVE SYSTEMS

We present a language-independent framework for reason-
ing about the behavior of interactive programs. The framework
functions as the foundation for our technical contribution, and
unifies several previous frameworks for interactive program
security [12], [16], [37], [42], [43].

A. Computation Model

Our model of computation is a labeled transition system
(LTS). An LTS is a triple (P,A,−�); P is a set (of processes),
ranged by p, A is a set (of action labels), ranged by a , and
−�⊆ P × A × P (a labeled transition relation). Computation
occurs in discrete steps (transitions). The label on a step is the
effect of said step. These effects are the only external interface
to our processes; they are “black boxes” in every other respect.
p a−� p′ iff (p, a, p′) ∈−�, and p a−� iff p a−� p′ for some p′.

The processes we consider interact with their environment
through channel-based message-passing. They have two kinds
of effects: (message-)input, denoted i , and (message-)output,
denoted o. A message, m , is a value v on a channel c.

a ::= i | o i ::= ?m o ::= !m m ::= cv (act)

Here, !cv (resp. ?cv ) denotes a message sent (resp. received)
on channel c carrying value v . We let i , o, m , c and v range
over I, O, M, C and V, respectively.

Definition II.1. An input-output LTS (LTSIO) is an LTS with
action labels ranged by a as defined in (act). ♦

This notion of computation applies to a wide range of
programs and systems. For instance, Bohannon et al. give the
semantics of a JavaScript-like language as an LTSIO in [12],
[13], and Rafnsson et al. give the semantics of an imperative
language with I/O as an LTSIO in [42], demonstrating that
LTSIO are rich enough to model anything from batch-style
programs which receive one i , produce one o and terminate,
to reactive systems which continuously interact. Since all of
our results apply to LTSIO, our contributions are general.

To illustrate, the following program reads binary sensor
values until receiving 1, after which it outputs an alert message.
Next to it is a graph of an LTSIO describing its behavior.

repeat
in sensor b

until b = 1
out alert 1

!�

?sensor0
?sensor1 !� !alert1

ps0 ps1 ps2 ps3 ps4

To model noninteraction (e.g. evaluating a loop condition), we
distinguish a channel for internal actions, and denote a message
on it by �. The program receiving value 0 on channel sensor,
then receiving a 1, and subsequently outputting 1 on alert, is
then represented by the following transition sequence.

ps0
!�−−� ps1

?sensor0−−−−−� ps0
!�−−� ps1

?sensor1−−−−−� ps2
!�−−� ps3

!alert0−−−−� ps4

B. Behaviors

To study the behavior of an LTSIO, we consider sequences
of actions performed by it.

Traces T, ranged over by t , are (finite) lists of actions.
For instance, with “ε” denoting the empty trace and “.” the
constructor (“cons”) operator, ts = !�.?sensor1.!�.!alert1.ε is
a trace. Alternatively, T could be defined as T = A∗, i.e., the
Kleene closure of A, or inductively, by asserting that ε ∈ T,
and specifying, given an action a and a trace t ∈ T, how to
obtain a new trace in T (a.t ∈ T). For simplicity, we usually
omit the ε trailing a nonempty trace, use “.” to also denote trace
concatenation (ε.t = t and (a.t ′).t = a.(t ′.t)), and write tn

for the concatenation of t n times (t0 = ε and tn+1 = t .tn).
We write t ≤ t ′ when t ′ = t .t ′′ for some t ′′.

Streams S, ranged over by s , are (strictly) infinite lists of ac-
tions (S exists and is unique [7]). For instance, with “.” denoting
the deconstructor operator, ss for which (.) ss = (!�, ŝs) and
(.) ŝs = (?sensor0, ss) is a stream, i.e., the infinite repetition of
action sequence !�.?sensor0. Alternatively, S could be defined
as S = Aω , i.e., the language of all infinite words over A,
or coinductively, by specifying, given a stream s ∈ S, how
to obtain an action and a new stream in S (apply “.” on s).
For simplicity, we let a.s denote any stream s ′ for which
(.) s ′ = (a, s), and let tω = t .(tω). Define t ≤ s and t .s
the same way as for traces. For more on coinduction, see [24].

The behaviors of processes are as follows. For each p,
p ε−� p, and p a.t−−� if p a−� p′ t−�. Likewise, p a.s−−� only if
p a−� p′ s−�. Let T(p) = {t | p t−�} and S(p) = {s | p s−�} be
the set of traces and streams of p, i.e., the trace- and stream-
semantics of p. For instance, ts ∈ T(ps0) and ss ∈ S(ps0), since
ps0

ts−� and ps0
ss−�. Traces and streams can themselves be

regarded as LTSIO, simply by defining a.t a−� t and a.s a−� s .



Due to the nature of PINI and due to the observation in
Section III-D, we focus on stream semantics in this paper,
which, under the right assumptions, are at least as expressive
as trace semantics. First, the following is easy to see.

∀s � s ∈ S(p) =⇒ (∀t ≤ s � t ∈ T(p)). (s-all-t)

However, the following does not hold in general.

∀t � t ∈ T(p) =⇒ (∃t ≤ s � s ∈ S(p)). (t-some-s)

For instance, S(ps
0) = {ss} and ts � ss. So in general, stream

semantics are less expressive than trace semantics. However,
this is only the case for LTSIO with terminal states (e.g.
ps4 ). For LTSIO with no terminal states, i.e., productive LTSIO
(formalized in Definition VI.1), we have (t-some-s). However,
even if we assume LTSIO are productive, trace- and stream-
semantics are not equally expressive; the reverse implication
of (s-all-t) does not hold in general. Consider these LTSIO.

!zero0

!eof0

!zero0

pL

!zero0 !zero0
!zero0

!zero0!zero0

!zero0

!zero0

!eof0

pR

. . .

Here, T(pL) = T(pR). However, S(pL) 6= S(pR); in particular,
for s0s = !zero0ω , pL

s0s−−� but pR X s0s−−�, since pR always
performs an arbitrary finite number of !zero0 actions. So there
are scenarios where trace semantics is less expressive than
stream semantics; trace semantics, depending on perspective,
hides the eventuality of !eof0 in pR, or hides its possible non-
eventuality in pL. However, in productive LTSIO, this difference
in expressiveness occurs only in the presence of unbounded
nondeterminism (by König’s lemma) [45], present in pR as it
nondeterministically picks a number n from the full range of
natural numbers, in a single computation step.

We assume LTSIO are productive, wlg. since any LTSIO can
be modeled as a productive LTSIO, as follows. We model ter-
mination as an action by distinguishing a termination channel,
and denoting any message on said channel by ?. The obituary
wrapper O announces termination of the wrapped process.

p X−�
O(p) !?−−� p

p a−� p′

O(p) a−� O(p′)

The zombie wrapper Z keeps terminated processes productive
by enabling the !� action in terminal states.

p X−�
Z(p) !�−−� Z(p)

p a−� p′

Z(p) a−� Z(p′)

Now any property φ on T(p) can be stated as a property φ′

on S( Z(O(p)) ) such that φ(T(p)) iff φ′(S( Z(O(p)) )), since
T(p) = {t | (∃s ∈ S( Z(O(p)) ) � t ≤ s ) ∧ (∀t ′ � t ′.!? � t )}.

C. Comparing Behaviors

To reason about the behavior of processes, we need
ways to compare behaviors. Comparing traces is easily done
component-wise, and a proof of trace equality is inductive
(thus finite). What about infinite streams? One way is to
define stream equivalence as non-difference (nonexistence of
a derivation in an inductively defined difference relation). We
instead use a coinductive definition which captures the idea of
component-wise trace equality (note that ∀s �∃!a, s ′ � s a−� s ′).

Definition II.2. R ⊆ S× S is a strong stream relation iff

∀s1, s2 � s1 R s2 =⇒ (s1 X−� ∧ s2 X−�)∨
∃a, s ′1, s ′2 � s1

a−� s ′1 ∧ s2
a−� s ′2 ∧ s ′1 R s ′2.

s1 and s2 are strongly stream related, s1 = s2, iff there exists
a strong stream relation R such that s1 R s2. ♦

This is a strong bisimulation on streams, and thus an equiv-
alence relation, stipulating component-wise equality. Roughly,
the inductive definition of t1 = t2 is Definition II.2 with
the implication reversed (t1 = t2 if t1 X−� ∧t2 X−� or
t1

a−� t ′1 ∧ t2
a−� t ′2 ∧ t ′1 = t ′2). For s0e = !zero0.!eof0ω ,

s0s 6= s0e. An inductive proof of difference would use the fact
that !zero0.!zero0 ≤ s0s and !zero0.!zero0 � s0e; this leads us
to the following useful observation, proven by Park in [39].

s1 = s2 iff ∀t � t ≤ s1 ⇐⇒ t ≤ s2. (=-and-ts)

Ultimately, we need to compare observable behavior to
reason about information-flow security of processes. We de-
fine observables in Section III; for now, let • range over
unobservable actions. Furthermore, we let • function as a
wildcard (multiple occurrences of • in the same context
can represent different mathematical objects). Observational
equivalence then becomes component-wise equality of ob-
servables. To obtain the next observable action, we use
the following “weak” labeled transition relation: p a−� p′ iff
a 6= • ∧ (p a−� p′ ∨ (p •−� p̂ ∧ p̂ a−� p′)).

Definition II.3. R ⊆ S× S is a weak stream relation iff

∀s1, s2 � s1 R s2 =⇒ (s1 X−� ∧ s2 X−�)∨
∃a, s ′1, s ′2 � s1

a−� s ′1 ∧ s2
a−� s ′2 ∧ s ′1 R s ′2.

s1 and s2 are weakly stream related, s1 ' s2, iff there exists
a weak stream relation R such that s1 R s2. ♦

This is CP-similarity [12]; a weak bisimulation on streams,
and thus an equivalence relation. For instance, ss ' ?sensor0ω

(with !� unobservable). Again, the inductive definition of t1 ' t2
is Definition II.3 with reversed implication. Let t � t ′ when
t ' t ′′ for some t ′′ ≤ t ′. Define t1 � s2 similarly. Note that
s1 6' s2 does not necessarily have a proof by induction on its
derivation; this is the case when the observables of s1 strictly
prefix the observables in s2; for some t , s1

t−� •ω , s2
t−� s ′2,

s ′2
a−� and •ω X−� , but •ω X−� is an assertion about all elements

in an infinite sequence. A proof of t � s is inductive, since t
is finite. The following analog of (=-and-ts) is thus of interest.

s1 ' s2 iff ∀t � t � s1 ⇐⇒ t � s2. ('-and-ts)

The other means we consider of comparing observables
stipulates that there is never a disagreement in which ob-
servable comes next in two streams. That is, component-
wise comparison of observables does not eventually yield two
observables which differ. This holds e.g. when s1 ' s2 or
when the observables in s1 prefix the observables in s2.

Definition II.4. R ⊆ S× S is a feeble stream relation iff

∀s1, s2 � s1 R s2 =⇒ s1 X−� ∨ s2 X−� ∨
∃a, s ′1, s ′2 � s1

a−� s ′1 ∧ s2
a−� s ′2 ∧ s ′1 R s ′2

s1 and s2 are feebly stream related, s1 ≈ s2, iff there exists a
feeble stream relation R such that s1 R s2. ♦



This is a coinductive definition of NC-similarity [12]. It
is reflexive and symmetric, but not transitive, thus not an
equivalence relation; ?sensor0.•ω ≈ •ω , !zero0.•ω ≈ •ω , but
?sensor0.•ω 6≈ !zero0.•ω (indeed, for all s , s ≈ •ω). To
contrast, !zero0.•ω 6' •ω . Again, the inductive definition of
t1 ≈ t2 is Definition II.4 with reversed implication. On traces,
t1 ≈ t2 iff t1 � t2 or t2 � t1. s1 6≈ s2 has a proof by induction
on its derivation, because eventuality of a component-wise
difference can be represented as a trace t for which t � s1

but t 6� s2 (or vice versa). With t ≈ s defined in the obvious
way (t ≈ s iff t .•ω ≈ s), t 6≈ s also has an inductive proof.

s1 ≈ s2 iff ∀t � t 6≈ s1 ⇐⇒ t 6≈ s2. (≈-and-ts)

Lemma II.5. (=)( (')( (≈).

We close with a justification for focusing on stream se-
mantics as a basis for comparing the behavior or processes.
As noted earlier, actions are the only external interface to our
processes. Thus, when reasoning about security, we model at-
tacker knowledge obtained via extensional observations. Here,
not allowing the attacker to observe the state of the process is
natural. This makes branching-time equivalence (bisimulation
on processes) too strict for our purposes, since it makes distinc-
tions on the internal branching structure of processes [35]. We
therefore opt for stream equivalence: a linear-time behavioral
equivalence which subsumes trace equivalence

D. Interaction

The input-output behavior in the LTSIO semantics of a
program implies a particular model of interaction used by said
program. Typically, secure information flow frameworks in
the reactive, process algebra, and interactive program setting,
adopt synchronous communication on channels as the model
of communication [12], [16], [19], [22], [37], [40], [42], [43],
[47]. Here, if we take the processes in these computation
models and put them in interaction, then processes can block
on both input and output. We argue that synchronous commu-
nication is not a good fit for general system composition, as the
exhibited blocking behavior makes (compositional) reasoning
about process behavior nontrivial. Progress of synchronously
interactive programs is highly context sensitive, as nonwilling-
ness of one component to receive can halt the progress of a
sender component. For instance, consider the following LTSIO.

?a0

p′′L
?b0

!a0!a0

p′′M

!b0

p′′R

. . .
Consider p′′M in interaction with p′′R . These components can
synchronize b0, and under an inert environment, this synchro-
nization will (eventually) occur. However, merely by adding
p′′L , a component which sends no messages, the eventuality of
b0 is no longer guaranteed, as there is a (fair) scheduling which
starves it: let (p′′L , p

′′
M ) synchronize first, and then let (p′′M , p

′′
R )

synchronize if they can; otherwise synchronize (p′′L , p
′′
M ) twice.

The same situation arises if we reverse the direction of b.

In practice, output blocking is typically avoided by buffer-
ing channels, making communication asynchronous. Then, p′′R
would put !b0 into a buffer without delay and move on with
its computation, while p′′M would subsequently read from the

buffer whenever p′′M is ready to do so. However, this effect is
also achieved by requiring that there is always a receiver ready
for each send. This holds if each component in a composition
is always ready to receive input, i.e., input total [27], [30].
Input totality simplifies reasoning about composed systems
considerably [29], [57], as an input-total process cannot control
its environment by not desiring certain input. Input totality
abstracts from how asynchrony is achieved. Thus, our frame-
work generalizes more concrete approaches e.g. input queues
[52] and buffered channels [48]. To make fairness visible in
an interaction stream, we ensure each component is always
able to perform an action, regardless of which environment
it is in. We get this by assuming that processes are output
productive, i.e., always capable of producing output. This
makes our processes similar to Input/Output Automata [27],
in that processes are autonomous; a process can always make
progress on its outputs. This is in contrast to asynchrony in
process algebra (e.g. [23]), where output is only sent when a
receiver is ready. Like in [27], we say a stream is fair if it
contains an infinite number of outputs, i.e., is in the set

SF = {s ∈ S | ∀t ≤ s � ∃t ′, o′ � t .t ′.o′ ≤ s}.

Let SF(p) = S(p) ∩ SF. Since !� models noninteraction,
receivers of !� should not react to it. Such receivers are
atemporal. For further justification and merits of this model
of concurrency, see Section VI.

Definition II.6 (Interactive LTSIO). p is

1) input total iff ∀t , p′ � p t−� p′ =⇒
∀i � p′ i−�

2) output productive iff ∀t , p′ � p t−� p′ =⇒
∃o � p′ o−�.

3) atemporal iff ∀t , p′ � p t−� p′ =⇒
∀?�, p′′ � p′ ?�−−� p′′ =⇒ p′ = p′′.

p is interactive iff p satisfies 1), 2) and 3). ♦

Putting two interactive LTSIO in nonblocking interaction
is now a simple matter of making all output of one process
become the only input to the other (and vice versa). We write
p under p′ as p′ |= p. p produces s under p′, p′ |= p s−�, iff,
p s−� and p′ s−1

−−−�. Similarly for traces. Function ·−1 reverses
direction of messages, that is, ε−1 = ε, (!m.t)−1

= ?m.t−1,
and (?m.t)−1

= !m.t−1, and similarly for streams. We refer
to p′ here as the environment of p, and we will study the
behavior of p under different environments when reasoning
about security of p. This is in stark contrast with previous
work on security of LTSIO [16], [37], [42] which considers
(classes of) strategies as environments, i.e., functions of type
T → C → P(V). One noteworthy feature which secure p-
environments have over secure strategy-environments is p can
force a secret input to occur before a public input, as input
streams can in the reactive systems setting [12]; indeed, if p′

and p are deterministic, and the interaction pattern is fixed, p′

will behave like an input stream. Our framework thus unifies
several previous frameworks for interactive program security.

We assume p is interactive throughout our development,
unless stated otherwise. While these are strong restrictions
to impose on an LTSIO, any LTSIO can be modeled as an
interactive LTSIO. For instance, for p which can discriminate



on which channel to receive on next, like the LTSIO in [16],
[37], [42], the buffer wrapper B? associates an input queue with
each channel, which p can then receive on at its leisure. B?(p)
is input total, for any p.

p o−� p′

B?(t , p) o−� B?(t , p′)

p ?cv−−� p′ @(t ′′.?cv ′) ≤ t

B?(t .?cv .t ′, p) !�−−� B?(t .t ′, p′)
−

B?(t , p) i−� B?(t .i , p)
B?(p) = B?(ε, p)

For programs which never discriminate on which channel to
receive from, like the LTSIO in [12], [43], [58], the FIFO
wrapper F? buffers input and delivers it to p on demand, in
FIFO order. For such p, F?(p) is input total.

p o−� p′

F?(t , p) o−� F?(t , p′)

p i−� p′

F?(i .t , p) !�−−� F?(t , p′)
−

F?(t , p) i−� F?(t .i , p)
F?(p) = F?(ε, p)

Any p which is not output productive has the potential to block
on input. The wait wrapper W empowers any such p with the
ability to, instead of block, wait as an internal action. For any
p, W(p) is output productive.

∃i � p i−� @o � p o−�
W(p) !�−−� W(p)

p a−� p′

W(p) a−� W(p′)

At last, the atemporal wrapper T ignores any ?� actions. T(p)
is atemporal, for any p.

−
T(p) ?�−−� T(p)

p a−� p′ a 6= ?�
T(p) a−� T(p′)

III. SECURITY OF INTERACTIVE SYSTEMS

Equipped with the tools from the previous section, we
develop notions of information-flow security in our setting. We
present two popular conditions of possibilistic noninterference:
PSNI and PINI. While PSNI is well studied in our setting [16],
[37], [42], we give the first formalization of PINI in a general
interactive setting; PINI has thus far only been presented in
settings with restricted forms of interaction [3], [12].

A. Observables

The observables of a process are its effects. We assume a
lattice (L,v), with L ranged by `, of security levels expressing
levels of confidentiality. Each channel c is labeled with two
security levels; π(c) is the level of the presence of a message
on c, and κ(c) is the level of the content, or value, of a
message on c. In examples, we frequently represent a channel
by its security levels, writing κ(c)π(c) in place of c. A classic
example is the lattice L = {L,H} (“low” (public) and “high”
(secret)) and v= {(L,L), (L,H), (H,H)}. We let L, M and H
denote LL, HL and HH, respectively. We let > resp. ⊥ denote the
top resp. bottom element in the security lattice. Let $ ::= ? | !
and define π($cv) = π(c) and κ($cv) = κ(c). Since timing-
sensitive reasoning is beyond the scope of this paper, we
set π($�) = κ($�) = >. For termination-sensitive reasoning
in this framework, set π($?) = κ($?) = ⊥ and impose a
restriction similar to atemporal for termination actions.

The security labels express who can observe what. An
observer is associated a security level `. An `-observer is
capable of observing the presence (resp. content) of messages
on c if π(c) v ` (resp. κ(c) v `). Let s�` be the stream where,
component-wise, each action has been replaced with what an
`-observer observes in the action:

($cv .s)�` =

{ •.s�` , if π(c) 6v `
$cd.s�` , if π(c) v ` ∧ κ(c) 6v `
$cv .s�` , otherwise.

For instance, (?H0.?M1.!L2.!�ω)�L = •.?Md.!L2.•ω . Here (and
later), d is a constant. Let s1 '` s2 iff s1�` ' s2�`, and s1 ≈`
s2 iff s1�` ≈ s2�`. Similarly for traces.

B. Noninterference

The idea behind noninterference is as follows. Assume an
`-observer observes all he is privileged to observe. A process
is noninterfering if, based on `-observables, the `-observer
learns nothing he is not privileged to learn, i.e., unobservable
input does not interfere with observable behavior. Noninter-
fering processes are thereby not responsible for leaks (in our
possibilistic setting, this means any difference in observable
behavior must be attributable to nondeterministic choices).

To attribute a detected insecurity to the process under
scrutiny, we study its behavior under secure environments.
Typically, definitions of noninterference state that a process
exhibits observably equivalent behavior, under any pair of non-
interfering observably equivalent environments. In our setting,
this leads to a circularity, since environments are processes.
Previous work avoids this circularity by

a) using simpler environments for which noninterference and
observational equivalence are trivial [3], [19], [37],

b) defining observational equivalence on processes, and non-
interference as self-equivalence [12], [49], or

c) defining noninterference as invariance of observable be-
havior to insertion/deletion of unobservable input [25].

We find that none of these approaches can be applied directly
to our setting. Since compositionality is a main concern in this
paper, we need environments to be part of the computation
model, ruling out a). Since self-equivalences are bisimulation
relations, they are branching-time equivalences, rejecting e.g.
the following program plinear, since it can enter the “else”
branch, where it can leak information, even through it can
also always take the “then” branch on x, where no information
leaks. We therefore find b) too strict.
x = 0|1 ; out H x ; poll H h
if h = UNDEFINED then h = 0 end if
if x mod 2 = 1 then out L (0|1)
else out L (h mod 2) end if

Here, poll c x is a nonblocking input interacting with a
buffering context, similar to if-receive in [48]. If a c-input is
waiting in the buffer, consume it. Otherwise, write UNDEFINED
to x. Formally à la [42] (with X = UNDEFINED),

−
〈µ,poll c x〉 ¿cv−−� 〈µ[x 7→ v ], skip〉

p ¿cv−−� p′ @(t ′′.?cv ′) ≤ t

B?(t .?cv .t ′, p) !�−−� B?(t .t ′, p′)

p ¿cX−−−� p′ @(t ′.?cv) ≤ t

B?(t , p) !�−−� B?(t , p′)



Approaches based on c) are defined on traces, and have
similar problems as b) in that they reject the above program;
inserting ?H1 immediately after !�.!H0 in !�.!H0.!�k.!L0 makes
the subsequent !L0 impossible (since !H0 fixes x to 0).

What we desire is a property which stipulates that a process
can (by making the appropriate nondeterministic choices)
preserve the possibility of a sequence of observables, under
insertion of unobservable input during execution. To ensure
that a stream is not only possible due to the presence of
unobservable input, we require the above for streams which
contain no unobservable input, i.e., streams over

A` = O ∪ {?cv | π(c) v ` ∧ (κ(c) 6v ` =⇒ v = d)}.

Since a process cannot leak information if denied the oppor-
tunity to produce output, we focus on fair runs of processes.
We define the above as a coinductive predicate as follows.

Definition III.1. p R`-preserves the possibility of s0 after t
through s , preserve`,Rp,s0(t , s), is the largest predicate satisfying
each of the following.

1) ∀o ≤ s � ∃s ′ ∈ Aω` �

s0 R` t .o.s ′ ∧ p t.o.s′−−−−� ∧ preserve`,Rp,s0(t .o, s ′)

2) ∀i �` s � ∃s ′ ∈ Aω` �

s0 R` t .i .s ′ ∧ p t.i.s′−−−−� ∧ preserve`,Rp,s0(t .i , s ′)

3) ∀ĩ '` s � ∃s ′ ∈ Aω` , ī ≤ ĩ , o�

s0 R` t .̄i .o.s ′ ∧ p t .̄i.o.s′−−−−−� ∧ preserve`,Rp,s0(t .̄i .o, s ′) ♦

How is this definition invoked to state that p preserves the
possibility of the observables in a fair stream s0 for which
p s0−−�, under insertion of H input? If p is secure, then there is
a fair s ∈ Aω` for which p s−� and s0R` s . We then invoke the
definition with preserve`,Rp,s0(ε, s).

Definition III.2. p is R-noninterfering iff ∀` � ∀s ∈ SF(p)�

∃s ′ ∈ S(p) ∩ Aω` � s R` s ′ ∧ preserve`,Rp,s (ε, s ′). ♦

How does preserve`,Rp,s0(ε, s) state that p preserves the
possibility of the observables in s0? 1) corresponds to the
scenario where the environment feeds no input into p; to match
s0, p merely emits s , since we already have that s0 R` s
(s = o.s ′). 2) states what must hold when the environment
provides H input at any time (?cv �` ŝ holds for all ŝ , v and
c for which π(c) 6v v ) and when the next observable action
is an input; p must be able to choose a s ′ ∈ Aω` matching the
rest of s0. 3) states that when there are no more observable
output remaining to be matched, p can be scheduled fairly
while still preserving possibility of s0; when p is being fed a
stream of input, p can at some point cut into the (otherwise
infinite) stream of input ĩ after a (finite) trace of inputs ī ≤ ĩ
and produce an unobservable output o.

When devising our properties, we encountered three chal-
lenging scenarios which our properties needed to deal with to
guarantee eventuality of actions: i) scheduling, ii) high inter-
action loops, and iii) high output starvation. In i), since both p
and its environment can be the producer behind the kth action
in an interaction, p might only be able to choose a matching

s ′ if p produces the next message. However, the demand p
places on its possibilistic scheduling may conflict with the
demands of the environment. This is the case when both p and
its environment only preserve confidentiality if they each are
the producer behind the first message in the interaction. Having
one yield fully to the demands of the other makes the security
properties stipulate security for all schedulers, which implies
security under scheduler refinement [59]. While interesting, we
find this to be too conservative; we wish for our scheduler to be
possibilistic (and therefore a source of nondeterminism which
can conceal information leaks). In ii), future observables can
be starved as a result of either unfortunate scheduling, or H
input. To illustrate, consider e.g. the following process ploop.

i

!H0

?H0

i 6= ?H0

!L0

i , !�

After receiving ?H0, this process insists on outputting H0
before outputting L0. If the environment insists (to not leak)
on outputting H0 before receiving L0, action !L0 is deferred,
possibly indefinitely, as is possible when ploop interacts with
a variant of itself which first outputs H0. The process and
its environment here are engaged in a livelock, exhibiting
behavior reminiscent of a “hallway dance”, or more accurately,
an Alphonse-Gaston routine (“After you”, followed by a back-
and-forth “No, you first.” ad infinitum) [38]. In the presence
of high interaction loops, security must ensure that p can
eventually produce its next observable, regardless of what
environment p is run under. Dually, the environment must
tolerate receiving the next observable at any point in time, as
different processes under it can demand high interaction loops
terminated at different times. Thus 2) additionally guarantees
possible eventual termination of high interaction loops between
a secure p interacting with a secure environment (at the whim
of the producer of the next observable), addressing i) and ii).
Finally, 3) is designed to address iii), e.g., to ensure that after p
has produced all its observables, it can still be scheduled fairly.
Consider this example of high output starvation, pstarve.

!L0, i

?Md

?Md

!H0, i

Consider environments p1 = F?(!Mdω) and p2 = F?(!M0ω).
Then p1 |= pstarve can match ?M0ω fairly, while p2 |= pstarve

cannot; while pstarve
(?Md.!H0)ω−−−−−−−�, the first i �` (?Md.!H0)ω fed

to pstarve by p2 is i = ?M0, making the matching stream with
i as first action ?M0.(?Md.!H0)ω; compared to (?Md.!H0)ω , the
first output has been deferred. The only way for p2 |= pstarve

to match ?M0ω is to not produce output at all, thus starving
pstarve. 3) rejects programs of this nature.

Our “preservation-based noninterference” can be viewed
as a hybrid of b) and c). In contrast to b), we do not require
security to hold in all reachable states. In contrast to c), we do
not require that each s ∈ S(p) satisfies insert/delete conditions;
only that some s ′ R` s does, i.e. that p can make the right
nondeterministic choices to preserve the possibility of R`s .

Definition III.3. p ∈ PSNI iff p is '-noninterfering. ♦

Definition III.4. p ∈ PINI iff p is ≈-noninterfering. ♦



Definition III.4 is the first definition of PINI in a general
nondeterministic interactive setting. It differs from previous
PINI formalizations [3], [4], [12] in that input to the process is
not fixed before the process is run; rather, the environment is
permitted to adapt its input based on prior process output. Our
definition can be improved, however; consider pecho, a process
which outputs anything it receives in FIFO order (outputs !�
when its FIFO is empty), except when ?H0 is received; then
pecho immediately becomes F?(!�ω). Consider environments
p1 = !L0ω and p2 = !H0.!L0ω . Then p1 |= pecho

(?L0.!L0)ω−−−−−−�,
which is ≈`-matched by p2 |= pecho

?H0.!�ω−−−−−�. However, the
moment p2 |= pecho inputs twice after ?H0, ≈`-equivalence
with (?L0.!L0)ω is lost. Thus, in general, a p satisfying
Definition III.4 might have to starve the environment to ≈`-
match a stream. This is not unlike ID-security in [12], which
allows a reactive system to ignore an observable input ready
in the environment by diverging silently while reacting to a
previous input. While we could adjust our definition of ≈` to
cover the above scenario, the main reason we introduce PINI
is to study how it behaves under composition, and the adjusted
PINI would fail to compose in the same ways our PINI does.

PSNI is strictly stronger than PINI. This follows from
Definition III.2, Lemma II.5 and this program which, wrapped
in W ◦ B? ◦ Z, is in PINI \ PSNI.

in H h
if (h mod 2) = 0 then out L 0 end if

Lemma III.5. p ∈ PSNI =⇒ p ∈ PINI

Pt. 2) in Definition III.1 enables a simple proof technique
for guaranteeing eventuality of observable actions in an inter-
action: schedule the producer of the next observable. To see
this in action, see the proofs of Theorems III.10 and IV.3.

C. Noninterference Under Environments

To facilitate evaluation of the relative merits of our
preservation-based formalization of progress-(in)sensitive non-
interference, and to demonstrate the generality of our frame-
work, we give more conventional definitions of PSNI and PINI
under environments à la [16], [37], [42].

Definition III.6. p2 R`-simulates p1, iff

∀s1 ∈ SF(p1) � ∃s2 ∈ SF(p2) � s1 R` s2.

p1, p2 are R`-equivalent, p1 R` p2, iff, p1 R`-simulates p2

and p2 R`-simulates p1. ♦

Definition III.7. p2 R`-E-simulates p1, iff

∀p′1, p′2 ∈ PSNI � p′1 '` p′2 =⇒
∀s1 ∈ SF � p′1 |= p1

s1−−� =⇒
∃s2 ∈ SF � p′2 |= p2

s2−−� ∧ s1 R` s2. ♦

Definition III.8. p ∈ PSNIE iff ∀` � p '`-E-simulates p. ♦

Definition III.9. p ∈ PINIE iff ∀` � p ≈`-E-simulates p. ♦

We use PSNI environments in the definition of PINIE be-
cause otherwise, PINIE becomes too conservative. To see this,
say we defined PINIE by relaxing '` to ≈` and environment
assumption PSNI to PINI in the definition of PSNIE. Now
consider the following process pPINIE ∈ PSNI.

i

?L1

i
!L1

!L0

!�, i

Consider environments p1 = F?(!L1.!�ω) and p2 = F?(!�ω), for
which we have p1, p2 ∈ PINI and p1 ≈L p2. However, while
p1 |= pPINIE

?L1.!L1.!�ω−−−−−−−�, p2 |= pPINIE cannot fairly either match
these observables or remain silent; eventually, pPINIE performs
!L0, and so, for any stream s ∈ SF for which p2 |= pPINIE

s−�,
s 6≈` ?L1.!L1.!�ω . So, while replacing '` in PSNIE with
≈` weakens the security definition, relaxing the assumptions
on the environments to PINI strengthens it immensely; the
behavior of a process would need to be invariant to L input as
well as H input to satisfy PINIE.

For our preservation-based definitions to be useful on their
own, they need to be stronger than the standard environment-
based definitions; then we will know processes satisfying our
preservation-based definitions are safe against all attacks which
processes satisfying the environment-based definition are safe
against. This is the case; the proof is in the appendix.

Theorem III.10. p ∈ PSNI =⇒ p ∈ PSNIE

Theorem III.11. p ∈ PINI =⇒ p ∈ PINIE

We suspect the reverse implication of these theorems to
be false. To show that p satisfies the constraint imposed by
Definition III.1 pt. 2) using assumption p ∈ PINIE, it seems
we need to propose an environment which outputs a different
observable if it receives an unobservable first. However, such
an environment is not PSNI (resp. PINI). These theorems give
us a sense of assurance, however; if a property is too weak, say,
P = {p ∈ LTSIO | p is interactive}, then p ∈ P 6=⇒ p ∈ PE,
since PE places demands on p beyond p ∈ P.

For similar reasons as for Lemma III.12, PSNIE is strictly
stronger than PINIE.

Lemma III.12. p ∈ PSNIE =⇒ p ∈ PINIE

Finally, we consider to which extent PSNIE (resp. PINIE)
permits processes to starve the environment to preserve con-
fidentiality. A process starving the environment is exerting
control over the possibilistic scheduling of processes, which
violates our desire for processes to be autonomous. Therefore,
ideally, PSNIE and PINIE should reject processes which might
need to starve the environment to preserve confidentiality.
We say p produces s fairly under p′, p′ |=F p s−�, iff
p′ |= p s−� and s−1 ∈ SF. Now let PSNIEF (resp. PINIEF) be
defined as PSNIE (resp. PINIE) with “|=” replaced by “|=F”.
It turns out that PSNIEF and PSNIE are equivalent, and thus,
that p ∈ PSNIE preserves interaction fairness when matching
behaviors. However, as hinted at earlier, due to the way we
formalized PINIE, p ∈ PINIE may need to starve p2 '` p1 to
match a behavior that p1 |= p can perform.

Theorem III.13. p ∈ PSNIEF ⇐⇒ p ∈ PSNIE.

Theorem III.14. p ∈ PINIEF 6⇐⇒ p ∈ PINIE.
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p

Fig. 1. Loop Combinator

D. Contrast to Trace-based Properties

Finally, to emphasize the novelty of our security properties,
we demonstrate that they rule out classes of attacks which
trace-based security properties, classically considered in work
on compositionality in event systems [28], [32], [57], do not
guarantee protection from. Consider the following program,
which we refer to as the extortionist.

repeat poll H h until h 6= UNDEFINED
out L 0

This program, turned into the process pextort by buffering
input, will repeatedly attempt a read on H in a nonblocking
manner from its buffering context; if no H input is available
in the context, then the program outputs L0.

We have F?(!Hω) |= pextort
(!�.?H0)ω−−−−−−�. However, we

have that F?(!�) |= pextort cannot match this behavior; thus,
pextort 6∈ PSNIE, thus pextort 6∈ PSNI. Alternatively, since Aω`
has no fair stream matching this behavior, pextort 6∈ PSNI.

However, pextort does, for instance, satisfy forward cor-
rectability [25]. This is due to the fact that forward correctabil-
ity is defined in terms of a trace semantics, and therefore
cannot properly deal with the definite (non)eventuality of !L0.
Pick a t ∈ T(pextort). If t has the L output, then for any
t = t ′.t ′′ and ?Hv , there will be a t̂ ′′ with no H input for
which t 'L t ′.?Hv .t̂ ′′. Similarly if a H input is deleted. If t
does not have the L output, then regardless of whether a H
input is inserted or deleted, setting t̂ ′′ = ε will 'L-match t .

IV. COMPOSITIONAL SECURITY

To study how our security properties behave under compo-
sition, we present a minimal combinator language for building
systems from parts. The core of this language is complete in
the sense that arbitrary wirings between components can be
constructed, yet structured in the sense that the possible routes
that data can take in the composed system are clearly defined
by the combinators used (as opposed to being partially defined
by the (un)willingness of components to synchronize on certain
channels at different times).

A. First Attempt

A minimal approach to enable two processes in a composed
system to interact is to introduce a loop combinator dc,
illustrated in Figure 1. This is the approach taken in functional
reactive programming [36], where loops and simple products
(e.g. ⊕ in Figure 3) enable modeling of arbitrary wirings.

p ::= . . . | dpc

In dpc, output from p is sent to the environment, and immedi-
ately, a copy of said output is sent into p as input. Any input
to dpc is handed to p. The semantics of dc is as follows.

p ~ p′
p

p′
r〈p〉
pr r

Fig. 2. Core Combinators

p o−� p′ p′ o−1

−−−� p′′

dpc o−� dp′′c
dc!

p i−� p′

dpc i−� dp′c
dc?

Convenient as this combinator is, it enables a process to engage
in a high interaction loop with itself. While it is possible to
schedule ploop ∈ PSNI under an arbitrary environment s.t.
!L0 eventually occurs, this is not the case for dploopc; while
F?(!L0.!�ω) |= dploopc ?L0.!L0.!�ω−−−−−−−�, F?(!H0.!L0.!�ω) |= dploopc
cannot match this behavior; to do ?L0 without producing !L0,
ploop must consume ?H0. This sends ploop to its leftmost state,
whereto it returns directly after performing !H0, as the next
action of ploop is invariably !H0. While this poses no problems
for PINI (since a high-interaction-looping process emits infinite
silence), dc removes the degree of control a wrapped process
needs to have for PSNI to be preserved under dc.
Theorem IV.1. p ∈ PINI =⇒ dpc ∈ PINI.

Theorem IV.2. p ∈ PSNI 6=⇒ dpc ∈ PSNI.

B. Core Combinators

The issue with dc is that it can prevent the source of an
output from making progress on its observable productions,
by immediately following each output it makes with an input
sent directly to the source. Therefore, if our combinators are
to compose under PSNI, they need to at most enable output
to reach any part of the system except its source, in one step
of the whole system. We provide two combinators which we
deem to be core combinators, sufficient to construct arbitrary
such wirings: “and”, and “route”.

p ::= . . . | p ~ p | r〈p〉

These each take (possibly compound) interactive LTSIO as pa-
rameter and yield a compound interactive LTSIO. The structure
that they impose is illustrated in Figure 2.

1) and: The and combinator produces a composite system
from parts. An input to p1 ~ p2 is sent to both p1 and p2,
while output from p1 ~ p2 comes from exactly one of p1

and p2, and is copied into the other as input, thus exhibiting
feedback. This combinator is the enabler of communication,
functioning as the “glue” with which we wire together larger
systems from parts. Our ~ combinator most closely resembles
the (full, arbitrary, hook-up) binary composition typically used
in event-based formalisms [28], or alternatively, a broadcasting
variant [41] of parallel composition in process algebra [19].
The semantics of ~ is as follows. It is clear that ~ is
associative and commutative.

pL
o−� p′L pR

o−1

−−−� p′R

pL ~ pR
o−� p′L ~ p′R

~!
L

pR
o−� p′R pL

o−1

−−−� p′L

pL ~ pR
o−� p′L ~ p′R

~!
R

pL
i−� p′L pR

i−� p′R

pL ~ pR
i−� p′L ~ p′R

~?



2) router: The router combinator 〈〉 wraps an LTSIO in a
context which routes messages. The routing is defined by a
router function r : A→ A satisfying r(I) ⊆ I, r(O) ⊆ O and
r($�) = $�. Then in r〈p〉, an output o leaving p is replaced
with r(o), and when an input i arrives at r〈p〉, r(i) is received
by p. Whereas ~ is an enabler of flows, where a composed
system wires each output to each component (save the output
source), 〈〉 can be used to control which underlying component
receive which input, and to hide certain output from certain
components. One example of the use of r is to map input
actions on a particular channel (i.e., carrying high data) to ?�
to put the channel out of scope of the wrapped process. The
semantics of 〈〉 are the following.

p r(i)−−−� p′

r〈p〉 i−� r〈p′〉
〈〉?

p o−� p′

r〈p〉 r(o)−−−� r〈p′〉
〈〉!

C. Point-to-Point Variant

Instead of our broadcasting message-passing semantics,
one could alternatively opt for one which, instead of sending
a message along both branches of a split arrow, sends it along
exactly one of them. This yields a point-to-point message-
passing semantics (which is still asynchronous), represented
by the “xor” combinator.

p ::= . . . | p � p

1) xor: The xor combinator � is similar to parallel com-
position in point-to-point message-passing formalisms [19].
While the component wiring in � is the same as for ~,
the message-passing semantics differs notably: Input goes to
exactly one component, and output goes exclusively to either
the other component, or the environment. The semantics of �
is as follows. It is clear that � is associative and commutative.

pL
o−� p′L pR

o−1

−−−� p′R

pL � pR
!�−−� p′L � p′R

�!R
L

pL
o−� p′L pR

?�−−� p′R

pL � pR
o−� p′L � p′R

�!E
L

pR
o−� p′R pL

o−1

−−−� p′L

pL � pR
!�−−� p′L � p′R

�!L
R

pR
o−� p′R pL

?�−−� p′L

pL � pR
o−� p′L � p′R

�!E
R

pL
i−� p′L pR

?�−−� p′R

pL � pR
i−� p′L � p′R

�?
L

pR
i−� p′R pL

?�−−� p′L

pL � pR
i−� p′L � p′R

�?
R

Using � and 〈〉 as the combinator core would be viable in a
synchronous concurrency model; there, input is only delivered
to an intended receiver. However, in a setting where each
component always waits for input on every channel, � non-
deterministically picks a component to receive the input. The
input can therefore be sent along a branch in the composition
which is not intended to receive the input (a constraint modeled
using a router which maps it to ?�) and therefore never reach
the intended target. We therefore find that � is not a good fit
in our framework – at least not as a replacement for ~. There
are some merits to including � in a language based on our
combinator core, e.g. if, at the combinator level, one wishes
to model nondeterministic dispatching of input to servers.

D. Compositionality

We now explore the compositionality of our security prop-
erties, to then give a language of secure combinators for

building secure systems from secure parts. While security
properties are known to be fragile under composition [32],
the proof technique arising from the design of our security
properties yields positive results.

We consider compositionality of both ~ and � since
they cannot be easily defined in terms of each other; ~ and
〈〉 have no source of nondeterminism needed to model the
nondeterministic behavior of � (although this can be supplied
by an LTSIO), and no combination of � and 〈〉 can guarantee
eventual delivery between any pair of components like ~ can.

1) and: We begin with the most important combinator, ~.
It composes under PSNI.

Theorem IV.3. pL, pR ∈ PSNI =⇒ pL ~ pR ∈ PSNI.

The proof of this is as follows. For any pL~pR
s−�, we must

show existence of a pL ~ pR
s′−−� for which s ′ ∈ Aω` , s '` s ′

and preservepL~pR,s
(ε, s ′). Since pL ~ pR

s−�, there are some
sL, sR for which pL

sL−−�, pR sR−−� and sL~ sR
s−�. Indeed, for any

nth action aL, aR and a in sL, sR and s respectively, if a = i
(environment input) for some i , then aL = i = aR, and if a = o
(component output), then either aL = o and aR = o−1, or vice
versa. Since pL, pR ∈ PSNI, there exist pL s′L−−� and pR

s′R−−� for
which s ′L, s

′
R ∈ Aω` , sL '` s ′L, sL '` s ′L, preservepL,sL

(ε, s ′L) and
preservepR,sR

(ε, s ′R).

We obtain s ′ by “zipping” s ′L and s ′R in a manner guided
by the observables in sL and sR (observables in both are the
same as observables in s modulo direction) as follows:

Assume for ŝL, ŝR ∈ Aω` , tL, tR, t that sL '` tL.ŝL,
sR '` tR.ŝR, pL

tL.ŝL−−−�, pR
tR.ŝR−−−�, preservepL,sL

(tL, ŝL),
preservepR,sR

(tR, ŝR), t ∈ A∗` , t �` s , and tL ~ tR
t−�.

We show existence of ŝ ′L, ŝ
′
R ∈ Aω` , t ′L, t ′R, t ′ for which sL '`

t ′L.ŝ
′
L, sR '` t ′R.ŝ

′
R, pL

t′L.ŝ
′
L−−−�, pR

t′R.ŝ
′
R−−−�, preservepL,sL

(t ′L, ŝ
′
L),

preservepR,sR
(t ′R, ŝ

′
R), t ′ ∈ A∗` , t ′ �` s , t ′L ~ t ′R

t′−−�, tL < t ′L,
tR < t ′R, t < t ′, and ŝL, ŝR 6'` ε =⇒ t 6'` t ′. (*).

Assume oL �` ŝL for some oL 6'` ε (proof for
oR �` ŝR case obtained by swapping L and R). Then
ŝL = ōL.oL.ŝ

′′
L for some ōL '` ε and ŝ ′′L . Through re-

peated application of Def. III.1 pt. 1), sL '` tL.ōL.oL.ŝ
′′
L ,

pL
tL.ōL.oL.ŝ

′′
L−−−−−−−�, and preservepL,sL

(tL.ōL.oL, ŝ
′′
L ). Through re-

peated application of Def. III.1 pt. 2), we have some
ŝ ′′R for which sR '` tR.ōL

−1.oL
−1.ŝ ′′R , pR

tR.ōL
−1.oL

−1.ŝ′′R−−−−−−−−−−�,
and preservepR,sR

(tR.ōL
−1.oL

−1, ŝ ′′R ). Further, we have that
tL.ōL.oL ~ tR.ōL

−1.oL
−1 t.ōL.oL−−−−−� and pL ~ pR

t.ōL.oL−−−−−�. Set
ŝ ′L = ŝ ′′L , ŝ ′R = ŝ ′′R , t ′L = tL.ōL.oL, t ′R = tR.ōL

−1.oL
−1, and

t ′ = t .ōL.oL, and we get (*).

Assume i �` ŝL and i �` ŝR for some i 6'` ε and
i ∈ A`. Through single application of Def. III.1 pt. 2),
we have for some ŝ ′′L that sL '` tL.i .ŝ

′′
L , pL

tL.i.ŝ
′′
L−−−−−�, and

preservepL,sL
(tL.i , ŝ

′′
L ). Through single application of Def. III.1

pt. 2), we have for some ŝ ′′R that sR '` tR.i .ŝ ′′R , pR tR.i.ŝ
′′
R−−−−−�, and

preservepR,sR
(tR.i , ŝ

′′
R ). Further, we have that tL.i ~ tR.i

t.i−−�
and pL ~ pR

t.i−−�. Set ŝ ′L = ŝ ′′L , ŝ ′R = ŝ ′′R , t ′L = tL.i , t
′
R = tR.i ,

and t ′ = t .i , and we get (*).

Assume ŝL '` ŝR '` ε (equally valid proof obtained
by swapping L and R in the following). Then ŝL = oL.ŝ

′′
L



for some oL '` ε and ŝ ′′L . Through single application of
Def. III.1 pt. 1), we have that sL '` tR.oL.ŝ

′′
L , pL

tL.oL.ŝ
′′
L−−−−−�,

and preservepL,sL
(tL.oL, ŝ

′′
L ). Through single application of

Def. III.1 pt. 2), we have for some ŝ ′′R that sR '` tR.oL−1.ŝ ′′R ,
pR

tR.oL
−1.ŝ′′R−−−−−−−�, and preservepR,sR

(tR.oL
−1, ŝ ′′R ). Further, tL.oL ~

tR.oL
−1 t.oL−−−� and pL ~ pR

t.oL−−−�. Set ŝ ′L = ŝ ′′L , ŝ ′R = ŝ ′′R ,
t ′L = tL.oL, t ′R = tR.oL

−1, and t ′ = t .oL, and we get (*).

Recall pL, pR ∈ PSNI, pL s′L−−�, pR s′R−−�, s ′L, s
′
R ∈ Aω` , sL '` s ′L,

sL '` s ′L, preservepL,sL
(ε, s ′L) and preservepR,sR

(ε, s ′R). Now (*)
gives us traces t0 < t1 < . . . s.t. pL ~ pR

tj−−� and tj ∈ A∗`
for all j ≥ 0. Let s ′ be the fixed point of these traces. Then
pL ~ pR

s′−−� and s ′ ∈ Aω` , s '` s ′.

To establish preservepL~pR,s
(ε, s ′), we proceed as follows.

Assume for ŝL, ŝR ∈ Aω` , tL, tR, t that sL '` tL.ŝL, sR '` tR.ŝR,
pL

tL.ŝL−−−�, pR
tR.ŝR−−−�, preservepL,sL

(tL, ŝL), preservepR,sR
(tR, ŝR),

ŝ ∈ Aω` , s '` t .ŝ , and pL ~ pR
t.ŝ−−�.

To prove preservepL~pR,s
(t , ŝ), we must show for each of

Def. III.1 pt. 1)-3) that there exist ŝ ′ ∈ Aω` and t ′ satisfying
structural requirements imposed by the pt such that s '` t ′.ŝ ′
and pL ~ pR

t′.ŝ′−−−�, and that there exist ŝ ′L, ŝ
′
R ∈ Aω` , t ′L, and

t ′R for which sL '` t ′L.ŝ
′
L, sR '` t ′R.ŝ

′
R, pL

t′L.ŝ
′
L−−−�, pR

t′R.ŝ
′
R−−−�,

preservepL,sL
(t ′L, ŝ

′
L), preservepR,sR

(t ′R, ŝ
′
R) and t ′L ~ t ′R

t′−−�. (+).

For pt. 1), assume o ≤ ŝ for some o. Then either o ≤ ŝL
or o ≤ ŝR. Assume wlg that o ≤ ŝL (and that o ≤ ŝ came
from pL during construction of s ′). Since preservepL,sL

(tL, ŝL),
we have through single application of Def. III.1 pt. 1) that for
some ŝ ′L, sL '` tL.o.ŝ ′L, pL tL.o.ŝ

′
L−−−−�, and preservepL,sL

(tL.o, s
′′
L ).

Since preservepR,sR
(tR, ŝR), we get through single application

of Def. III.1 pt. 2) some ŝ ′′R for which sR '` tR.o
−1.ŝ ′′R ,

pR
tR.o
−1.ŝ′′R−−−−−−�, and preservepR,sR

(tR.o
−1, ŝ ′′R ). Further, we have

that tL.o~tR.o
−1 t.o−−� and pL~pR

t.oL−−−�. Set ŝ ′L = ŝ ′′L , ŝ ′R = ŝ ′′R ,
t ′L = tL.o, t ′R = tR.o

−1, t ′ = t .o, and use the above-described
approach to obtain ŝ ′ from these, and we get (+).

For pt. 2), assume i �` ŝ for some i , Then i �` ŝL and
i �` ŝR. By preservepL,sL

(tL, ŝL) and preservepR,sR
(tR, ˆstrR), we

get through single application of Def. III.1 pt. 2) some ŝ ′L, ŝ ′R
for which sL '` tL.i .ŝ ′L, sR '` tR.i .ŝ ′R, pL tL.i.ŝ

′
L−−−−�, pR tR.i.ŝ

′
R−−−−�,

preservepL,sL
(tL.i , ŝ

′
L), and preservepR,sR

(tR.i , ŝ
′
R). Set ŝ ′L = ŝ ′′L ,

ŝ ′R = ŝ ′′R , t ′L = tL.i , t
′
R = tR.i , t

′ = t .i , and use the above-
described approach to obtain ŝ ′ from these, and we get (+).

For pt. 3), assume ĩ '` ŝ for some ĩ . By
preservepL,sL

(tL, ŝL) (the same argument with L and R swapped
also holds), we get through single application of Def. III.1
pt. 3) some ī , o and ŝ ′L for which ī ≤ ĩ , sL '` tL .̄i .o.ŝ

′
L,

pL
tL .̄i.o.ŝ

′
L−−−−−� and preservepL,sL

(tL .̄i .o, ŝ
′
L). By repeated appli-

cation of pt. 2) for each i in ī and for o−1, we have
for some ŝ ′R that sR '` tR .̄i .o

−1.ŝ ′R, pR
tR .̄i.o

−1.ŝ′R−−−−−−−� and
preservepR,sR

(tR .̄i .o
−1, ŝ ′R). Set ŝ ′L = ŝ ′′L , ŝ ′R = ŝ ′′R , t ′L = tL .̄i .o,

t ′R = tR .̄i .o
−1, t ′ = t .̄i .o, and use the above-described

approach to obtain ŝ ′ from these, and we get (+).

Thus preservepL~pR,s
(ε, s ′), which completes this proof.

Furthermore, it turns out that PINI composes under ~, if
we e.g. change the way ŝ ′L and ŝR are zipped to form s ′ such
that if one runs out of observables, say, s ′L, then the rest of s ′

is set to the rest of s ′L.

Corollary IV.4. pL, pR ∈ PINI =⇒ pL ~ pR ∈ PINI.

2) xor: The proof that PSNI and PINI compose under �
is similar to the above “zip-and-preserve” proof of compo-
sitionality of ~. Since environment input does not enter both
components, and since output from a component does not both
go to the environment and the other component, the zipping
procedure consults s in addition to ŝL and ŝR since s tells us
where observables in sL and sR came from and went to.

Corollary IV.5. pL, pR ∈ PSNI =⇒ pL � pR ∈ PSNI.

Corollary IV.6. pL, pR ∈ PINI =⇒ pL � pR ∈ PINI.

3) route: Since a router can route any message to any
channel, and change values in messages, a router has the
capacity to reveal the presence of H-presences message or
values in H-content messages. However, as long as a router
function never moves information down in the security lattice,
wrapping a secure process in it yields a secure process.

Definition IV.7. r is `-secure iff ∀c, c1, v , v1�

r($cv) = $c1v1 ∧ κ(c) 6v ` =⇒

• π(c)v ` =⇒ ∀v ′, c2, v2 � r($cv ′) = $c2v2 =⇒ c1 = c2

• π(c) 6v ` =⇒ π(c1) 6v `.

We say r is secure if it is `-secure for all `. ♦

Compositionality of 〈〉 is immediate from Definition III.1.

Corollary IV.8. p ∈ PSNI =⇒ r〈p〉 ∈ PSNI for secure r.

Corollary IV.9. p ∈ PINI =⇒ r〈p〉 ∈ PINI for secure r.

E. Fairness

As we have discussed, autonomy, and therefore fairness, is
a key feature of interactive LTSIO. However, the proof we just
saw does not rule out the possibility of starvation. For instance,
in the zipper given in the proof of ~, when ŝL has an infinite
number of observables and ŝR has no observable output, the
zipper can ignore the remainder of ŝR. Also, the PINI zipper
ignores the remainder of ŝR when ŝL has no more observables.
The central question here is whether our security properties
require starvation of components to remain compositional.
This prompts us to study fair combinators. What we find is that
whereas PSNI composes freely assuming fairness, PINI relies
fundamentally on lack of fairness to be compositional for even
simple product compositions.

1) Fair Composition: A fair combinator permits only fair
behaviors, i.e., ones which do not starve components, always
allowing each to eventually make progress on its outputs.

Definition IV.10. For pL ~ pR
s−�, s is ~-fair, iff, ∀t ≤ s�

∃tL, tR, oL, oR, sL, sR, pLL, pRL, pLR, pRR, p′LL, p′LR, p′RL, p′RR�
s = t .tL.oL.sL ∧ s = t .tR.oR.sR ∧
pL ~ pR

t.tL−−−� pLL ~ pRL
oL−−� p′LL ~ p′RL

sL−−� ∧
pL ~ pR

t.tR−−−� pLR ~ pRR
oR−−� p′LR ~ p′RR

sR−−� ∧
pLL

oL−−� p′LL ∧ pRL
oL
−1

−−−� p′RL ∧
pRR

oL−−� p′RR ∧ pLR
oL
−1

−−−� p′LR.



pL ~F pR
s−� iff pL ~ pR

s−� and s is ~-fair. ♦

We let �F be defined in a similar manner.

2) PSNI Composes Fairly: Modifying the zip-and-preserve
proof above for the compositionality of PSNI under ~F and
�F is easy; when ŝR runs out of observable output, we zip in
such a way that ŝ ′ takes turns in pulling an output from ŝR and
ŝL into t , irrespective of when and how many input appears
before the outputs. We therefore have the following.

Corollary IV.11. pL, pR ∈ PSNI =⇒ pL ~F pR ∈ PSNI.

Corollary IV.12. pL, pR ∈ PSNI =⇒ pL �F pR ∈ PSNI.

3) PINI Composes Unfairly: However, the same cannot
be said for PINI; it fails to be preserved under even simple
fair products. The way in which PINI fails to compose is
not due to the simplification we made of the definition of
PINI discussed in Section III-B. We therefore maintain that, in
the interactive setting, PINI relies fundamentally on unfairness
to be preserved under composition, making it a poor target
property for reasoning about security of autonomous processes.

Theorem IV.13. pL, pR ∈ PINI 6=⇒ pL ~F pR ∈ PINI.

To prove this, we give two programs which satisfy PINI
which fair composition fails to be PINI. It illustrates how a
progress-difference in one component can translate into an
explicit flow under composition. Consider this program pA,

in M h
if h mod 2 = 0 then out L 0 end if

and the following program pB.
out L 1

Wrapped in W ◦ B? ◦ Z, both satisfy PINI. In fact, pB satisfies
PSNI. Now consider environments p1 = F?(!M0.!�ω) and
p2 = F?(!M1.!�ω). Then we have that p1 |= pA ~F pB can
match ?M0.!L0.!L1. However, p2 |= pA~F pB cannot match this
behavior; pA produces no observables, and the composition
cannot postpone the observable pB wishes to perform indefi-
nitely, so at best, p1 |= pA ~F pB can match ?M1.!L1, which is
not ≈`-equivalent to ?M0.!L0.!L1. Thus pA ~F pB 6∈ PINIE. and
thus, pA ~F pB 6∈ PINI.

This same counterexample shows PINI also fails to com-
pose under �F.

Corollary IV.14. pL, pR ∈ PINI 6=⇒ pL �F pR ∈ PINI.

While PINI may be justifiable if it composes under simpler
combinators, it turns out that PINI fails to compose fairly even
under products and cascades, as we will see in Section V-B.
Finally, pB ∈ PSNI. This means that even if a process is the
only PINI process in a composition with PSNI processes, it
cannot be guaranteed that the composition even satisfies PINI.
The only way we can be sure of this in general is if each PINI
process operates in a part of the security lattice disjoint from
where all other processes operate, as then, varied presence of
output by PINI components will not interfere with the behavior
of the other components.

For these reasons, we deem PINI unfit for reasoning about
security of autonomous processes.

V. LANGUAGE OF SECURE COMBINATORS

To showcase the generality of our combinator core and
compositionality results, we give an rich language of com-
binators with which to build secure systems from secure
parts. Since the combinators are implemented in terms of
core combinators, they all compose under PSNI and PINI, and
compose fairly under PSNI.

A. Derived Combinators

Figure 3 contains the full set of binary combinators which,
for each component, has a path from input, through it,
to output. Some of them appear regularly in literature on
compositionality of security properties, e.g. product, (relaxed)
cascade and feedback [28], [32], [56]. We show how these, and
other, combinators can be implemented in terms of our core
combinators. For comparison, we have placed their operational
semantics in the appendix.

1) Relaxed Cascade Feedback: This combinator, denoted
⊗, behaves like ~, except that input to the composition is
only delivered to the left component in the composition. The
combinator can therefore be seen as a relaxed relaxed cascade.
Using our combinators, we can implement ⊗ as

pL ⊗ pR = rE〈rL〈pL〉~ rR〈pR〉〉,

where

rE(i) = iE rL(o) = oL rR(o) = oR
rE(oL) = o rL(iE) = i rR(iE) = ?�
rE(oR) = o rL(iR) = i rR(iL) = i .

Here, aX is a which message is labeled X (e.g. by partitioning
C or V). The label expresses who is the producer behind a;
E is the environment, L is pL and R is pR. Thus, for instance,
rR(iE) = ?� expresses that pR should not receive a message
that originated from the environment.

2) Relaxed Cascade: This combinator, denoted ;, is a
relaxation of cascade (i.e., sequential) composition often con-
sidered in work in compositionality. Like in a cascade, input to
a relaxed cascade enters only the first component, and output
from the second component is sent only to the environment.
However, output from the first component is replicated and sent
both to the environment and the second component. Using our
core, we can implement ; as

pL ; pR = rE〈rL〈pL〉~ rR〈pR〉〉,

where

rE(i) = iE rL(o) = oL rR(o) = oR
rE(oL) = o rL(iE) = i rR(iE) = ?�
rE(oR) = o rL(iR) = ?� rR(iL) = i .

3) Cascade: Also known as sequential composition, com-
binator 	 is a basic combinator typically seen as a primitive
in various combinator formalisms (e.g. [36]). Input entering
a cascade enters the first component only, output from the
first component enters the second component only, and output
from the second component becomes the output of the cascade.
Using our core, we can implement 	 as

pL 	 pR = rE〈rL〈pL〉~ rR〈pR〉〉,
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where

rE(i) = iE rL(o) = oL rR(o) = oR
rE(oL) = !� rL(iE) = i rR(iE) = ?�
rE(oR) = o rL(iR) = ?� rR(iL) = i .

4) Product: This combinator, denoted ⊕, behaves like ~
without feedback (or alternatively, like parallel composition
without sharing [8]). Such product compositions are frequently
considered in work on compositionality (e.g. [28], [42]) and
taken as a primitive in combinator formalisms (e.g. [36]).
Using our combinators, we can implement ⊕ as

pL ⊕ pR = rE〈rL〈pL〉~ rR〈pR〉〉,
where

rE(i) = iE rL(o) = oL rR(o) = oR
rE(oL) = o rL(iE) = i rR(iE) = i

rE(oR) = o rL(iR) = ?� rR(iL) = ?�.

5) Feedback: A specialization of ⊗, this combinator, de-
noted }, isolates the right-component, making it interact only
with the left component. This is useful for modeling interaction
with a closed system. We implement } as

pL } pR = rE〈rL〈pL〉~ rR〈pR〉〉,
where

rE(i) = iE rL(o) = oL rR(o) = oR
rE(oL) = o rL(iE) = i rR(iE) = ?�
rE(oR) = !� rL(iR) = i rR(iL) = i .

6) Buffered Loop: Placing a FIFO as the right component
of } yields a buffered loop combinator, denoted d·U. To see
this, let pF = W(F(ε)), where F is defined by F(ō) i−� F(ō.i−1)
and F(o.ō) o−� F(ō). Using this process, we can implement the
buffered loop combinator as follows.

dpU = p } pF.

This loop combinator avoids the compositionality issues dc
has by storing loop messages in the FIFO pF (which p can
consume from at its leisure), instead of jamming them directly
into p. This ensures that p can make progress on its outputs.

7) Generator: Any interactive LTSIO can be used as a
source of information / input by never delivering input to it.
We define the generator combinator [·〉 as

[p〉 = rdrop〈p〉,

where rdrop(i) = ?� and rdrop(o) = o. When used in
conjunction with the binary combinators in Figure 3, we
obtain three new combinators for introducing information into
a system. These are p ⊕ [p′〉 (p′ streams to the environment),
p } [p′〉 (p′ streams to p) and p ⊗ [p′〉 (p′ streams to both),
the last of which can be illustrated as follows.

p′
p

While for rmute(i) = i and rmute(o) = !�, one might consider
including rmute〈·〉 as a combinator, we find that for any binary
combinator�, p�rmute〈p′〉 behaves either as p or as rmute〈p′〉
(and rmute〈p′〉 is semantically equivalent to F?(!�ω)).

B. Compositionality

Since all of the combinators presented in Figure 3 are
specializations of ~ and 〈〉, we have for all of them, and
their counterparts based on � instead of ~, the following
compositionality properties.

Corollary V.1. For each binary combinator � in Figure 3,

pL, pR ∈ PINI =⇒ pL � pR ∈ PINI,

pL, pR ∈ PSNI =⇒ pL � pR ∈ PSNI,

pL, pR ∈ PSNI =⇒ pL �F pR ∈ PSNI.

For each corresponding operator � based on �, the same holds.

For d·U, and its counterpart based on �,

p ∈ PINI =⇒ dpU ∈ PINI,

p ∈ PSNI =⇒ dpU ∈ PSNI,

p ∈ PSNI =⇒ dpUF ∈ PSNI.



For [·〉,
p ∈ PINI =⇒ [p〉 ∈ PINI,

p ∈ PSNI =⇒ [p〉 ∈ PSNI.

While the above corollary implies that any composite
system consisting of PSNI components and combinators in
Figure 3 satisfies PSNI regardless of fairness, the same cannot
be said about PINI. When fairness is assumed, PINI fails to
compose for even simple combinators; the counterexample
in the proof of Theorem IV.13 also applies to products ⊕F

and �F, and we have pointed out that PINI does not behave
well under cascade 	F (see our rationale for considering PSNI
environments when defining PINIE in Section III-C).

Corollary V.2. For each 4 ∈ {⊕,�,	},
pL, pR ∈ PINI 6=⇒ pL 4F pR ∈ PINI.

C. Building Secure Systems From Parts

By the above result, we now have a rich toolset for building
secure wholes from secure parts. Large systems are often
developed in a modular manner, in different programming
languages, and once deployed, run distributed over a network.
Our combinators facilitate end-to-end security, and a divide-
and-conquer approach to building large secure systems. Parts
can be proven secure by use of language-based or language-
independent enforcement mechanisms that target our security
properties. Once the parts are proven secure, he have that the
whole, assembled using our combinators, is secure. Combi-
nators can be used to model the network topology (how the
parts are “hard-wired” or nested), while routers can express
data-dependent traffic routing in the network.

The combinators and our system model can also be used
to formalize the concurrency semantics in a programming lan-
guage, like Erlang. Furthermore, by proposing suitable primi-
tive interactive LTSIO, our combinators can be a programming
language for writing asynchronous message-passing systems.
One could, say, replace 〈〉 with 	 as a primitive, if the routing
delay this introduces at the semantics level is not problematic.
However, for such a language to be expressive, combinators
for programmatically changing the wiring of components (e.g.
switches in functional reactive programming [36] and name-
passing in process algebra [22]) should be introduced.

VI. RELATED WORK

To aid in understanding the relative merits of the various
models of interaction we are about to discuss, we classify
LTSIO based on the interaction behavior they exhibit.

Definition VI.1 (LTSIO classification). p is

1) input value neutral iff ∀t , p′ � p t−� p′ =⇒
(∃?cv � p′ ?cv−−�) =⇒ ∀v ′ � p′ ?cv ′−−−�.

2) input neutral iff ∀t , p′ � p t−� p′ =⇒
(∃i � p′ i−�) =⇒ ∀i ′ � p′ i′−�.

3) reactive iff ∀t , p′ � p t−� p′ =⇒
(∃i � p′ i−�) =⇒ (@i ′, i ′′ � p′ i′.i′′−−−�) ∧ (@o � p′ o−�)

4) productive iff ∀t , p′ � p t−� p′ =⇒
∃a � p′ a−�.

5) internally deterministic iff ∀t , p′ � p t−� p′ =⇒

∀a, p′1, p′2 � p′ a−� p′1 ∧ p′ a−� p′2 =⇒ p′1 = p′2
6) input deterministic iff ∀t , p′ � p t−� p′ =⇒

∀i1, i2 � p′ i1−−� ∧ p′ i2−−� =⇒ ∃c � i1, i2 ∈ {?cv | v ∈ V}
7) output deterministic iff ∀t , p′ � p t−� p′ =⇒

∀o1, o2 � p
′ o1−−� ∧ p′ o2−−� =⇒ o1 = o2 ♦

Event systems [20], [28], [29], [31], [54], [57] are es-
sentially LTSIO with no restrictions applied. Trace semantics
is used as the underlying notion of behavioral equivalence.
Compositionality of information flow properties, under a bi-
nary operator which implicitly wires matching communication
channels internally, has been thoroughly studied in this setting
in theories developed for reasoning about compositionality
[28], [32], [57]. McLean [32], Zakinthinos and Lee [56]
showed that noninference, separability and perfect security are
all compositional, and McLean further showed that generalized
noninference and generalized noninterference compose under
product. Johnson and Thayer showed that forward correctabil-
ity is fully compositional [25]. McCullough first demonstrated
that generalized noninterference is not fully compositional
[29]. However, Zakinthinos and Lee have shown that gen-
eralized noninterference composes under certain conditions:
under a relaxed cascade [55], if every feedback loop involves
at least three components [56], or if a delay component is
inserted into the feedback of high events [55]. Mantel [28]
derived all the above results save the last two using his modular
assembly kit for security properties (MAKS). He also derived
several new conditional compositionality results, and showed
that a weakened forward correctability is compositional. Our
PSNI composes under routing, product, and under cascade and
feedback provided a FIFO is placed between components.
Our combinators offer a structured way of composing secure
systems from parts; no wiring is implicit, and the possible
routes that data can take are clearly defined by structure and
routers. Our properties use stream semantics as the underlying
behavioral equivalence, which we have argued and demon-
strated, makes more, desirable distinctions, enabling us to
reject the “extortionist” program given in Section III-D.

Process calculi for security [19], [22], [23], [40], [46], [47]
have LTSIO as their underlying semantics. They study the use of
algebraic properties of concrete concurrency constructs. We are
more abstract, providing results for LTSIO directly. We assume
input totality in our framework, which induces a concurrency
semantics free of output blocking, similar to mailboxes in the
Actor model [1] (implemented in Erlang), message queues in
JavaScript, and buffered I/O in most programming languages.
Assuming input totality simplifies system composition consid-
erably [57]. The parallel composition operator also implicitly
wires channels. Bisimulation on processes is typically provided
as the primary tool for behavioral reasoning. Since bisimula-
tion is a branching-time, it makes undesired distinctions, which
our behavioral equivalence avoids.

Reactive systems [12], [43], [58] are, in the sense of Def-
inition VI.1, reactive, input neutral and productive LTSIO. Bo-
hannon et al. [12] present and contrast four stream-based pos-
sibilistic noninterference definitions, emphasizing CP-security
and ID-security, and give a type-based enforcement of ID-
security. While ID-security and CP-security do not exclude
nondeterministic programs, ID- and CP-security are very re-
strictive for nondeterministic programs, rejecting programs



which conceal information using nondeterministic choice, and
therefore essentially becoming as strict as low observational
determinism [59] or security under refinement [37]. Our def-
inition of PINI can therefore be perceived as a more faithful
generalization of PINI from [3] to nondeterministic systems,
or as a generalization of ID-security to nondeterministic sys-
tems with intermediate input. We have shown that PINI does
not compose under fair schedulers. The counterexamples can
easily be expressed in the language of [12]; thus, ID-security
does not compose fairly. While the transducer impression of
reactive systems suggests easy composition, reactive systems
are not input total; non-willingness of a component to receive
can halt progress of another component that wishes to send.

Our security framework most closely resembles the LTSIO-
and strategy-based frameworks for possibilistic noninterfer-
ence [16], [37], [42], [44]. O’Neill et al. [37] present a single-
threaded programming language which LTSIO is input neutral,
internally- and output-deterministic. The target property is
strategy-based PSNI, originally inspired by nondeducibility
on strategies by Wittbold and Johnson [54]. Extending the
language with nondeterministic choice (making their LTSIO
no longer deterministic), they modify PSNI to require non-
interference under refinement (arbitrary determinization of
all nondeterministic choices prior to execution). Clark and
Hunt [16] instead give a possibilistic version of PSNI, show
that it is sufficient to guarantee security under deterministic
strategies to prove that a program is PSNI, and that stream
strategies are sufficient if the program is internally-, input-
and output-deterministc, a result used by [12]. In both of
these settings, strategies are total; strategies are always willing
to receive, and regardless of when and on which channel a
program blocks on, the strategy has input available on said
channel. While this may be a good fit when strategies model
local memory, as demonstrated by Rafnsson et al. [42], this
total strategies assumption ignores classes of realizable attacks
which encode secrets in the varied presence of messages in
a concurrent setting. This motivates distinguishing between
sensitivity of message presence and content, as we do in the
present paper, which none of the work discussed so far does,
save for [42]–[44]. This idea can be traced back to Sabelfeld
and Mantel [48], who study public (L), encrypted (M) and
secret (H) communication channels in a concurrent setting,
and Myers [33], who distinguishes between sensitivity of data
structure length and content. Rafnsson et al. [42] show that
PSNI composes under product. All three of [16], [37], [42]
use trace semantics as a basis for behavioral equivalence. We
show PSNI composes under all of our combinators, with stream
semantics as the basis for behavioral equivalence, and with
environments which are part of the computation model.

As an alternative to our trace- and stream-semantics, we
could have chosen to express semantics as a function mapping
input behaviors to output behaviors. While such a semantics
would not give us a complete rule for composition, as the com-
position would suffer from the Brock-Ackerman anomaly [15],
that issue is resolved by Widom et al. [53].

Asynchronous testing faces the same difficulties with
blocking behavior as we face when putting two LTSIO in
interaction. Whereas Verhaard et al. [52] solve the issues by
equipping a tester and the implementation under test with
an input queue, our assumption of input totality effectively

means our interactive systems have input queues baked in.
The Input/Output Automata model [27] is very similar to our
LTSIO model. It has input totality as a fundamental assumption,
and is designed to reason about system composition and
fairness. We have not seen this model applied in research
on information-flow security. The concurrency semantics in-
duced by our combinators is similar to that employed by
signal processing formalisms, like Kahn networks [26] and
dataflow programming languages, e.g. Functional Reactive
Programming languages [18], [36]. Indeed, our combinators
are reminiscent of the signal function constructors in [36].

Finally, end-to-end security is easier to achieve if we,
alongside combinators which compose secure components
securely, have combinators which repair insecurities. Rafnsson
and Sabelfeld [43] give such a combinator which puts a
logarithmic bound on leaks through progress in a ID-secure
program, and Askarov et al. give a combinator which puts a
logarithmic bound on leaks through timing observations [5].
Secure Multi-Execution [17], [44] is a promising new tech-
nique which, through program transformation or dynamic
monitoring, modifies (modestly) the semantics of any pro-
gram to become that of a secure program. Devriese and
Piessens [17] prove that the approach enforces timing sensitive
noninterfence, while Rafnsson and Sabelfeld [44] show that,
by relaxing the guarantee to PSNI, the semantics of secure
programs can be modified less.

VII. CONCLUSION

We have presented a framework for secure composition.
Coming back to the research questions from Section I, we
have achieved generality along several dimensions: (i) our
underlying systems are general labeled transition systems; (ii)
we distinguish between the security level of message presence
and content; (iii) our model incorporates environments as part
of the system; (iv) our composition is facilitated by a rich
set of combinators; and (v) we study both progress-sensitive
and progress-insensitive security definitions. While the latter
is a popular policy for practical tools, our findings point to
the importance of the former in the context of secure system
composition. Our findings also provide new insights on the
impact of fairness for the security of system composition.

Future work includes investigation of composition in the
presence of insecure components. Generalizing the results in
this work and our previous results on limiting leakage by
programs that satisfy PINI [43], we plan to extend our combi-
nator set with enhanced combinators that are able to “repair”
insecure components and make them readily pluggable into a
secure (composed) system.
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APPENDIX

Theorem III.10. p ∈ PSNI =⇒ p ∈ PSNIE.

Proof: Assume p ∈ PSNI. Let p1, p2 and s1 such that
p1, p2 ∈ PSNI, s1 ∈ SF, p1 '` p2 and p1 |= p s1−−� be arbitrary.
Since p1 |= p s1−−�, we have p s1−−�. Since s1 ∈ SF and p ∈
PSNI, there exists a s1P ∈ S(p)∩Aω` for which s1 '` s1P and
preservep,s1(ε, s1P). Since p1 |= p s1−−�, we have p1

s1
−1

−−−�.
Assume s1

−1 ∈ SF for now (at the end of this proof, we
explain how to adapt it to the scenario s1

−1 6∈ SF). Since p1 '`
p2, there exists a ŝ2 ∈ SF for which p2

ŝ2−−� and s1
−1 '` ŝ2.

Since p2 ∈ PSNI, there exists a s2E ∈ S(p2) ∩ Aω` for which
ŝ2 '` s2E and preservep2,ŝ2

(ε, s2E). To summarize, s1P '`
s1 '` ŝ−1

2 '` s2E
−1. We must show that there exists a s2 ∈ SF

for which p2 |= p s2−−� and s1 '` s2. We obtain s2 using

zip(sE, t , ōP.oP.sP) | ōP '` ε ∧ π(oP) v `
= ōP.oP.zip(s ′E, t .ōP.oP, sP),

where ŝ2 '` t .(ōP.oP)
−1
.s ′E

∧p2
(t.ōP.oP)−1.s′E−−−−−−−−−�

∧preservep2,ŝ2
((t .ōP.oP)

−1
, s ′E)

zip(ōE.oE.sE, t , sP) | ōE '` ε ∧ π(oE) v `
= (ōE.oE)

−1
.zip(sE, t .(ōE.oE)

−1
, s ′P),

where s1 '` (t .ōE.oE)
−1
.s ′P

∧p t.(ōE.oE)−1.s′P−−−−−−−−−�
∧preservep,s1(t .(ōE.oE)

−1
, s ′P)

zip(õE, t , õP) | õ−1
E '` õP '` ε

= ō−1
E .oP.zip(õ′E, t .ō

−1
E .oP, õ

′
P),

where ŝ2 '` t−1.ōE.oP
−1.õ′E

∧p2
t−1.ōP.oP

−1.õ′E−−−−−−−−−−�
∧preservep2,ŝ2

(t−1.ōP.oP
−1, õ′E)

∧s1 '` t .ō−1
E .oP.õ

′
P

∧p t.ō−1
E .oP.õ

′
P−−−−−−−−�

∧preservep,s1(t .ō−1
E .oE, õ

′
P).

By setting s2 = zip(s2E, ε, s1P), we get p2 |= p s2−−� and
s1 '` s2. This can be seen by observing that the middle
parameter t during each corecursive call grows to include one
more observable (until it contains all observables, after which
it grows with unobservables), and that t �` s1 and t−1 �` ŝ2.

If s1
−1 6∈ SF, then for the shortest prefix t1 ≤ s1

−1

containing all output in s1
−1, there is a õ1 for which p1

t1.õ1−−−−�.
We then make sure to not zip beyond the last observable output
in t1 and still get the desired s2 by replacing the last case in
the definition of zip with one which evaluates to õP.

A. Combinators

1) Relaxed Cascade Feedback:

pL
o−� p′L pR

o−1

−−−� p′R

pL ⊗ pR
o−� p′L ⊗ p′R

⊗!
L

pL
o−1

−−−� p′L pR
o−� p′R

pL ⊗ pR
o−� p′L ⊗ p′R

⊗!
R

pL
i−� p′L

pL ⊗ pR
i−� p′L ⊗ pR

⊗?

2) Relaxed Cascade:

pR
o−� p′R

pL ; pR
o−� pL ; p′R

;! pL
i−� p′L

pL ; pR
i−� p′L ; pR

;?

pL
o−� p′L pR

o−1

−−−� p′R

pL ; pR
o−� p′L ; p′R

;

3) Cascade:

pR
o−� p′R

pL 	 pR
o−� pL 	 p′R

	! pL
i−� p′L

pL 	 pR
i−� p′L 	 pR

	?

pL
o−� p′L pR

o−1

−−−� p′R

pL 	 pR
!�−−� p′L 	 p′R

	

4) Product:

pL
o−� p′L

pL ⊕ pR
o−� p′L ⊕ pR

⊕!
L

pR
o−� p′R

pL ⊕ pR
o−� pL ⊕ p′R

⊕!
R

pL
i−� p′L pR

i−� p′R

pL ⊕ pR
i−� p′L ⊕ p′R

⊕?

5) Feedback:

pL
o−� p′L pR

o−1

−−−� p′R

pL } pR
o−� p′L } p′R

}!
L

pL
o−1

−−−� p′L pR
o−� p′R

pL } pR
!�−−� p′L } p′R

}!
R

pL
i−� p′L

pL } pR
i−� p′L } pR

}?

6) Buffered Loop: Let dpU = dpUε.

p o−� p′

dpUt o−� dp′Ut.o
dU!

p i−� p′

dpUt i−� dp′Ut
dU?

p o−1

−−−� p′

dpUo.t !�−−� dp′Ut
dU

p ?�−−� p′

dpUε !�−−� dp′Uε
dUε


