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Abstract

Cryptographic operations are essential for many security-critical systems. Reasoning about
information flow in such systems is challenging because typical (noninterference-based)
information-flow definitions allow no flow from secret to public data. Unfortunately, this
implies that programs with encryption are ruled out because encrypted output depends
on secret inputs: the plaintext and the key. However, it is desirable to allow flows arising
from encryption with secret keys provided that the underlying cryptographic algorithm
is strong enough. In this article we conservatively extend the noninterference definition
to allow safe encryption, decryption, and key generation. To illustrate the usefulness of
this approach, we propose (and implement) a type system that guarantees noninterference
for a small imperative language with primitive cryptographic operations. The type system
prevents dangerous program behavior (e.g., giving away a secret key or confusing keys and
non-keys), which we exemplify with secure implementations of cryptographic protocols.
Because the model is based on a standard noninterference property, it allows us to develop
some natural extensions. In particular, we consider public-key cryptography and integrity,
which accommodate reasoning about primitives that are vulnerable to chosen-ciphertext
attacks.

1 Introduction

Cryptographic operations are ubiquitous in security-critical systems. Reasoning
about information flow in such systems is challenging because typical information-
flow definitions allow no flow from secret to public data. The latter requirement un-
derlies noninterference [12,17], which demands that public outputs are unchanged
as secret inputs are varied. While traditional noninterference breaks in the pres-
ence of cryptographic operations, the challenge is to distinguish between break-
ing noninterference because of legitimate use of sufficiently strong encryption and
breaking noninterference due to an unintended leak.

A common approach to handling cryptographic primitives in information-flow aware
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systems is by allowing declassification of encryption results. The intention of de-
classification is that the result of encryption can be released to the attacker. Declas-
sification, however, is a versatile mechanism: different declassification dimensions
correspond to different reasons why information is released [32,3]. Attempts at
framing cryptographically-masked flows into different dimensions have been made
although, as we discuss, not always with satisfactory results.

In this article, we introduce cryptographic primitives into an information-flow set-
ting while preserving a form of noninterference property. This is achieved by build-
ing into the model a basic assumption that attackers may not distinguish between
ciphertexts and that decryption using the wrong key fails. Although this assumption
is stronger than some probabilistic and computational cryptographic models (which
allow some information to leak when comparing ciphertexts), we argue that it can
still be reasonable, and that it opens up possibilities for tracking information flow
in the presence of cryptographic primitives in expressive programming languages.

The intuition behind our approach is sketched below and illustrated in Figure 1,
where dashed and solid lines correspond to secret and public values, respectively.
Fixing some public (low) input zL and varying secret (high) input from xH to yH

may not reflect on a public output z′L of a system that satisfies noninterference (il-
lustrated in Figure 1(a)). Suppose the system in question involves encryption, such
as in the program z = encrypt(k, x) for some secret key k. Clearly, noninterfer-
ence is broken: variation in the secret input from xH to yH may cause variation in
the public output from z′L to z′′L (illustrated in Figure 1(b)).

However, noninterference can be recovered if the result of encryption is possibly
any value v. This means that variation of the high input from xH to yH does not
affect the public output—any value v is a possible public output in both cases. This
form of noninterference is known as possibilistic noninterference [25] (illustrated
in Figure 1(c)). Overall, although low outputs might depend on low inputs and ci-
phertexts, no observation about possible low outputs may reveal information about
changes in high inputs (illustrated in Figure 1(d)).

This article makes a case for possibilistic noninterference as a natural model for
cryptographically-masked flows. We show that a naive approach of collapsing all
ciphertexts as indistinguishable opens up possibilities for occlusion [32], where
masking an intended information flow in an indistinguishability definition may also
mask other unintended leaks. Therefore, we propose a finer indistinguishability re-
lation that not only avoids occlusion but also, by a recent result by Laud [22], guar-
antees computational security under some natural assumptions on the cryptographic
primitives. With such a result at hand, our model allows focusing on enforcing a
simple possibilistic property, which comes with a computational guarantee “for
free.”

To demonstrate that enforcing possibilistic noninterference is straightforward, we
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(a) Noninterference (b) Encryption

(c) Possibilistic noninterference (d) Cryptographically-masked flows

Fig. 1. From noninterference to cryptographically-masked flows

have designed and implemented a security type system that provably enforces pos-
sibilistic noninterference for an imperative language with primitive cryptographic
operations and communication channels. The type system prevents dangerous pro-
gram behavior (e.g., giving away a secret key or confusing keys or non-keys), which
we exemplify with secure implementations of cryptographic protocols. Because
the model is based on a standard noninterference property, it allows us to develop
some natural extensions. In particular, we consider public-key cryptography and
integrity, which accommodates reasoning about primitives that are vulnerable to
chosen-ciphertext attacks. The main soundness result (that the type system indeed
guarantees security) is based on our formalization in the proof assistant Coq.

This article is a revised and extended version of [2]. Compared to the earlier ver-
sion, the most significant contribution is a formalization of the soundness proof
in the proof assistant Coq, which has helped crystallizing definitions and making
our assumptions about cryptographic schemes more precise. In addition to this we
have modified the language to obtain a clearer semantics, included the full presen-
tation of the semantic and typing rules, expanded the wide-mouthed frog protocol
example, updated the related work, and made other improvements throughout the
article.

2 Language

We explore how to model cryptographic flows in a small imperative language
equipped with encryption and decryption primitives, dynamic key generation, and
channels for communication. This section introduces the syntax and semantics of
the language.

2.1 Syntax

The syntax of the language is defined in Figure 2. Let x ∈ VarName range over
the set of variable names, ch ∈ ChanName range over the set of channel names, A

3



sec. levels σ ::= L | H
key levels γ ::= LK | HK

basic types t ::= int | encγ τ

prim. types τ ::= t σ | key γ | (τ1, τ2)

expressions e ::= n | x | e1 op e2 | encryptγ (e1, e2) | decryptγ (e1, e2)

| (e1, e2) | fst(e) | snd(e)
statements c ::= skip | x := e | c1; c2 | if e then c1 else c2

| while e do c | out(ch, e) | in(x, ch) | newkey(x, γ)

program p ::= A1 c1 . . . An cn

Fig. 2. Syntax

range over the set of actor names, and let n ∈ Z range over the integers.

A program consists of a sequence of actors, where an actor is a named command.
The key levels, ranged over by γ, declare the maximum value security level the
key can safely encrypt. Intuitively, high keys are allowed to encrypt both secrets
and non-secrets, whereas low keys are only allowed to encrypt non-secrets; a more
thorough discussion of this is found in the section on semantics below. The com-
mands include the standard commands of an imperative language, commands for
sending on and receiving from a given channel, and a command for generating
new keys. Apart from expressions for encryption and decryption, expressions are
standard: integers, variables, total binary operators, pair formation, and projection.
Key values and encrypted values are excluded from the expression syntax; from a
security perspective neither should appear as constants in the program text.

2.2 Semantics

The semantics of the system is defined as a big-step operational semantics. The
actors of a program run concurrently and interact with each other by sending and
receiving messages on channels. We refrain from modeling the semantics for the
entire system and instead provide semantics for isolated actors. Thus we deliber-
ately ignore information flows via races and other flows that may arise in concurrent
systems (cf. [30]). These flows are typically harder to exploit, although reasoning
about such flows in our setting is still a worthwhile topic for future work.

We begin by defining the values of the language, which are used in the definition
of the semantics for expressions and commands.
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2.2.1 Values

Let KeyLK and KeyHK be two disjoint sets of keys, ranged over by kLK and kHK
respectively, and let k range over KeyLK ∪KeyHK. Let u ∈ U range over a set of bit
strings representing the encrypted values. The values are built up by the ordinary
values, integers, keys and pairs of values, together with the encrypted values.

values ∈ Value v ::= n | kLK | kHK | (v1, v2) | u

The system is parameterized over two symmetric encryption schemes—one for each
key level γ. An encryption scheme is a triple S = (K, E ,D), with the following
properties:

• K is a key generation algorithm that on each invocation generates a new key from
the set Keyγ associated with the encryption scheme.

• E is a nondeterministic encryption algorithm that takes a key and a bit string and
returns a bit string—the ciphertext. In the following, we use E(k, v) to denote the
set of possible ciphertexts that the value v can be encrypted to under the key k,
and u ∈ E(k, v) to denote that u is such a ciphertext.

• D is a deterministic decryption algorithm that takes a key and a ciphertext and
returns a bit string—the decryption of the ciphertext—or fails. Moreover, D is a
keyed left inverse of E , i.e., u ∈ E(k, v) =⇒ D(k, u) = v, and only ciphertexts
can be decrypted, i.e., D(k, u) = v =⇒ u ∈ E(k, v).

Let SLK represent the encryption scheme associated with the low key level and
similarly let SHK represent the high encryption scheme.

The reason for the use of two different encryption schemes for different security
levels is to lay the ground for an extension of the system into a general multi-level
system, i.e., a system with more than two security levels. The standard way of
defining security for a multi-level system is in terms of a two-level system. This
is done by demanding that for a program to be secure in the multi-level system it
should be secure in the two-level system for all order preserving mappings from
the multi-level lattice into the two-level lattice.

The idea of the low and high encryption schemes is to represent the mapping of the
multi-level system described above. Thus, the low encryption scheme represents
the untrusted encryption schemes (for the given mapping) and the high encryption
scheme represents the trusted ones. For this reason, we assume different properties
of the two encryption schemes. We discuss these properties in detail in Section 3.

To be able to use our encryption schemes on values in general we need a way to
encode integers, keys and pairs of values into bit strings and to decode bit strings
back into values, when possible. We assume two functions: encode, that takes a
value and returns its bit-string representation, and decode, that takes a bit string
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and returns the represented value, if any. Obviously, encode and decode should be
inverses w.r.t. the decodable subdomain of bit strings. In the following, we shall
assume that the encryption and decryption functions have been lifted to values by
proper composition with the encode and decode functions, so that encryption takes
a value and returns a bit string and decryption takes a bit string and returns a value.
Thus, encode and decode will not be explicitly mentioned.

2.2.2 Environments

Input and output are modeled in terms of streams of values with the cons operation
“·” and the distinguished empty stream ε. This is a simplified model of input/out-
put, where the input from the environment does not explicitly depend on preceding
output to the environment. However, we expect that such a simplification has no
impact on the security of isolated actors. Indeed, Clark and Hunt [11] observe that,
thanks to the quantification over all streams, it makes no difference whether in-
put/output is modeled in terms of strategies or streams as long as the program is
deterministic. We expect this observation to apply to our setting, since the nonde-
terminism in our language is limited to encryption primitives, and programs may
not branch on ciphertexts. Hence, the control flow of the program as well as its
resulting non-ciphertext values remain deterministic.

Let ks range over finite streams of keys, and vs over finite streams of values. Finite
streams are sufficient, since our semantics only models finitely running programs
(cf. Sections 2.3 and 2.4). The full environment E = (M,G, I,O) consists of four
components: (i) the variable environment M , which is a mapping from variable
names to values; (ii) the key-stream environment G, which maps encryption scheme
levels to streams of keys generated by successive use of the key generator; (iii) the
input environment I and (iv) the output environment O, which map channel names
to streams of values.

2.3 Semantics of expressions

The evaluation of expressions has the form 〈M, e〉 ⇓ v: evaluating the expression e
in the variable environment M yields the value v. The semantics of integers, vari-
ables, total binary operators, pair formation, and projection are entirely standard.
Figure 3 presents the semantic rules for expressions.

The rules specific to the treatment of cryptography are encryption (S-ENC) and
decryption (S-DEC) which both use the encryption schemes Sγ introduced above.
Since E is nondeterministic, i.e., it returns a set of different ciphertexts for the same
key and plaintext, the semantics becomes nondeterministic—there is one separate
semantic rule per possible ciphertext.
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(S-INT) 〈M, n〉 ⇓ n
(S-VAR)

M(x) = v

〈M,x〉 ⇓ v

(S-OP)
〈M, e1〉 ⇓ v1 〈M, e2〉 ⇓ v2 v = v1 op v2

〈M, e1 op e2〉 ⇓ v

(S-PAIR)
〈M, e1〉 ⇓ v1 〈M, e2〉 ⇓ v2

〈M, (e1, e2)〉 ⇓ (v1, v2)

(S-FST)
〈M, e〉 ⇓ (v1, v2)

〈M, fst(e)〉 ⇓ v1
(S-SND)

〈M, e〉 ⇓ (v1, v2)

〈M, snd(e)〉 ⇓ v2

(S-ENC)
〈M, e1〉 ⇓ k 〈M, e2〉 ⇓ v k ∈ Keyγ u ∈ Eγ(k, v)

〈M, encryptγ (e1, e2)〉 ⇓ u

(S-DEC)
〈M, e1〉 ⇓ k 〈M, e2〉 ⇓ u k ∈ Keyγ v = Dγ(k, u)

〈M, decryptγ (e1, e2)〉 ⇓ v

Fig. 3. Semantics of expressions

2.4 Semantics of commands

Figure 4 presents the semantics for commands. Commands are state transformers
of the form 〈E, c〉 ⇓ E ′: the command c yields the new environment E ′ when run in
the environment E. The semantics of the commands is mostly standard for a while
language with channels—the only rule specific to encryption is the rule for key
generation (S-NEWKEY). It takes a variable and a level of the key to be generated
and assigns the topmost element in the key stream associated to that level in the
key-stream environment to that variable. Input and output are both provided as
commands (S-INPUT and S-OUTPUT).

3 Security

This section introduces possibilistic noninterference as a semantic model of secu-
rity for programs with encryption. We begin by stating two assumptions we make
on encryption and decryption. Thereafter we argue that standard noninterference
cannot be used to model encryption, because of a problem known as occlusion.
Instead, we suggest possibilistic noninterference and show how this can be used to-
gether with the assumed properties of the encryption scheme to model safe uses of
encryption without introducing occlusion. The section concludes by investigating
the relation between our assumptions and common cryptographic attacker models.
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(S-SKIP) 〈E, skip〉 ⇓ E
(S-SEQ)

〈E, c1〉 ⇓ E ′ 〈E ′, c2〉 ⇓ E ′′

〈E, c1; c2〉 ⇓ E ′′

(S-VARASGN)
〈M, e〉 ⇓ v

〈(M,G, I,O), x := e〉 ⇓ (M [x 7→ v], G, I, O)

(S-NEWKEY)
G(γ) = k · ks

〈(M, G, I,O), newkey(x, γ)〉 ⇓ (M [x 7→ k], G[γ 7→ ks], I, O)

(S-IF1)
〈M, e〉 ⇓ v v 6= 0 〈(M, G, I, O), c1〉 ⇓ E ′

〈(M, G, I, O), if e then c1 else c2〉 ⇓ E ′

(S-IF2)
〈M, e〉 ⇓ 0 〈(M, G, I, O), c2〉 ⇓ E ′

〈(M, G, I, O), if e then c1 else c2〉 ⇓ E ′

(S-WHILE1)
〈M, e〉 ⇓ v v 6= 0 〈(M,G, I,O), c; while e do c〉 ⇓ E ′

〈(M, G, I, O), while e do c〉 ⇓ E ′

(S-WHILE2)
〈M, e〉 ⇓ 0

〈(M,G, I,O), while e do c〉 ⇓ (M,G, I,O)

(S-INPUT)
I(ch) = v · vs

〈(M, G, I,O), in(x, ch)〉 ⇓ (M [x 7→ v], G, I[ch 7→ vs], O)

(S-OUTPUT)
〈M, e〉 ⇓ v

〈(M, G, I,O), out(ch, e)〉 ⇓ (M,G, I,O[ch 7→ v ·O[ch]])

Fig. 4. Semantics of commands

3.1 Assumptions on the cryptographic primitives

We begin with an informal discussion of two properties of the encryption schemes
that we need. We use these properties to formulate and prove possibilistic noninter-
ference for our system. Section 3.5 discusses how these properties relate to standard
computational properties.

The first property is a confidentiality property. It states the indistinguishability of
ciphertexts for high encryption schemes. Intuitively, this captures the attacker’s
capability to learn anything about the plaintext by observing the ciphertext. In par-
ticular, indistinguishability gives us full freedom in the process of defining a low-
equivalence relation for ciphertexts. We do not assume indistinguishability of the
ciphertexts of the low encryption scheme.

The second property is an authenticity property needed in the treatment of decryp-
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tion. More precisely we are assuming that decryption using the wrong key fails:

u ∈ E(k′, v) =⇒ D(k, u) = ⊥ if k 6= k′

We assume that the same property holds for the decryption function of the low
encryption scheme.

The assumption that encryption with the wrong key fails gives us that each ci-
phertext is successfully decryptable with one unique key, which is captured by the
following lemma:

Lemma 1 Uniqueness of decryption keys.

D(k1, u) = v1 ∧ D(k2, u) = v2 ∧ v1 6= ⊥ ∧ v2 6= ⊥ =⇒ k1 = k2

Proof. D(k1, u) = v1 gives that u ∈ E(k1, v1), since only ciphertexts are decrypt-
able. Now, assume that k1 6= k2; the property that encryption with the wrong key
fails givesD(k2, u) = ⊥ from u ∈ E(k1, v1). However, this contradicts the assump-
tion that D(k2, u) = v2, and v2 6= ⊥. Hence k1 = k2. 2

Note that this lemma implies a uniqueness property of decryption results, i.e., not
only can we show k1 = k2 under the assumptions of the lemma but also v1 = v2,
since decryption is deterministic.

3.2 Insufficiency of standard noninterference

The prevailing notion when defining confidentiality in the analysis of information
flows is noninterference. Noninterference is typically formalized as the preserva-
tion of a low-equivalence relation under the execution of a program: if a program is
run in two low-equivalent environments then the resulting environments should be
low-equivalent. For ordinary values, like integers, low-equivalence demands that
low values are equal. From the assumption that ciphertexts are indistinguishable
we are free to chose any low-equivalence relation for ciphertexts. For instance, one
may consider it secure to treat all ciphertexts as low-equivalent. However appeal-
ing this may be, such a treatment leads to the ability of masking implicit flows in
ciphertexts. Consider the program in Listing 1 for some high encryption key stored
in the variable k and some value stored in the variable a.

l1:= encryptHK(k, a);
if h then l2 := encryptHK(k, a)

else l2 := l1;

Listing 1. Occlusion

If all encrypted values are considered low-
equivalent then we cannot distinguish be-
tween the two low variables l1 and l2 even
though it is clear that the equality/inequal-
ity of the first and the second value reflects
the secret value h. This is an instance of a
general problem known as occlusion [32] (which we recall from the introduction),
where masking an intended information flow in an indistinguishability definition
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may also mask other unintended leaks. In the rest of the article, we will refer to the
problem illustrated in Listing 1 as the occlusion problem or, simply, occlusion.

For standard noninterference, any other relation than the one that simply relates all
ciphertexts removes the possibility to consider secure uses of encryption for non-
interference. Instead, we use a variant of noninterference known as possibilistic
noninterference, which allows us to create a notion of low-equivalence that seman-
tically rejects occlusion without preventing intuitively secure uses.

3.3 Possibilistic noninterference

Let Σ denote the type environment under which programs are run and let E1 ∼Σ E2

denote that the environments E1 and E2 are low-equivalent w.r.t the type environ-
ment Σ. Section 4 defines how type environments are built. For now we only use
that if E1 ∼Σ E2 then environments E1 and E2 are low-equivalent, i.e., indis-
tinguishable for an attacker. A pair of commands c1 and c2 are possibilistically
noninterfering if

NI (c1, c2)Σ ≡ ∀E1, E2 . E1 ∼Σ E2∧
〈E1, c1〉 ⇓ Ê1 ∧ Ê1 6= ∅ ∧ 〈E2, c2〉 ⇓ Ê2 ∧ Ê2 6= ∅ =⇒

∀E ′
1 ∈ Ê1 . ∃E ′

2 ∈ Ê2 . E ′
1 ∼Σ E ′

2 ∧ ∀E ′
2 ∈ Ê2 . ∃E ′

1 ∈ Ê1 . E ′
1 ∼Σ E ′

2

where the evaluation relation is lifted to a set of results as follows:

〈E, c〉 ⇓ Ê iff Ê = {E ′ | 〈E, c〉 ⇓ E ′}

Intuitively, for every pair of low-equivalent environments in which the commands
terminate it holds that there exists a possibility that each environment produced by
the first command when run in the first environment can be produced by the second
command when run in the second environment.

A program c is considered secure w.r.t. Σ if it is noninterfering with itself, i.e.,
NI (c, c)Σ.

It is straightforward to see that the noninterference relation is symmetric and tran-
sitive (because the low-equivalence relation ∼Σ is symmetric and transitive), but
not reflexive. If it were reflexive then all programs would be considered secure.

By only considering environments for which the commands terminate, we ignore
crash-related leaks.

10



3.4 Adequacy of possibilistic noninterference

The choice of possibilistic noninterference does not automatically solve the above
problem—like before, using the full low-equivalence relation on ciphertexts leads
to occlusion. Let .

= denote the low-equivalence relation for ciphertexts, used in the
definition of low-equivalence for environments ∼Σ (via low-equivalence for values
∼τ ; see Section 4.2 below). To allow for secure usages of encryption, while at the
same time protecting from occlusion we put the following demands on .

=:

u1 ∈ EHK(k1, v1) =⇒ ∃u2 . u2 ∈ EHK(k2, v2) ∧ u1
.
= u2 (1)

∃u1, u2 . u1 ∈ EHK(k1, v1) ∧ u2 ∈ EHK(k2, v2) ∧ u1 6 .= u2 (2)

The first demand ensures the possibility for safe usages, while the second one ex-
cludes occlusion. In addition to this we demand that .

= is an equivalence relation,
and that .

= does not relate ciphertexts of different sizes. The former of the additional
demands allows the low-equivalence relation ∼Σ to be an equivalence relation, and
the latter is needed since we do not assume that the cryptographic primitives hide
the length of the plaintexts. If such an assumption is made (as it is the case in Laud’s
work [22]), the latter demand can be safely dropped.

3.4.1 Safe uses of encryption

In the setting of possibilistic noninterference we must make sure that any ciphertext
produced by each plaintext and key has a low-equivalent ciphertext for any other
choice of plaintext and key. To see this consider the program l := encryptHK(k, a)
for some high key k and some secret value a. Assume that E1 and E2 are two
low-equivalent environments such that E1(a) = v1, E2(a) = v2, E1(k) = k1, and
E2(k) = k2. The execution of l := encryptHK(k, a) yields:

Ê1 = {E1[l 7→ u] | u ∈ EHK(k1, v1)}, and Ê2 = {E2[l 7→ u] | u ∈ EHK(k2, v2)}

Clearly, given the property expressed by Equation 1 for every environment in Ê1

there is a low-equivalent environment in Ê2.

3.4.2 Exclusion of occlusion

To see that Equation 2 excludes occlusion, let us consider the execution of the
occlusion example in Listing 1. To argue by contradiction, suppose the program is
noninterfering. Assume now that E1 and E2 are two low-equivalent environments
such that E1(h) = false , E2(h) = true, E1(a) = v1, E2(a) = v2, E1(k) = k1, and
E2(k) = k2. The result of running the program in E1 is the set

Ê1 = {E1[l1 7→ u, l2 7→ u] | u ∈ EHK(k1, v1)}
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and the result of running it in the second environment E2 is the set

Ê2 = {E2[l1 7→ u1, l2 7→ u2] | u1 ∈ EHK(k2, v2), u2 ∈ EHK(k2, v2)}

Possibilistic noninterference demands that for each environment in Ê2 there exists
a low-equivalent environment in Ê1. Let us pick an environment from Ê2 where
u1 ∈ EHK(k2, v2) and u2 ∈ EHK(k2, v2) such that u1 6 .= u2. Such u1 and u2 exist by
Equation 2. By possibilistic noninterference, there exists an environment E ′

1 in Ê1

such that E ′
1(l1)

.
= u1 and E ′

1(l2)
.
= u2. However, by construction of Ê1 we have

that E ′
1(l1) = E ′

1(l2) = u for some u. We have u
.
= u1 and u

.
= u2. This implies

u1
.
= u2 by transitivity, which contradicts the initial choice of u1 and u2.

3.4.3 Plausibility of low-equivalence properties

Now, it remains to show that the properties of Equations 1 and 2 are plausible
for ciphertexts originating from existing cryptographic primitives. We do this by
showing that for probabilistic symmetric encryption schemes we can easily form a
low-equivalence relation satisfying Equations 1 and 2.

Probabilistic symmetric encryption schemes generate a random initial vector iv
on every invocation of the encryption function ENCImpl, where the value of iv
is used in computing the ciphertext for plaintext v using key k, and E(k, v) =
∪ivENCImpl(iv, k, v). We define low-equivalence .

= by relating equally-sized ci-
phertexts with the same random initial vector:

∀k1, k2, v1, v2 . ENCImpl(iv, k1, v1)
.
= ENCImpl(iv, k2, v2)

Since this relation relates two ciphertexts if and only if they were created with
the same initial vector, we have that for any choice of plaintext and key there will
be exactly one related ciphertext for any other plaintext and key. The existence
guarantees Equation 1, and the uniqueness guarantees Equation 2, since there is
more than one possible initial vector.

To exemplify this, consider cipher-block chaining (CBC) with a random initial vec-
tor encryption scheme [29]. The encryption algorithm in this scheme is as a two-
step process: (i) generating a random initial vector iv, and (ii) using the generated
iv to compute the ciphertext. Let CBCImpl(iv, k, v) correspond to the second step of
the implementation; the ciphertext returned by the encryption algorithm is a tuple
of the form (iv, u), where iv is generated in the first step and u = CBCImpl(iv, k, v)
is computed in the second one. Then we can define two ciphertexts (iv1, u1) and
(iv2, u2) produced by this scheme as low-equivalent ( .

=) if they are equally-sized
and agree upon initial vectors, i.e., iv1 = iv2. Putting this definition to the test with
the occlusion example, we can see that the occlusion example is indeed rejected for
the same general reasons as in the previous subsection.
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3.5 Relation to computational adversary models

Recently, Laud [22] has investigated under which conditions our possibilistic non-
interference of Section 3.3 implies computational security. It is reassuring that
Laud’s requirements on the underlying encryption scheme are essentially those that
we conjectured in an earlier version [2] of this article: (i) indistinguishability of ci-
phertexts under chosen plaintext attacks (IND-CPA), which provides ciphertexts
confidentiality, and (ii) integrity of plaintexts (INT-PTXT), which achieves authen-
ticity. In Laud’s work, these notions are strengthened compared to their standard
definitions to also hide key identities [7]. Laud points out that such primitives can
be easily constructed in the random oracle models [6].

While the language of [22] is simpler compared to the one presented here, we be-
lieve his proof technique straightforwardly generalizes to our full system. With such
a result at hand, we are ready to capitalize on the modularity of our approach. For
a given language and type system, as soon as we can prove that all well-typed pro-
grams are noninterfering, we automatically get computational security. This opens
up possibilities for reasoning about expressive languages and type systems, where
all we have to worry about are noninterference proofs (which are typically simpler
than proofs of computational soundness).

4 Types

The syntax of the types is defined in Figure 2. A primitive type is either a security
annotated basic type, a pair of primitive types or a key type. The security annota-
tion assigns a security level to the basic type expressing whether it is high or low.
The types of encrypted values are structural in the sense that the type reflects the
original type of the encrypted values as well as the level of the key that was used in
the encryption. For instance, encHK (int H) L is the type of a high integer that has
been encrypted with a high key once and encHK (encHK (int H) L) L is the type of
an integer that has been encrypted with a high key twice. The type of the variable
environment Ω is a map from variables to primitive types, the type of the input
environment and the output environment Θ is a map from channel names to prim-
itive types, and the key-stream environment defines its own type (in the domain of
the environment). The type of the entire environment, Σ = (Ω, Θ), is the pair of a
variable type environment and a channel type environment.
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(WF-INT)
n : int σ

(WF-PAIR)
v1 : τ1 v2 : τ2

(v1, v2) : (τ1, τ2)

(WF-KEY-L)
k ∈ KeyLK
k : key LK

(WF-KEY-H)
k ∈ KeyHK
k : key HK

(WF-ENC)
k : key γ u ∈ Eγ(k, v) v : τ

u : encγ τ σ

(WF-MEM)
∀x ∈ dom(Ω) M(x) : Ω(x)

M : Ω

(WF-IOENV)
∀ch ∈ dom(Θ) . X(ch) : Θ(ch)

X : Θ
, X ∈ {I, O}

(WF-KEYGEN)
∀γ ∈ {LK, HK} . G(γ) : key γ

G

(WF-STR1) ε : τ (WF-STR2) v : τ vs : τ
v · vs : τ

(WF-ENV) M : Ω G I : Σ O : Σ
(M, G, I, O) : (Ω, Σ)

Fig. 5. Well-formedness

4.1 Well-formed values

Well-formedness defines the meaning of the non-security part of the types, by
telling what values have what types. The well-formedness relation is defined in
Figure 5.

The integers are the only well-formed values of type int. The set of low keys and
the set of high keys form the well-formed values of the low-key type and the high-
key type respectively. An encrypted value is well-formed w.r.t. an encryption type
if there exists a well-formed key that decrypts the encrypted value to a well-formed
value. A pair is well-formed w.r.t. a pair type if both parts of the pair are well-
formed w.r.t. the corresponding part of the pair type. Streams, i.e., the input envi-
ronment, the output environment and the key streams, are well-formed if all their
elements are well-formed in the type corresponding to the stream. Finally, the en-
vironments are well-formed if all their parts are well-formed.

4.2 Low-equivalence

Figure 6 contains the low-equivalence relation. For complex types, i.e., pairs, en-
vironments and streams, low-equivalence is defined structurally by demanding the
parts of the complex type to be low-equivalent w.r.t. the corresponding types. Any
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(LE-KEY-L)
kLK ∼key LK kLK

(LE-KEY-H)
kHK1 ∼key HK kHK2

(LE-INT-L) n ∼int L n (LE-INT-H) n1 ∼int H n2

(LE-ENC-H) u1 ∼encγ τ H u2
(LE-PAIR)

v11 ∼τ1 v21 v12 ∼τ2 v22

(v11, v12) ∼(τ1,τ2) (v21, v22)

(LE-MEM)
∀x ∈ dom (Ω) M1(x) ∼Ω(x) M2(x)

M1 ∼Ω M2

(LE-IOENV)
∀ch ∈ dom(Θ) . X1(ch) ∼Θ(ch) X2(ch)

X1 ∼Θ X2
, (X1,X2)∈{(I1,I2),(O1,O2)}

(LE-KGEN)
∀γ ∈ {LK, HK} . G1(γ) ∼key γ G2(γ)

G1 ∼ G2

(LE-STR1) ε ∼τ ε (LE-STR2)
v1 ∼τ v2 vs1 ∼τ vs2

v1 · vs1 ∼τ v2 · vs2

(LE-ENC-L1)

∃vi, ki . vi = DHK(ki, ui) i = 1, 2
k1 ∼key HK k2 v1 ∼τ v2 u1

.
= u2

u1 ∼encHK τ L u2

(LE-ENC-L2)

∃vi, ki . vi = DLK(ki, ui) i = 1, 2
k1 ∼key LK k2 v1 ∼tolow(τ) v2

u1 ∼encLK τ L u2

Fig. 6. Low-equivalence

values are low-equivalent w.r.t. a high type. Integers are low-equivalent w.r.t. a low-
integer type if they are equal. Low-equivalence for keys is slightly different since
keys are not annotated with a security level—only a key level—whose meaning
is defined by well-formed values as different sets. Even though it is semantically
meaningful to add a security level to key types—the values of keys can be indi-
rectly affected by computation—we have chosen not to. Instead, a low key is con-
sidered to be of low security and a high key of high security. Thus, low keys are
low-equivalent if they are equal, and any two high keys are low-equivalent.

The most interesting rules are the rules defining low-equivalence w.r.t. a low-encryp-
tion type (LE-ENC-L1) and (LE-ENC-L2). Common to both rules is that there must
exist a pair of low-equivalent keys w.r.t. the key type of the encryption type that
successfully decrypt the encrypted values. The differences between the rules reflect
the difference between encryption with a high and a low key.

Rule (LE-ENC-L1) for encryption with a high key connects the low-equivalence
relation .

= on ciphertexts with low-equivalence on values ∼τ . In (LE-ENC-L1), the
encrypted values must be low-equivalent w.r.t. the low-equivalence relation .

=, and
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(SUB-INT)
σ1 v σ2

int σ1 <: int σ2
(SUB-ENC)

τ1 <: τ2 σ1 v σ2

encγ τ1 σ1 <: encγ τ2 σ2

(SUB-PAIR)
τ1 <: τ3 τ2 <: τ4

(τ1, τ2) <: (τ3, τ4)
(SUB-KEY)

key γ <: key γ

Fig. 7. Subtyping

the values to be encrypted should be low-equivalent w.r.t. the primitive type, τ , of
the encryption type.

Since ciphertexts created by low keys can be decrypted by anyone (we assume
that the low keys are freely available), we have to demand that the inside of the
encrypted value contains only low values. This is done in the (LE-ENC-L2) rule,
which demands that the inside is not only low-equivalent w.r.t. its type τ , but low-
equivalent w.r.t. tolow(τ), which is defined as follows:

tolow(t σ) = t L tolow(key LK) = key LK

tolow((τ1, τ2)) = (tolow(τ1), tolow(τ2))

Observe that tolow(key HK) is undefined to exclude the possibility of encrypting a
high key with a low one. This way, we make certain that the result of decrypting
low-equivalent encrypted values will result in low-equivalent values and that high
values are not stored inside encrypted values that are created by low keys.

4.3 Subtyping

The subtyping is entirely standard; it allows low information to be seen as high with
the exception of invariant subtyping for keys. The subtyping relation for primitive
types, <:, and the subtyping relation for security levels, v, defines the correspond-
ing join operators. The rules for subtyping can be found in Figure 7.

4.4 Expression type rules

The type rules for expressions, defined in Figure 8, are of the form Ω ` e : τ .
Encryption with high keys will always result in low encrypted values. Encryption
with low keys is possible on any value but produces a result that is as secret as the
original value. The type rule for low encryption makes use of function lvl(·) that
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(T-INT)
Ω ` n : int L

(T-VAR)
Ω(x) = τ

Ω ` x : τ

(T-PAIR)
Ω ` e1 : τ1 Ω ` e2 : τ2

Ω ` (e1, e2) : (τ1, τ2)

(T-FST)
Ω ` e : (τ1, τ2)

Ω ` fst(e) : τ1
(T-SND)

Ω ` e : (τ1, τ2)

Ω ` snd(e) : τ2

(T-OP)
Ω ` e1 : int σ1 Ω ` e2 : int σ2

Ω ` e1 op e2 : int σ1 t σ2

(T-ENC1)
Ω ` e1 : key HK Ω ` e2 : τ

Ω ` encryptHK (e1, e2) : encHK τ L

(T-ENC2)
Ω ` e1 : key LK Ω ` e2 : τ lvl(τ) = σ

Ω ` encryptLK (e1, e2) : encLK τ σ

(T-DEC)
Ω ` e1 : key γ Ω ` e2 : encγ τ σ

Ω ` decryptγ (e1, e2) : τσ

Fig. 8. Type rules of expressions

computes the security level of the given value:

lvl(t σ) = σ lvl((τ1, τ2)) = lvl(τ1) t lvl(τ2) lvl(key LK) = L lvl(key HK) = H

Decryption is allowed only if the key level of the key used for decryption matches
the key level of the encrypted value. The result of the decryption is tainted by the
security level of the encrypted values. The taint function is defined as follows:

(t σ)σ′ = t (σ t σ′) (τ1, τ2)
σ = (τσ

1 , τσ
2 )

(key LK)L = key LK (key HK)σ = key HK

Note that the taint function is not defined for (key LK)H—neither keeping the key
level as LK nor raising it to HK is adequate in this case. The reason for this is the
choice to not decorate key types with an additional security level as discussed in
Section 4.2.

4.5 Command type rules

The type rules for commands, defined in Figure 9, are of the form Σ, pc ` c. As
with expressions most of the rules are standard for a security type system (cf. [38]).
In order to prevent implicit flows, we adopt the notion of a security context [14].
The security context of a program point is defined to be the least upper bound
of the security levels of the conditional expressions of the enclosing conditionals.
The context affects the commands with side-effects, i.e., variable assignment, key
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(T-ASGN)
Ω ` e : τ τ <: Ω(x) pc v lvl(Ω(x))

(Ω, Θ), pc ` x := e

(T-NEWKEY)
pc v lvl(key γ) Ω(x) = key γ

(Ω, Θ), pc ` newkey(x, γ)

(T-SKIP)
Σ, pc ` skip

(T-SEQ)
Σ, pc ` c1 Σ, pc ` c2

Σ, pc ` c1; c2

(T-OUTPUT)
Ω ` e : τ τ <: Θ(ch) pc v lvl(Θ(ch))

(Ω, Θ), pc ` out(ch, x)

(T-IF)
Ω ` e : int σ (Ω, Θ), pc t σ ` ci i = 1, 2

(Ω, Θ), pc ` if e then c1 else c2

(T-WHILE)
Ω ` e : int σ (Ω, Θ), pc t σ ` b

(Ω, Θ), pc ` while e do b

(T-INPUT)
pc v lvl(Ω(x)) Θ(ch) <: Ω(x)

(Ω, Θ), pc ` in(x, ch)

Fig. 9. Type rules of commands

generation, input, and output. The type rule for sequences of statements (T-SEQ)
checks both statements of the sequence. If and while are the two constructs that
can lead to implicit flows since they affect the control flow. Thus, the body of the if
and while are checked in the context of the security level of the control expression.
This way, when a branch depends on a secret, the body of that branch is prevented
from causing any low side effects. The generation of a new key with the requested
security level results in a key with that security level if the requested level is not
below the context type. The reason for this is that we assume that the low-key
stream is publicly observable.

Returning to the occlusion problem, we note that the program in Listing 1 is re-
jected by our type system. In particular, it is rejected by rule (T-IF) for the same
reasons assigning to a low integer would be rejected.

On a general note, it is important to recall that it is not the type rule (T-IF) itself that
is central to our contribution, but it is the semantic justification of rules (T-IF) and
(T-ENC1) in combination that rules out weaker, occlusion-prone, versions of (T-IF).

5 Soundness

This section introduces and proves a number of relevant properties of the system. In
particular, we introduce noninterference for expressions and prove that well-typed
expressions are noninterfering, i.e., secure.
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We focus on the soundness of the expressions, since all the encryption relevant
additions are in the expression language. The security conditions for commands
are similar to the ones for expressions; their proofs do not differ from any stan-
dard proofs of possibilistic noninterference. The proof for the expressions has been
formalized in the proof assistant Coq and is available from the second author’s
homepage 1 . Below, we detail the parts of the proof specific for the treatment of
encryption and decryption; we refer the reader to the formal proof for the details of
the standard parts of the proofs.

5.1 Set-lifted semantics

The proof is carried out in a set-lifted version of the semantics in this article for
proof-technical reasons; since the standard semantics results in a set of values (be-
cause of the nondeterministic model of encryption) it is convenient to work in a
set-lifted semantics when using the induction hypotheses.

Thus, in the following we will use an evaluation relation for expressions that re-
lates sets of variable environments to sets of values 〈M̂, e〉 ⇓ v̂, and, similarly,
for statements a relation that relates sets of environments to sets of environments
〈Ê1, c〉 ⇓ Ê2. Figure 10 contains the set-lifted semantics for the expressions, given
to support the proofs of this section.

The connection between the original semantics in the article and the set-lifted se-
mantics is captured in the following two lemmas. The first lemma says that the
set-lifted semantics models all of the original semantics.

Lemma 2 Coverage of the proof semantics of expressions.

〈M, e〉 ⇓ v ⇒ ∃v̂ . v ∈ v̂ ∧ 〈{M}, e〉 ⇓ v̂

Proof. By induction on the derivation of 〈M, e〉 ⇓ v. 2

The second lemma says that the set semantic does not introduce anything not mod-
eled by the original semantics.

Lemma 3 Precision of the proof semantics of expressions.

〈{M}, e〉 ⇓ v̂ =⇒ ∀v . v ∈ v̂ =⇒ 〈M, e〉 ⇓ v

Proof. By induction on the structure of e. 2

1 http://www.cs.chalmers.se/~utter
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(SET-INT)
〈M̂, n〉 ⇓ {n}

(SET-VAR)
v̂ = {v |M ∈ M̂, M(x) = v}

〈M̂, x〉 ⇓ v̂

(SET-OP)
〈M̂, e1〉 ⇓ v̂1 〈M̂, e2〉 ⇓ v̂2 v̂ = {v1 op v2 | v1 ∈ v̂1, v2 ∈ v̂2}

〈M̂, e1 op e2〉 ⇓ v̂

(SET-PAIR)
〈M̂, e1〉 ⇓ v̂1 〈M̂, e2〉 ⇓ v̂2 v̂ = {(v1, v2) | v1 ∈ v̂1, v2 ∈ v̂2}

〈M̂, (e1, e2)〉 ⇓ v̂

(SET-FST)

〈M̂, e〉 ⇓ v̂
v̂1 = {v1 | (v1, v2) ∈ v̂}
〈M̂, fst(e)〉 ⇓ v̂1

(SET-SND)

〈M̂, e〉 ⇓ v̂
v̂2 = {v2 | (v1, v2) ∈ v̂}
〈M̂, snd(e)〉 ⇓ v̂2

(SET-ENC)

〈M̂, e1〉 ⇓ k̂ 〈M̂, e2〉 ⇓ v̂

k̂ ⊆ Keyγ û = {u | k ∈ k̂, v ∈ v̂, u ∈ Eγ(k, v)}
〈M̂, encryptγ (e1, e2)〉 ⇓ û

(SET-DEC)

〈M̂, e1〉 ⇓ k̂ 〈M̂, e2〉 ⇓ û

k ⊆ Keyγ v̂ = {Dγ(k, u) | k ∈ k̂, u ∈ û}
〈M̂, decryptγ (e1, e2)〉 ⇓ v̂

Fig. 10. Set-lifted semantics for expressions

5.2 Leaf-determinism

We begin by proving an important property of expressions that intuitively is a
stronger version of the preservation of types; preservation of types expresses that
well-formedness is preserved under execution of well-typed programs.

We define leaf determinism as follows

{n} :: int σ {kγ} :: key γ

{v | u ∈ Eγ(kγ, v), u ∈ û} :: τ

û :: encγ τ σ

û = {(v1, v2) | v1 ∈ û1, v2 ∈ û2} û1 :: τ1 û2 :: τ2

û2 :: (τ1, τ2)

{M(x) |M ∈ M̂} :: Ω(x)

M̂ :: Ω

This relation is equivalent to a set-lifted version of the standard well-formedness
relation with the addition of the demand that any well-formed set of values decrypt
to one unique value. The idea is to capture that all nondeterminism comes from the
encryption and not from any other source, i.e., that all values apart from encrypted
values are deterministic. If V :: T for some set V and some type T we say that V is
leaf deterministic. To exemplify, if we have a set of keys k̂, that is leaf-deterministic,
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i.e., k̂ :: key γ we know that it is a singleton set. Furthermore, if we have a set of
encrypted values û that is leaf-deterministic w.r.t. encγ int σ, say, û :: encγ int σ
that set is not a singleton, but we know that all values in the set decrypt to the same
integer, since the set {v | u ∈ Eγ(k, v), u ∈ û} used to form û is leaf-deterministic
w.r.t int, which means it is a singleton set.

The connection between leaf determinism and well-formedness is captured by the
following two lemmas. First, as hinted above, leaf determinism implies well-formedness.

Lemma 4 Leaf determinism implies well-formedness, i.e., v̂ :: τ =⇒ ∀v ∈ v̂ . v : τ

Proof. By induction on the derivation of v̂ :: τ . 2

The connection holds the other way around as well. Given a well-formed value, the
singleton set of that value is leaf deterministic, i.e.:

Lemma 5 Well-formed singletons are leaf deterministic, i.e., v : τ =⇒ {v} :: τ .

Proof. By induction on the derivation of v : τ . 2

With this we can prove that expressions preserve leaf determinism, i.e., that if a
well-typed expression e is evaluated in a leaf deterministic environment the result
is leaf deterministic.

Theorem 6 Preservation of leaf determinism of expressions.

Ω ` e : τ ∧ M̂ :: Ω ∧ 〈M̂, e〉 ⇓ v̂ ∧ v̂ 6= ∅ =⇒ v̂ :: τ

Proof. By induction on the derivation of Ω ` e : τ ; let the assumptions be labeled
as follows: (2) Ω ` e : τ , (3) M̂ :: Ω, (4) 〈M̂, e〉 ⇓ v̂, and (5) v̂ 6= ∅. We want to show
that v̂ :: τ . We only give the cases relating to encryption, i.e. (T-ENC1), (T-ENC2),
and (T-DEC). We refer the reader to the formal proof for the proofs for (T-INT),
(T-VAR), (T-PAIR), (T-FST), (T-SND), and (T-OP). Let i ∈ {1, 2} in the following.

(T-ENC1) We have that e = encryptHK (e1, e2), (6) Ω ` e1 : key HK, and (7) Ω `
e2 : τ . Now, (4) gives (8) 〈M̂, e1〉 ⇓ k̂, (9) 〈M̂, e2〉 ⇓ v̂′, (10) k̂ ⊆ KeyHK, and
(S1) v̂ = {v | k ∈ k̂, v′ ∈ v̂′, v ∈ Eγ(k, v′)}.

We want to show that v̂ :: encHK τ σ, which is immediate given that k̂ ::
key HK, i.e. k̂ a singleton set, and v̂′ :: τ . Both results are obtainable via the
induction hypotheses.

In more detail, the interpretation of the set comprehension, (S1), gives the
following (11) k ∈ k̂ ∧ v′ ∈ v̂′ ∧ v ∈ Eγ(k, v′) =⇒ v ∈ v̂, and (12) v ∈ v̂ =⇒
∃k ∈ k̂, v′ ∈ v̂′ . v ∈ Eγ(k, v′).

Now, (5, 12) give (13) k ∈ k̂, (14) v′ ∈ v̂′, and (15) v ∈ Eγ(k, v′) for some k,
some v, and some v ∈ v̂.

With this we can apply the induction hypotheses, which give (16) k̂ :: key HK,
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and (17) v̂′ :: τ .
Now, (16) gives that k̂ is singleton, i.e. (18) k̂ = {k} for k introduced in (13) .
To show v̂ :: τ we must show that v̂′ :: τ , v′ ∈ v̂′ ∧ v ∈ Eγ(k, v′) =⇒ v ∈ v̂,

and v ∈ v̂ =⇒ ∃v′ ∈ v̂′ . v ∈ Eγ(k, v′) for the same k, which is possible because
of (18). The two former are immediate from (17) and (11) respectively; the latter
is immediate from (12, 18), where (18) is crucial for the applicability of (12).

(T-ENC2) Identical to (T-ENC1) with references to high keys replaced by references
to low keys.

(T-DEC) We have that e = decryptγ (e1, e2), (6) Ω ` e1 : key γ, and (7) Ω ` e2 :

encγ τ σ. Now, (4) gives (8) 〈M̂, e1〉 ⇓ k̂, (9) 〈M̂, e2〉 ⇓ û, (10) k ⊆ Keyγ , and
(S1) v̂ = {Dγ(k, u) | k ∈ k̂, u ∈ û}. We want to show that v̂ :: τ , which is given
from the leaf-determinism of k̂ :: key γ, and û :: encγ τ σ both obtainable from
the induction hypotheses. The former guarantees that k̂ is a singleton set, and the
latter gives v̂′ = {v | u ∈ Eγ(k, v), u ∈ û} :: τ , for some key k. Now, v̂ 6= ∅
allows us to conclude v̂ :: τ , since the fact that decryption with the wrong key
fails allows us to establish that k̂ = {k}, and thus v̂ = v̂′, since they are both the
set of values obtained by decrypting û using k.

In more detail, the interpretation of the set comprehension, (S1), gives the
following (11) k ∈ k̂ ∧ u ∈ û =⇒ Dγ(k, u) ∈ v̂, and (12) v ∈ v̂ =⇒ ∃k ∈ k̂, u ∈
û . v = Dγ(k, u). Now, (5, 12) give (13) k ∈ k̂, (14) u ∈ û, and (15) v = Dγ(k, u)
for some k, and some u. With this the induction hypotheses are applicable, which
give (16) k̂ :: key γ, and (17) û :: encγ τ σ. From (16) we get that k̂ is singleton,
i.e. that (18) k̂ = {k} for k introduced in (13). From (17) we get that {v | u ∈
Eγ(k

′, v), u ∈ û} :: τ , for some k′.
Let v̂′ = {v | u ∈ Eγ(k

′, v), u ∈ û}; we have that (19) v′ ∈ v̂′ =⇒ ∃u ∈ û . u ∈
Eγ(k

′, v), and (20) u ∈ û =⇒ ∃v′ ∈ v̂′ . u ∈ Eγ(k
′, v′).

From (20, 14) we have that u ∈ Eγ(k
′, v′) for some v′ ∈ v̂′. This means that

v′ = Dγ(k
′, u); at the same time (15) gives us that v = Dγ(k, u), which allows us

to conclude that k′ = k, since we have assumed that decryption with the wrong
key fails.

Now, it remains to be shown that v̂ = v̂′.
case v′ ∈ v̂′ =⇒ v′ ∈ v̂ Assume, (21) v′ ∈ v̂′; from (19, 21) we have that (22) u′ ∈

û, and (23) u′ ∈ Eγ(k, v′) for some u′. From (11, 22) we have that Dγ(k, u′) ∈
v̂, but Dγ(k, u′) = v′ from (23), since decryption is left inverse of encryption,
and we are done.

case v ∈ v̂ =⇒ v ∈ v̂′ Assume (21) v ∈ v̂; from (12, 21) we have that (22) k ∈ k̂
(k because of (18)), (23) u′ ∈ û for some u′, and (24) v = Dγ(k, u). Now,
(23, 20) give (25) u ∈ Eγ(k, v′) for some v′ ∈ v̂′. From (25) we have that
(26) v′ = Dγ(k, u), since decryption is left inverse of encryption. Now, since
decryption is a deterministic function this means that v′ = v and we are done.

2
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5.3 Noninterference

Before we can define noninterference for expressions, we need to lift the low-
equivalence relation to sets. We say that two sets of values are possibilistically
low-equivalent if for every value in one there exists a low-equivalent one in the
other. For values and variable environments this is formulated as follows:

v1 ∈ v̂1 =⇒ ∃v2 ∈ v̂2 . v1 ∼τ v2

v2 ∈ v̂2 =⇒ ∃v1 ∈ v̂1 . v1 ∼τ v2

v̂1 ∼τ v̂2

M1 ∈ M̂1 =⇒ ∃M2 ∈ M̂2 . M1 ∼Ω M2

M2 ∈ M̂2 =⇒ ∃M1 ∈ M̂1 . M1 ∼Ω M2

M̂1 ∼Ω M̂2

First, we define noninterference for expressions, which is equivalent to the nonin-
terference of statements defined above. Put simply, if two expressions e1 and e2 are
run in low-equivalent sets of variable environments, yielding sets of values, then
these sets of values should be low-equivalent. More precisely, if an expression e is
well-typed in the variable type environment Ω, yielding a result of type τ , then if the
expression is successfully run in any pair of low-equivalent variable environments
(w.r.t. Ω) then the resulting pair of sets of values should be low-equivalent w.r.t. τ .
For expressions this is not enough; noninterference is only provable for leaf deter-
ministic environments. Thus, we demand preservation of low-equivalence only for
leaf deterministic sets of variable environments.

NI (e1, e2)Ω,τ ≡ ∀M̂1, M̂2 . M̂1 :: Ω ∧ M̂2 :: Ω ∧ M̂1 ∼Ω M̂2∧
〈M̂1, e1〉 ⇓ v̂1 ∧ 〈M̂2, e2〉 ⇓ v̂2 ∧ v̂1 6= ∅ ∧ v̂2 6= ∅ =⇒ v̂1 ∼τ v̂2

With this we can formulate and prove security for well-typed expressions. Because
of the set lifted low-equivalence, proving v̂1 ∼τ v̂2 amounts to proving (1) v1 ∈
v̂1 =⇒ ∃v2 ∈ v̂2 . v1 ∼τ v2, and, similarly, (2) v2 ∈ v̂2 =⇒ ∃v1 ∈ v̂1 . v1 ∼τ v2.
The proofs of (1) and (2) are symmetric. For brevity we only prove one direction,
and only give the proof cases dealing with encryption below; the other cases are
completely standard and can be found in the formal proof.

Theorem 7 Security of expressions (set-lifted version) Ω ` e : τ =⇒ NI (e, e)Ω,τ

Proof. First, let us write out the full theorem and enumerate the assumptions.

(1) Ω ` e : τ =⇒ (2) M̂1 :: Ω ∧ (3) M̂2 :: Ω ∧ (4) M̂1 ∼Ω M̂2∧
(5) 〈M̂1, e〉 ⇓ v̂1 ∧ (6) 〈M̂2, e〉 ⇓ v̂2 ∧ (7) v̂1 6= ∅ ∧ (8) v̂2 6= ∅

=⇒ v̂1 ∼τ v̂2

Let i ∈ {1, 2} in the following; The proof proceeds by an induction on the type
derivation (1), in the form on a case by case analysis on the last type rule applied.
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We only consider the rules involving encryption and decryption, and (T-VAR); the
latter serves as a representative for the other rules, which are completely standard.

(T-VAR) We have that e = x, and (9) Ω(x) = τ . We want to show that ∀v1 ∈
v̂1 ∃v2 ∈ v̂2 . v1 ∼τ v2.

Assuming (10) v1 ∈ v̂1; (5, 6) give v̂i = {v | M ∈ M̂i, M(x) = v}. The
interpretation of the set comprehension gives (11i) ∀v ∈ v̂i ∃M ∈ M̂i . M(x) =
v, and (12i) ∀M v . M ∈ M̂i ∧M(x) = v =⇒ v ∈ v̂i.

Thus, from (10, 111) we have that (13) M1(x) = v1 for some M1.
From (4) we have that (14) ∀M1 ∈ M̂1 ∃M2 ∈ M̂2 . M1 ∼Ω M2, which gives

(15) M2 ∈ M̂2, and (16) M1 ∼Ω M2 for some M2.
Now, (16) gives (17) ∀x τ . Ω(x) = τ =⇒ ∃v1 v2 . M1(x) = v1 ∧ M2(x) =

v2 ∧ v1 ∼τ v2

Thus, (17, 9) yield M1(x) = v1 for v1 from (11) above, since M1 is a function,
(18) M2(x) = v2 for some v2, and (19) v1 ∼τ v2.

Finally, (122, 15, 18) allows us to conclude that (20) v2 ∈ v̂2, and we are done.

(T-ENC1) We have that e = encryptHK (e1, e2), (9) Ω ` e1 : key HK, and (10) Ω `
e2 : τ . We want to show that ∀v1 ∈ v̂1 ∃v2 ∈ v̂2 . v1 ∼encHK τ L v2.

Assuming (11) v1 ∈ v̂1; (5, 6) give (12i) 〈M̂i, e1〉 ⇓ k̂i, (13i) 〈M̂i, e2〉 ⇓ v̂′i,
(14i) k̂i ⊆ KeyHK, and v̂i = {v | k ∈ k̂i, v′ ∈ v̂′i, v ∈ Eγ(k, v′)}. The interpreta-
tion of the set comprehension gives (15i) ∀k ∈ k̂i v′ ∈ v̂′i . v ∈ EHK(k, v′) =⇒ v ∈
v̂i, and (16i) ∀v ∈ v̂i∃v′ ∈ v̂′ik ∈ k̂i . v ∈ EHK(k, v′).

Now, from (161, 11) we have (17) v′1 ∈ v̂′1, (18) k1 ∈ k̂1, and (19) v1 ∈ EHK(k1, v
′
1).

Similarly, (8) ensures the existence values in v̂2, and thus also in v̂′2, and k̂2.
With this the induction hypotheses gives us (20) k̂1 ∼HK k̂2, and (21) v̂′1 ∼τ v̂′2.
In turn, (20) gives (22) ∀k1 ∈ k̂1∃k2 ∈ k̂2 . k1 ∼HK k2, and (21) gives (23) ∀v′1 ∈

v̂′1∃v′2 ∈ v̂′2 . v′1 ∼τ v′2.
Thus, (17, 23) give (24) v′2 ∈ v̂′2 for some v′2, and (25) v′1 ∼τ v′2. Similarly,

(18, 22) give (26) k2 ∈ k̂2 for some k2, and (27) k1 ∼HK k2.
Now, Equation 1 from Section 3.3 together with (19) give us (28) v2 ∈ EHK(k2, v

′
2)

for some v2 such that (29) v1
.
= v2.

From (152, 26, 24, 28) we get (30) v2 ∈ v̂2, and from the fact that decryption
is a left inverse of encryption together with (29, 27, 25, 28, 19), and (LE-ENC-L1)
allows us to draw the conclusion that v1 ∼encHK τ L v2, and we are done.

(T-ENC2) We have that e = encryptHK (e1, e2), (9) Ω ` e1 : key LK, and (10) Ω `
e2 : τ . We want to show that ∀v1 ∈ v̂1 ∃v2 ∈ v̂2 . v1 ∼encLK τ σ v2.

The proof for (T-ENC2) is similar to the proof for (T-ENC1). The only differ-
ence is that we proceed with a case on σ.
case σ = L

The proof is identical to proof of (T-ENC1), with all lemmas regarding secret
encryption replaced by their public encryption equivalents (Equation 1 from
Section 3.3 does not have a public encryption equivalent — there is no need
since (LE-ENC-L2) does not demand v1

.
= v2).
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case σ = H

The result is immediate from the existence of v2 ∈ v̂2 established in the
above case, and (LE-ENC-H).

(T-DEC) We have that e = decryptγ (e1, e2), (9) Ω ` e1 : key γ,and (10) Ω ` e2 :
encγ τ σ. We want to show that ∀v1 ∈ v̂1 ∃v2 ∈ v̂2 . v1 ∼τσ v2.

Assuming (10) v1 ∈ v̂1; (5, 6) give (12i) 〈M̂i, e1〉 ⇓ k̂i, (13i) 〈M̂i, e2〉 ⇓ v̂′i,
(14i) k̂ ⊆ Keyγ , and v̂i = {Dγ(k, v′) | k ∈ k̂i, v′ ∈ v̂′i}. The interpretation of the
set comprehension gives (15i) ∀ki ∈ k̂i v′i ∈ v̂′i . vi = Dγ(ki, v

′
i) =⇒ vi ∈ v̂i, and

(16i) ∀vi ∈ v̂i∃v′i ∈ v̂′i, ki ∈ k̂i . vi = Dγ(ki, v
′
i).

Now, (161, 10) give us that (17) v′1 ∈ v̂′1, (18) k1 ∈ k̂1, and (19) v1 = Dγ(k1, v
′
1).

From (8) we get the existence of v3 ∈ v̂2, which via (162) gives (20) v′3 ∈ v̂′2,
(21) k2 ∈ k̂2, and (22) v3 = Dγ(k2, v

′
3).

From the induction hypotheses we can now show that (23) k̂1 ∼γ k̂2, and
(24) v̂′1 ∼encγ τ σ v̂′2.

Furhter, (23, 24) give (25) ∀k1 ∈ k̂1 ∃k2 ∈ k̂2 . k1 ∼γ k2, and (26) ∀v′1 ∈
v̂′1 ∃v′2 ∈ v̂′2 . v′1 ∼encγ τσ v′2.

Theorem 6 gives that (27i) k̂i :: γ, which, in turn, yields that k̂i are singleton
sets, i.e. (28i) k̂i = {ki}, for ki introduced in (18, 21). Thus, (25, 18) give (29) k2 ∈
k̂2, and (30) k1 ∼γ k2; (26, 17) gives (31) v′2 ∈ v̂′2, and (32) v′1 ∼encγ τσ v′2.

We proceed by a case analysis of the key level γ and σ.
case γ = LK

We have (30), i.e. k1 ∼LK k2 gives that k1 = k2 and, thus, that (33) k̂1 = k̂2

by (28i).
case σ = L

Now, (32), i.e. v′1 ∼encLK τL v′2, gives (34i) v′′i = DLK(k
′
i, v

′
i), for some

k′i,and some v′′i , (35) v′′1 ∼tolow(τ) v′′2 .
From (28i) k′i = ki, from (19) and since decryption is a deterministic

function v′′1 = v1; let v′′2 be denoted v2 in the following. Now, v2 ∈ v̂2 by
(152, 29, 31, 342), and v1 ∼τL v2 ≡ v1 ∼τ v2, which is immediate from
(35).

case σ = H

(8) gives us v2 ∈ v̂2 for some v2; v1 ∼τH v2 is easily proven for any vi.
case γ = HK

We have (32), i.e. v′1 ∼encHK τL v′2, gives (34i) v′′i = DLK(k
′
i, v

′
i), for some

k′i,and some v′′i , (35) v′′1 ∼τ v′′2 .
From (28i) k′i = ki, from (19) and since decryption is a deterministic

function v′′1 = v1; let v′′2 be denoted v2 in the following. Now, v2 ∈ v̂2 by
(152, 29, 31, 342), and we are done.

2

With this we are ready to state and prove the top-level security theorem for ex-
pressions corresponding to the top-level security statement for commands stated
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previously in Section 3.3

Theorem 8 Security of expressions (top-level version)

(1) Ω ` e : τ =⇒ (2) M1 : Ω ∧ (3) M2 : Ω ∧ (4) M1 ∼Ω M2∧
(5) 〈M1, e〉 ⇓ v̂1 ∧ (6) 〈M2, e〉 ⇓ v̂2 ∧ (7) v̂1 6= ∅ ∧ (8) v̂2 6= ∅ =⇒ v̂1 ∼τ v̂2

Proof. In the following, let i ∈ {1, 2}. Again, we only show one direction; the
other direction is symmetric. Thus, we must show that v1 ∈ v̂1 =⇒ ∃v2 ∈ v̂2 . v1 ∼τ

v2.

Assume (9) v1 ∈ v̂1; (8) gives the existence of (10) v2 ∈ v̂2. Now, (5, 6) gives
(11i) ∀v . 〈Mi, e〉 ⇓ v ⇐⇒ v ∈ v̂i. Now, (9, 10, 11i) gives 〈Mi, e〉 ⇓ vi, and
Lemma 2 gives the existence of v̂′i such that (12i) 〈{Mi}, e〉 ⇓ v̂′i and (13i) vi ∈ v̂′i.
Noting that by Lemma 5 we have that {Mi} :: Ω from Mi : Ω, Theorem 7 becomes
applicable and gives (14) v̂′1 ∼τ v̂′2. Now, (14) gives v1 ∈ v̂′1 =⇒ ∃v2 ∈ v̂′2 . v1 ∼τ

v2, and, thus, there exists v2 such that (15) v1 ∼τ v2. Now, from Lemma 3 and (132)
we get that (16) 〈{M2}, e〉 ⇓ v2.

With this we are done; we have already proven v1 ∼τ v2 (15) and v2 ∈ v̂2 is
immediate from (112). 2

For commands, the corresponding top-level security theorem is as follows. Since
the commands do not include anything specific to encryption the proof is straight-
forward.

Theorem 9 Security of commands (top-level version)

(1) Σ1, L ` c ∧ (2) E1 : Σ ∧ (3) E2 : Σ ∧ (4) E1 ∼Σ E2 ∧
(5) 〈E1, c〉 ⇓ Ê ′

1 ∧ (6) 〈E2, c〉 ⇓ Ê ′
2 ∧ (7) Ê ′

1 6= ∅ ∧ (8) Ê ′
2 6= ∅ =⇒ Ê ′

1 ∼Σ Ê ′
2

where Ê1 ∼Σ Ê2 is the immediate set-lifted structural extension of low-equivalence
to environments, and E : Σ is the structural extension of well-formedness to envi-
ronments.

Proof. By induction on the derivation of Σ1, L ` c. 2

6 Extensions

In this section we consider two extensions: integrity and public-key cryptography.
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6.1 Integrity

Confidentiality classifies information into public (low-confidentiality) and secret
(high-confidentiality), i.e., information that may or may not be given to the world,
respectively. Dually, integrity classifies information into untrusted (or low-integrity)
and trusted (or high-integrity), i.e., whether the information may or may not have
been affected by the world.

Tracking the integrity of data enables us to explore some additional dimensions of
cryptography: weaknesses of the encryption algorithms and the effect of encryp-
tion on integrity. Consider for example, a primitive that is vulnerable to chosen
ciphertext attacks. With integrity controls, it is natural to express the restriction that
untrusted encrypted values may not be decrypted.

In the presence of integrity the security levels for values are pairs of the form (σ, ι),
where σ is a confidentiality level, and ι is a corresponding integrity level. The fol-
lowing tables define two functions—safeE(α, (σ, ι)) and safeD(α, (σ, ι))—that
indicate if it is safe to encrypt (decrypt) a plaintext (ciphertext) of security level
(σ, ι) with an encryption scheme that has property α. Here α ranges over stan-
dard notions [5]—IND-CCA (indistinguishable under chosen-ciphertext attacks)
and IND-CPA (indistinguishable under chosen-plaintext attacks).

(H,H) (L,L) (H,L) (L,H)

IND-CCA safe safe safe safe

IND-CPA safe safe safe safe

(H,H) (L,L) (H,L) (L,H)

IND-CCA safe safe safe safe

IND-CPA safe - - safe

safeE(α, (σ, ι)) safeD(α, (σ, ι))

In this way we can provide different type rules for different assumptions on the
vulnerability properties of the encryption and decryption algorithms:

(T-ENC*)
Ω ` e1 : key HK Ω ` e2 : τ lvl(τ) = (σ, ι) safeE(α, (σ, ι))

Ω ` encryptα
HK (e1, e2) : encHK τ (L, H)

(T-DEC*)
Ω ` e1 : key γ safeD(α, (σ, ι)) Ω ` e2 : encγ τ (σ, ι)

Ω ` decryptα
γ (e1, e2) : τ (σ,ι)

6.2 A note on the integrity of keys

The current model allows very limited interaction with keys apart from encryption.
Since the values of keys cannot be programmatically inspected, the power of the
attacker is limited to choose between secure keys. Thus, the model cannot in its
present form distinguish between encryption with high and low-integrity keys w.r.t.
confidentiality. The intuition is clear: since the attacker can only choose between
secure keys, that choice will give different but safe encrypted values.
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6.3 Public-key cryptography

Even though the present system deals only with symmetric-key cryptography, there
is nothing in the model that prevents modeling public-key cryptography. The set of
high keys would contain the private keys and the set of low keys would contain
the public keys, where the private keys and the public keys are dual. In this system
values encrypted with public keys would be considered low, since only actors with
access to the private keys would be able to decrypt them.

However, public-key cryptography is most interesting in the presence of integrity.
In the same way we can model that encryption of secrets using secret keys results
in low values, we can model that encryption raises the integrity of the encrypted
value to the integrity of the key, which corresponds to signing.

7 Programming with encryption: Examples

We have implemented a prototype of the type system and mechanically type-checked
two applications: secure backup and a Wide-Mouthed-Frog protocol implemen-
tation. In both examples the type system prevents dangerous insecurities such as
sending sensitive unencrypted data over a low channel or not using a secret key for
encryption. This section discusses some interesting fragments of these implemen-
tations. 2

7.1 Secure data backup

1 K key HK;
2 backup enc HK (int H) L;
3
4 actor Backup {
5 data int H;
6 ctxt enc HK (int H) L;
7 data := ...
8 ctxt := encryptHK(K, data);
9 out backup ctxt;

10 }

Listing 2. Backup code

In the secure backup scenario a low-
confidentiality channel is used for send-
ing sensitive information to the remote
storage. Listing 2 presents the code for
the backup operation. Here and below we
aid the reader by providing explicit vari-
able type declarations.

We declare high key K and low channel
backup. The type of the latter says that
only encrypted high integers may be sent
over this channel.
2 In the examples below some variables and channels that are shared between actors are
declared before the code for actors. This is done to avoid double declarations and the pro-
totype implementation uses these global declarations when building local environments of
every actor.
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Lines 5 and 7 declare and initialize a high integer variable data. Line 6 declares
the variable ctxt of type enc HK (int H) L. On line 8 the value of variable data

is encrypted with high key K and the resulting ciphertext is assigned to the vari-
able ctxt. Since type of ctxt matches the type of the backup channel it might be
sent over this channel. This is done by the out command on line 9.

1 actor Restore {
2 data int H;
3 ctxt enc HK (int H) L;
4 in ctxt backup;
5 data := decryptHK(K, ctxt);
6 }

Listing 3. Recovery code

When recovering data, an actor reads
the data from the low channel and de-
crypts it. Assuming the same global dec-
larations Listing 3 presents the recovery
code. Here, line 4 reads data from the
backup channel. It’s decrypted using the
key K on line 5.

An example of an easy-to-overlook error
is to have the following line in place of line 9 in the body of actor Backup: out
backup data;. This is an insecurity that the type system rejects. Generally, in the
secure backup example the type system ensures that secret data is encrypted before
it is sent over the backup channel, thus preventing accidental leaks.

7.2 Wide-Mouthed-Frog protocol

The Wide-Mouthed-Frog protocol [8] is a simple key exchange protocol with trusted
server and timestamps. In this protocol secret keys KAS and KBS are shared be-
tween server S and principals A and B, respectively. Principal A generates a fresh
session key KAB, which is transferred to B in two messages:

1. A → S : A, {TA, B,KAB}KAS

2. S → B : {TS, A, KAB}KBS

The first message consists of A’s name and a tuple encrypted with the shared key
KAS . This tuple contains three elements—a timestamp TA, the name of principal B,
and a generated key KAB. Upon receipt of this message, S decrypts it, checks the
timestamp, replaces TA with its own timestamp TS , encrypts it with key KBS , and
forwards the resulting message to B. Principal B then checks whether the second
message is timely.

Obviously, there is more to implementation of the protocol than expressed by the
two-step description. Our type system guarantees that implementations do not in-
troduce information-flow leaks in the protocol. Listing 4 presents the implementa-
tion of this protocol for principal A.

This program declares two channels: chanS for communicating with the server,
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1 Kas key HK;
2 chanS <int L, enc HK (<int L, <int L, key HK>>) L>;
3 chanAB enc HK (int H) L;
4 actor A {
5 idA int L; idB int L; tsA int L;
6 messageToB int H;
7 Kab key HK;
8 // ... initialization
9 newkey (Kab, HK);

10 out chanS <idA, encryptHK(Kas, <tsA,<idB, Kab>>)>;
11 out chanAB encryptHK (Kab, messageToB);
12 }

Listing 4. WMF Implementation

and chanAB for sending messages to B, once the key has been exchanged. The
type of the channel chanS corresponds to the first message in the protocol—a pair
consisting of a low integer and an encryption with high key of a three-element
tuple (expressed by nested pairs). Since the level of the key used for encrypting
this tuple is high, it is safe to label the result of encryption as low. The body of
the actor declaration defines low-confidentiality variables idA and idB that stand
for the names of the principals; variable tsA stores the current timestamp; the high-
confidentiality variable messageToB contains the information that A wants to send
to B.

The new key is generated on line 9. Line 10 constructs the first message of the
protocol and sends it to the server. Line 11 uses the newly generated key and sends
the secret message to the principal B.

The following listing presents the code for the actors Server and B in the Wide-
mouthed-frog protocol implementation. Here we assume existence of appropriate
macros IS_FRESH and GET_TIME.
Kas key HK; // declaration of
Kbs key HK; // shared keys

// channel for accepting requests
chanS <int L, enc HK (<int L, <int L, key HK>>) L >;

// channels for communicating with principals
chanA enc HK ( <int L, <int L, key HK>> ) L;
chanB enc HK ( <int L, <int L, key HK>> ) L;

actor S {
idA int L; idB int L;

tsS int L; // time stamp
... // initialize identifiers

while (1) {
idFrom int L; idTo int L; tsFrom int L; Kab key HK;
request <int L, enc HK (<int L, <int L, key HK>>) L>;
msg <int L, <int L, key HK>>;

in request chanS; // accepting a request from a principal
idFrom := fst (request);

if idFrom == idA then {
msg := decryptHK(Kas, snd (request));
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} else {
msg := decryptHK(Kbs, snd (request));

};

tS := GET_TIME
tsFrom := fst(msg);
if IS_FRESH(tsFrom, tsS) then {
idTo := fst (snd(msg));
Kab := snd (snd(msg));

// forwarding the request to the other principal
if idTo == idA then {
out chanA encryptHK(Kas, <tsS, <idFrom, Kab>>);

} else {if idTo == idB then {
out chanB encryptHK(Kbs, <tsS, <idFrom, Kab>>);

} else {};};
} else {} ;

};
}

actor B {
ctxt enc HK ( <int L, <int L, key HK>> ) L;
msg <int L, <int L, key HK>>;
Kab key HK; idFrom int L;
tsS int L; tsB int L;
... // initialize identifiers and timestamp
in ctxt chanB;
msg := decryptHK (Kbs, ctxt);
tsS := fst (msg);
if IS_FRESH(tsS, tsB) then {

idFrom := fst (snd (msg));
Kab := snd (snd(msg));

// get a message from A
cmsg enc HK (int H) L;
in cmsg chanAB;
messageFromA int H;
messageFromA := decryptHK(Kab, cmsg);

} else {};
}

In this example, the type system prevents non-secret session keys in the key es-
tablishment protocol. As in the previous example, it also guarantees that secret
information may not leave the system unless it is encrypted with a secret key.

8 Related work

As mentioned in the introduction, declassification models are sometimes used to
justify cryptographic primitives in languages with information-flow control. De-
classification mechanisms facilitate information release. A recent classification of
declassification [32] suggests that information release policies represent aspects of
what is declassified, by whom, when and where in the system. These correspond
to dimensions of information release. The relation of our model to declassification
is somewhat subtle, because the goal of masking is information hiding rather than
information release.
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Furthermore, attempts at framing cryptographically-masked flows into different di-
mensions do not always lead to satisfactory results. For example, releasing the dif-
ference between two values of a secret whenever the results of its encryption are
different can be a deceptive policy when assumptions about the underlying crypto-
graphic primitives are not explicitly stated. If the underlying encryption function is
bijective (assuming the key is fixed) then releasing the result of encryption is equiv-
alent to releasing the secret itself. This phenomenon applies to typical policies from
the what dimension, such as delimited release [31].

Another example of releasing the secret itself, together with the result of a crypto-
graphic primitive applied to the secret, can be found in [9]. The password checker
example is based on matching the hash of the password with the hash of a user
query. The password has a label H

cert
; L, which means that the level of the pass-

word is eventually declassified from high to low. This, however, allows the pass-
word itself to be released to the attacker in cleartext.

Nevertheless, declassification is meaningful in the context of cryptographic com-
putation when the attacker is capable of learning some information from ciphertext.
Temporal policies express when, at earliest, the attacker might learn the secret. Vol-
pano and Smith’s relative secrecy [37,36] guarantees that the attacker cannot learn
the secret in polynomial time in the size of the secret. Approaches by Laud [20,21],
Laud and Vene [23], provide computational guarantees for a simple imperative lan-
guage but with the assumption that keys can be statically distinguished. Smith and
Alpizar [33] present a type system for a language with random assignment, encryp-
tion, and decryption and establish computational security for typable programs.

As mentioned previously, Laud’s recent work [22] adopts this article as a starting
point and bridges cryptographically-masked flows with computational security. In
fact, Laud formally proves a conjecture from an earlier version [2] of this article
that SEM-CPA and INT-PTXT properties of underlying cryptographic primitives
(extended to hide key identities) are sufficient to guarantee computational security
for programs that satisfy our possibilistic noninterference.

Mitchell et al. [24,26] reason about security with respect to polynomial-time at-
tackers for a form of the π calculus.

A source of our inspiration is Abadi’s secrecy model for symmetric-key crypto-
graphic protocols [1]. This model assumes that an attacker is unable to decrypt
ciphertexts encrypted with secret keys. Compared to [1], we end up with simpler
typing rules. For example, because of the probabilistic encryption assumption, we
do not need to deal with explicit confounders. In addition, our approach accom-
modates natural extensions with integrity and public-key cryptography. Another
source of inspiration is a logical relations technique by Sumii and Pierce that facili-
tates manual security proofs for cryptographic protocols [34]. This technique is not
accompanied by static enforcement mechanisms (such as a type system), however.
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Gordon and Jeffrey [18] extend Abadi’s work to multiple security levels that may
be dynamically created and may become compromised. This and other work within
Gordon and Jeffrey’s Cryptyc project, however, relies on trace-based properties
(such as correspondence) that are weaker than noninterference. Dam and Giambi-
agi’s work on admissibility [13,16] focuses on protocol implementation, with the
goal that information leaks in the implementation must adhere to those declared in
protocol specification.

Duggan’s and Chothia et al.’s cryptographic types [15,10] help enforce security
for a distributed programming language. This is realized through a combination
of static and dynamic checks, leading to access-control guarantees (albeit without
information-flow guarantees) for secrecy and integrity. Myers et al.’s qualified ro-
bustness [28] is based on a possibilistic treatment of endorsement, operation dual
to declassification.

Hicks et al. [19] define a notion of noninterference modulo trusted functions, which
requires parts of programs free of cryptographic functions to be in a certain sense
indistinguishable. The cryptographic functions are trusted to release information
if their security labels satisfy trust constraints. It is a worthwhile direction for fu-
ture work to formally investigate the relation to noninterference modulo trusted
functions. We do not expect it to be straightforward because the definition of the
indistinguishability relation from [19] involves two-level semantics.

Vaughan and Zdancewic [35] present a language in which security labels are con-
nected to public-key cryptography. Based on the decentralized label model [27],
they explore rich confidentiality and integrity policies. However, their semantic se-
curity condition appears to relate all ciphertexts as indistinguishable, which may
result in occlusion (cf. Section 3.2).

Finally, the first and last authors have proposed a gradual release framework [4]
that unifies revelation-based and encryption-based policies. This framework con-
servatively extends cryptographically-masked flows with possibilities of reasoning
about key release, and offers a type-based enforcement mechanism that prevents
premature key release.

9 Conclusions

We have developed an approach to tracking information flow in the presence of
cryptographic operations, based on possibilistic noninterference. We have argued
that a possibilistic treatment of cryptographic operations leads to a natural model
of attackers that may not learn useful information from ciphertexts. This model has
a close connection to probabilistic encryption and it naturally connects to compu-
tational adversary models [22].
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Our case for possibilistic noninterference is driven by the possibility of capitalizing
on the available machinery for reasoning about noninterference in programming
languages. We have demonstrated that possibilistic noninterference can be prov-
ably and straightforwardly enforced via a security-type system for a language that
includes cryptographic primitives and message passing. We have formalized the
main proof of soundness in the proof assistant Coq. The type system is amenable to
extensions, including integrity and public-key cryptography, which makes it attrac-
tive for developing secure implementations of non-trivial cryptographic protocols.
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