
On-the-fly Inlining of Dynamic Security Monitors

Jonas Magazinius Alejandro Russo Andrei Sabelfeld

Dept. of Computer Science and Engineering, Chalmers University of Technology
412 96 Gothenburg, Sweden, Fax: +46 31 772 3663

Email: andrei@chalmers.se

Abstract

How do we guarantee that a piece of code, possibly originating from third party, does not jeopardize the security of the underlying
application? Language-based information-flow security considers programs that manipulate pieces of data at different sensitivity
levels. Securing information flow in such programs remains an open challenge. Recently, considerable progress has been made on
understanding dynamic monitoring for secure information flow. This paper presents a framework for inlining dynamic information-
flow monitors. A novel feature of our framework is the ability to perform inlining on the fly. We consider a source language
that includes dynamic code evaluation of strings whose content might not be known until runtime. To secure this construct, our
inlining is done on the fly, at the string evaluation time, and, just like conventional offline inlining, requires no modification of the
hosting runtime environment. We present a formalization for a simple language to show that the inlined code is secure: it satisfies a
noninterference property. We also discuss practical considerations experimental results based on both manual and automatic code
rewriting.

Keywords: information flow, language-based security, non-interference, reference monitors, inlining

1. Introduction

The problem. How do we guarantee that a piece of code, possi-
bly originating from third party, does not jeopardize the security
of the underlying application? For example, it is common to
include third-party code in web applications for producing us-
age statistics and for providing context-sensitive advertisement.
The integration of the third-party code is tight in the sense that
in order to function properly, the code cannot be isolated from
the main application. This brings us to the challenge of track-
ing information flow in the web application: how do we ensure
that the code preserves confidentiality and integrity of sensitive
data?

In the context of web applications, code integration often
takes place on the client side, often by including JavaScript
code. This provides much power and flexibility because the in-
tegrated code is in possession of user credentials. At the same
time it brings a security challenge of ensuring that the power
is not abused. One alternative is to modify the browser to ana-
lyze the code it runs. However, in a scenario when it cannot be
guaranteed the users have modified browser versions, a viable
alternative is to apply code rewriting to inline security checks
in the code itself. Depending on the setting, this kind of in-
lining can be performed by the server, proxy, or the client (or
their combination). A intriguing challenge for secure inlining
is dynamic code evaluation: how do we ensure that rewritten
code escapes security checks by dynamically evaluating a spe-
cially crafted string that steals sensitive data? This brings us
to the question we answer in this paper: how to tightly and yet
securely integrate third-party code in a language with dynamic

code evaluation?

Background. Analyzing code for security is the subject of the
area of language-based security. Language-based approach to
security gains increasing popularity [17, 40, 49, 37, 20, 29, 8,
12] because it provides natural means for specifying and en-
forcing application and language-level security policies. Pop-
ular highlights include Java stack inspection [49], to enforce
stack-based access control, Java bytecode verification [20], to
verify bytecode type safety, and web language-based mecha-
nisms such as Caja [29], ADsafe [8], and FBJS [12], to enforce
sandboxing and separation by program transformation and lan-
guage subsets.

Language-based information-flow security [37] considers
programs that manipulate pieces of data at different sensitivity
levels. For example, a web application might operate on sensi-
tive (secret) data such as credit card numbers and health records
and at the same time on insensitive (public) data such as third-
party images and statistics. A key challenge is to secure infor-
mation flow in such programs, i.e., to ensure that information
does not flow from secret inputs to public outputs. There has
been much progress on tracking information flow in languages
of increasing complexity [37], and, consequently, information-
flow security tools for languages such as Java, ML, and Ada
have emerged [31, 42, 43].

While the above tools are mostly based on static analy-
sis, considerable progress has been also made on understand-
ing monitoring for secure information flow [13, 47, 45, 19, 18,
41, 27, 38, 3, 2]. Mozilla’s ongoing project FlowSafe [10] aims
at empowering Firefox with runtime information-flow tracking,

Preprint submitted to Elsevier December 21, 2011

where dynamic information-flow reference monitoring [3, 4]
lies at its core. The driving force for using the dynamic tech-
niques is expressiveness: as more information is available at
runtime, it is possible to use it and accept secure runs of pro-
grams that might be otherwise rejected by static analysis.

Dynamic techniques are particularly appropriate to handle
the dynamics of web applications. Modern web application pro-
vide a high degree of dynamism, responding to user-generated
events such as mouse clicks and key strokes in a fine-grained
fashion. One popular feature is auto-completion, where each
new character provided by the user is communicated to the
server so that the latter can supply an appropriate completion
list. Features like this rely on scripts in browsers that are writ-
ten in a reactive style. In addition, scripts often utilize dynamic
code evaluation to provide even more dynamism: a given string
is parsed and evaluated at runtime.

With a long-term motivation of securing a scripting lan-
guage with dynamic code evaluation (such as JavaScript) in a
browser environment without modifying the browser, the paper
turns attention to the problem of inlining information security
monitors. Inlined reference monitors [11] are realized by mod-
ifying the underlying application with inlined security checks.
Note that there is no widely accepted formal definition for in-
lined monitors because it highly depends on the architecture of
the underlying application and security policy to enforce. In-
lining security checks are attractive because the resulting code
requires no modification of the hosting runtime environment.
In a web setting, we envisage that the kind of inlining transfor-
mation we develop can be performed by the server or a proxy
so that the client environment does not have to be modified.

Contribution. We present a framework for inlining dynamic
information-flow monitors. For each variable in the source pro-
gram, we deploy a shadow variable (auxiliary variable that is
not visible to the source code) to keep track of its security
level. Additionally, there is a special shadow variable program
counter pc to keep track of the security context, i.e., the least
upper bound of security levels of all guards for conditionals and
loops that embody the current program point. The pc variable
helps tracking implicit flows [9] via control-flow constructs. The
shadow variables record information flow by propagating secu-
rity levels from the righthand side to the lefthand side of an
assignment, taking into account both the security level of the
expression assigned and the control-flow security context of the
assignment.

A novel feature of our framework is the ability to perform
inlining on the fly. We consider a source language that includes
dynamic code evaluation (popular in languages as JavaScript,
PHP, Perl, and Python). To secure dynamic code evaluation,
our inlining is performed on the fly, at the string evaluation
time, and, just like conventional offline inlining, requires no
modification of the hosting runtime environment. The key ele-
ment of the inlining is providing a small library packaged in the
inlined code, which implements the actual inlining. Every time
it is called, the library replaces any dynamic code evaluation
primitive by its secure version, implying that before any string
gets to run, it will be first rewritten to respect the propagation

of the security levels of data through shadow variables.
Our approach stays clear of the pitfalls with purely dynamic

information-flow enforcement. Indeed, dynamic information-
flow tracking is challenging because the source of insecurity
may be the fact that a certain event has not occurred in a mon-
itored execution [35]. However, we draw on recent results on
dynamic information-flow monitoring [38, 3] that show that se-
curity can be enforced purely dynamically. This gives us a great
advantage for treating dynamic code evaluation: the inlined
monitor needs to perform no static analysis for the dynamically
evaluated code.

We present a formalization for a simple language to show
that the result of the inlining is secure: it satisfies the base-
line policy of termination-insensitive noninterference [7, 14,
48, 37]: whenever two runs of a program that agree on the pub-
lic part of the initial memory terminate, then the final memories
must also agree on the public part.

Our work includes a discussion of practical considerations
and encouraging experimental results. Our experiments with
manual transformation give an indication of a reasonable per-
formance overhead. Pushing the experiments further, we fully
automate the transformation for a simple subset of JavaScript
without dynamic code evaluation. Based on user-defined func-
tions in the Opera browser, we show how the transformation
can be deployed in a realistic browser setting.

Note that it is known that noninterference is not a safety
property [28, 44]. Precise characterizations of what can be en-
forced by monitoring have been studied in the literature (e.g., [39,
15]), where noninterference is discussed as an example of a pol-
icy that cannot be enforced precisely by dynamic mechanisms.
However, the focus of this paper is on enforcing permissive yet
safe approximations of noninterference. The exact policies that
are enforced might just as well be safety properties (or not), but,
importantly, they must guarantee noninterference.

This paper is modified and extended with respect to its con-
ference version [26]. Compared to it, we have streamlined the
transformation and its presentation, included the semantics and
proofs, and advanced further our experiments from manual to
automatic transformation.

The paper is organized as follows. Section 2 presents the
code transformation that inlines security checks to provide
information-flow security. Section 3 shows the security guar-
antees provided by the transformation. Section 4 evaluates our
approach in practice. Section 5 discussed related work. Section
6 draws the conclusions for this work.

2. Inlining transformation

We present an inlining method for a simple imperative lan-
guage with dynamic code evaluation. The inlined security anal-
ysis has a form of flow sensitivity, i.e., confidentiality levels
of variables can sometimes be relabeled during program exe-
cution. Our source-to-source transformation injects purely dy-
namic security checks.

Language. Figure 1 presents a simple imperative language en-
riched with functions, local variables, and dynamic code eval-

2

P ::= (def f(x) = e;)∗ c e ::= s | ` | x | e⊕ e | f(e) | case e of (e : e)+

c ::= skip | x := e | c; c | if e then c else c | while e do c | let x = e in c | eval(e)

Figure 1: Language

uation. A program P is a possibly empty sequence of function
definitions (def f(x) = e) followed by a command c. Function
bodies are restricted to using the formal parameter variable only
(FV(e) ⊆ {x}, where FV(e) denotes the free variables that oc-
cur in e). Expressions e consist of strings s, security levels `,
variables x, composite expressions e ⊕ e (where ⊕ is a binary
operation), function calls f(e), and non-empty case analysis
(case e of (e : e)+). We omit explanations for the standard
imperative instructions appearing in the language [50]. Com-
mand let x = e in c binds the value of e to the local variable
x, which is only visible in c. Command eval(e) takes a string
e, which represents a program, and runs it.

Semantics. Figure 2 displays the semantics of the language. A
program P , memory m, and function environment Σ form a
program configuration 〈P | m,Σ〉. A memory m is a mapping
from global program variables Vars to values Vals . A func-
tion environment Σ consists of a list of definitions of the form
def f(x) = e. We assume expressions evaluate according to
rules of the form 〈e | m,Σ〉 ⇓ v, where expression e in mem-
ory m and function environment Σ evaluates to value v. The
semantics of expressions is total and call-by-value. Big-step
semantic rules for commands have the form 〈P | m,Σ〉 ⇓ m′,
which indicates that program P in memory m and function en-
vironment Σ evaluates to (or terminates in) memory m′. While
most of the rules are standard [50], we pay particular atten-
tion to the rule [Eval] for dynamic code evaluation. Dynamic
code evaluation takes place when expression e evaluates, un-
der the current memory and function environment, to a string
s (〈e | m,Σ〉 ⇓ s), and that string is successfully parsed to a
command (parse(s) = c). For simplicity, we assume that exe-
cutions of programs get stuck when failing to parse. (In a realis-
tic programming language, failing to parse results in a runtime
error.)

Inlining transformation. At the core of the monitor is a com-
bination of the no sensitive upgrade discipline by Austin and
Flanagan [3] and a treatment of dynamic code evaluation from
a flow-insensitive monitor by Askarov and Sabelfeld [2].

Before explaining how the transformation works, we state
our assumptions regarding the security model. For convenience,
we only consider the security levels L (low) and H (high) as el-
ements of a security lattice, where L v H and H 6v L. Security
levels L and H identify public and secret data, respectively. We
assume that the attacker can only observe public data, i.e., data
at security level L. The lattice join operator t returns the least
upper bound over two given levels.

We now explain our inlining technique in detail. Since the
transformation operates on strings that represent programs, we
consider programs and strings as interchangeable terms. String
constants are enclosed by double-quote characters (e.g., ”text”).
Operator ++ concatenates strings (e.g., ”conc”++”atenation”

results in ”concatenation”). Given the source code src (as a
string) and a mapping Γ (called security environment) that maps
global variables to security levels, the inlining of the program
is performed by the top-level rule in Figure 4. The rule has the
form Γ ` src ; trg , where, under the initial security environ-
ment Γ, the source code src is transformed into the target code
trg . Since functions are side-effect free, the inlining of function
declarations is straightforward: they are simply propagated to
the result of the transformation.

In order for the transformation to work, variables x′ (for any
global variable x), as variable pc must not occur in the string
received as argument. The selection of names for these vari-
ables must avoid collisions with the source program variables,
which is particularly important in the presence of dynamic code
evaluation. In an implementation, this can be accomplished by
generating random variable names for auxiliary variables. We
defer this discussion until Section 4.

The top-level rule defines three auxiliary functions vars(·),
lev(·), and trans(·) for extracting the variables in a given string,
for computing the least upper bound on the security level of
variables appearing in a given string, and for on-the-fly trans-
formation of a given string, respectively. We discuss the defini-
tion of these functions below. The top-level rule also introduces
an auxiliary shadow variable pc, setting it to L, and a shadow
variable x′ for each source program global variable x, setting it
to the initial security level, as specified by the security environ-
ment Γ. This is done to keep track of the current security levels
of the context and of the global variables (as detailed below).
The shadow variables are fresh, i.e., their set is disjoint from
the variables that may occur in the configuration during the ex-
ecution of the source program. We denote by x ∈ Fresh(c),
whenever variable x never occurs in the configuration during
the execution of program c. With these definitions in place,
the inlined version of src is simply eval(trans(src)), which
has the effect of on-the-fly application of function trans to the
string src at runtime.

On-the-fly inlining. To motivate the transformation rules, we
briefly clarify the key dangers that need to be addressed. First,
we track explicit flows of the form x := e, where the data in-
volved in e might leak into x. We ensure that the security level
of x is at least as high as the least upper bound of security lev-
els of data involved in e. Second, we track implicit flows of the
form if e then x := 1 else x := 0, where the data involved
in e might leak into x through the control-flow structure of the
program. It might be tempting to upgrade the security level of
x to the upper bound of security levels of data involved in e, but
this upgrade is not always secure.

To illustrate the case of insecure upgrade, consider the ex-
ample in Listing 1 (e.g., [35]). For readability, we omit the else
branches which we assume contain skip. Variables t and l are
low-level variables, and h is a high-level variable. Depending

3

DEF
〈c |m,∪i{fi 7→ def fi(x) = ei}〉 ⇓ m′

〈def f1(x) = e1; . . . ;def fn(x) = en; c |m, ∅〉 ⇓ m′

SKIP

〈skip |m,Σ〉 ⇓ m

ASSIGN
〈e |m,Σ〉 ⇓ v

〈x := e |m,Σ〉 ⇓ m[x 7→ v]

SEQ

〈c1 |m,Σ〉 ⇓ m′ 〈c2 |m′,Σ〉 ⇓ m′′

〈c1; c2 |m,Σ〉 ⇓ m′′

IF1
〈e |m,Σ〉 ⇓ v v 6= 0 〈c1 |m,Σ〉 ⇓ m′

〈if e then c1 else c2 |m,Σ〉 ⇓ m′

IF2
〈e |m,Σ〉 ⇓ 0 〈c2 |m,Σ〉 ⇓ m′

〈if e then c1 else c2 |m,Σ〉 ⇓ m′

WHILE1
〈e |m,Σ〉 ⇓ v v 6= 0 〈c; while e do c |m,Σ〉 ⇓ m′

〈while e do c |m,Σ〉 ⇓ m′

WHILE2
〈e |m,Σ〉 ⇓ 0

〈while e do c |m,Σ〉 ⇓ m

LET
〈e |m,Σ〉 ⇓ v m(x) = v′ 〈c |m[x 7→ v],Σ〉 ⇓ m′

〈let x = e in c |m,Σ〉 ⇓ m′[x 7→ v′]

EVAL
〈e |m,Σ〉 ⇓ s parse(s) = c 〈c |m,Σ〉 ⇓ m′

〈eval(e) |m,Σ〉 ⇓ m′

Figure 2: Semantics

on the value of h the branch of the first conditional will either
be taken or not. If h is 1, the then branch is taken and the level
of t will be upgraded to high and its value set to 1. Thus, when
branching on t, the then branch will not be taken, the value of
l will remain 1, and its level will remain low. If the value of h
is 0, then the level of t will remain low. Thus, l will be set to 0.
Further, since the level of t is low, so is the level of l. To sum
up, the value of high variable h is leaked into the low variable
l. This example illustrates the fundamental tension between dy-
namism and permissiveness of information-flow monitors [35].
t:=0; l:=1;
if h then t:=1;
if !t then l:=0

Listing 1: Example of information-flow leak

At the heart of on-the-fly inlining is the transformation func-
tion trans(·), displayed in Figure 3. We describe the definition
of function trans(y) by cases on string y. The inlining of com-
mand skip requires no action.

As foreshadowed above, special shadow variable pc is used
to keep track of the security context, i.e., the join of security
levels of all guards for conditionals and loops that embody the
current program point. The pc variable helps to detect implicit
flows. Following Austin and Flanagan [3], we use pc to restrict
updates of variables’ security levels: changes of variables’ se-
curity levels are not allowed when the security context (pc) is
set to H . With this in mind, the inlining of x := e demands that
pc v x′ before updating x′. In this manner, public variables
(x′ = L) cannot change their security level in high security
contexts (pc = H). When pc 6v x′, the transformation forces
the program to diverge (loop) in order to preserve confidential-
ity. We define loop as simply while 1 do skip. This is the only
case in the monitor where the execution of the program might
be blocked due to a possible insecurity. We remark that if our

language did not feature dynamic code evaluation, then it would
be entirely possible to avoid blocking altogether: by forcing an
upgrade of all variables that might be updated in high context
(see, e.g., Chudnov and Naumann’s inlining [6] for Russo and
Sabelfeld’s hybrid monitors [35]). However, in the presence of
dynamic code evaluation, it is hard to statically approximate the
set of updated variables.

The security level of x is updated to the join of pc and
the security level of variables appearing in e, as computed by
function lev()̇. Function lev(s) returns the least upper bound
of the security levels of variables encountered in the string s.
The formal specification of lev(s) is given as tx′∈FV(s)x

′. Ob-
serve that directly calling lev(e) does not necessarily returns
the confidentiality level of e because the argument passed to
lev is the result of evaluating e, which is a constant string. To
illustrate this point, consider w = ”text”, w′ = H , and e = w.
In this case, calling lev(e) evaluates to lev(”text”), which is
defined to be L since ”text” does not involve any variable.
Clearly, setting lev(”text”) = L is not acceptable since the
string is formed from a secret variable. Instead, the transfor-
mation uses function vars to create a string that involves all
the variables appearing in an expression e (vars(”e”)). Ob-
serve that such string is not created at runtime, but when inlin-
ing commands. Function vars returns a string with the shadow
variables of the variables appearing in the argument string. For
instance, assuming that e = ”text” ++ w ++ y, we have that
vars(”e”) = ”w′ ++ y′”. Shadow variable x′ is then properly
updated to pc t lev(ex), where ex = vars(”e”).

The inlining for sequential composition c1; c2 is the con-
catenation of transformed versions of c1 and c2. The inlining
of if e then c1 else c2 produces a conditional, where the
branches are transformed. In order to track implicit flows, the
value of pc is locally raised to the old pc joined with the secu-

4

trans(y) = case y of
”skip” : ”skip”
”x := e” : ”if pc v x′ then x′ := pc t lev(” ++ vars(”e”) ++”);x := e

else loop”
”c1; c2” : trans(”c1”) ++ ”; ” ++ trans(”c2”)
”if e then c1 else c2” : ”let pc = pc t lev(” ++ vars(”e”) ++ ”) in ”

”if e then ” ++trans(”c1”) ++ ” else ” ++trans(”c2”)
”while e do c” : ”let pc = pc t lev(” ++ vars(”e”) ++ ”) in while e do”

++ trans(”c”)
”let x = e in c” : ”let x′ = pc t lev(” ++ vars(”e”) ++ ”) in ” ++

”let x = e in ” ++trans(”c”)
”eval(e)” : ”let pc = pc t lev(” ++ vars(”e”) ++”) in eval(trans(e))”

Figure 3: Inlining transformation

pc, x′1, . . . , x
′
n ∈ Fresh(c)

Γ ` def f1(x) = e1; . . . ;def fk(x) = ek; c ; def f1(x) = e1; . . . ;def fk(x) = ek;
def vars(y) = . . . ;def lev(y) = . . . ;def trans(y) = . . . ;
pc := L;x′1 := Γ(x1); . . . ;x′n := Γ(xn); eval(trans(c))

Figure 4: Top-level transformation

rity level of the expression in the guard. This manner to manip-
ulate the pc, similar to security type systems [48], avoids over-
restrictive enforcement. The inlining of while e do c is similar
to the one for conditionals. The inlining of let x = e in c
determines the security level of the new local variable x (x′ =
lev(ex) t pc) and transforms the body of the let (trans(”c”)).
We note that the rule for let offers a form of secure upgrade.
It is perfectly security to create new high variables in high con-
text, as long as these variables are local to this context. The
second conditional in Listing 1 is a crucial part of the attack.
The attack fails if the scope of t is restricted to the first condi-
tional.

The inlining of dynamic code evaluation is the most inter-
esting feature of the transformation. Similarly to conditionals,
the inlining of eval(e) locally raises the pc: the execution de-
pends on the security level of e and the current value of pc
(pc := pc t lev(ex)). In the transformed code, the transforma-
tion wires itself before executing calls to eval (eval(trans(e))).
As a consequence, the transformation performs inlining on-the-
fly, i.e., at the application time of the eval.

3. Formal results

This section presents the formal results. We prove the sound-
ness of the transformation. Soundness shows that transformed
programs respect a policy of termination-insensitive noninter-
ference [7, 14, 48, 37]. Informally, the policy demands that
whenever two runs of a program that agree on the public part of
the initial memory terminate, then the final memories must also
agree on the public part. Two memories m1 and m2 are Γ-equal
(written m1 =Γ m2) if they agree on the variables whole level
is L according to Γ (m1 =Γ m2

def
= ∀x ∈ Vars.Γ(x) = L =⇒

m1(x) = m2(x)). The formal statement of noninterference is
as follows.

Definition 1. For initial and final security environments Γ and
Γ′, respectively, a program P satisfies noninterference (written
|= {Γ} c {Γ′}) if whenever m1 =Γ m2, 〈P |m1, ∅〉 ⇓ m′1, and
〈P |m2, ∅〉 ⇓ m′2, then m′1 =Γ′ m′2.

We state two lemmas that lead to the proof of noninterfer-
ence (found in the appendix).

Similarly to Γ-equality, we define indistinguishability by a
set of variables. Two memories are indistinguishable by a set of
variables V if and only if the memories agree on the variables
appearing in V . Formally, m1 =V m2

def
= ∀x ∈ V ·m1(x) =

m2(x). Given a memory m, we define L(m) to be the set
of variables whose shadow variables are set to L. Formally,
L(m) = { x | x ∈ m,x′ ∈ m, x′ = L}. In the following
lemmas, let function environment Σ contain the definitions of
vars , lev , and trans as described in the previous section. The
next lemma shows that there are no changes in the content and
set of public variables, when pc is set to H .

Lemma 1. Given a memory m and a string s representing a
command such that m(pc) = H and 〈eval(trans(s)) |m,Σ〉 ⇓
m′, we have m′(pc) = H , L(m) = L(m′), and m =L(m) m

′.

The next lemma shows that neither the set of shadow vari-
ables set to L nor the contents of public variables depend on
secrets. More specifically, the lemma establishes that two ter-
minating runs of a transformed command c, under memories
that agree on public data, always produce the same public re-
sults and set of shadow variables assigned to L.

Lemma 2. Given memories m1 and m2 and a string s rep-
resenting some command, whenever it holds that L(m1) =
L(m2), m1 =L(m1) m2, 〈eval(trans(s)) |m1,Σi〉 ⇓ m′1, and
〈eval(trans(e)) | m2,Σi〉 ⇓ m′2, then it holds that L(m′1) =
L(m′2) and m′1 =L(m′

1) m
′
2.

To prove this lemma, we apply Lemma 1 when the pro-
gram hits a branching instruction with secrets on its guard. The

5

lemmas lead to a theorem that guarantees the soundness of the
inlining, i.e., that transformed code satisfies noninterference.
Formally:

Theorem 1 (Soundness). For an environment Γ and a program
P , assume Γ ` P ; P ′. Extract any environment Γ′ from the
levels of shadow variables in a successfully terminating mem-
ory: if 〈P ′ | m, ∅〉 ⇓ m′ then Γ′(x) = L for all variables from
L(m′) and Γ′(x) = H , otherwise. Then, |= {Γ}P ′ {Γ′}.

The theorem above is proved by evaluating the program P ′

until reaching function trans and then applying Lemma 2.

4. Experiments

The experiments in this section study the applicability of
the technique in general and investigate indicative overhead in
the browser setting. With JavaScript as our target language,
we initially performed manual transformation of code accord-
ing to the transformation rules described in Section 2. We have
since then pushed the experiments further by performing auto-
matic inlining for a small subset of JavaScript. Although the
language does not feature dynamic code evaluation, we foresee
no difficulties in accommodating it. In a fully-fledged imple-
mentation, the transformation function would cover the com-
plete JavaScript language. Our experiments are an encouraging
first step, but a fully-fledged implementation still remains future
work.

Manual inlining. The design of the monitor affects its perfor-
mance in comparison to the unmonitored code. To test the
overhead introduced by the inlined monitor, we manually trans-
formed some code samples and compared the execution time
of the transformed code that of to the original. In transform-
ing, we have favored generality over performance in order to
compare among different browsers. For certain browsers per-
formance could be enhanced by taking advantage of browser-
specific features. Our experiments were performed on a Dell
Precision M2400 PC running the latest version to date of the
browsers Firefox, Chrome, Safari, Opera and InternetExplorer
on the Windows XP Professional SP3 operating system.

Consider the sample programs in Listings 2–5. Listing 2 is
an example of an implicit flow that is insecure; the low variable
is incremented while smaller than the high variable. Listing 3
is a dual example that is secure; the high variable is instead
decremented while greater than the low variable. Listings 4
and 5 are versions of the same program with an eval. For
simplicity, the code includes the initialization of variables (both
high, h, and low, l,) with constants. Listings 6 and 7 display
the result of the manual transformation of Listings 2 and 4 (with
some obvious optimizations). We encode the security levels L
and H as the JavaScript values false and true, respectively.
In this encoding, t is represented by || (logic OR), and x v y
is given by !x || y, where ! is the logic negation.

Tables 1–5 present the average performance of our sample
programs as well as their respective transformations. The per-
formance is measured as the number of milliseconds to execute

a specified number of iterations of the given piece of code. Be-
cause of the slowdown introduced by eval, the code with eval
was executed 100000 iterations, while the code without eval
was executed 10000000 iterations. As can be seen from these
results, for the secure code samples, the inlined monitor adds an
overhead ranging from 20 % to 1700 % over the untransformed
code, depending on browser. For the transformed insecure code
samples the execution time is 0 ms, as the monitor stops the exe-
cution when it encounters an information-flow leak. The source
code for these performance tests is available via [25].

The experiment with the manual inlining shows that the
overhead is not unreasonable but it has to be taken seriously
for the transformation to scale. Thus, a fully-fledged imple-
mentation needs to critically rely on optimizations. We briefly
discuss possibilities for optimizations in Section 6.

Automatic inlining. Automatic inlining can be done in a few
ways. One could as an example perform inlining on the server
side or in a proxy. We have taken an approach that is en-
tirely on the client side. The Opera browser [32] allows the
user to include privileged JavaScript called “User JavaScript”.
User JavaScript can be specified to be included in any page
and is executed before any code on that page. It also has ac-
cess to a number of functions and events not accessible ordi-
nary JavaScript, among these the event “BeforeScript”. Before
any script is parsed and executed, Opera will fire the “Befor-
eScript” event. Any handler defined for this event can rewrite
the script source code before returning it to the parser of the
browser. By defining the transformation function as a handler
for that event we can inline the monitor whenever a new script
is loaded. Technically this means that regardless of how the ap-
plication is composed on the server side, we can intercept and
inline the monitor before it is interpreted by the browser.

We have implemented the transformation function through
the code rewriting feature of the ANTLR [1] language recog-
nition tool. This allows us to generate a parser from ANTLR-
grammar, which rewrites the code and inlines the monitor. The
generated parser is 7650 LOC of JavaScript, not counting addi-
tional 165 LOC for the user defined JavaScript and 6139 LOC
in the runtime library. As a performance consideration, we are
certain that this code can be dramatically reduced in size us-
ing JavaScript compression tools. All sources are available on
demand.

At load time, we enumerate the Internet origins of the scripts
in a page and for each origin load initial security levels for vari-
ables, which we assume are declared in the respective pages.
The initial security levels are assigned to shadow variables con-
taining the run-time level of their respective corresponding vari-
able. The set of shadow variables corresponds to the Γ of Sec-
tion 3. For our purposes, it is sufficient to consider a flat secu-
rity lattice with bottom, top, and incomparable security levels
corresponding to origins in-between. If more than one origin
claims ownership of a variable, the variable will be treated as
top secret. More interesting lattices that allow collaborative in-
formation release are treated elsewhere [24]. At parse time, we
rewrite the source inlining the monitor according to the trans-
formation rules. At run-time, the monitor validates the inlined

6

Program Source Transformed Overhead
Insecure 1266 ms 0 ms -100 %
Secure 160 ms 322 ms 101 %
Insecure eval 2265 ms 0 ms -100 %
Secure eval 2088 ms 2497 ms 19 %

Table 1: Performance overhead in the Firefox browser

Program Source Transformed Overhead
Insecure 3378 ms 0 ms -100 %
Secure 173 ms 413 ms 138 %
Insecure eval 872 ms 0 ms -100 %
Secure eval 581 ms 963 ms 65 %

Table 2: Performance overhead in the Chrome browser

Program Source Transformed Overhead
Insecure 2247 ms 0 ms -100 %
Secure 115 ms 1989 ms 1629 %
Insecure eval 695 ms 0 ms -100 %
Secure eval 378 ms 815 ms 115 %

Table 3: Performance overhead in the Safari browser

Program Source Transformed Overhead
Insecure 1648 ms 0 ms -100 %
Secure 309 ms 405 ms 31 %
Insecure eval 646 ms 0 ms -100 %
Secure eval 500 ms 582 ms 16 %

Table 4: Performance overhead in the Opera browser

Program Source Transformed Overhead
Insecure 2375 ms 0 ms -100 %
Secure 1828 ms 4878 ms 166 %
Insecure eval 8484 ms 0 ms -100 %
Secure eval 8266 ms 17031 ms 106 %

Table 5: Performance overhead in the Internet Explorer browser

7

var l = 0;
while(l < h) {
l = l + 1;

}

Listing 2: Insecure
code

var l = 0;
while(h > l) {
h = h - 1;

}

Listing 3: Secure
code

var l = 0;
while(l < h) {
eval(’l=l+1’);

}

Listing 4: Insecure
code with eval

var l = 0;
while(h > l) {
eval(’h=h-1’);

}

Listing 5: Secure code
with eval

var l = 0;
pc[++i]=pc[i-1]||s[’l’]||s[’h’];
while(l < h) {
if (!pc || s[’l’]) {
s[’l’] = pc || s[’l’];
l = l + 1;

} else throw new Error;
}
i--;

Listing 6: Listing 2 transformed

var l = 0;
pc[++i]=pc[i-1]||s[’l’]||s[’h’];
while(l < h) {
pc[++i] = pc[i-1] || false;
eval(trans(’l=l+1’));
i--;

}
i--;

Listing 7: Listing 4 transformed

checks.
As a design choice, an infrequently used character, such

as “ ”, can be removed from the set of allowed characters for
identifiers in the source language. This would prevent valid
code, according to the parser, from referring to variables using
this character. By naming all shadow variables “ name ”, all
shadow variables would become inaccessible to the monitored
code while the the browser still can parse it. The shadow vari-
ables storing the initial value of a variable is similarly named
“ name”, prepended with two underscores. There is also a
small set of special shadow variables used by the monitor itself.
These special shadow variables are prepended by one under-
score. The naming convention is exemplified in Listing 8.
var x; // User variable
var _x_; // Level of x
var _pc; // Program counter

Listing 8: Shadow variable naming convention

In order to track implicit information flows, the level of the
program counter is stored in the special variable _pc. The _pc
works like a stack and holds the level of the program counter,
reflecting the current execution context. The initial execution
context is ⊥.

Before executing the assignment to a variable the _pc is
checked to be less than or equal to the level of the variable. If
it is not, the program gets stuck in an infinite loop, preventing
sensitive upgrade. When determining the new level of the vari-
able, the current level of the execution context (the _pc) needs
to be taken into account. The new level is therefore determined
by taking the join of the level of _pc and the level of the ex-
pression. Listing 9 gives an example of an assignment before
and after transformation. The additions in the transformed code
are runtime-checks and information-flow tracking through the
shadow variables.
x = y + z;

while(!_pc.leq(_x_));
x = _pc.join(_y_).join(_z_), x = y + z;

Listing 9: Assignment transformation rule

Each variable declaration in the source language results in
the declaration of three variables in the target language; the
variable itself and a shadow variable for holding the level of

the variable. At the time of assignment the variable does not
yet have a security level, and it might not be assigned any value
at all (e.g., “var x;”). To deal with this, the owner of a vari-
able has the possibility of providing an initial level for all the
variables the owner consider to be security critical. If one is not
provided, the initial level is treated as ⊥. Listing 10 provides
an example of how variable declarations are transformed.
var x = y;

while(!_pc.leq(_init[’x’]));
var _x_ = _pc.join(_init[’x’]).join(_y_), x, __x = x = y;

Listing 10: Declaration transformation rule

The transformation of sequential composition is the sequen-
tial composition of the respective transformed parts. To prevent
information from flowing implicitly from a high context to a
low variable, the monitor tracks the level of the context in every
branch. When a branch is encountered, the current level of the
_pc is stored. Next the _pc is updated with the join of its cur-
rent level and the level of the expression that is branched upon.
Each of the two alternative code paths is then transformed and
after the two branches join again, the level of the _pc before
the branch is restored. In the implementation management of
the _pc is done through the helper methods branch() and
join_point, exemplified in Listing 11.
if (x) {

x = y;
}
else {

y = z;
}

_pc.branch(_x_);
if (x) {

while(!_pc.leq(_x_));
x = _pc.join(_y_), x = y;

}
else {

while(!_pc.leq(_y_));
y = _pc.join(_z_), y = z;

}
_pc.join_point();

Listing 11: Branch transformation rule

Since iteration is a form of repeated branching on the same
expression, the transformation in Listing 12 is quite similar to
the branching case. The current level of _pc is stored before
iterating, a new level is computed as the join of the current level

8

and the level of the expression and the old level is restored after
iteration finishes. Naturally the body of the iteration is trans-
formed as well.
while(x < 10) {

x = x + 1;
}

_pc.branch(_x_);
while(x < 10) {

while(!_pc.leq(_x_));
x = _pc.join(_x_), x = x + 1;

}
_pc.join_point();

Listing 12: Iteration transformation rule

Secure inlining. In a fully-fledged implementation, a secure
monitor requires a method of storing and accessing the shadow
variables in a manner which prevents accidental or deliberate
access from the code being monitored and ensure their integrity.

By creating a separate name space for shadow variables, in-
accessible to the monitored code, we can prevent them from be-
ing accessed or overwritten. In JavaScript, this can be achieved
by creating an object with a name unique to the monitored
code and defining the shadow variables as properties of this
object with names reflecting the variable names found in the
code. Reuse of names makes conversion between variables in
the code and their shadow counterparts simple and efficient.
However, the transformation must ensure that the aforemen-
tioned object is not accessed within the code being monitored.
This is achieved in the transformation function by statically
checking that the variables used in the code does not violate the
name space restrictions. Thereby, the monitored code cannot
reference monitor specific variables.

Scaling up. Although these results are based on a subset of
JavaScript, they scale to a more significant subset. We expect
the handling of objects to be straightforward, as fields can be
treated similarly to variables. Compared to static approaches,
there is no need to restrict aliasing since the actual alias are
available at runtime. In order to prevent implicit flows through
exceptions, the transformation can be extended to extract con-
trol flow information from try/catch statements and use it
for controlling side effects. In order to address interaction be-
tween JavaScript and the Document Object Model, we rely on
previous results on tracking information flow in dynamic tree
structures [36] and on monitoring timeout primitives [34].

The ability of code to affect the monitor is crucial for the
monitor to be secure. The JavaScript subset used in this article
is restricted to static variable references only. Full JavaScript,
however, provides multiple ways of dynamically affecting its
runtime environment. Even if the code is parsed to remove all
direct references to the monitor state variables, like pc, indi-
rect access as in x = ’pc’; this[x] provides another al-
ternative. Not only is the integrity of the auxiliary variables
important, but also the integrity of the transformation function.
Monitored code can attempt to replace the transformation func-
tion with, e.g., the identity function, i.e., this[’trans’]
= function(s){ return s }. We envisage a combi-

nation of our monitor with safe language subset and reference

monitoring technology [29, 8, 12, 23, 22] to prevent operations
that compromise the integrity of the monitor.

The actions of the monitor is directly reflected in the se-
curity state (the shadow variables and program counter). By
logging the security state throughout a given execution trace,
auditability can be achieved. While auditability is important to
a developer, the information can leak data to an attacker, e.g. if
a certain execution path was taken or not.

5. Related Work

Language-based information-flow security encompasses a
large body of work, see an overview [37]. We briefly discuss
inlining, followed by a consideration of most related work: on
formalizations of purely dynamic and hybrid monitors for in-
formation flow.

Inlining. Inlined reference monitoring [11] is a mainstream tech-
nique for enforcing safety properties. A prominent example in
the context of the web is BrowserShield [33] that instruments
scripts with checks for known vulnerabilities. However, this
work is not directly related because it does not target secure
information flow. The focus of this paper is on inlining for
information-flow security. Recall that information flow is not
a safety property [28], but can be approximated by safety prop-
erties (e.g., [5, 38, 3]), just like it is approximated in this paper
(see the remark at the end of Section 1).

This paper draws on a conference version [26]. As men-
tioned in Section 1, the main additions are the streamlined trans-
formation, the semantics and proofs, as well as the experimental
part which now includes automatic transformation.

Venkatakrishnan et al. [45] present an inlining of a hybrid
monitor for a language with procedures and show that it en-
forces noninterference.

Recently, and independently of this work, Chudnov and Nau-
mann [6] have investigated an inlining approach to monitoring
information flow. They inline a flow-sensitive hybrid monitor
by Russo and Sabelfeld [35]. The soundness of the inlined mon-
itor is ensured by bisimulation of the inlined monitor and the
original monitor.

The advantage of hybrid monitors over purely dynamic ones
is additional permissiveness. Recall the discussion on the deli-
cacies of handling flow sensitivity from Section 2, illustrated in
Listing 1. Having access to the entire code, hybrid monitors are
able to infer that both variables t and l are dependent on variable
h. Not having access to the branch not taken, purely dynamic
monitors are forced to sacrifice permissiveness when analyzing
conditional statements [35]. As remarked in Section 2, if not
for dynamic code evaluation, it is possible to avoid blocking
the execution altogether.

Dynamic information-flow enforcement. Fenton [13] discusses
purely dynamic monitoring for information flow but does not
prove noninterference-like statements. Volpano [47] considers
a purely dynamic monitor to prevent explicit flows. Implicit
flows are allowed, and so the monitor does not enforce noninter-
ference. In a flow-insensitive setting, Sabelfeld and Russo [38]

9

show that a purely dynamic information-flow monitor is more
permissive than a Denning-style static information-flow anal-
ysis, while both the monitor and the static analysis guarantee
termination-insensitive noninterference.

A series of work explores flow-insensitive monitoring. Askarov
and Sabelfeld [2] investigate dynamic tracking of policies for
information release, or declassification, for a language with dy-
namic code evaluation and communication primitives. Russo
and Sabelfeld [34] show how to secure programs with time-
out instructions using execution monitoring. Russo et al. [36]
investigate monitoring information flow in dynamic tree struc-
tures.

Austin and Flanagan [3, 4] suggest a purely dynamic moni-
tor for information flow with a limited form of flow sensitivity.
They discuss two disciplines: no sensitive-upgrade, where the
execution gets stuck on an attempt to assign to a public vari-
able in secret context, and permissive-upgrade, where on an
attempt to assign to a public variable in secret context, the pub-
lic variable is marked as one that cannot be branched on later
in the execution. Our inlining transformation draws on the no
sensitive-upgrade discipline extended with the treatment of dy-
namic code evaluation.

Hybrid information-flow enforcement. Information-flow mech-
anisms by Le Guernic et al. [19, 18] and Shroff et al. [41] com-
bine dynamic and static checks. The mechanisms Le Guernic
et al. for sequential [19] and concurrent [18] support flow sen-
sitivity.

Russo and Sabelfeld [35] show formal underpinnings of
the tradeoff between dynamism and permissiveness of flow-
sensitive monitors. They also present a general framework for
hybrid monitors that is parametric in the monitor’s enforcement
actions (blocking, outputting default values, and suppressing
events). The monitor by Le Guernic et al. [19] can be seen as
an instance of this framework.

Recently, Moore and Chong [30] have proposed two opti-
mizations to the hybrid monitors by Russo and Sabelfeld [35]:
selective tracking of variable security levels and smooth porting
memory abstractions for languages with dynamically allocated
memory.

Ligatti et al. [21] present a general framework for secu-
rity policies that can be enforced by monitoring and modify-
ing programs at runtime. They introduce edit automata that
enable monitors to stop, suppress, and modify the behavior of
programs.

Tracking information flow in web applications is becoming
increasingly important (e.g., a server-side mechanism by Huang
et al. [16] and a client-side mechanism for JavaScript by Vogt
et al. [46], although, like a number of related approaches, they
do not discuss soundness). Dynamism of web applications puts
higher demands on the permissiveness of the security mecha-
nism: hence the importance of dynamic analysis.

6. Conclusions

To the best of our knowledge, the paper is the first to con-
sider on-the-fly inlining for information-flow monitors. On-the-

fly inlining is a distinguished feature of our approach: the secu-
rity checks are injected as the computation goes along. De-
spite the highly dynamic nature the problem, we manage to
avoid the caveats that are inherent with dynamic enforcement
of information-flow security. We show that the result of the in-
lining is secure. We are encouraged by our preliminary experi-
mental results that show that the transformation is light on both
performance overhead and on the difficulty of implementation.

Future work is centered along the practical considerations
and experiments reported in Section 4. As the experiments sug-
gest, optimizing the transformation is crucial for its scalability.
The relevant optimizations are both JavaScript- and security-
specific optimizations. For an example of the latter, we can
directly proceed to transforming the branches when the guard
of a conditional is low. Our larger research program pursues
putting into practice modular information-flow enforcement for
languages with dynamic code evaluation [2], timeout [34], tree
manipulation [36], and communication primitives [2]. A par-
ticularly attractive application scenario with nontrivial informa-
tion sharing is web mashups [24].

Acknowledgments. Thanks are due to David Naumann for in-
teresting comments. This work was funded, in part, by the Eu-
ropean Community under the WebSand project and, in part, by
the Swedish research agencies SSF and VR.

References

[1] ANTLR Parser Generator. http://www.antlr.org/.
[2] A. Askarov and A. Sabelfeld. Tight enforcement of information-release

policies for dynamic languages. In Proc. IEEE Computer Security Foun-
dations Symposium, July 2009.

[3] T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow
analysis. In Proc. ACM Workshop on Programming Languages and Anal-
ysis for Security (PLAS), June 2009.

[4] T. H. Austin and C. Flanagan. Permissive dynamic information flow anal-
ysis. In Proc. ACM Workshop on Programming Languages and Analysis
for Security (PLAS), June 2010.

[5] G. Boudol. Secure information flow as a safety property. In Formal
Aspects in Security and Trust, Third International Workshop (FAST’08),
LNCS, pages 20–34. Springer-Verlag, Mar. 2009.

[6] A. Chudnov and D. A. Naumann. Information flow monitor inlining. In
Proc. IEEE Computer Security Foundations Symposium, July 2010.

[7] E. S. Cohen. Information transmission in sequential programs. In R. A.
DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations
of Secure Computation, pages 297–335. Academic Press, 1978.

[8] D. Crockford. Making javascript safe for advertising. adsafe.org, 2009.
[9] D. E. Denning and P. J. Denning. Certification of programs for secure

information flow. Comm. of the ACM, 20(7):504–513, July 1977.
[10] B. Eich. Flowsafe: Information flow security for the browser. https:

//wiki.mozilla.org/FlowSafe, Oct. 2009.
[11] U. Erlingsson. The inlined reference monitor approach to security policy

enforcement. PhD thesis, Cornell University, Ithaca, NY, USA, 2004.
[12] Facebook. FBJS. http://wiki.developers.facebook.com/

index.php/FBJS, 2009.
[13] J. S. Fenton. Memoryless subsystems. Computing J., 17(2):143–147,

May 1974.
[14] J. A. Goguen and J. Meseguer. Security policies and security models. In

Proc. IEEE Symp. on Security and Privacy, pages 11–20, Apr. 1982.
[15] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes

for enforcement mechanisms. ACM TOPLAS, 28(1):175–205, 2006.
[16] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Se-

curing web application code by static analysis and runtime protection. In
Proc. International Conference on World Wide Web, pages 40–52, May
2004.

10

[17] D. Kozen. Language-based security. In Proc. Mathematical Foundations
of Computer Science, volume 1672 of LNCS, pages 284–298. Springer-
Verlag, Sept. 1999.

[18] G. Le Guernic. Automaton-based confidentiality monitoring of concur-
rent programs. In Proc. IEEE Computer Security Foundations Sympo-
sium, pages 218–232, July 2007.

[19] G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt. Automata-based
confidentiality monitoring. In Proc. Asian Computing Science Conference
(ASIAN’06), volume 4435 of LNCS. Springer-Verlag, 2006.

[20] X. Leroy. Java bytecode verification: algorithms and formalizations. J.
Automated Reasoning, 30(3–4):235–269, 2003.

[21] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mecha-
nisms for run-time security policies. International Journal of Information
Security, 4:2–16, 2005.

[22] S. Maffeis, J. Mitchell, and A. Taly. Isolating javascript with filters,
rewriting, and wrappers. In Proc. of ESORICS’09. LNCS, 2009.

[23] S. Maffeis and A. Taly. Language-based isolation of untrusted Javascript.
In Proc. of CSF’09, IEEE, 2009. See also: Dep. of Computing, Imperial
College London, Technical Report DTR09-3, 2009.

[24] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based approach
to mashup security. In Proc. ACM Symposium on Information, Computer
and Communications Security (ASIACCS), Apr. 2010.

[25] J. Magazinius, A. Russo, and A. Sabelfeld. Inlined security monitor per-
formance test. http://www.cse.chalmers.se/˜d02pulse/
inlining/, 2010.

[26] J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dynamic
security monitors. In Proceedings of the IFIP International Information
Security Conference (SEC), Sept. 2010.

[27] S. McCamant and M. D. Ernst. Quantitative information flow as network
flow capacity. In Proc. ACM SIGPLAN Conference on Programming lan-
guage Design and Implementation, pages 193–205, 2008.

[28] J. McLean. A general theory of composition for trace sets closed under
selective interleaving functions. In Proc. IEEE Symp. on Security and
Privacy, pages 79–93, May 1994.

[29] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active
content in sanitized javascript, 2008.

[30] S. Moore and S. Chong. Static analysis for efficient hybrid information-
flow control. In Proc. IEEE Computer Security Foundations Symposium,
June 2011.

[31] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif:
Java information flow. Software release. Located at http://www.cs.
cornell.edu/jif, July 2001.

[32] Opera, User JavaScript. http://www.opera.com/docs/userjs/.
[33] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir. Browser-

shield: Vulnerability-driven filtering of dynamic html. ACM Trans. Web,
1(3):11, 2007.

[34] A. Russo and A. Sabelfeld. Securing timeout instructions in web appli-
cations. In Proc. IEEE Computer Security Foundations Symposium, July
2009.

[35] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security
analysis. In Proc. IEEE Computer Security Foundations Symposium, July
2010.

[36] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow in
dynamic tree structures. In Proc. European Symp. on Research in Com-
puter Security, LNCS. Springer-Verlag, Sept. 2009.

[37] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE J. Selected Areas in Communications, 21(1):5–19, Jan. 2003.

[38] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding
the roller coaster of information-flow control research. In Proc. Andrei
Ershov International Conference on Perspectives of System Informatics,
LNCS. Springer-Verlag, June 2009.

[39] F. B. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security, 3(1):30–50, 2000.

[40] F. B. Schneider, G. Morrisett, and R. Harper. A language-based approach
to security. In Informatics—10 Years Back, 10 Years Ahead, volume 2000
of LNCS, pages 86–101. Springer-Verlag, 2000.

[41] P. Shroff, S. Smith, and M. Thober. Dynamic dependency monitoring to
secure information flow. In Proc. IEEE Computer Security Foundations
Symposium, pages 203–217, July 2007.

[42] V. Simonet. The Flow Caml system. Software release. Located at http:
//cristal.inria.fr/˜simonet/soft/flowcaml, July 2003.

[43] P. H. I. Systems. Sparkada examinar. Software release. http://www.
praxis-his.com/sparkada/.

[44] T. Terauchi and A. Aiken. Secure information flow as a safety problem.
In Proc. Symp. on Static Analysis, volume 3672 of LNCS, pages 352–367.
Springer-Verlag, Sept. 2005.

[45] V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar. Prov-
ably correct runtime enforcement of non-interference properties. In Proc.
International Conference on Information and Communications Security,
pages 332–351. Springer-Verlag, Dec. 2006.

[46] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Cross-site scripting prevention with dynamic data tainting and static anal-
ysis. In Proc. Network and Distributed System Security Symposium, Feb.
2007.

[47] D. Volpano. Safety versus secrecy. In Proc. Symp. on Static Analysis,
volume 1694 of LNCS, pages 303–311. Springer-Verlag, Sept. 1999.

[48] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. J. Computer Security, 4(3):167–187, 1996.

[49] D. S. Wallach, A. W. Appel, and E. W. Felten. The security architecture
formerly known as stack inspection: A security mechanism for language-
based systems. ACM Transactions on Software Engineering and Method-
ology, 9(4):341–378, Oct. 2000.

[50] G. Winskel. The Formal Semantics of Programming Languages: An In-
troduction. MIT Press, Cambridge, MA, 1993.

11

Appendix (proofs)

Definition 2. Semantic equivalence on configurations is defined as
〈c1 |m1,Σ1〉 ≈ 〈c2 |m2,Σ2〉 whenever 〈c1 |m1,Σ1〉 ⇓ m′ ⇔ 〈c2 |m2,Σ2〉 ⇓ m′.

Definition 3. We define semantic equivalence on commands as c1 ≈ c2 whenever ∀m,Σ.〈c1 |m,Σ〉 ≈ 〈c2 |m,Σ〉.

Lemma 1. Given a memory m and a string s representing a command such that m(pc) = H and 〈eval(trans(s)) |m,Σ〉 ⇓ m′,
we have m′(pc) = H , L(m) = L(m′) and m =L(m) m

′.

Proof. The proof is by induction on the structure of the command represented by s. We have the following cases on s, evaluating
eval(trans(s)) by applying the semantic rule for eval() in Figure 2.

s = ”skip” - It holds trivially since trans(”skip”) = ”skip” and skip does not modify the memory.

s = ”x := e” - We have

〈eval(trans(s)) | m,Σ〉≈

〈eval(”if pcvx′ then x′:=pctlev(”++ vars(”e”) ++”);x:=e else loop”) | m,Σ〉≈

〈if pcvx′ then x′:=pctlev(FV(”e”));x:=e else loop | m,Σ〉≈

(it must hold that pcvx′ because the original configuration terminates)

〈x′:=pctlev(FV(”e”));x:=e | m,Σ〉≈

(pc is H ; because pcvx′ we have m(x′)=H)

〈x:=e | m,Σ〉⇓m[x7→v]

where parse(”if pc v x′ then x′ := pc t lev(” ++ vars(”e”) ++”);x := e else loop”) = if pc v x′ then x′ :=
pc t lev(FV(”e”));x := e else loop and 〈e |m,Σ〉 ⇓ v.

Since m(x′) = m′(x′) = H , then x 6∈ L(m) and x 6∈ L(m′). Hence, L(m) = L(m′). Clearly, m =L(m) m[x 7→ v] = m′.

s = ”c1; c2” - It is straightforward to show for any commands c1 and c2 that

eval(”c1;c2”)≈eval(”c1”++”;”++”c2”)≈eval(”c1”);eval(”c2”)≈c1;c2

Thus, we have

〈eval(trans(s)) | m,Σ〉≈〈eval(trans(”c1”)++ ”;”++trans(”c2”)) | m,Σ〉≈

〈eval(trans(”c1”));eval(trans(”c2”)) | m,Σ〉≈〈eval(trans(”c2”)) | m′′,Σ〉⇓m′

where 〈eval(trans(”c1”)) |m,Σ〉 ⇓ m′′.

By induction hypothesis for c1, it holds that m′′(pc) = H , L(m) = L(m′′) and m =L(m) m′′. By induction hypothesis
for c2, it holds that m′(pc) = H , L(m′′) = L(m′) and m′′ =L(m) m′ and therefore by transitivity L(m) = L(m′) and
m =L(m) m

′.

s = ”if e then c1 else c2” - We have

〈eval(trans(s)) | m,Σ〉≈〈eval(”let pc=pctlev(”++vars(”e”)++”) in ”++

”if e then ”++trans(”c1”)++” else ”++trans(”c2”)++”;”) | m,Σ〉≈

〈let pc=pctlev(FV(”e”)) in if e then eval(trans(”c1”))

else eval(trans(”c2”)) | m,Σ〉≈

(pc remains H)

〈if e then eval(trans(”c1”)) else eval(trans(”c2”)) | m,Σ〉≈

(assume 〈e | m,Σ〉⇓v, where v 6=0; if the value of e is 0 then the proof proceeds

with c2)

〈eval(trans(”c1”)) | m,Σ〉⇓m′

12

where parse(”let pc = pctlev(”++vars(”e”)++”) in ”++”if e then ”++trans(”c1”)++” else ”++trans(”c2”)++”; ”) =
parse(”let pc = pc t lev(FV(”e”)) in if e then c′1 else c′2”) = let pc = pc t lev(FV(”e”)) in if e then c′1 else c′2
and c′i ≈ eval(trans(”ci”)).

By induction hypothesis L(m) = L(m′), m =L(m) m
′ and m(pc) = H .

s = ”while e do c” - We have

〈eval(trans(s)) | m,Σ〉≈

〈eval(”let pc=pctlev(”++vars(”e”)++”) in while e do ”++trans(”c”)) | m,Σ〉≈

〈let pc=pctlev(FV(”e”)) in while e do eval(trans(”c”)) | m,Σ〉≈

(pc remains H)

〈while e do eval(trans(”c”)) | m,Σ〉≈

(because the original configuration terminates, the loop iterates over c

a finite number of times)

〈eval(trans(”c”));...;eval(trans(”c”)) | m,Σ〉⇓m′

where parse(”let pc = pc t lev(” ++vars(”e”) ++”) in while e do ” ++trans(”c”)) = parse(”let pc = pc t
lev(FV(”e”)) in while e do c′”) = let pc = pc t lev(FV(”e”)) in while e do c′ and c′ ≈ eval(trans(”c”)).

This proceeds similarly to the case to sequential composition. By repetitive application of the induction hypothesis and the
transitivity of equality and Γ-equality, we have L(m) = L(m′), m =L(m) m

′ and m(pc) = H .

s = ”let x = e in c” - We have

〈eval(trans(s)) | m,Σ〉≈

〈eval(”let x′=pctlev(”++ vars(”e”) ++ ”) in let x=e in ”++trans(”c”)) | m,Σ〉≈

〈let x′=pctlev(FV(”e”)) in let x=e in eval(trans(”c”)) | m,Σ〉⇓m′ ⇐⇒

(since pc is H then x′ is set to H)

〈let x=e in eval(trans(”c”)) | m[x′ 7→H],Σ〉⇓m′′ & m′=m′′[x′ 7→m(x′)]⇐⇒

(assume 〈e | m[x′ 7→H],Σ〉⇓v)

〈eval(trans(”c”)) | m[x′ 7→H ,x 7→v],Σ〉⇓m′′′ & m′=m′′′[x′ 7→m(x′),x 7→m(x)]

where parse(”let x′ = pc t lev(” ++ vars(”e”) ++ ”) in let x = e in ” ++trans(”c”)) =
parse(”let x′ = pc t lev(FV(”e”)) in let x = e in c′”) = let x′ = pc t lev(FV(”e”)) in let x = e in c′ and
c′ ≈ eval(trans(”c”)).

By induction hypothesis m′′′(pc) = H , and therefore m′(pc) = H . By induction hypothesis, it also holds that L(m[x′ 7→
H , x 7→ v]) = L(m′′′). Then,

L(m[x′ 7→H ,x 7→v]) = L(m′′′) (by setting x to m(x) on both sides)

L(m[x′ 7→H]) = L(m′′′[x7→m(x)]) (by setting x′ to m(x′) on both sides)

L(m) = L(m′′′[x7→m(x),x′ 7→m(x′)])

L(m) = L(m′)

In the same manner it holds that m[x′ 7→ H , x 7→ v] =L(m[x′ 7→H ,x 7→v]) m
′′′ and thereby m =L(m) m

′.

s = ”eval(e)” - We have

〈eval(trans(s)) | m,Σ〉≈

〈eval(”let pc=pctlev(”++ vars(”e”) ++”) in eval(trans(e))”) | m,Σ〉≈

〈let pc=pctlev(FV(”e”)) in eval(trans(e)) | m,Σ〉≈

(pc remains H)

〈eval(trans(e)) | m,Σ〉≈〈eval(trans(s′)) | m,Σ〉⇓m′

where parse(”let pc = pc t lev(” ++ vars(”e”) ++”) in eval(trans(e))”)
= let pc = pc t lev(FV(”e”)) in eval(trans(e)) and 〈e |m,Σ〉 ⇓ s′.

By induction hypothesis it holds that m(pc) = H , L(m) = L(m′) and m =L(m) m
′.

13

2

Lemma 2. Given memories m1 and m2 and a string s representing some command, whenever it holds that L(m1) = L(m2),
m1 =L(m1) m2, 〈eval(trans(s)) | m1,Σi〉 ⇓ m′1, and 〈eval(trans(s)) | m2,Σi〉 ⇓ m′2, then it holds that L(m′1) = L(m′2) and
m′1 =L(m′

1) m
′
2.

Proof. The proof is by induction on the structure of the command represented by s. We have the following cases on s, evaluating
eval(trans(s)) for memories m1 and m2.

s = ”skip” - It holds trivially since trans(”skip”) = ”skip” and skip does not modify the memory.

s = ”x := e” - We have

〈eval(trans(s)) | mi,Σ〉≈

〈eval(”if pcvx′ then x′:=pctlev(”++ vars(”e”) ++”);x:=e else loop”) | mi,Σ〉≈

〈if pcvx′ then x′:=pctlev(FV(”e”));x:=e else loop | mi,Σ〉≈

(it must hold that pcvx′ because the original configuration terminates)

〈x′:=pctlev(FV(”e”));x:=e | mi,Σ〉≈

(since L(m1)=L(m2) then pctlev(FV(”e”))=` is the same in either memory)

〈x:=e | mi[x
′ 7→`],Σ〉⇓

mi[x
′ 7→`,x 7→v]=m′

i

where parse(”if pc v x′ then x′ := pc t lev(” ++ vars(”e”) ++”);x := e else loop”) = if pc v x′ then x′ :=
pc t lev(FV(”e”));x := e else loop and 〈e |mi[x

′ 7→ `],Σ〉 ⇓ v.

Trivially L(m′1) = L(m′2) since mi[x
′ 7→ `] holds for both memories. For m′1 =L(m′

1) m′2 we have two cases to consider;
if ` is H then x 6∈ L(m′1) and therefore m′1 =L(m′

1) m
′
2 holds. If ` is L then e does not refer to any high variables and since

m1 =L(m1) m2 then m1(e) = m2(e) and hence the value of x will be the same, m′1 =L(m′
1) m

′
2.

s = ”c1; c2” - Recall that for any commands c1 and c2 we have

eval(”c1;c2”)≈eval(”c1”++”;”++”c2”)≈eval(”c1”);eval(”c2”)≈c1;c2

then we have

〈eval(trans(s)) | mi,Σ〉≈〈eval(trans(”c1”)++ ”;”++trans(”c2”)) | mi,Σ〉≈

〈eval(trans(”c1”));eval(trans(”c2”)) | mi,Σ〉≈〈eval(trans(”c2”)) | m′′
i ,Σ〉⇓m

′
i

where 〈eval(trans(”c1”)) |mi,Σ〉 ⇓ m′′i .

By induction hypothesis for c1, it holds that L(mi) = L(m′′i) and mi =L(mi) m′′i . By induction hypothesis for c2, it holds
that L(m′′i) = L(m′i) and m′′i =L(mi) m′i and therefore by transitivity L(mi) = L(m′i) and mi =L(mi) m′i. Because
L(m1) = L(m2) and m1 =L(m1) m2 then also L(m′1) = L(m′2) and m′1 =L(m′

1) m
′
2.

s = ”if e then c1 else c2” - We have

〈eval(trans(s)) | mi,Σ〉≈

〈eval(”let pc=pctlev(”++vars(”e”)++”) in ”++

”if e then ”++trans(”c1”)++” else ”++trans(”c2”)++”;”) | mi,Σ〉≈

〈let pc=pctlev(FV(”e”)) in if e then eval(trans(”c1”))

else eval(trans(”c2”)) | mi,Σ〉≈

〈if e then eval(trans(”c1”)) else eval(trans(”c2”)) | mi[pc 7→`],Σ〉≈

〈eval(trans(ci)) | mi[pc 7→`],Σ〉⇓m′
i

where parse(”let pc = pctlev(”++vars(”e”)++”) in ”++”if e then ”++trans(”c1”)++” else ”++trans(”c2”)++”; ”) =
parse(”let pc = pc t lev(FV(”e”)) in if e then c′1 else c′2”) = let pc = pc t lev(FV(”e”)) in if e then c′1 else c′2,
c′i ≈ eval(trans(”ci”)), 〈pc t lev(FV(”e”)) |mi,Σ〉 ⇓ ` and 〈e |mi[pc 7→ `],Σ〉 ⇓ v.

14

We have two cases depending on the value of pc. If ` is H , then regardless of which branch is taken, we can apply Lemma 1
to
〈eval(trans(ci)) | mi[pc 7→ H],Σ〉 and thereby it holds that L(m′1) = L(m′2) and m′1 =L(m′

1) m′2. If ` is L then v is
the same in both memories and the same branch is taken and by induction hypothesis it holds that L(m′1) = L(m′2) and
m′1 =L(m′

1) m
′
2.

s = ”while e do c” - We have

〈eval(trans(s)) | mi,Σ〉≈

〈eval(”let pc=pctlev(”++vars(”e”)++”) in while e do ”++trans(”c”)) | mi,Σ〉≈

〈let pc=pctlev(FV(”e”)) in while e do eval(trans(”c”)) | mi,Σ〉≈

〈while e do eval(trans(”c”)) | mi[pc 7→`,Σ〉≈

(because the original configuration terminates, the loop iterates over c

a finite number of times)

〈eval(trans(”c”));...;eval(trans(”c”)) | mi,Σ〉⇓m′
i

where 〈pctlev(FV(”e”)) |mi,Σ〉 ⇓ ` and parse(”let pc = pctlev(”++vars(”e”)++”) in while e do ”++trans(”c”)) =
parse(”let pc = pc t lev(FV(”e”)) in while e do c′”) = let pc = pc t lev(FV(”e”)) in while e do c′ and c′ ≈
eval(trans(”c”)).

We have two cases depending on the value of pc. If ` is H , then we can apply Lemma 1 to 〈eval(trans(”c”)) | mi[pc 7→
H],Σ〉 and thereby it holds that L(m′1) = L(m′2) and m′1 =L(m′

1) m
′
2.

If ` is L, then the proof proceeds similarly to sequential composition. Note that v is the same in both memories and by
repetitive application of induction hypothesis and transitivity of equality and Γ-equality, we have L(m′1) = L(m′2) and
m′1 =L(m′

1) m
′
2.

s = ”let x = e in c” - We have

〈eval(trans(s)) | mi,Σ〉≈

〈eval(”let x′=pctlev(”++ vars(”e”) ++ ”) in let x=e in ”++trans(”c”)) | mi,Σ〉≈

〈let x′=pctlev(FV(”e”)) in let x=e in eval(trans(”c”)) | mi,Σ〉⇓m′
i ⇐⇒

〈let x=e in eval(trans(”c”)) | mi[x
′ 7→`],Σ〉⇓m′′

i & m′
i=m′′

i [x′ 7→mi(x
′)]⇐⇒

(assume 〈e | mi[x
′ 7→`],Σ〉⇓v)

〈eval(trans(”c”)) | mi[x
′ 7→`,x 7→v],Σ〉⇓m′′′

i & m′
i=m′′′

i [x′ 7→mi(x
′),x 7→mi(x)]

where parse(”let x′ = pc t lev(” ++ vars(”e”) ++ ”) in let x = e in ” ++trans(”c”)) =
parse(”let x′ = pc t lev(FV(”e”)) in let x = e in c′”) = let x′ = pc t lev(FV(”e”)) in let x = e in c′ and
c′ ≈ eval(trans(”c”)).

We have two cases depending on the value of pc. If ` is H , then we apply Lemma 1 to 〈eval(trans(”c”)) |mi[x
′ 7→ `, x 7→

v],Σ〉 and by that it holds that L(m′1) = L(m′2) and m′1 =L(m′
1) m

′
2.

If ` is L, then by induction hypothesis, it holds that L(m′′′1) = L(m′′′2). Then,

L(m′′′
1) = L(m′′′

2) (by setting x to mi(x) on both sides)

L(m′′′
1 [x 7→m1(x)]) = L(m′′′

2 [x 7→m2(x)])(setting x′=mi(x
′) on both sides)

L(m′′′
1 [x′ 7→m1(x′),x 7→m1(x)]) = L(m′′′

2 [x′ 7→m2(x′),x7→m2(x)])

L(m′
1) = L(m′

2)

In the same manner it holds that m′′′1 =L(m′′′
1) m

′′′
2 and thereby m′1 =L(m′

1) m
′
2.

s = ”eval(e)” - We have

〈eval(trans(s)) | mi,Σ〉≈

〈eval(”let pc=pctlev(”++ vars(”e”) ++”) in eval(trans(e))”) | mi,Σ〉≈

〈let pc=pctlev(FV(”e”)) in eval(trans(e)) | mi,Σ〉≈

〈eval(trans(e)) | mi[pc 7→`],Σ〉≈〈eval(trans(s′)) | mi[pc 7→`],Σ〉⇓m′
i

15

where parse(”let pc = pc t lev(” ++ vars(”e”) ++”) in eval(trans(e))”)
= let pc = pc t lev(FV(”e”)) in eval(trans(e)), 〈e |mi[pc 7→ `],Σ〉 ⇓ s′ and 〈pc t lev(FV(”e”)) |mi,Σ〉 ⇓ `.

We have two cases depending on the value of pc. If ` is H we can apply Lemma 1 to 〈eval(trans(s′)) | mi[pc 7→ H],Σ〉
and thereby it holds that L(m′1) = L(m′2) and m′1 =L(m′

1) m′2. If ` is L then v is the same in both memories, so the same
code is evaluated and by induction hypothesis it holds that L(m′1) = L(m′2) and m′1 =L(m′

1) m
′
2.

2

16

