
Black Ostrich: Web Application Scanning with String Solvers
Benjamin Eriksson

Chalmers University of Technology

Gothenburg, Sweden

Amanda Stjerna

Uppsala University

Uppsala, Sweden

Riccardo De Masellis

Uppsala University

Uppsala, Sweden

Philipp Rümmer

University of Regensburg

Regensburg, Germany

Uppsala University

Uppsala, Sweden

Andrei Sabelfeld

Chalmers University of Technology

Gothenburg, Sweden

ABSTRACT

Securing web applications remains a pressing challenge. Unfortu-

nately, the state of the art in web crawling and security scanning still

falls short of deep crawling. A major roadblock is the crawlers’ lim-

ited ability to pass input validation checks when web applications

require data of a certain format, such as email, phone number, or

zip code. This paper develops Black Ostrich, a principled approach

to deep web crawling and scanning. The key idea is to equip web

crawling with string constraint solving capabilities to dynamically

infer suitable inputs from regular expression patterns in web appli-

cations and thereby pass input validation checks. To enable this use

of constraint solvers, we develop new automata-based techniques

to process JavaScript regular expressions. We implement our ap-

proach extending and combining the Ostrich constraint solver with

the Black Widow web crawler. We evaluate Black Ostrich on a set

of 8,820 unique validation patterns gathered from over 21,667,978

forms from a combination of the July 2021 Common Crawl and

Tranco top 100K. For these forms and reconstructions of input ele-

ments corresponding to the patterns, we demonstrate that Black

Ostrich achieves a 99% coverage of the form validations compared

to an average of 36% for the state-of-the-art scanners. Moreover,

out of the 66,377 domains using these patterns, we solve all patterns

on 66,309 (99%) while the combined efforts of the other scanners

cover 52,632 (79%). We further show that our approach can boost

coverage by evaluating it on three open-source applications. Our

empirical studies include a study of email validation patterns, where

we find that 213 (26%) out of the 825 found email validation patterns

liberally admit XSS injection payloads.

CCS Concepts

• Security and privacy→Web application security; Formal

methods and theory of security.

Keywords

web application scanning, string constraint solving

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.

https://doi.org/10.1145/3576915.3616582

ACM Reference Format:

Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Rüm-

mer, and Andrei Sabelfeld. 2023. Black Ostrich: Web Application Scan-

ning with String Solvers. In Proceedings of the 2023 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’23), November
26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3576915.3616582

1 INTRODUCTION

As the modern digitalized society increasingly relies on web ap-

plications, securing them remains an important challenge. Web

security scanners like Arachni and ZAP play an important role, fo-

cusing on crawling and scanning for vulnerabilities. Recent efforts

by the research community have focused on moving away from tra-

ditional static crawling techniques based on link discovery and URL

traversal. As JavaScript enables increasingly dynamic web pages,

new approaches incorporate dynamic behaviors as in jÄk [57], and

asynchronous HTTP requests as in CrawlJAX [11, 50]. Other ap-

proaches address the complexity of the server-side application by

reverse engineering, as in LigRE [24] and KameleonFuzz [25], or

inferring the state of the server-side as in Enemy of the State [23].

Black Widow [26] demonstrates how to fruitfully combine naviga-

tion modeling, traversing, and tracking inter-state dependencies

for black-box web application scanning.

1.1 Web Scanning Challenges

While this progress is encouraging, unfortunately, the state of the

art in web crawling and security scanning still falls short of deep

crawling. A major roadblock is the crawlers’ limited ability to

pass input validation for data such as email, phone number, or

zip code. Consider, for instance, the pattern .*@.*\.[a-z]{2,3}
for emails, which allows any string followed by an @-sign followed

by any string then a period and two or three lowercase letters.

Although seemingly sound, the pattern allows for malicious in-

puts such as <script>alert(1)</script>@mail.com, which are

exactly the types of email XSS payloads commonly exploited in

the wild [38, 58]. Regular expressions of this kind are commonly

associated with input fields of web applications, and a crawler will

only be able to proceed to the next page by submitting a string

matching the pattern. Resorting to brute force would be intractable,

and using a library of prepared payloads (as many scanners do) is

infeasible when websites use specialized validation. As an example,

we did not find any scanner with payloads matching the real-world

pattern .*France. A more refined approach is thus needed.

https://orcid.org/0000-0002-2733-7098
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3616582
https://doi.org/10.1145/3576915.3616582

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Rümmer, and Andrei Sabelfeld

Black Ostrich to the rescue. This paper proposes Black Ostrich,

a principled approach to deep web crawling and scanning. The

key idea is to leverage string-based constraint solving, based on
satisfiability modulo theories (SMT) [22], to infer suitable input from
the analysis of forms in web applications, including both input

types, such as email and URL, and support for regular expression

(regex) patterns. While SMT is heavier than prepared inputs from a

library, it trades more local computation for fewer network requests.

Furthermore, our approach can be fruitfully combined with the

traditional scanners by leveraging Black Ostrich to generate input

libraries for traditional scanners, based on solving the patterns

collected from the wild. SMT has been extensively used for web

security for applications like finding SQL injections [43], analyzing

and testing JavaScript [62], and detecting server-side parameter

tampering [13]. However, these approaches focus on detecting

particular vulnerabilities rather than the depth of web crawling. To

the best of our knowledge, Black Ostrich is the first to leverage SMT
technology for deep web crawling. As such, it requires addressing
several research challenges.

1.2 Constraint Solving Challenges

One of the main challenges in deep crawling is to handle the

ECMAScript regular expressions used as patterns for input valida-

tion [34], like the pattern .*@.*\.[a-z]{2,3}. Patterns in web

applications can be thousands of characters long and frequently

use features like anchors or look-arounds: in our experiments, we

find 500 patterns using look-arounds and 4,044 using anchors. The

longest pattern we find is a stunning 29,059 characters. Although

several SMT solvers have been recently extended to string con-

straints, including the solvers Z3 [21, 51, 68], S3/p/# [65], cvc5 [5],

Norn [1], Sloth [36], and Ostrich [16], up to now no SMT solver

directly supports the much richer language of ECMA regular ex-

pressions. Developing an SMT solver capable of handling real-world

regular expressions is a long-standing challenge [63].

Handling ECMA regular expressions using existing SMT technol-

ogy is difficult. Anchors and look-arounds have non-compositional

semantics, i.e., their effect is unbounded and can affect the com-

plete string to be parsed, which prevents a direct translation to

the supported textbook regular expressions [37] of today’s solvers.

Look-arounds combined with capture groups and back-references

even lead to undecidability of the language emptiness problem [17].

To our knowledge, the only translation of the ECMA regular ex-

pression language to SMT-LIB constraints was presented by Loring

et al. [48] in the scope of symbolic execution by the ExpoSE tool,

applying an abstraction-refinement loop to address the issue of

undecidability. Their support of the very commonly used feature

of look-arounds, however, is only partial (we provide a detailed

comparison in Section 3.2), and our experiments show that the

SMT-LIB encoding in ExpoSE turns is a less natural match for the

intricate regexes on the web [27].

Solving ECMA regexes. Black Ostrich dynamically generates in-

put data for web pages both for exploring and attacking. For this,

we define a translation of the HTML5 validation constraints to

logical formulas. We also present, to the best of our knowledge, the
first sound and complete solver for ECMA regular expression includ-

ing support for anchors, look-aheads and look-behinds, capture

groups, and back-references. Depending on the phase of scanning,

the validation constraints can be complemented by constraints that

request the inclusion of payloads like <script> tags in the input.

Our starting point is the SMT solver Ostrich [16], an automata-

based string solver for constraints in a rich language, including

regular expressions, equations, and string functions like replace-

all and letter-to-letter transduction. Prior to our work, and in line

with other SMT solvers, Ostrich could only process regexes in SMT-

LIB notation, and did not support ECMA features such as anchors

or look-arounds [34]. This paper extends Ostrich with a native

parser for ECMAScript regexes, and presents a novel translation of

ECMAScript regexes to two-way alternating automata, augmented

with a refinement loop to support back-references. Completing the

pipeline, we also present a new technique to simulate two-way

alternating finite automata by non-deterministic finite automata

that enables efficient implementation inside solvers.

1.3 Validation-aware Crawling and Fuzzing

Faced with a form, the crawler must decide what data to submit.

The type of data expected by the server can range from numbers

to strings to valid emails and URLs. Validation of such constraints

can happen both client-side and server-side. To make progress

in crawling, it is necessary to pass server-side checks since the

provided input will otherwise be rejected by the web application.

Traditional scanners source the input from a library with a diverse

set of strings, hoping that one will be valid. This approach faces chal-

lenges because web applications can have arbitrarily complicated

input validation.

Complementary to the traditional techniques, Black Ostrich ap-

plies a dynamic approach that takes all available information on

the expected input data into account and systematically constructs

input data through constraint solving. A key difficulty is that server-

side validation is not visible to the crawler. On the other hand, client-

side validation is fully under the crawler’s control. In fact, HTML5

provides several attributes for client-side input validation [27], in-

cluding a pattern attribute to represent regular expressions, as spec-

ified by the ECMA [34], that user input must match for the form to

be submitted, and are today commonly used in web applications.

Black Ostrich thus focuses on passing client-side validation con-

straints, with the hypothesis that successful inputs are likely to also

satisfy server-side constraints. Our hypothesis is confirmed by evi-

dence fromweb frameworks like SpringMVC [39] andASP.NET [59]

that are designed to reuse validation patterns for consistency be-

tween client-side and server-side validation. Further evidence from

the open-source projects investigated in Section 8 indicates that

client-side input validation is aligned with server-side input saniti-

zation based on the same patterns.

Our main goal is to boost the code coverage of a web application

thanks to the constraint solving capabilities of Black Ostrich. The

improved code coverage enables deeper web crawling, which is im-

portant for finding new vulnerabilities. In addition, our technique

can be also leveraged to detect immediate XSS vulnerabilities where

input validation checks miss XSS payloads, like those exploiting

email XSS payloads [38, 58]. Our focus on input validation is justi-

fied because according to the OWASP guidelines input validation

Black Ostrich: Web Application Scanning with String Solvers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

is an important part of preventing injection: “Apply Input Valida-

tion (using "allow list" approach) combined with Output Sanitiz-

ing+Escaping on user input/output.” [54] These guidelines confirm

that output sanitization/escaping alone is not enough. The presence

of a vulnerable (e.g. XSS-accepting) pattern on a web page is by

itself not necessarily exploitable, as web applications might enforce

stricter server-side checks. Yet recalling our hypothesis, web appli-

cation frameworks are designed to align client-side and server-side

validation, often using the same validation patterns. This allows

us to leverage Black Ostrich for string solving to produce payloads

matching the patterns, as promising candidate payloads to break

server-side validation.

The elegance of our approach is that we can extend it to handle

JavaScript-based input validation. Indeed, we dynamically extract

regex tests on our inputs and update the inputs accordingly. This

works well for custom regex-based JavaScript validations. Many

popular validation libraries, including jQuery Validate, rely on regex

to validate predefined types such as email, allowing us to solve it.

Clearly, JavaScript can use other methods for validation outside

our coverage. Yet due to the ease of use of HMTL5 patterns, they

are likely to become increasingly common in the future, as they

are indeed designed to replace JavaScript validation. Note that like

most scanners, we consider out-of-band validation, e.g. 2FA and

SMS validation, as out of scope.

1.4 Empirical Studies

We demonstrate that Black Ostrich boosts both code coverage and

vulnerability detection, compared to state-of-the-art crawlers/scan-

ners including Arachni, Enemy of the State, jÄk, ZAP, and Black

Widow. The obvious ethical reasons prevent us from directly run-

ning the scanners on real websites. Indeed, even without the attack

module, running a scanner can cause damage to the website in the

form of forum posts, product reviews, purchases, etc. Instead, we

create a testbed based on real-world validation.

To test Black Ostrich in a realistic environment, we harvest input

validation patterns from the July 2021 Common Crawl archive [18].

We sample uniformly from the 64,000 archive parts, collecting forms

from 8,266,577 URLs, in total 21,667,978 forms. To also capture

validations used on popular websites, we combine this with a crawl

of Tranco [46] top 100K.

Using the combined data from Common Crawl and Tranco we

extract 881,329 HTML5 patterns which after de-duplication results

in 9,805 patterns, all used in the wild. After removing broken and

invalid patterns we have a total of 8,820. We create a testbed of

mock websites using these patterns both on the client-side and

server-side and evaluate the coverage for the state-of-the-art web

crawlers. Our scanner shows a significant improvement by being

able to solve 99% of the patterns compared to an average of 36% for

the other scanners. As many websites share the same patterns [35],

we also analyze how many domains we can improve coverage on.

Comparing the number of domains using these patterns, we solve

all patterns on 66,309 out of the total 66,377 domains. We subsume,

i.e. solve everything the other scanners solve, and improve, i.e. solve

something they miss, coverage on over 13,711 domains compared

to the combined efforts of previous scanners.

We use the same testbed, which includes an input reflection if the

server-side check is passed, to test vulnerable patterns that could

allow for XSS. The results show an increase of 52% in vulnerability

detection compared to the other scanners. We find 863 vulnerable

patterns compared to an average of 594 vulnerable patterns for the

other scanners.

We perform a manual analysis of the top 100 websites that use

input validation and report on the input validation methods used.

We demonstrate that our approach can handle 86% of these methods.

Open-source software. We explore the use of patterns in open-

sourceweb applications fromGitHub.We download over 900 projects

and analyze their use of patterns. We perform a case study analysis

on three applications that use both client-side and server-side vali-

dation. Our head-to-head comparison of the scanners shows that

we increase coverage by passing input validation.

Email pattern study. We report on an empirical study of 825 email

patterns extracted from the Common Crawl dataset of real-world

web pages. The study reveals remarkable inconsistencies in the

current practices of email validation. We illustrate a significant

diversity among the commonly used patterns, suggesting that many

developers hand-craft email validating patterns. Further, we find

that 213 (26%) out of the 825 found email validation patterns liberally

admit XSS injection payloads that are exploited in the wild [38, 58].

These experiments illustrate how our regular expression semantics

encoding is versatile and efficient enough to handle complex real-

world regular expressions for practical applications.

The contributions of the paper are:
• We develop a novel platform for validation-aware web crawling

and scanning (Section 2).

• We propose a new version of two-way alternating finite-state

automata, 2AFASMT (Section 4), and a simple yet efficient simu-

lation of 2AFASMT using standard non-deterministic finite-state

automata, NFA (Section 5).

• Based on 2AFASMT , we define the first sound and complete al-

gorithm for computing solutions of ECMA regular expressions.

This translation enables us to extend the state-of-the-art solver

Ostrich with native support for ECMA regular expressions (Sec-

tion 3 and Section 4).

• We evaluate the coverage and vulnerability detection (Section 6),

showing that our scanner solves 99% of the patterns compared

to the average of 36% for the other scanners. We improve the

detection of vulnerable patterns by 52% (Section 7).

• We investigate the usage of HTML patterns in open-source web

applications and demonstrate increased coverage thanks to string

solving (Section 8).

• We present a case study of email validation patterns, pointing

out common inconsistencies and vulnerabilities related to email

patterns on the web (Section 9).

We open-source the code of our implementation and all gathered

patterns [27].

2 VALIDATION-AWARE SCANNING

To improve the coverage and vulnerability detection we propose a

design where the scanner uses a string solver to generate inputs.

This empowers the scanner to submit the correct data type thus,

potentially, improving coverage. The solver can also generate data

matching both patterns and payloads. Figure 1 shows how to extend

a scanner to interact with SMT solvers.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Rümmer, and Andrei Sabelfeld

Scanner

Crawler
Validation

Controller

WWW

SMT

Solver

1○
2○

Payload

Generator

<input pattern=".*@.*\..*" ...>

Witness

Controller

ECMA

Encoder

<script>

alert(9876)

</script>

.*
@
.*
\..*

<script>alert(9876)</script>@0.0

10○
<script>alert(9876)</script>@0.0

3○ 9○4○

5○
6○

7○8○

Figure 1: The system architecture, including both the extended scanner and SMT solver.

2.1 Motivating Example

This section walks through an example of where patterns are used.

The scanner’s crawler requests a page, 1○ in Figure 1. We mark the

crawler as dashed in the figure to highlight that this can be any

off-the-shelf crawler. The page it crawls use .*@.*\..* to validate

emails. In step 2○ the crawler sends the response and patterns

to the validation controller, which extracts the patterns from the

web page. This also includes dynamic interaction with the page

to extract regex use in JavaScript. Before the scanner submits this

form it picks a witness by calling the witness controller in step 3○.

It decides what type of data to send, e.g., a username, unique data

token, XSS payload, etc. It looks up the elements it needs to submit

in the validation controller in step 4○. The validation controller

returns the pattern, i.e. .*@.*\..*. The next step depends on if the

scanner is in the crawl phase or attack phase.

Crawl Phase. The witness controller sends the pattern directly

to the SMT in step 6○. The HTML5 pattern will then be parsed,

translated to an automaton, and sent to the solver in step 7○. The

solver finds a string matching the pattern, e.g., 0@0.0. It returns the
solution to the witness controller, step 8○, which returns it to the

crawler, step 9○, where it is submitted to the application, step 10○.

Attack Phase. The witness controller calls the payload genera-

tor to get a payload in step 5○. The payload generator chooses a

payload, commonly from a pre-defined list, e.g., <script>alert
(1)</script>. In step 6○, the witness controller sends both the

pattern and the payload to the SMT. Both are encoded and sent to

the solver in step 7○. The solver generates a valid solution to the

pattern that also contains the payload and sends it back in 8○. The

solution <script>alert(1)</script>@0.0 matches the pattern

and contains the payload. If no solution exists, we fall back to the

payload. Finally, the witness controller sends it to the crawler, step

9○, which submits it to the web page in step 10○.

2.2 Scanning

To find vulnerabilities in a web application the scanner must be

able to explore the application in a meaningful way and attack the

application.

Crawling. As JavaScript is ubiquitous on the web, traditional

crawling by statically parsing HTML is no longer enough. The

modern scanners model and execute JavaScript and events, as pi-

oneered by jÄk [57]. In addition to handling dynamic client-side

interactions, server-side code must also be considered. The server-

side code, which is not accessible to scanners, is responsible for

authentication, posting comments, etc. This is important to handle

as some actions, e.g., adding a comment can result in new parts of

the application to explore. Therefore, modern scanners infer the

server-side state and model actions and their effects, as pioneered

by the Enemy of the State [23]. While our general method of comb-

ing a scanner and string solver works for any scanner, we choose to

build on the Black Widow [26] scanner in this paper. Black Widow

combines the advantages of jÄk, Enemy of the State, and other

scanners. We improve on Black Widow by adding features that

allow our scanner to interpret and solve input validation patterns.

Input validation with patterns and JavaScript Web applications

use input validation to ensure the correctness of users’ input. Many

websites perform client-side validation, often using the HTML5 pat-

tern attribute or regex-based JavaScript functions like RegExp.test.
Scanners can use this to infer the server-side validation. To find the

client-side validation patterns we instrument the scanner to extract

both the pattern attribute and other validation attributes [27] from

input elements and add them to the navigation graph. In addition,

we proxy JavaScript regex functions and dynamically interact with

the page to extract the used expressions. We present more details

about this in Section 6.3.1. Whenever the scanner needs a value for

an input element, it will fetch the pattern for the navigation graph

and use the SMT solver to find a matching string.

Fuzzing. An effective method for detecting XSS is executing

JavaScript and searching for the expected runtime behavior of the

payload, for example, showing an alert with the text “XSS”. To

Black Ostrich: Web Application Scanning with String Solvers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

further minimize false positives the payloads must be unique to

each input parameter as stored payloads might be reflected in mul-

tiple places. The Black Widow scanner uses unique payloads and

dynamic injection detection already minimizing the false positives.

However, the payload is limited to unique numeric IDs. That is, the
payloads execute xss(123), where 123 will be changed for each

payload. As some validation mechanisms might reject numbers, we

extend Black Widow to also handle alphabetic IDs.

The generated payloads should also match any validation pat-

terns. Recall the real-world pattern .*France, where the payload
must end with France. To generate a payload, the payload genera-

tor will use an XSS payload with a unique ID. The string solver then

creates a valid string with this payload. Using the pattern above,

a possible solution is <script>xss(123)</script>France While

our focus is on XSS, the same method can be used to generate valid

SQLi payloads, e.g. 'DROP TABLE;--France

3 HANDLING VALIDATION CONSTRAINTS

USING SMT

The next sections introduce the SMT component of Black Ostrich

in more detail, namely, the dashed box labeled as “SMT” in Fig-

ure 1. Black Ostrich builds on the existing state-of-the-art string

solver Ostrich [16], but extends it for security scanning. Ostrich sup-

ports constraints formulated using the SMT-LIB theory of Unicode

strings [7], in particular, regular expression membership assertions,

and string functions including concatenation, substring, and replace.

In addition, Ostrich accepts all functions that can be represented as

finite-state transducers. Ostrich also has all the standard features

of an SMT solver, for instance, handling of Boolean structures as

well as support for other theories like integers and arrays. Given

a set of assignments and assertions, Ostrich finds a model, that is,

assignments of concrete strings to variables, or reports that the

given formulas are inconsistent.

3.1 ECMAScript Regular Expressions

For scanning and fuzzing, Black Ostrich translates the web appli-

cation’s validation constraints into SMT-LIB constraints. A list of

HTML5 validation attributes used by Black Ostrich is given in [27];

in this paper, we focus on fields with the pattern attribute, which

enables web developers to specify further constraints on textual

input using ECMAScript regular expressions [34]. Such regular ex-

pressions offer several features not present in traditional, textbook

regular expressions: (i) anchors ^, $ that check for the beginning or
end of a string; (ii) look-aheads and look-behinds, which constrain

accepted strings without consuming any characters; (iii) capture
groups and back-references to the contents of those groups; (iv)
greedy and lazy matching.

Example 1. A regular expression commonly used as a pattern for

passwords is [66]:

^(?=.*\d)(?=.*[a-z])(?=.*[A-Z])(?!.*\s).*$

The assertions (?=...) are positive look-aheads, and mandate that

a password has to contain at least one digit, one lower-case letter,

and one upper-case letter. The negative look-ahead (?!...) forbids
whitespace characters.

As a second real-world example, among the patterns consid-

ered in Section 6.1, we observed the following regular expression

describing email addresses:

^(?=.{1,64}@)(([a-zA-Z0-9!#$%&'*+-/=?^_`{|}~]+
(.[a-zA-Z0-9!#$%&'*+-/=?^_`{|}~]+)*)|('.+'))@
([^-@][a-zA-Z0-9-]{1,62}.)+[a-zA-Z]{1,63}$

The look-ahead is in this case used to restrict the local-part to at

most 64 characters.

Note that, although present, the ^ (beginning) and $ (end) an-

chors are not necessary in these regexs because the pattern at-

tribute anyway requires full-string matching. This is in contrast to

common server-side regex mechanisms that are based on substring
matching. We will come back to this subtlety in Section 9.3.

We introduce our method to handle both anchors (i) and look-

arounds (ii), based on two-way alternating automata, in Section 4

and Section 5. Back-references (iii), when combined with look-

arounds (ii), lead to undecidability [17], but can be handled us-

ing an abstraction-refinement loop [48]. We discuss in Section 4.5

how such a refinement loop can be integrated into our framework.

Greediness (iv) of matching is not relevant for HTML patterns, and

therefore not considered in this paper: greediness affects the length

of matched substrings, and the contents of capture groups, but it

does not influence the overall language described by a regex.

3.2 Previous Results for ECMAScript Regexes

Loring et al. [48] present a symbolic execution tool for JavaScript,

ExpoSE, which can also handle ECMAScript regexes, excluding

look-aheads. Since the language emptiness problem of this full lan-

guage is undecidable [17], ExpoSE applies an abstraction refinement

loop: initially, regexes are translated to SMT-LIB regular expres-

sions (aka textbook regular expressions), which are supported by

many SMT solvers. This translation is over-approximate, so the

resulting constraints might have solutions even though the original

regex described an empty language. Such spurious solutions are

eliminated iteratively through refinement.

The ExpoSE translation of regexes [48] leads to complex for-

mulas combining word equations, SMT-LIB regular expressions,

and Boolean structure; in our experiments, we observed that the

formulas are often taxing for SMT solvers. In addition, as defined

in [48], the translation does not yield correct over-approximate

constraints in some cases involving look-arounds. In particular the

interaction of alternation and look-aheads, or of repetition (Kleene

star) and look-aheads, is not correctly modelled, leading to an incor-

rect encoding of regular expressions like ((?=a*x)a)*x. This regex
is equivalent to a*x, but the translation defined in [48] interprets

the regex as defining the language {x}. We conjecture that this

issue is inherent in the strategy of directly translating ECMAScript

regexes to SMT-LIB constraints, since a correct translation needs to

handle the unboundedly many look-aheads (?=a*x) caused by the

outer Kleene star, which can most naturally be done in a finite-state

automata setting.

Our approach has some similarities with recent work on trans-

lating regular expressions with look-aheads to Boolean automata,

studying in particular the computational complexity [10]. In con-

trast to [10], this paper considers regexes with both look-aheads

and look-behinds, as well as all other features of ECMA regular

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Rümmer, and Andrei Sabelfeld

ECMA

Regex

Regex

Term

Symbolic

2AFASMT
2AFASMT NFA

Symbolic

NFA

Candidate

solution

Solution

string

Parsing Sec. 4.4 Minterm

Translation

Sec. 5 Minterm

Expansion

Reach.

Analysis

Member-

ship test

Refinement

Figure 2: Regular expression pipeline in Black Ostrich

expressions, and uses the formalism of two-way alternating au-

tomata [45].

4 TWO-WAY ALTERNATING AUTOMATA FOR

REGEXES

We now introduce our approach to correctly handle ECMAScript

regexes, implemented in Ostrich. It is well known that textbook

regexes and finite-state automata are equivalent, in the sense that

they can express the same set of languages [37]. Reasoning on

regexes, e.g., checking emptiness or inclusion, can therefore be

performed using automata techniques.

4.1 Overview

Our approach translates ECMAScript regexes in several steps to

non-deterministic finite-state automata (NFA, used both in singular

and plural), as illustrated in Figure 2. Regexes are first parsed and

simplified, resulting in a term representation of the regex. This term

is then encoded as a two-way alternating automata (2AFA) [45],

as described in Section 4.4; for this, we introduce a new variant

of 2AFA, named 2AFASMT , that is particularly suited for repre-

senting ECMAScript regexes. The encoding as 2AFA handles back-

references by over-approximation (Section 4.5), and initially keeps

character ranges symbolic. Character ranges are in the next step

turned into concrete characters by applying the known Minterm

transformation [20]. 2AFASMT are translated further to NFA (Sec-

tion 5), and then to a symbolic NFA by expanding Minterms to inter-

vals. From this symbolic NFA, candidate solution strings can be ex-

tracted. To compensate for over-approximation of back-references,

the correctness of the solution string has to be checked against the

original regex; in case spurious solutions are detected, the 2AFASMT
is refined.

This overall algorithm is sound, in the sense that it will only

compute genuine solutions of regular expressions, and complete
in the sense that it will eventually find a solution whenever there

is one. Unless a regular expression contains back-references, the

algorithm is also guaranteed to terminate; with back-references, due

to undecidability it is no longer possible to guarantee termination.

4.2 Basic Definitions

For ease of presentation, we adopt a mathematical notation and

we focus on a core set of regular expression operators. We also

present our translation of regexes to 2AFASMT in the context of

a finite alphabet Σ = {𝜎1, . . . , 𝜎𝑛}; the translation to 2AFASMT
works in exactly the same way in the symbolic setting, representing

character ranges using intervals. The set of textbook regexes R is

then inductively defined as follows [37]:

r ::= ∅ | Y | 𝜎 | r∗ | r | r1 ·r2 | r1 + r2

where 𝜎 ∈ Σ, r is the complement of r, ∗ is the Kleene star operator,
and · and + are the usual concatenation and alternation operators,

respectively. We also define syntactic shortcuts, namely r1 ∩ r2 :=
r1 + r2 and, with slight notational abuse, Σ := 𝜎1 + . . . + 𝜎𝑛 .

On the other hand, the set of augmented regexes R include the

features (i) and (ii) from Section 3.1, but they lack complementation,

and they are inductively defined as follows:

𝜌 ::= ∅ | Y | 𝜎 | 𝜌∗ | 𝜌1 ·𝜌1 | 𝜌1 + 𝜌1 |
(>𝜌) | (≥ 𝜌) | (<𝜌) | (≤ 𝜌) | ^ | $ | (𝜌)𝑛 | \𝑛

where (> 𝜌) and (≥ 𝜌) are the positive and negative look-ahead

operators, which check if 𝜌 matches, resp., does not match, a prefix

of the suffix of the string, without consuming any symbols. (<𝜌)
and (≤ 𝜌) are the positive and negative look-behind operators,

which, analogously to the previous ones, check if 𝜌 matches in the

part of the string that has already been analyzed. Anchors ^ and

$ are true only at the beginning, resp., end of the string. Capture

groups (𝜌)𝑛 match the same strings as 𝜌 , but in addition record the

matched sub-string, which can subsequently be back-referenced

using \𝑛. It is assumed that at most one capture group (𝜌)𝑛 exists

for each index 𝑛. [27] formally defines the language 𝐿(𝜌) ⊆ Σ∗

described by an augmented regex 𝜌 .

4.3 Two-way Alternating Automata

2AFA are machines that read input words [45]. They are two-way
in that they can scan the input both left-to-right and right-to-left,

and alternating, meaning that they can take both existential (∃)
and universal (∀) transitions. An ∃-transition corresponds to the

transitions in a standard NFA: from some state, the automaton can

transition to one out of multiple possible successor states. For the

automaton to accept the word, it is enough if one such execution is

successful. Conversely, ∀-transitions fork the execution to a set of

paths that should all be successful. For both kinds of transitions, the
automaton also specifies if it is moving forward or backward, with

one exception: when a transition is an Y-transitions, no symbols

are read/consumed and therefore the automaton does not move on

the word.

It is well known that 2AFA have the same expressive power as

standard NFA, although being exponentially more succinct, and

indeed the former can be simulated by the latter [12, 31, 41]. These

algorithms, however, besides having exponential complexity, are

also quite intricate and have never been implemented in the con-

text of SMT solvers, to the best of our knowledge. We, therefore,

introduce a new version of 2AFA, which we call 2AFASMT with

the following features: (i) their semantics is closer to the semantics

of ECMAScript regex, thus enabling a more direct representation

of those and (ii) they allow for a simple and practically efficient

translation to NFA. The main difference between traditional 2AFA

and 2AFASMT is on the way transitions are specified. The former

Black Ostrich: Web Application Scanning with String Solvers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

reads the character they are currently analyzing and then moves ei-

ther forward or backward positioning themselves on the respective

character, while the latter sits in-between characters, and they can

either read the preceding one and move backward, or the succeed-

ing one and move forward. This is obtained by having two different

kinds of transitions, the backward 𝛿< transitions and the forward

𝛿> ones.

Definition 1 (2AFASMT). A two-way alternating automaton is a

tuple (Σ, 𝑆, 𝑠0, 𝐹<, 𝐹>, 𝛿>∃ , 𝛿
<
∃ , 𝛿

>
∀ , 𝛿

<
∀ , Y∃, Y∀) where:

• Σ is an alphabet of symbols;

• 𝑆 is a finite set of states;

• 𝑠0 ∈ 𝑆 is an initial state;

• 𝐹<, 𝐹> ⊆ 𝑆 are disjoint sets of final states;

• 𝛿>∃ , 𝛿
<
∃ , 𝛿

>
∀ , 𝛿

<
∀ : 𝑆 × Σ d ℘(𝑆) are partial existential (∃) and

universal (∀) transition functions, respectively;

• Y∃, Y∀ : 𝑆 d ℘(𝑆) are partial Y-existential (∃) and Y-universal
(∀) transition functions, respectively,

and ℘(𝑆) is the powerset of 𝑆 . We require that for every state 𝑠 ∈ 𝑆

and 𝜎 ∈ Σ one of the 𝛿- or Y-transitions is defined.

Next, we define the semantics of an automaton, namely the set

of words it accepts.

Definition 2 (2AFASMT run). Let 𝑤 = 𝑤0𝑤1 . . .𝑤𝑛 be a word in

Σ∗ of length ℓ (𝑤) = 𝑛 + 1, and 𝐴 be 2AFASMT . A run 𝜋 of 𝐴 on

𝑤 is a finite sequence of elements in ℘(𝑆 × N), called configura-
tions, defined inductively: 𝜋0 := {(𝑠0, 0)} and for any 𝜋 𝑗 we build

the successor configuration 𝜋 𝑗+1 as follows. Pick (𝑠, 𝑖) ∈ 𝜋 𝑗 , then:

𝜋 𝑗+1 := 𝜋 𝑗 \ {(𝑠, 𝑖)} ∪𝑇 where 𝑇 is one of the following:

• {(𝑠′, 𝑖 + 1)} if 𝑠′ ∈ 𝛿>∃ (𝑠,𝑤𝑖) and 𝑖 < ℓ (𝑤);
• {(𝑠′, 𝑖 − 1)} if 𝑠′ ∈ 𝛿<∃ (𝑠,𝑤𝑖−1) and 𝑖 > 0;

• {(𝑠′, 𝑖 + 1) | 𝑠′ ∈ 𝑆 ′} if 𝛿>∀ (𝑠,𝑤𝑖) = 𝑆 ′ and 𝑖 < ℓ (𝑤);
• {(𝑠′, 𝑖 − 1) | 𝑠′ ∈ 𝑆 ′} if 𝛿<∀ (𝑠,𝑤𝑖−1) = 𝑆 ′ and 𝑖 > 0;

• {(𝑠′, 𝑖)} if 𝑠′ ∈ Y∃ (𝑠);
• {(𝑠′, 𝑖) | 𝑠′ ∈ 𝑆 ′} if Y∀ (𝑠) = 𝑆 ′.

Intuitively, a state/index pair (𝑠, 𝑖) expresses that the automaton

is in state 𝑠 and in between the 𝑖 − 1-th and 𝑖-th characters of

𝑤 . Being alternating, we might have more than one pair at any

moment, as the automaton is scanning multiple parts of the word

at the same time. We start from the initial state 𝑠0 at the beginning

of the word, pair (𝑠0, 0), and at each step a pair is picked and a

transition is performed: if such transition is existential, then the

current state is updated with one of the successor states; if it is

universal, all the successor states are added to the current run. The

index is updated depending on if the transition is moving backward

< or forward >.

We say that automaton 𝐴 accepts word 𝑤 if there exists a run

𝜋 = 𝜋0𝜋1 · · · 𝜋𝑘 of 𝐴 over 𝑤 in which the last configuration is

accepting, that is: for each (𝑠, 𝑖) ∈ 𝜋𝑘 we have either 𝑠 ∈ 𝐹< and

𝑖 = 0 or 𝑠 ∈ 𝐹> and 𝑖 = ℓ (𝑤).

4.4 Translation of Augmented Regexes

Our procedure recursively constructs a 2AFASMT 𝐴𝜌 for each aug-

mented regex 𝜌 ∈ R. Compared to the constructions for textbook

regexes [37], ours adds cases for handling look-arounds and an-

chors. We notice that the latter can be seen as shortcuts: it is indeed

easy to prove that ^ is equivalent to (≤ Σ) and $ is equivalent to

𝐴(𝑎+𝑏)∗

𝐴𝑏𝑎

𝑠𝑖 𝑠1

𝑠2 𝑠4

𝑠3 𝑠5

𝑠6 𝑠7
Y

Y

Y

𝑎

𝑏

Y

Y

Y

Y

𝑠8 𝑠9 𝑠10 𝑠11 𝑠𝑓 ,1 𝑠𝑓 ,2

Y

Y 𝑏< Y 𝑎<

Σ<

Y ∀

Figure 3: Graphical representation of the automaton for the

regex (𝑎 + 𝑏)∗ · (<𝑏 ·𝑎). Unless marked with ∀, transitions are
existential; unless marked with <, transitions move forward.

𝐴𝜌

𝑠𝑖 𝑠1
𝑖

· · · 𝑠𝑓 ,1 𝑠𝑓 ,2
Y

Σ

Y ∀

Figure 4: Schematic representation of automaton construc-

tion recursive step for ^𝜌 , where ^ ∈ {>, <, ≥, ≤}.

(≥Σ). We discuss the main cases of the translation in this section

and refer the reader to [27] for further details.

Example 2. Consider the regex (𝑎+𝑏)∗·(<𝑎·𝑏). The regex is trans-
lated to the automaton in Figure 3, and illustrates the translation of

concatenation, the + operator, and a look-behind. When running on

𝑤 = 𝑎𝑏𝑏𝑏𝑎𝑏, a successful execution sees the sub-automaton𝐴(𝑎+𝑏)∗
matching the whole word and ending in state 𝑠8. From there, the ex-

ecution forks: one path directly accepts in 𝑠𝑓2 ∈ 𝐹> , while the other

goes through sub-automaton𝐴𝑏 ·𝑎 , which starts scanning backward.
It first reads 𝑏 and then 𝑎, (which indeed matches (< 𝑎 ·𝑏)) thus
ending up in the final state 𝑠𝑓1 ∈ 𝐹< . Since both paths are in a final

state, word𝑤 is accepted.

Intuitively, the automaton translation works as follows (see [27]

for more details and figures). The automata for atomic cases of Y, 𝜎

accept after seeing Y or 𝜎 , respectively. The automaton for ∅ never

accepts. The automaton for alternation forks the execution with ∃-
transition into two paths, each attempting to match a subexpression.

The automaton for concatenation connects with an Y-transition the

automata for the sub-expressions. In the automaton for the Kleene

star, an initial ∃-transition forks the execution into two paths, one

directly accepting, the other matching one iteration of the sub-

expression 𝜌 , and then moving back to the initial state using an

Y-edge.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Rümmer, and Andrei Sabelfeld

The novel case of lookahead (>𝜌) builds the automaton schema-

tized in Figure 4, in which the box is the automaton for 𝜌 , double-

circled states 𝑠𝑓 ,1, 𝑠𝑓 ,2 ∈ 𝐹> are final, and the outgoing transitions

from 𝑠𝑖 are ∀-transitions. This initial ∀-transition forks the execu-

tion in two paths that should both accept. The final state 𝑠𝑓 ,2 will

be recursively expanded into an automaton that recognizes the

remaining regex.

When a look-behind is encountered, the same idea holds, but

the automaton inside the box scans the word backward, hence the

necessity of a two-way automaton. We reverse the regex inside the

look-behind, hinging on the fact that scanning a word𝑤 backward

from end to start is equivalent to scanning the reverse of 𝑤 for-

ward from the beginning. Negated look-arounds are handled by

complementing the sub-automata in the boxes [30].

Capture groups (𝜌)𝑛 are translated like 𝜌 , while there are two

cases for back-references \𝑛: a back-reference occurring under

an even number of negations
≥
or

≤
is over-approximated by the

regex 𝜌 of the group (𝜌)𝑛 it references, while a back-reference

under an odd number of negations is translated like the empty

language ∅.
Theorem 1. Let 𝜌 ∈ R be an augmented regex, and𝐴𝜌 be the two-

way alternating automaton constructed from 𝜌 . For every𝑤 ∈ Σ∗,
if 𝑤 ∈ 𝐿(𝜌), then automaton 𝐴𝜌 accepts 𝑤 as well. If 𝜌 does not

contain back-references, then𝑤 ∈ Σ∗ if and only if𝑤 ∈ 𝐿(𝜌).
A proof is given in [27]. We also remark that:

Lemma 1. Building 𝐴𝜌 for a regex 𝜌 ∈ R without back-references

takes linear time in the size of 𝜌 .

Translating a regex 𝜌 with back-references to an automaton 𝐴𝜌

can in general be exponential in the nesting depth of the contained

capture groups. In practice, nesting depth tends to be small.

4.5 Refinement Loop for Back-References

Theorem 1 guarantees the equivalence of an augmented regex 𝜌

and its corresponding automaton 𝐴𝜌 only if 𝜌 does not contain

back-references.

Example 3. Consider the regex 𝜌 = (𝑎 + 𝑏)1\1, which describes

the language 𝐿(𝜌) = {𝑎𝑎, 𝑏𝑏}. The automaton 𝐴𝜌 recognizes the

language {𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏}, and strictly over-approximates the regex.

It is possible to detect spurious words accepted by𝐴𝜌 , because al-

though emptiness of 𝐿(𝜌) is undecidable, the membership problem

𝑤 ∈ 𝐿(𝜌) is decidable for any concrete string 𝑤 ∈ Σ∗. Any regex

engine, for instance, the implementation in Nodejs, can be used to

verify the correctness of solutions. This observation is also used in

ExpoSE [48], and in our settings yields a complete refinement loop

for computing solutions even in the presence of back-references.

In Figure 2, after computing a candidate solution𝑤 , its correct-

ness is checked against the original regex 𝜌 . In case 𝑤 ∉ 𝐿(𝜌),
i.e., 𝑤 is a spurious solution, the symbolic 2AFASMT 𝐴 has to be

refined to an automaton 𝐴′
no longer accepting𝑤 , and afterwards

new solution candidates can be computed. Different refinement

methods are possible; the simplest approach is to derive𝐴′
by inter-

secting𝐴 with an automaton recognizing Σ∗ \ {𝑤}. In the setting of

2AFASMT , this intersection can be done in time linear in |𝑤 |. More

sophisticated refinement, potentially eliminating multiple spuri-

ous solutions, can be achieved by extracting the substrings of 𝑤

matched by the capture groups, and intersecting𝐴 with an automa-

ton that ensures consistency of capture groups with back-references

for those specific strings.

It is easy to ensure completeness of the overall algorithm, i.e.,

the ability to compute solutions whenever the considered lan-

guage 𝐿(𝜌) is non-empty. For this, it is only necessary to always

compute shortest solution candidates𝑤 , which can be done by com-

puting shortest accepting paths of the derived symbolic NFA. This

implies fairness of the solution enumeration and guarantees that

no solutions are missed.

5 SIMULATION OF 2AFASMT BY NFA

We now define a translation from 2AFASMT to a standard NFA.

5.1 Overview

AnNFA is an automaton scanning aword left-to-right, with possibly

a non-deterministic transition function and Y-transitions. More

precisely, an NFA is a tuple (Σ, 𝑄, 𝑞0, 𝑄 𝑓 , 𝛿, Y) in which 𝑞0 ∈ 𝑄 is the

initial state,𝑄 𝑓 ⊆ 𝑄 is the set of final states, and 𝛿 : 𝑄 × Σ → ℘(𝑄)
and Y : 𝑄 → ℘(𝑄) are transition functions. The semantics of NFA

is defined similarly to that of 2AFASMT . A run 𝜋 = 𝜋0𝜋1 · · · 𝜋𝑘 of

an NFA over a word 𝑤 is finite sequence of configurations from

𝑄 × N defined inductively: 𝜋0 = (𝑞0, 0), and for any 𝜋 𝑗 = (𝑞, 𝑖)
we have 𝜋 𝑗+1 = (𝑞′, 𝑖′) with either (i) 𝑞′ ∈ Y (𝑞) and 𝑖 = 𝑖′; or (ii)
𝑖 < ℓ (𝑤), 𝑞′ ∈ 𝛿 (𝑞,𝑤 (𝑖)) and 𝑖′ = 𝑖 + 1. A run is accepting if the

final configuration is (𝑞, ℓ (𝑤)) with 𝑞 ∈ 𝑄 𝑓 .

Similarly to other existing methods for transforming 2AFA into

an NFA [12, 31, 41], our approach is inspired by the original Shep-

herdson’s construction [64] for eliminating bidirectionality, and

the powerset construction for removing the universal transitions.

Our translation differs from the existing methods in that we apply

a one-step powerset construction, which is intuitive yet efficient

in practice. The intuition behind our approach is to categorize

2AFASMT states based on the direction, left-to-right > or right-to-

left <, from which they can be reached, and the direction they can

be left. We denote the former with a superscript and the latter with

a subscript. For example, a state belonging to set 𝑆>< can be reached

only with left-to-right transitions (> in the superscript) and can

be left with right-to-left transitions (< in the subscript). Such a

categorization is required to define the simulating NFA.

Definition 3 (Simplified 2AFASMT). A simplified 2AFASMT (or S-

2AFASMT) is a tuple (Σ, 𝑆>> , 𝑆<< , 𝑆>< , 𝑆<> , 𝑆>, 𝑠>, 𝐹>, 𝛿>∃ , 𝛿
<
∃ , 𝛿

>
∀ , 𝛿

<
∀)

in which:

• transition functions 𝛿>∃ , 𝛿
<
∃ , 𝛿

>
∀ , 𝛿

<
∀ are as in Definition 1;

• the sets of states 𝑆>> , 𝑆
<
< , 𝑆

>
< , 𝑆

<
> , 𝑆

>, {𝑠>} are pairwise dis-

joint, and we denote with 𝑆 their union;

• 𝑠> is the initial state, which does not have incoming tran-

sitions and only has outgoing left-to-right transitions: for

each 𝑠′ ∈ 𝑆 , 𝜎 ∈ Σ, ∗ ∈ {∃,∀}, and ◦ ∈ {<, >} we have that:
𝑠> ∉ 𝛿◦∗ (𝑠′, 𝜎), and 𝛿<∃ (𝑠, 𝜎) and 𝛿

<
∀ (𝑠, 𝜎) are undefined;

• 𝑆> is the set of sink states, which only have incoming left-

to-right transitions: for each 𝑠 ∈ 𝑆> , 𝑠′ ∈ 𝑆 , 𝜎 ∈ Σ and

∗ ∈ {∃,∀} we have that: 𝑠 ∉ 𝛿<∗ (𝑠′, 𝜎), and 𝛿<∗ (𝑠, 𝜎) and
𝛿>∗ (𝑠, 𝜎) are undefined;

• 𝐹> = 𝑆> are final states;

Black Ostrich: Web Application Scanning with String Solvers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

𝜎1 𝜎2 𝜎3 𝜎4

𝑠> 𝑠2 𝑠3 𝑠4

𝑠5

𝑠7

𝑠6

𝑠2 𝑠8

𝜎1 𝜎2 𝜎3 𝜎4

𝑠> 𝑠2 𝑠3 𝑠4

𝑠5

𝑠7
𝑠2

𝑠6 𝑠2

𝑠2

𝑠8

Y

Y

Figure 5: An example of a run of a S-2AFASMT on the left and the corresponding run of the simulating NFA on the right.

• for each state 𝑠 ∈ 𝑆>> , 𝑠
′ ∈ 𝑆 , 𝜎 ∈ Σ and ∗ ∈ {∃,∀} we have

that: 𝑠 ∉ 𝛿<∗ (𝑠′, 𝜎) and 𝛿<∗ (𝑠, 𝜎) is undefined. Analogous

definitions hold for 𝑆>< , 𝑆
<
> , 𝑆

<
< .

We notice that any 2AFASMT can be transformed into a S-2AFASMT ,

and refer to the extended version of the paper [27] for the procedure.

5.2 Simulation of S-2AFASMT

Next, we show how to build an NFA that is equivalent to a S-

2AFASMT . For our approach to work, we make a further, standard

assumption about the considered 2AFASMT : we say that an automa-

ton 𝐴 is non-cycling if, for every word 𝑤 , the set of (accepting or

non-accepting) runs according to Definition 2 on𝑤 is finite. This

means that runs of 𝐴 eventually either get stuck or terminate in

accepting configurations. It can be observed that any 2AFASMT
built from a regex in Section 4.4 is non-cycling.

States of the NFA simulating a S-2AFASMT are sets of S-2AFASMT
states, which we call macro-states henceforth, and transitions are

defined by suitably considering each category of states. The left-

hand side of Figure 5 pictures a run of a S-2AFASMT on word

𝑤 = 𝜎1𝜎2𝜎3𝜎4, where automaton states are in-between charac-

ters and on the dashed vertical lines. Starting from the state 𝑠> , the

automaton reads three characters moving right (𝑠2, 𝑠3 ∈ 𝑆>>) and

lands in state 𝑠4 ∈ 𝑆>< ; then it moves backward on 𝑠5 ∈ 𝑆<< and ends

up in 𝑠6 ∈ 𝑆<> , and then finally moves forward to the end of the

word accepting in 𝑠8 ∈ 𝑆> . The simulating NFA scans instead the

word left-to-right only once, essentially guessing at each step the

possible (forward and backward) computations of the S-2AFASMT ,

as depicted on the right-hand side of Figure 5. Grey boxes represent

the macro-states of the NFA.

Definition 4 (Simulating NFA). Let (Σ, 𝑆>> , 𝑆<< , 𝑆>< , 𝑆<> , 𝑆>, 𝑠>,
𝐹>, 𝛿>∃ , 𝛿

<
∃ , 𝛿

>
∀ , 𝛿

<
∀) be a S-2AFASMT . Next, the equivalent NFA is

(Σ, ℘(𝑆), {𝑠>}, {𝐹 | 𝐹 ⊆ 𝐹>}, 𝛿, Y), with 𝛿, Y defined as follows. For

every 𝑄,𝑄 ′ ∈ ℘(𝑆), we have 𝑄 ′ ∈ Y (𝑄) if and only if either:

(1) there is 𝑠 ∈ 𝑆<> such that 𝑄 ′ = 𝑄 ∪ {𝑠}, or
(2) there is 𝑠 ∈ 𝑆>< such that 𝑄 ′ = 𝑄 \ {𝑠}.

For each 𝑄,𝑄 ′ ∈ ℘(𝑆) and 𝜎 ∈ Σ, we have 𝑄 ′ ∈ 𝛿 (𝑄, 𝜎) if and only

if all of the following conditions hold:

(3) No sinks in 𝑄 : 𝑄 ∩ (𝐹> ∪ 𝑆><) = ∅;
(4) No sources in 𝑄 ′: 𝑄 ′ ∩ ({𝑠>} ∪ 𝑆<>) = ∅;
(5) Right-successors: ∀𝑠 ∈ 𝑄 ∩ (𝑆>> ∪ 𝑆<> ∪ {𝑠>}):

𝑄 ′ ∩ 𝛿>∃ (𝑠, 𝜎) ≠ ∅ or 𝛿>∀ (𝑠, 𝜎) ⊆ 𝑄 ′
;

(6) Left-successors: ∀𝑠′ ∈ 𝑄 ′ ∩ (𝑆<< ∪ 𝑆><):
𝛿<∃ (𝑠

′, 𝜎) ∩𝑄 ≠ ∅ or 𝛿<∀ (𝑠
′, 𝜎) ⊆ 𝑄 ;

(7) Right-predec.: ∀𝑠 ∈ 𝑄 ∩ (𝑆<> ∪ 𝑆<<) ∃𝑠′ ∈ 𝑄 ′
:

𝑠 ∈ 𝛿<∃ (𝑠
′, 𝜎) or 𝑠 ∈ 𝛿<∀ (𝑠

′, 𝜎) ⊆ 𝑄 ;

(8) Left-predec.: ∀𝑠′ ∈ 𝑄 ′ ∩ (𝑆>< ∪ 𝑆>> ∪ 𝐹>) ∃𝑠 ∈ 𝑄 :

𝑠′ ∈ 𝛿>∃ (𝑠, 𝜎) or 𝑠
′ ∈ 𝛿>∀ (𝑠, 𝜎) ⊆ 𝑄 ′

.

The conditions on the transition functions follow from the shape

of the S-2AFASMT runs. For example, referring to Figure 5, we have

that states in 𝑆<> , such as 𝑠6, can “appear” in a macro-state, 𝑄2

in this case, thanks to Y transitions as dictated by condition 1 in

Definition 4 (analogously, 𝑆>< , such as 𝑠4, can disappear). However,

if they appear, then a state they come from should exist from the

right (condition 7) as well as one where they go to, again to the

right (condition 5). Similar conditions hold for 𝑆>< states, while for

𝑆>> and 𝑆<< states we simply require the existence of successor(s)

and a predecessor on the right or on the left, respectively.

Theorem 2. For any word𝑤 on Σ,𝑤 is accepted by a non-cycling

S-2AFASMT iff𝑤 is accepted by its simulating NFA.

The proof is provided in [27].

6 COVERAGE AND VULNERABILITY STUDY

We evaluate our approach by performing a large-scale scan of pat-

terns used on the web. We explain how we gather the patterns

in Section 6.1. We add these patterns to a testbed on which we

compare our approach with other state-of-the-art scanners, Sec-

tion 6.2. Design choices for the implementation of Black Ostrich are

presented in Section 6.3. In Section 6.4 we manually compare our

approach to validation methods used on popular websites. In [27],

we include a performance comparison with ExpoSE.

6.1 Gathering Client Side Validation Regexes

To find real-world client-side validation, we use data from the

Common Crawl data set [18]. From Common Crawl we extract

all archives from (CC-MAIN-2021-31) and deduplicate incoming

validation patterns per archive to avoid over-collecting. For each

page, we extract all the HTML patterns along with their contexts

such as other attributes of the element and the URL.

In addition to Common Crawl, we also crawl the top 100K do-

mains from Tranco [46] to include patterns from popular websites.

For each domain, we pick five random links and search all pages

for forms with HTML5 patterns.

In total, we extract 9,805 unique patterns from 66,377 domains.

Similar to previous work [35], we detect a high reuse of patterns

across domains. We further remove any patterns that cause a syntax

error in either Nodejs, Firefox, or PHP. First we, use Nodejs’ regex

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Rümmer, and Andrei Sabelfeld

engine to filter out over 600 broken patterns. A majority of these

are due to bad ranges, e.g. [05-09]. From there another 200 are

removed for being invalid in Firefox, e.g. because of incorrect quan-

tifiers {,80} or trying to escape dash with a backslash. Additionally,
patterns like [0-9]{1,10000000000} use too big quantifiers, caus-

ing both PHP and Ostrich to fail. While syntactically valid, we also

remove unsatisfiable patterns such as /^\d{5}, where the slash

before the caret makes it unsatisfiable (as an HTML pattern). In

general, we believe that many of these problems stem from regular

expressions being copied from other projects into HTML patterns

without testing. This results in 8,820 valid patterns that we use for

the testbed, and share publicly [27].

The most common patterns are for checking email addresses.

This is interesting as type="email" already supports email valida-

tion. Other popular ones are the semantically equivalent patterns

[0-9]* and \d*. Usually corresponding input elements for quan-
tities. The complexity spans from simple and short to long and

complex. The average length of the patterns is 39 characters but

there are 453 longer than 100 characters and the longest pattern is

29,059. There are also 500 patterns using look-arounds and 4,044

patterns using anchors.

6.2 Testbed

To avoid damaging live websites we recreate the same input ele-

ments in a testbed. Using real-world patterns we create one page

per unique pattern. Each page consists of a form with a single input

element containing a pattern. We also include the most common

name and type for each pattern as some scanners use this as a

heuristic, as reflected in the code in [27].

We ensure the same validation is applied on the server-side to

stop scanners from simply ignoring the client-side check. We also

check the input type validation for email and URL server-side. We

show this server-side code [27]. If the scanner sends a valid input

the server will reflect this input, allowing for XSS. Finally, we run

each scanner on the testbed and record both if it passes the pattern,

and if it reports the XSS vulnerability.

6.3 Implementation

We implement our approach [27] by synergizing and improving

the state-of-the-art web application scanner Black Widow [26]

(Section 6.3.1) and solver Ostrich [16] (Section 6.3.2).

6.3.1 Scanner module. We make two major modifications, one to

the data extraction and one to the witness selection.

We update the navigation model in the crawler component to

allow for modeling of the new pattern attributes and other vali-

dation attributes [27]. During the crawling phase, we save all the

patterns the scanner finds together with their respective input el-

ements. To dynamically detect regex-based JavaScript validation

our scanner injects JavaScript code before the page loads allowing

us to proxy related functions including window.RegExp.test and

String.match. Next, we input unique tokens on all input fields

and trigger events such as onChange, onBlur, and onSubmit on the

related form. Finally, we save any regex-input pair where validation

is applied to our input.

Once the scanner is ready to submit a value to a form we retrieve

the corresponding pattern from the navigation model and send it to

A
r
a
c
h
n
i

B
la
c
k
O
s
tr
ic
h

B
la
c
k
W

id
o
w

E
n
e
m
y

jÄ
k

Z
A
P

P
r
e
v
io
u
s
C
o
m
b
in
e
d

0

2,000

4,000

6,000

8,000

3,391

8,782

3,891

2,665

1,196

4,638

5,425

3,391

8,782

3,891

2,665

1,196

4,638

#
P
a
t
t
e
r
n
s

Figure 6: Number of patterns passed by scanners.

the solver, which generates a matching value for the pattern. When

the scanner is in attack mode then the payload is also sent to the

solver as an additional constraint.

6.3.2 Solver module. As SMT solver in Black Ostrich, we apply an

extended version of the state-of-the-art solver Ostrich. The differ-

ence to the standard version of Ostrich is the handling of ECMA

regular expressions (Section 4 and Section 5). This functionality was

integrated by extending the Ostrich SMT-LIB interface [8], adding

a function re.from_ecma2020 for converting a string in the ECMA

regex format to a regular expression. The translation of 2AFASMT
to NFA is implemented through the expansion in Definition 4. Our

current implementation has good coverage of the ECMA regex fea-

tures, but does not yet include the refinement loop from Section 4.5,

and it only partially supports Unicode properties. The implemen-

tation includes several optimizations beyond what is described in

Section 5, among others a direct translation (skipping 2AFASMT)

from regexes without look-arounds to NFAs, and a refined version

of the encoding in Definition 4 that only generates reachable NFA

states to mitigate possible exponential growth.

6.4 Manual Inspection of Input Validation

Our focus is on HTML5 patterns and JavaScript regex functions.

However, websites can use other methods for validation that we

can not handle. To quantify this manually, we investigate the top

sites from Tranco until we find 100 websites that use some input

validation. We manually visit these websites and a maximum of 20

pages, searching for text inputs. Trying different values we test if

validation is used and manually inspect the code both statically and

dynamically to identify the validation method.

7 RESULTS

In this section, we present the results of our empirical study. Sec-

tion 7.1 presents the results from our testbed. In Section 7.2 we

analyze the results and present qualitative insights into the results.

Finally, in Section 7.3 we report client-side validation methods used

by popular websites.

7.1 Black-box Scanning

We divide the testbed results into pattern coverage and XSS vulner-

ability detection.

Black Ostrich: Web Application Scanning with String Solvers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

A
r
a
c
h
n
i

B
la
c
k
O
s
tr
ic
h

B
la
c
k
W

id
o
w

E
n
e
m
y

jÄ
k

Z
A
P

P
r
e
v
io
u
s
C
o
m
b
in
e
d

0

20,000

40,000

60,000

46,958

66,309

39,542

14,219
12,136

45,878

52,632

46,958

66,309

39,542

14,219
12,136

45,878

#
P
a
t
t
e
r
n
s

Figure 7: Number of domains passed by scanners.

7.1.1 Coverage. In total, our scanner solves 8,782 patterns out of

the total 8,820, resulting in a coverage of 99%. In comparison, the

other scanners have an average coverage of 36%, ranging from jÄk

solving 1,196 patterns (14%) to ZAP solving 4,638 patterns (53%).

The coverage results are presented in Figure 6, which shows

that our method outperforms the combined efforts of previous ap-

proaches. A class of patterns only we find are patterns tightly bound

in length, like \d{16} and (.){6,6}. Another case is patterns

with complex use of multiple look-arounds like (?=.*\d)(?=.*[
a-z])(?=.*[A-Z]).{6,}. We can also handle enumerations, e.g.

(2018|2019|2020|2021|2022).
To understand the frequency of patterns and real-world effects,

we report on the number of domains using these patterns. Figure 7

presents the number of domains, from both Common Crawl and

Tranco, where the scanner can solve all patterns. Our method solves

all patterns on 66,309 domains out of the total 66,377. We also

subsume and improve coverage on 13,711 domains.

The heatmap, shown in Table 1, compares the solved patterns

between the scanners. As is evident by the green Black Ostrich

row, our approach has a strong matchup against the other scanners.

In comparison, the Black Ostrich column shows that only a small

number of patterns are solved by others that we miss. We discuss

these in Section 7.2.

7.1.2 Vulnerabilities. Figure 8 shows the number of vulnerable

patterns reported by the scanners. Our method outperforms the

other scanners in terms of sending valid payloads. Compared to the

average of the other scanners we improve detection of vulnerable

patterns by 52%. The patterns passed by other scanners are usually

simpler, like .{7,}, which allows any payload that is at least seven

characters long. This explains the plateau at around 535 in Figure 8,

which we discuss in Section 7.2. Our approach outperforms the

others in cases with stricter formatting requirements. For example,

email patterns that require the at-sign and period, like .+@.+[.].+.
Or requirements of specific strings, like “France” in the pattern

.*France. The Black Ostrich row in the heatmap in Table 2, once

again shows our method’s strong performance. The few we miss

are analyzed in Section 7.2

A
r
a
c
h
n
i

B
la
c
k
O
s
tr
ic
h

B
la
c
k
W

id
o
w

E
n
e
m
y

jÄ
k

Z
A
P

P
r
e
v
io
u
s
C
o
m
b
in
e
d

0

200

400

600

800

529

903

532

625

541

741

821

529

903

532

625

541

741

#
P
a
t
t
e
r
n
s

Figure 8: Number of vulnerable patterns found by scanners.

7.2 Analysis

In this section, we highlight patterns we miss and compare our

scanner with the others.

Coverage we miss. As Table 1 shows, there are cases where other
scanners solve patterns that we are not able to solve. In total, there

are 15 cases where another scanner solves a pattern that we do not.

These are complex patterns that have relatively easy solutions. A

scanner-related problem is a pattern where the first solution is the

DEL character (0x7F), which can not be typed into the text field by

our scanner. To improve coverage in these cases we need to ensure

the solutions are printable and improve the underlying scanner to

handle submission of unprintable values.

Vulnerabilities we miss. Both Enemy of the State and ZAP per-

form better than the other scanners we test. The reason for this

is not that they use advanced string solving, but rather a different

proof of XSS. This allows them to use shorter payloads. For example,

for the pattern .{0,20}, which allows a maximum of 20 charac-

ters, a normal XSS payload, e.g. <script>alert(1)</script>, is
too long at 25 characters. In comparison, Enemy of the State uses

the 19 characters long string '';!--"<Ocy1>=&{()} and ZAP uses

javascript:alert(1). We see these as false positives and there-

fore do not accept this in Black Ostrich. However, we still add

support for detecting tag-injections, making it easy for developers

to enable it.

jÄk’s coverage and vulnerability detection. jÄk’s performance is

interesting as the coverage is significantly worse compared to the

other scanners, yet the number of found vulnerabilities is on par

with the others. This is because jÄk only sends attack payloads to

the form. As such, jÄk’s coverage will match the vulnerabilities

they find plus any pattern accepting empty strings. This differs

from scanners that also try benign values for the input elements.

7.3 Results of Manual Inspection

Black Ostrich can handle a multitude of validation methods, in-

cluding input types, patterns, and JavaScript regex functions. Of

the top 212 websites, 100 use validation. The most popular meth-

ods rely on regex, test() was used in 56 cases and match() in

seven. The pattern attribute was used on three websites. A common

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Rümmer, and Andrei Sabelfeld

Table 1: Unique coverage found between scanners

Arachni Black Ostrich Black Widow Enemy JÄk ZAP

Arachni 6 962 1,625 2,201 641

Black Ostrich 5,397 4,891 6,126 7,588 4,155

Black Widow 1,462 0 1,449 2,774 184

Enemy 899 9 223 1,506 64

JÄk 6 2 79 37 19

ZAP 1,888 11 931 2,037 3,461

Table 2: Unique vulnerabilities found between scanners

Arachni Black Ostrich Black Widow Enemy JÄk ZAP

Arachni 11 101 86 113 59

Black Ostrich 385 379 309 365 230

Black Widow 104 8 49 97 12

Enemy 182 31 142 152 16

JÄk 125 3 106 68 28

ZAP 271 68 221 132 228

problem is exact length checks, e.g. input.length==10 for phone

numbers. Some validations also split the input and check the parts

individually, e.g. for email. In total, we support the methods used

in 86%.

8 PATTERNS IN OPEN-SOURCE

APPLICATIONS

To further explore the prevalence of patterns in the wild we perform

a study on the use of patterns in GitHub projects. We download

the 978 best-matching projects from GitHub’s “web-application”

topic [32]. Next, we statically search for applications that use the

pattern attribute and manually test that they are validated server-

side. We acquire three usable projects with HTML patterns.

ALEX [47]. The ALEX project is a great example of a web ap-

plication that validates the pattern both on the client-side and

server-side. To create a new project in ALEX a URL is required, and

the URL must match ^https?://.*?. The validation is enforced

by Spring MVC [39] on both client-side and server-side.

Similar to previous studies [57] we compare the number of URLs

the scanner visits, excluding URLs to static files. We also ignore

query parameters in the URL and collapse any ID number in the

path.

The results show that Black Ostrich can find 25 different path-

level URLs while Black Widow only found nine, resulting in a 178%

increase in URL-level coverage. Furthermore, Black Ostrich found

all nine Black Widow found. Neither Arachni, Enemy of the State,

jÄk nor ZAP managed to pass the login, resulting in just one URL.

Authentication is extra difficult as it uses a cross-domain token

service to manage authentication and not simple cookies. The login

form is also dynamically generated making it impossible to specify

credentials for these scanners.

By source code analysis, we determine that being able to solve

the pattern needed to create projects is the key factor in achieving

higher crawling coverage in this case.

Helping Hands [56]. The main challenge in this web application

is registering a user. The registration form uses patterns to vali-

date phone numbers, among other things. Here we do not provide

credentials to test their ability to register.

In this case, all scanners except Enemy of the State found the reg-

istration form. From here, only Black Ostrich was able to correctly

solve all the patterns needed for registration and authentication.

Opera DNS UI [52]. This application uses many challenging pat-

terns in its forms relating to DNS records, like the pattern for IPv4

addresses:

((25[0 -5]|(2[0 -4]|1{0 ,1}[0 -9]) {0 ,1}[0 -9])

\.) {3 ,3}(25[0 -5]|(2[0 -4]|1{0 ,1}[0 -9])

{0 ,1}[0 -9])

As these are checked server-side too, only a valid IP address will

be accepted in this case. As Enemy of the State does not support

basic access authentication it could not log in. It would still fail to

submit the form as the submission is triggered by JavaScript. The

other scanners can log in and find the form. As the form’s method is

post, jÄk does not interact with it. Both ZAP and Arachni manages

to submit, but not valid data, and thus rejected by the server. Only

Black Ostrich can submit a valid record.

9 CASE STUDY: EMAIL REGEXES

This section illustrates the viability of our implementation of ECMA

regexes in a string solver by a case study of email regexes found

in the wild. Browsers implementing the HTML5 input type also
implement syntactic email validation using the following regex,

henceforth referred to asMDN [19].

[a-zA-Z0 -9.!#$%& '*+\/=?^_`{|}~ -]+@[a-zA-Z0
-9](?:[a-zA-Z0 -9 -]{0 ,61}[a-zA-Z0 -9])

?(?:\.[a-zA-Z0 -9](?:[a-zA-Z0

-9 -]{0 ,61}[a-zA-Z0 -9])?)*

TheMDN validation strengthens the permissive requirements of

RFC3696 [44], rejecting attack strings like <script>alert(1)</
script>@mail.com, at the same time disallowing some valid email

addresses, like "<script>"@example.com.
Users of the email input type can add additional validation

using the pattern attribute. Alternatively, developers can forego

the built-in email validation and only use a pattern attribute with
their validation logic.

This section investigates how real-world regexes are used to

validate email address inputs relate to the built-in validation of web

browsers. We also investigate the security implications of sharing

regexes for validation between the front-end and back-end of a web

application without modification. This has implications for security,

as the semantics of the pattern attribute are different from the

ones of most regex engines.

In particular, we ask three research questions: (i) How many

validation regexes would accept an XSS attack string? (ii) How
many validation regexes impose stricter constraints than MDN,

rejecting some string accepted by it? (iii) If the pattern validation

regex is reused for validation in a back-end, how often would this

let through an XSS attack string?

We investigate these questions on a collection of 825 unique

email-validating regexes. We obtain this collection from the larger

set of 9,805 unique patterns from Section 6.1. We narrow down

our selection to patterns where the name or ID attributes of the

input element contained the string “email”. This means that the

Black Ostrich: Web Application Scanning with String Solvers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Attack
string

.*<script>.*
Tested
Regex

MDN

Tested
Strong Regex

Figure 9: The left diagram illustrates looking for attack

strings accepted by email patterns in Section 9.1. The right

diagram illustrates looking for restrictions beyond MDN in

email patterns in Section 9.2.

data set contains both validation patterns used in addition to MDN

and patterns used instead of it. In the experiments, we do not

discriminate between these two cases, as it is hard to speculate how

developers reflect the HTML5 email type on the server side. Finally,

we remove 2 patterns that use anchors incorrectly, leaving us with

a total of 825.

Table 3 summarizes the results of all three investigations. Recall

that the acceptance of an email address containing a <script> tag

by the client is neither necessarily in violation of the IETF standards

nor is it a guaranteed vulnerability in the application. At the same

time, accepting such an email server-side is a prerequisite of high-

impact practical email vulnerabilities exploited in the wild [38, 58].

9.1 Vulnerable Patterns

To find potential sources of vulnerabilities, we instruct the solver

to find a string 𝑠 for each regex 𝜌 out of the 825 collected ones such

that 𝑠 matches 𝜌 contains a <script> tag. For an illustration, see the
diagram on the left in Figure 9. This experiment finds 215 potentially

vulnerable regexes (satisfiable). 38 regexes trigger syntax errors

during parsing and had to be discarded from the study. All matching

strings are validated against the RegExp class in Nodejs 15.14.0,

and all but 2 (semantically invalid) are found to match. In total, we

find 213 vulnerable regexes.

9.2 Strong Patterns vsMDN

We investigate if the patterns used are enforcing stronger con-

straints thanMDN. To do this, we invoke the solver on each regex 𝜌

to find a string not matching 𝜌 but matchingMDN, as illustrated

on the right in Figure 9. This experiment yields a larger number

of matching strings: 745, suggesting that these constraints are ei-

ther typically used to narrow the set of allowed inputs or based on

under-approximating expressions like .+@.+\..+. The occurrence
of negative look-aheads to eliminate some email hosts further sug-

gests that the author intended to block these, a typical semantic

validation not captured by the built-in syntactic email validation.

One of the generated strings contained “me.com”, from a regex

meant to block email addresses from common free email hosts.

Other examples include exclamation points, ampersands, single

quotes, pluses, or slashes, which are allowed before the @-sign by

MDN but commonly disallowed by custom validation expressions.

9.3 Vulnerabilities When Sharing Code

While the HTML5 pattern must match the full input, most regex

engines used in back-ends only need to match a substring. If the

same regex is used for validation both at the front-end and at the

In pattern If reused in back-end

Accepts <script> 213 502

Rejects MDN-valid input 745 n/a

Table 3: Comparison of crawled email validation patterns to

the built-in HTML5 validation.

back-end this would mean that the validation in the back-end is

potentially weaker. Specifically, this would be the case for regexes

without anchors matching the beginning and end of the string. We

have found guides that incorrectly only check substrings [67].

To verify how common the use of such regexes is, we perform

an experiment where we expand regexes not containing anchors

(^$) with catch-all expressions (.∗), in an opposite fashion to the

logic of Section 6.2. As the semantics of regexes are rather compli-

cated, we expand them naively by simply replacing any expression

beginning and ending with the expansion, if they did not contain

either anchor, allowing post-solving validation to flag the edge

cases where the regexes were more complicated. In other words,

.+@.+ would become .∗.+@.+.∗. We could find an attack for 531

of the modified regexes, and could verify actual vulnerability for

502 of them; an increase of 289 from the 213 vulnerable ones we

found in Section 9.1.

9.4 Summary

Email-validating HTML5 patterns are diverse. It is common for

them to be both weak compared to the built-in validation, and to

refine the built-in validation with additional constraints, as can be

seen in Table 3. While the latter case does not affect the security of

the application, the use of redundant validation expressions is also

suggestive of code reuse. In which case, differences in semantics

between the HTML pattern attribute and all common regex en-

gines would make the validation at the back-end weaker than the

front-end. This implies that security vulnerabilities will be present

in many web applications if the strings are reused unsanitized.

Finally, these experiments illustrate that our encoding of the

ECMA regex semantics is both versatile and performant enough to

solve both substringmatching and (non-) intersection for real-world

regexes, many of them highly complex and all of them harvested

from real websites. Only 38 (unable to parse) plus two (semantically

invalid) out of the 825 regexes are untranslatable into our encoding.

10 RELATEDWORK

SMT. String constraints solvers have flourished in recent years [3].
The two main paradigms for solving string constraints are SMT

and constraint programming. Many SMT solvers have decision

procedures for handling string constraints, for instance Z3 [21],

Z3-str/2/3/4 [68], S3/p/# [65], cvc5 [5], Norn [1], Noodler [14],

Sloth [36], and Ostrich [16]. They rely on automata-based tech-

niques or algebraic results for strings or reduce the problem to

other well-known theories, such as integers or bit-vectors. To the

best of our knowledge, our solver is the first to directly handle EC-

MAScript regular expressions. A comparison with the tool ExpoSE,

which includes support for ECMAScript regexes, is in Section 3.2.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Rümmer, and Andrei Sabelfeld

2AFA. The equivalence between two-way and one-way automata

has been originally proven by Rabin, but a most modern straightfor-

ward proof is given by Shepherdson in [64]. Alternation has been

introduced only later, in the seminal work in the ’70s [15]. Since

then, the study of the combination of the two has been scattered,

and we refer to [42] for a thorough survey. Although a first proof of

equivalence between 2AFA and NFA appeared in [45], Birget [12] is

the first to provide a comprehensive study of different kinds of finite

automata, as well as a translation from (non-cycling) 2AFA to NFA

which is done in several steps and make use of homomorphisms

between alphabets. More recent translations appear in [31], which

also works for cycling 2AFA. The above are theoretical construc-

tion, usually oriented to complexity theory, and to the best of our

knowledge, they have not been implemented in practice.

Web Scanning. Web scanning is an actively explored topic with

many open challenges, both for improving crawling and vulnerabil-

ity detection. We compare our approach with other state-of-the-art

scanners [23, 53, 57, 61]. There are also many other scanners and

XSS detection methods [2, 4, 9, 24, 25, 29, 33, 40, 49, 55, 60] that

made significant improvements in the field. Fonseca et al. [28]

shows that many security patches in web applications update vul-

nerable regexes, further motivating the need for validation-aware

web scanning. Barlas et al. [6] showed that the regex applied to

input could itself be vulnerable to denial-of-service attacks.

While the goal of improving vulnerability detection has been

common for previous approaches, the areas of scanning they im-

prove vary. For example, jÄk [57], Enemy of the State [23], Li-

gRE [24], and Black Widow [26] focuses mainly on improving the

crawling aspect of scanning, while using common payloads and

fuzzing techniques. jÄk improved crawling by modeling JavaScript

events in a novel way leading to deeper crawls and a higher de-

tection rate of vulnerabilities. Enemy of the State achieved similar

improvements by instead inferring the server-side state, thus being

able to handle more complex workflows. Black Widow improves

crawling by combining key features from previous methods, includ-

ing navigation modeling, traversing, and inter-state dependency

analysis. Althoughwe build our scanner on top of BlackWidow, nei-

ther of these approaches covers the orthogonal aspect of handling

the validation patterns supplied by web applications.

In addition to improving crawling, the attack phase can also

be improved to achieve better vulnerability detection rates. Both

KameleonFuzz [25] and sqlmap [29] are examples of scanners that

focus more on payload selection and fuzzing techniques to improve

detection rate. KameleonFuzz dynamically mutates the XSS pay-

loads based on the reflected value to iteratively update the payload

until an attack is successful. While this has the potential of solving

patterns, it is probabilistic and likely fails on very specific patterns.

For example, one pattern onlywe could exploit, was .∗France. Find-
ing inputs with this specific string using mutations seems highly

unlikely. FLAX [63] uses dynamic taint-tracking and mutation-

based fuzzing to generate XSS payloads that can bypass client-side

validation. However, their analysis requires a benign input that

can already pass the validation. Finding this input is important for

coverage and something our approach supports. While we focused

on XSS in this study, solving patterns is important for finding other

vulnerabilities such as SQL injections. sqlmap does not consider

patterns when fuzzing, instead, they rely on a large table with

payloads that use different escaping techniques. This too would

fail on the vulnerable “France” example. To overcome this, Black

Ostrich, also uses SMT to generate the payloads. This means that

we can combine common attack payloads, like <script>alert
(1)</script> with patterns like .∗France to generate successful
attack inputs like <script>alert(1)</script>France.

11 CONCLUSIONS

We have presented Black Ostrich, a principled approach that lever-

ages string-based constraint solving for deep crawling. We improve

state-of-the-art string solving by extending the solver Ostrich with

native support for ECMA regular expressions. To handle commonly

occurring features like anchors and look-arounds in patterns on

the web, we propose a new version of two-way alternating finite-

state automata, named 2AFASMT . Leveraging the observation that

client-side validation, including HTML5 pattern attributes, custom

JavaScript, and input types mirror the back-end validation of a web

application, we illustrate how to integrate patterns like emails, zip

codes, phone numbers, and maximum lengths into scanning and

fuzzing. This increases our coverage of web applications, as we

can pass form validation while still generating inputs containing

XSS injections, tokens for taint tracking, or other side constraints

required by the scanner. Our evaluation on 8,820 patterns extracted

from popular websites demonstrates that Black Ostrich solves 99%

of all patterns, yielding an improvement in coverage. This trans-

lates to us solving all patterns on 66,309 (99%) out of the 66,377

domains. We subsume and improve coverage on over 13,711 do-

mains compared to the combined efforts of previous scanners. We

also yield a 52% improvement in detecting vulnerable patterns com-

pared to the average of the other scanners. In addition, we also

manually inspect the validation methods (patterns, frameworks,

custom JavaScript, etc.) used in the top 100 websites that use in-

put validation and show that we can handle 86% of the validation

methods. We analyze the use of patterns in open-source web ap-

plications from GitHub. We perform a case study on three of the

projects and showcase improved coverage specifically thanks to

our string solving capabilities. Finally, we have used our imple-

mentation of the ECMA Regular Expression standard of JavaScript

to analyze a condensed set of harvested email validation patterns

illustrating the correctness of our implementation, as we were able

to find matching strings for the vast majority of the analyzed reg-

ular expressions. The study reveals remarkable inconsistencies in

the current practices of email validation and shows that 213 (26%)

out of the 825 found email validation patterns liberally admit XSS

injection payloads.

Coordinated disclosure. Detecting if a vulnerable pattern leads to

XSS is complex as the reflection can, for example, be in the admin

panel. Therefore, we manually contact websites using vulnerable

patterns and recommend improved patterns. So far, 26 have already

updated their input validation.

ACKNOWLEDGMENTS

Thanks are due to Sebastian Lekies and Musard Balliu for the inspir-

ing discussions and to Rustan Leino for his support. This work was

partially supported by the Wallenberg AI, Autonomous Systems

Black Ostrich: Web Application Scanning with String Solvers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

and Software Program (WASP) funded by the Knut and Alice Wal-

lenberg Foundation, the Wallenberg project UPDATE, the Swedish

Foundation for Strategic Research (SSF) under the project Web-

Sec (RIT17-0011), the Swedish Research Council (VR) under the

grants 2018-04727 and 2021-06327, and an Amazon Research Award

(AWS Automated Reasoning).

REFERENCES

[1] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer, and J. Stenman.

Norn: An SMT solver for string constraints. In CAV, 2015.
[2] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan. Navex: Precise and

scalable exploit generation for dynamic web applications. In USENIX Security,
2018.

[3] R. Amadini. A survey on string constraint solving. ACM Comput. Surv., 2023.
[4] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and

G. Vigna. Saner: Composing static and dynamic analysis to validate sanitization

in web applications. In S&P, 2008.
[5] H. Barbosa, C.W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M.Mann, A.Mohamed,

M.Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng,

C. Tinelli, and Y. Zohar. cvc5: A versatile and industrial-strength SMT solver. In

TACAS, 2022.
[6] E. Barlas, X. Du, and J. C. Davis. Exploiting input sanitization for regex denial of

service. In ICSE, 2022.
[7] C. Barrett, P. Fontaine, and C. Tinelli. SMT-LIB theory of Unicode strings. http:

//smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml, 2016.

[8] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6. Tech-

nical report, Department of Computer Science, The University of Iowa, 2017.

www.SMT-LIB.org.

[9] S. Bensalim, D. Klein, T. Barber, and M. Johns. Talking about my generation:

Targeted dom-based xss exploit generation using dynamic data flow analysis. In

EuroSec, 2021.
[10] M. Berglund, B. van der Merwe, and S. van Litsenborgh. Regular expressions

with lookahead. J. Univers. Comput. Sci., 2021.
[11] C.-P. Bezemer, A. Mesbah, and A. van Deursen. Automated security testing of

web widget interactions. In ESEC/FSE, 2009.
[12] J. Birget. State-complexity of finite-state devices, state compressibility and

incompressibility. Math. Syst. Theory, 1993.
[13] P. Bisht, T. L. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. N. Venkatakrishnan.

Notamper: automatic blackbox detection of parameter tampering opportunities

in web applications. In CCS, 2010.
[14] F. Blahoudek, Y. Chen, D. Chocholatý, V. Havlena, L. Holík, O. Lengál, and J. Síc.

Word equations in synergy with regular constraints. In FM, 2023.

[15] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 1981.

[16] T. Chen, M. Hague, A. W. Lin, P. Rümmer, and Z. Wu. Decision procedures for

path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang., 2019.

[17] N. Chida and T. Terauchi. On lookaheads in regular expressions with backrefer-

ences. In A. P. Felty, editor, FSCD, 2022.
[18] Common Crawl Foundation. July/August 2021 crawl archive. https://

commoncrawl.org/2021/08/july-august-2021-crawl-archive-available/, 2021.

[19] M. Contributors. Html: Hypertext markup language. entry <input
type="email">. https://developer.mozilla.org/en-US/docs/Web/HTML/

Element/input/email, 2021.

[20] L. D’Antoni and M. Veanes. Minimization of symbolic automata. In POPL, 2014.
[21] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS, 2008.
[22] L. M. de Moura and N. Bjørner. Satisfiability modulo theories: introduction and

applications. Commun. ACM, 2011.

[23] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the state: A state-aware

black-box web vulnerability scanner. In USENIX Security, 2012.
[24] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. Ligre: Reverse-engineering of

control and data flow models for black-box xss detection. In WCRE, 2013.
[25] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. Kameleonfuzz: evolutionary

fuzzing for black-box xss detection. In CODASPY, 2014.
[26] B. Eriksson, G. Pellegrino, and A. Sabelfeld. Black Widow: Blackbox Data-driven

Web Scanning. In S&P, 2021.
[27] B. Eriksson, A. Stjerna, R. D. Masellis, P. Rümmer, and A. Sabelfeld. Black Os-

trich: Web Application Scanning with String Solvers. Extended version together

with data and code. https://www.cse.chalmers.se/research/group/security/black-

ostrich/, 2023.

[28] J. Fonseca, N. Seixas, M. Vieira, and H. Madeira. Analysis of field data on web

security vulnerabilities. TDSC, 2014.
[29] B. D. A. G. and M. Stampar. sqlmap, 2021.

[30] V. Geffert, C. A. Kapoutsis, and M. Zakzok. Complement for two-way alternating

automata. Acta Informatica, 2021.

[31] V. Geffert and A. Okhotin. Transforming two-way alternating finite automata to

one-way nondeterministic automata. In MFCS, 2014.
[32] GitHub. web-application · GitHub Topics. https://github.com/topics/web-

application, 2023.

[33] W. G. Halfond, S. R. Choudhary, and A. Orso. Penetration testing with improved

input vector identification. In ICST, 2009.
[34] J. Harband and K. Smith. ECMAScript 2020 language specification, 11th edition,

2020. https://262.ecma-international.org/11.0/.

[35] R. Hodován, Z. Herczeg, and Á. Kiss. Regular expressions on the web. InWSE,
2010.

[36] L. Holík, P. Janku, A. W. Lin, P. Rümmer, and T. Vojnar. String constraints with

concatenation and transducers solved efficiently. Proc. ACM Program. Lang., 2018.
[37] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory,

languages, and computation, 3rd Edition. Pearson international edition. Addison-

Wesley, 2007.

[38] Inti De Ceukelaire. You’ve got pwned: exploiting e-mail systems. https://www.

youtube.com/watch?v=Bpnc1-g3fMk, 2020.

[39] JavaPoint. Spring mvc regular expression validation. https://www.javatpoint.

com/spring-mvc-regular-expression-validation, 2022.

[40] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secubat: a web vulnerability

scanner. In Web Conf, 2006.
[41] C. A. Kapoutsis. Removing bidirectionality from nondeterministic finite automata.

In MFCS, 2005.
[42] C. A. Kapoutsis and M. Zakzok. Alternation in two-way finite automata. Theor.

Comput. Sci., 2021.
[43] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: A Solver

for String Constraints. In ISSTA, 2009.
[44] D. J. C. Klensin. Application Techniques for Checking and Transformation of

Names. RFC 3696, Feb. 2004.

[45] R. E. Ladner, R. J. Lipton, and L. J. Stockmeyer. Alternating pushdown and stack

automata. SIAM, 1984.

[46] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, andW. Joosen.

Tranco: A research-oriented top sites ranking hardened against manipulation. In

NDSS, 2019. List available at https://tranco-list.eu/list/N5QW.

[47] LearnLib. LearnLib/alex. https://github.com/LearnLib/alex, 2023.

[48] B. Loring, D. Mitchell, and J. Kinder. Sound regular expression semantics for

dynamic symbolic execution of JavaScript. In SIGPLAN, 2019.
[49] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia. Riding out domsday: Towards

detecting and preventing dom cross-site scripting. In NDSS, 2018.
[50] A. Mesbah, E. Bozdag, and A. Van Deursen. Crawling ajax by inferring user

interface state changes. In ICWE, 2008.
[51] F. Mora, M. Berzish, M. Kulczynski, D. Nowotka, and V. Ganesh. Z3str4: A

multi-armed string solver. In FM, 2021.

[52] Opera. operasoftware/dns-ui. https://github.com/operasoftware/dns-ui, 2023.

[53] OWASP. Owasp zed attack proxy (zap), 2020.

[54] OWASP. Cross site scripting prevention cheat sheet. https://cheatsheetseries.

owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html,

2022.

[55] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu, and P. Saxena.

Dexterjs: robust testing platform for dom-based xss vulnerabilities. In ESEC/FSE,
2015.

[56] Parth Bhide. parthbhide/helpinghands. https://github.com/parthbhide/

helpinghands/, 2020.

[57] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow. jÄk: Using Dynamic

Analysis to Crawl and Test Modern Web Applications. In RAID, 2015.
[58] Raghav. Xss in email login fields, 2021.

[59] Rick Anderson. Part 9, add validation to an asp.net core mvc

app. https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-

app/validation?view=aspnetcore-7.0, 2022.

[60] T. S. Rocha and E. Souto. Etssdetector: A tool to automatically detect cross-site

scripting vulnerabilities. In IEEE NCA, 2014.
[61] Sarosys LLC. Framework - arachni - web application security scanner framework,

2019.

[62] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A Symbolic

Execution Framework for JavaScript. In S&P, 2010.
[63] P. Saxena, S. Hanna, P. Poosankam, and D. Song. Flax: Systematic discovery of

client-side validation vulnerabilities in rich web applications. In NDSS, 2010.
[64] J. C. Shepherdson. The reduction of two-way automata to one-way automata.

IBM J. Res. Dev., 1959.
[65] M. Trinh, D. Chu, and J. Jaffar. S3: A symbolic string solver for vulnerability

detection in web applications. In CCS, 2014.
[66] W3C. Html 5.2, 2021. https://www.w3.org/TR/2021/SPSD-html52-20210128/.

[67] W3Docs. How to validate an email with php. https://www.w3docs.com/snippets/

php/e-mail-validation.html, 2022.

[68] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a Z3-based string solver for web

application analysis. In ESEC/SIGSOFT FSE, 2013.

http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
www.SMT-LIB.org
https://commoncrawl.org/2021/08/july-august-2021-crawl-archive-available/
https://commoncrawl.org/2021/08/july-august-2021-crawl-archive-available/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email
https://www.cse.chalmers.se/research/group/security/black-ostrich/
https://www.cse.chalmers.se/research/group/security/black-ostrich/
https://github.com/topics/web-application
https://github.com/topics/web-application
https://262.ecma-international.org/11.0/
https://www.youtube.com/watch?v=Bpnc1-g3fMk
https://www.youtube.com/watch?v=Bpnc1-g3fMk
https://www.javatpoint.com/spring-mvc-regular-expression-validation
https://www.javatpoint.com/spring-mvc-regular-expression-validation
https://tranco-list.eu/list/N5QW
https://github.com/LearnLib/alex
https://github.com/operasoftware/dns-ui
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://github.com/parthbhide/helpinghands/
https://github.com/parthbhide/helpinghands/
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/validation?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/validation?view=aspnetcore-7.0
https://www.w3.org/TR/2021/SPSD-html52-20210128/
https://www.w3docs.com/snippets/php/e-mail-validation.html
https://www.w3docs.com/snippets/php/e-mail-validation.html

	ABSTRACT
	1 INTRODUCTION
	1.1 Web Scanning Challenges
	1.2 Constraint Solving Challenges
	1.3 Validation-aware Crawling and Fuzzing
	1.4 Empirical Studies

	2 VALIDATION-AWARE SCANNING
	2.1 Motivating Example
	2.2 Scanning

	3 HANDLING VALIDATION CONSTRAINTS USING SMT
	3.1 ECMAScript Regular Expressions
	3.2 Previous Results for ECMAScript Regexes

	4 TWO-WAY ALTERNATING AUTOMATA FOR REGEXES
	4.1 Overview
	4.2 Basic Definitions
	4.3 Two-way Alternating Automata
	4.4 Translation of Augmented Regexes
	4.5 Refinement Loop for Back-References

	5 SIMULATION OF 2AFASMT BY NFA
	5.1 Overview
	5.2 Simulation of S-2AFASMT

	6 COVERAGE AND VULNERABILITY STUDY
	6.1 Gathering Client Side Validation Regexes
	6.2 Testbed
	6.3 Implementation
	6.4 Manual Inspection of Input Validation

	7 RESULTS
	7.1 Black-box Scanning
	7.2 Analysis
	7.3 Results of Manual Inspection

	8 PATTERNS IN OPEN-SOURCE APPLICATIONS
	9 CASE STUDY: EMAIL REGEXES
	9.1 Vulnerable Patterns
	9.2 Strong Patterns vs MDN
	9.3 Vulnerabilities When Sharing Code
	9.4 Summary

	10 RELATED WORK
	11 CONCLUSIONS
	ACKNOWLEDGMENTS

