
Closing Internal Timing Channels by Transformation

Alejandro Russo1, John Hughes1, David Naumann2, and Andrei Sabelfeld1

1 Department of Computer Science and Engineering
Chalmers University of Technology, 412 96 Göteborg, Sweden, Fax: +46 31 772 3663

2 Department of Computer Science
Stevens Institute of Technology, Hoboken, New Jersey 07030, USA

In Proc. 11th Asian Computing Science Conference, Tokyo, Japan, December 6–8, 2006, LNCS. c© Springer-Verlag 2007

Abstract. A major difficulty for tracking information flow in multithreaded pro-
grams is due to the internal timing covert channel. Information is leaked via this
channel when secrets affect the timing behavior of a thread, which, via the sched-
uler, affects the interleaving of assignments to public variables. This channel is
particularly dangerous because, in contrast to external timing, the attacker does
not need to observe the actual execution time. This paper presents a composi-
tional transformation that closes the internal timing channel for multithreaded
programs (or rejects the program if there are symptoms of other flows). The
transformation is based on spawning dedicated threads, whenever computation
may affect secrets, and carefully synchronizing them. The target language fea-
tures semaphores, which have not been previously considered in the context of
termination-insensitive security.

1 Introduction

An active area of research is focused on information flow controls in multithreaded
programs [21]. Multithreading opens new covert channels by which information can
be leaked to an attacker. As a consequence, the machinery for enforcing secure infor-
mation flow in sequential programs is not sufficient for multithreaded languages [25].
One particularly dangerous channel is the internal timing covert channel. Information
is leaked via this channel when secrets affect the timing behavior of a thread, which,
via the scheduler, affects the interleaving of assignments to public variables.

Suppose that h is a secret variable, and k and l are public ones. Assuming that ‖
denotes parallel composition, consider a simple example of an internal timing leak:

if h ≥ k then skip; skip else skip;
l := 1 ‖

skip;
skip;
l := 0

(Internal timing leak)

Under a one-step round-robin scheduler (and a wide class of other reasonable sched-
ulers), if h ≥ k then by the time assignment l := 1 is reached in the first thread,
the second thread has terminated. Therefore, the last assignment to execute is l := 1.
On the other hand, if h < k then by the time assignment l := 0 is reached in the
second thread, the first thread has terminated. Therefore, the last assignment to exe-
cute is l := 0. Hence, the truth value of h ≥ k is leaked into l. Programs with dy-
namic thread creation are vulnerable to similar leaks. For example, a direct encoding
of the example above is depicted in Fig. 1 (where fork(c) spawns a new thread c).

fork(skip; skip; l := 0);
if h ≥ k
then skip; skip else skip;

l := 1

Fig. 1. Internal timing leak with fork

p := 0;
while n ≥ 0 do

k := 2n−1;
fork(skip; skip; l := 0);
if h ≥ k
then skip; skip else skip;

l := 1;
if l = 1
then h := h− k; p := p + k
else skip;

n := n− 1

Fig. 2. Internal timing leak magnified

This program also leaks whether h ≥ k is true,
under many schedulers. Internal timing leaks
are particularly dangerous because, in contrast
to external timing, the attacker does not need
to observe the actual execution time. Moreover,
leaks similar to those considered so far can be
magnified via loops as shown in Fig. 2 (where
k, l, n, and p are public; and h is an n-bit secret
integer). Each iteration of the loop leaks one bit
of h. As a result, the entire value of h is copied
into p. Although this example assumes a round-
robin scheduler, similar examples can be easily
constructed where secrets are copied into public
variables under any fair scheduler [25].

Existing proposals to tackling internal tim-
ing flows heavily rely on the modification of
run-time environment. (A more detailed discus-
sion of related work is deferred to Section 8.)
A series of work by Volpano and Smith [25,
27, 23, 24] suggests a special protect(c) state-
ment that, by definition, takes one atomic com-
putation step with the effect of running com-
mand c to the end. Internal timing leaks are
made invisible because protect()-based secu-
rity typed systems ensure that computation that branches on secrets is wrapped by
protect() commands. However, implementing protect() is a major challenge [22,
19, 16] because while a thread runs protect(), the other threads must be instantly
blocked. Russo and Sabelfeld argue that standard synchronization primitives are not
sufficient and resort to primitives for direct interaction with scheduler in order to en-
able instant blocking [16]. However, a drawback of this approach (and, arguably, any
approach that implements protect() by instant blocking) is that it relies on the mod-
ification of run-time environment: the scheduler must be able to immediately suspend
all threads that might potentially assign to public variables while a protected segment
of code is run, which limits concurrency in the program.

This paper eliminates the need for modifying the run-time environment for a class
of round-robin schedulers. We give a transformation that closes internal timing leaks
by spawning dedicated threads for segments of code that may affect secrets. There are
no internal timing leaks in transformed programs because the timing for reaching as-
signments to public variables does not depend on secrets. The transformation carefully
synchronizes the dedicated threads in order not to introduce undesired interleavings in
the semantics of the original program. Despite the introduced synchronization, threads
that operate on public data are not prevented from progress by threads that operate on
secret data, which gives more concurrency than in [25, 27, 23, 24, 16].

For a program with internal timing leaks under a particular deterministic scheduler,
the elimination of leaks necessarily changes the interleavings and so possibly the final

2

result. What thread synchronization allows us to achieve is refinement of results under
nondeterministic scheduling: the result of the transformed program (under round-robin)
is a possible result of the source program under nondeterministic scheduling. Although
an attacker would seek to exploit information about the specific scheduler in use, good
software engineering practice suggests that a program’s functional behavior should not
be dependent on specific properties of a scheduler beyond such properties as fairness.

The transformation does not reject programs unless they have symptoms that would
already reject sequential programs [5, 28]. The transformation ensures that the rest of
insecurities (due to internal timing) are repaired.

It is seemingly possible to remove internal timing leaks by applying the following
naive transformation. Suppose a command (program) c only has two variables h and l
to store a secret and a public value, respectively. Assume that c does not have insecuri-
ties other than due to internal timing (this can be achieved by disallowing explicit and
implicit flows, defined later in the paper). Then the following program does not leak
any information about h, while it computes output as intended for c (or diverges):

hi := h; li := l; h := 0; c; bar ; lo := l; h := hi; l := li; c; bar ; l := lo

where bar is a barrier command that ensures that all other threads have terminated be-
fore proceeding. This transformation suffers from at least two drawbacks. Firstly, the
program c is run twice, which is inefficient. Secondly, it is hard to ensure that any kind
of nondeterminism (e.g., due to the scheduler, random number generator, or input chan-
nels) in c is resolved in the same way in both copies. For example, the transformation
does not scale up naturally when c uses input channels. It is not obvious how to com-
municate inputs between the two copies of the program.

Another attempt to remove internal timing leaks could be done by applying slicing
techniques, which can automatically split the original program into low and high parts.
Unfortunately, these techniques in presence of concurrency are not enough to preserve
the semantics of the original program. The reason for that is simple: public variables,
which are updated by threads, might affect the computation of secrets. Therefore, an
explicit communication of public values to the high part is required.

2 Language

Although our technique is applicable to fully-fledged programming languages, we use
a simple imperative language to formalize the transformation. The language includes
a command fork((λ~x.c) @~e), which dynamically creates and runs a new thread with
local variables ~x with initial values given by the expressions ~e. When the list of lo-
cal variables is empty, we sometimes use simpler notation: fork(c). The command c
may also use the program’s global variables. The transformation requires dynamically
allocated semaphores, so these too are included in the language defined in this section.

Without making it precise, we assume that each variable is of type integer or type
semaphore. There are no expressions of type semaphore other than semaphore variables.
A main program is a single command c, in the grammar of Fig. 3. Its free variables com-
prise the globals of the program. The source language is the subset in which there are
no stop commands, no semaphore variables and therefore no semaphore allocations or

3

c ::= skip | x := e | c; c | if e then c else c | while e do c | fork((λ~x.c)@~e)

| stop | s := newSem(n) | P(s) | V(s)

Fig. 3. Command syntax (with x and s ranging over variables, and n over integer literals)

(~e, m) ↓ ~v

〈|fork((λ~x.d)@~e), m, h|〉
λ~x.d,~v
_ 〈|stop, m, h|〉

(s, m) ↓ r h(r).cnt = 0

〈|P(s), m, h|〉 ⊗r
_ 〈|stop, m, h|〉

(s, m) ↓ r h(r).cnt > 0 h′ = h[r.cnt := r.cnt − 1]

〈|P(s), m, h|〉 _ 〈|stop, m, h′|〉

(s, m) ↓ r

〈|V(s), m, h|〉 �r
_ 〈|stop, m, h|〉

i = max(dom(h)) + 1 h′ = h ∪ {i 7→ (cnt = n, que = 〈〉)}
〈|s := newSem(n), m, h|〉 _ 〈|stop, m[s := i], h′|〉

Fig. 4. Commands semantics

operations. Moreover, the list of local variables in every fork must be empty. Locals
are needed for the transformation, but locals in source code would complicate the trans-
formation (because each source thread is split into multiple threads, and locals are not
shared between threads).

3 Semantics

The formal semantics is defined in two levels: individual command and threadpool
semantics. The small-step semantics for sequential commands is standard [29], and
we thus omit these rules. The rules for concurrent commands are given in Fig. 4.

Configurations have the form 〈|c,m, h|〉, where c is a command, m is a memory
(mapping variables to their values), and h is a heap for dynamically allocated semaphores.
The expression language does not include dereferencing of semaphore references, so
evaluation of expressions does not depend on the heap. We write (e,m) ↓ n to say that
n is the value of e in memory m. A heap is a finite mapping from semaphore references
(which we take to be naturals) to records of the form (cnt = n, que = ws) where n is a
natural number and ws is the list of blocked thread states.

Let α range over the following events, which label command transitions for use in
the threadpool semantics: �r, to indicate the semaphore at reference r is signaled; ⊗r,
to indicate it is waited; or a pair λ~x.c, ~v where ~v is a sequence of values that match ~x.

Threadpool configurations have the form 〈|〈(c0,m0) . . . (ci,mi) . . . (cn−1,mn−1)〉
g, h, j|〉, where each (ci,mi) is the state of thread i which is not blocked, g maps global
variables to their values, h is the heap, j ∈ 0 . . . n − 1 is the index of the thread that
will take the next step. For all i, dom(mi) is disjoint from dom(g). Numbering threads
0 . . . n− 1 slightly simplifies some definitions related to round-robin scheduling.

4

The threadpool semantics is defined for any scheduler relation SC. We interpret
(i, n, n′, i′) ∈ SC to mean that i is the current thread taking a step, n is the current
pool size, n′ is the size of the pool after that step, and i′ is the next thread chosen by the
scheduler. This model is adequate to define a round-robin scheduler for which thread
activation, suspension, and termination do not affect the interleaving of other threads,
and also to model full nondeterminism. The fully nondeterministic scheduler ND is
defined by (i, n, n′, i′) ∈ ND if and only if 0 ≤ i < n and 0 ≤ i′ < n′.

A little care is needed with round-robin to maintain the order when threads are
blocked or terminated. The definition relies on some details of the threadpool semantics,
e.g., when a step by thread i removes a thread from the pool (by termination or block-
ing), that thread is i itself. Define the round-robin scheduler RR by (i, n, n′, i′) ∈ RR
if and only if 0 ≤ i < n and equation (1) holds.

i′= i, if n′ < n and i < n− 1
= 0, if n′ < n and i = n− 1
= (i + 1) mod n′, otherwise

(1)

The threadpool semantics is
given in Fig. 5. Note that mem-
ories in command configurations
are disjoint unions mi∪g, where
mi is the thread-local memory,
and g is the global one. We write
h[r.que := (r.que :: (c,m))] to abbreviate an update of the record at r in h to change
its que field by appending (c,m) at the tail. Although semaphores are stored in a heap,
we streamline the semantics by not including a null reference. Thus, an initial heap is
needed. It is defined to initialize semaphores to 1, which is an arbitrary choice. The
security condition defined later refers to initial values for all global variables, for sim-
plicity, but only integer inputs matter.

Definition 1. The initial heap of size k is the mapping hk with domain 1 . . . k that maps
each i to the semaphore state (cnt = 1, que = 〈〉). Suppose that k of the globals have
type semaphore. Given a global memory g, the initial global memory gk agrees with
g on integer variables, and the ith semaphore variable (under some enumeration) is
mapped to i (i ∈ dom(hk)).

Define (c, g) ⇓ g′ if and only if 〈|〈(c,m)〉, gk, hk, 0|〉 →∗ 〈|〈〉, g′, h′, j|〉, for some h′

and j, where →∗ is the reflexive and transitive closure of the transition relation →, and
m is the empty function (since the initial thread c has no local variables).

Note that the definitions of →∗ and ⇓ depend on the choice of scheduler, but this is
elided in the notation.

4 Security specification

Assume that all global non-semaphore variables are labeled with low or high security
levels to represent public and secret data, respectively. We label all semaphore variables
as high in the target code (recall that the source program has no semaphore variables).
To define the security condition, it suffices to define low equality of global memories,
written g1 =L g2, to say that g1(x) = g2(x) for all low variables x.

Definition 2. Program c is secure if for all g1, g2 such that g1 =L g2, if (c, g1) ⇓ g′1
and (c, g2) ⇓ g′2 then g′1 =L g′2, where ⇓ refers to the round-robin scheduler RR.

5

〈|ci, mi∪g, h|〉 _ 〈|c′i, m′
i∪g′, h′|〉 (i, n, n, j) ∈ SC

〈|〈. . . (ci, mi) . . .〉, g, h, i|〉 → 〈|〈. . . (c′i, m′
i) . . .〉, g′, h′, j|〉

ci = stop (i, n, n − 1, j) ∈ SC

〈|〈. . . (ci, mi) . . .〉, g, h, i|〉 → 〈|〈. . . (ci−1, mi−1)(ci+1, mi+1) . . .〉, g, h, j|〉

〈|ci, mi∪g, h|〉
λ~x.d,~v
_ 〈|c′i, m′

i∪g′, h′|〉 m = {~x 7→ ~v} (i, n, n + 1, j) ∈ SC

〈|〈. . . (ci, mi) . . . (cn−1, mn−1)〉, g, h, i|〉 → 〈|〈. . . (c′i, m′
i) . . . (cn−1, mn−1)(d, m)〉, g′, h′, j|〉

〈|ci, mi∪g, h|〉 ⊗r
_ 〈|c′i, m′

i∪g′, h′|〉
h′′ = h′[r.que := (r.que :: (c′i, m

′
i))] (i, n, n − 1, j) ∈ SC

〈|〈. . . (ci, mi) . . .〉, g, h, i|〉 → 〈|〈. . . (ci−1, mi−1)(ci+1, mi+1) . . .〉, g′, h′′, j|〉

〈|ci, mi∪g, h|〉 �r
_ 〈|c′i, m′

i∪g′, h′|〉
h′(r).que = (c, m) :: ws h′′ = h′[r.que := ws] (i, n, n + 1, j) ∈ SC

〈|〈. . . (ci, mi) . . . (cn−1, mn−1)〉, g, h, i|〉 → 〈|〈. . . (c′i, m′
i) . . . (cn−1, mn−1)(c, m)〉, g′, h′′, j|〉

〈|ci, mi∪g, h|〉 �r
_ 〈|c′i, m′

i∪g′, h′|〉
h′(r).que = 〈〉 h′′ = h′[r.cnt := r.cnt + 1] (i, n, n, j) ∈ SC

〈|〈. . . (ci, mi) . . .〉, g, h, i|〉 → 〈|〈. . . (c′i, m′
i) . . .〉, g′, h′′, j|〉

Fig. 5. Threadpool semantics (for scheduler SC)

The definition says that low equality of initial global memories implies low equality of
final global memories. Note that this definition is termination-insensitive [21], in the
sense that nonterminating runs are ignored.

Observe that the examples from the introduction are rejected by the above definition
because the changes in the final values of low variables break low equality. Consider
another example (where k and l are low; and h is high):

if (h ≥ k) then skip; skip else skip ‖ l := 0 ‖ l := 1

This program is secure because the timing of the first thread does not affect how the
race between assignments in the second and third threads is resolved. This holds for
round-robin schedulers that run each thread for a fixed number of steps (which covers
the case of a one-step round-robin scheduler RR), machine instructions, or even calls
to the fork primitive. Note, however, that schedulers that are able to change the order
of scheduled threads depending on the number of live threads would not necessarily
guarantee secure execution of the above program. For example, consider a scheduler
that runs the first thread for two steps and then checks the number of live threads. If
this number is two then the second thread is scheduled; otherwise the third thread is
scheduled. This leaks the truth value of h ≥ k into l. Round-robin schedulers are not
only practical but also in this sense more secure, which motivates our choice to adopt
them in the semantics.

6

5 Transformation

In this section, we give a transformation that rules out explicit and implicit flows [5]
and closes internal timing leaks under round-robin schedulers. The transformation rules
have the form Γ ;w , s, a, b,m ` c ↪→ c′, where command c is transformed into c′ under
the security type environment Γ , which maps variables to their security levels, and
special semaphore variables w , s, a, b, and m needed for synchronization. Moreover,
a fresh high variable hx is introduced for each low variable x in the source code. The
transformation comprises the rules presented in Fig. 6 and the top-level rule:

Γ ;w , s, a, b,m ` c ↪→ c′ w , s fresh

Γ ` c ↪→t m := newSem(1); a := newSem(1);w := newSem(1); ~hl := ~l; c′
(2)

where ~hl := ~l stands for copying all low variables l into fresh high variables hl.
Define low assignments to be assignments to low variables. Explicit flows are pre-

vented by not allowing high variables to occur in low assignments (see rule L-ASG).
Define high conditionals (loops) to be conditionals (loops) that branch on expressions
that contain high variables. Implicit flows for high conditionals and loops are prevented
by rules of the form Γ ` c # c′, where command c is transformed into c′ under Γ .
These rules guarantee that high if’s and while’s do not have assignments to low vari-
ables in their bodies. These rules for tracking explicit and implicit flows are adopted
from security-type systems for sequential programs [28].

As illustrated by previous examples, internal timing channels are introduced by low
assignments after high conditionals and loops. To close these channels, the transforma-
tion introduces a fork whenever the source code branches on high data (see rules (H-
IF) and (H-W)). Since such computations are now spawned in new threads, the number
of executed instructions before low assignments does not depend on secrets. However,
new threads open up possibilities for new races between high variables, which can un-
expectedly change the semantics of the program. To ensure that such races are avoided
(which we also prove in Section 7), the transformation spawns dedicated threads for all
computations that might affect high data (see rules (H-ASG) and (L-ASG)) and care-
fully places synchronization primitives in the transformed program. We will illustrate
this, and other interesting aspects of the transformation, through examples.

Consider the following simple program that suffers from an internal timing leak:

(if h1 then skip; skip else skip); l := 1 ‖ d (3)

where d abbreviates command skip; skip; l := 0. The assignment l := 1 may be
reached in three or two steps depending on h1. However, by spawning the high condi-
tional in a new thread, the number of instructions to execute it will no longer affect when
l := 1 is reached. More precisely, we can rewrite program (3) as fork(if h1 then skip;
skip; else skip); l := 1 ‖ d, where internal timing leaks are not possible. From now
on, we assume that the initial values of l and h2 are always 0. Suppose now that we
modify program (3) by:

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ d (4)

7

∀v ∈ Vars(e). Γ (v) = low

Γ ` e : low

∃v ∈ Vars(e). Γ (v) = high

Γ ` e : high

Γ ;w , s, a, b,m ` skip ↪→ skip

(Γ ;w , s, a, b,m ` ci ↪→ c′i)i=1,2

Γ ;w , s, a, b,m ` c1; c2 ↪→ c′1; c
′
2

(H-ASG)
Γ ` e # e′ Γ (x) = high

Γ ;w , s, a, b,m ` x := e ↪→ s := newSem(0);
fork((λŵ ŝ.P(ŵ); x := e′; V(ŝ))@ws);
w := s

(L-ASG)
Γ ` e : low Γ (x) = low Γ ` e # e′

Γ ;w , s, a, b ` x := e ↪→ s := newSem(0);
P(m); x := e; b := newSem(0);

fork((λŵ ŝ â b̂.P(ŵ); P(â); hx := e′; V(b̂); V(ŝ))@wsab)
a := b; V(m);
w := s

Γ ` e : low Γ ;w , s, a, b,m ` c ↪→ c′

Γ ;w , s, a, b,m ` while e do c ↪→ while e do c′

Γ ` e : low (Γ ;w , s, a, b,m ` ci ↪→ c′i)i=1,2

Γ ;w , s, a, b,m ` if e then c1 else c2 ↪→ if e then c′1 else c′2

(H-IF)
Γ ` e : high Γ ` e # e′ (Γ ` ci # c′i)i=1,2 ct = if e′ then c′1 else c′2

Γ ;w , s, a, b,m ` if e then c1 else c2 ↪→ s := newSem(0);
fork((λŵ ŝ.P(ŵ); ct; V(ŝ))@ws);
w := s

(H-W)
Γ ` e : high Γ ` e # e′ Γ ` c # c′ ct = while e′ do c′

Γ ;w , s, a, b,m ` while e do c ↪→ s := newSem(0);
fork((λŵ ŝ.P(ŵ); ct; V(ŝ))@ws);
w := s

Γ ;w ′, s ′, a, b,m ` d ↪→ d′ ct = fork((λŵ ŝŵ ′.P(ŵ); V(ŵ); V(ŝ); V(ŵ ′))@ ŵ ŝw ′) w ′, s ′ fresh

Γ ;w , s, a, b,m ` fork(d) ↪→ s := newSem(0);
fork((λŵ ŝ.w ′ := newSem(0); ct; d

′)@ ws);
w := s

Γ ` e # e[hx/x]Γ (x)=low Γ ` skip # skip

Γ (v) = high Γ ` e # e′

Γ ` v := e # v := e′

Γ ` e # e′ (Γ ` ci # c′i)i=1,2

Γ ` if e then c1 else c2 # if e′ then c′1 else c′2

Γ ` d # d′

Γ ` fork(d) # fork(d′)

(Γ ` ci # c′i)i=1,2

Γ ` c1; c2 # c′1; c
′
2

Γ ` e # e′ Γ ` c # c′

Γ ` while e do c # while e′ do c′

Fig. 6. Transformation rules

8

where the final value of h2 is always 0. This code still suffers from an internal tim-
ing leak. Unfortunately, by putting a fork around the if as before, we introduce 1
as a possible final value for h2, which was not possible in the original code. This
discrepancy originates from an undesired new interleaving of the rewritten program:
l := 1 can be computed before h2 := 2 ∗ h2 + l. To prevent such an interleav-
ing, we introduce fresh high variables for every low variable in the code. We call
this kind of new variables high images of low variables. Since low variables are only
read, and not written, by high conditional and loops, it is possible to replace low vari-
ables inside of high contexts by their corresponding high images. Then, every time that
low variables are updated, their corresponding images will do so but in due course.

w := newSem(1); //initialization from top-level rule (2)
s := newSem(0);
fork((λŵ ŝ.P(ŵ); (if h1 then h2 := 2 ∗ h2 + hl; skip

else skip); V(ŝ))
@ws)

w := s
l := 1; s := newSem(0);
fork((λŵ ŝ.P(ŵ); hl := 1; V(ŝ))@ws)
w := s

(5)

To illustrate this, let us
rewrite the left side of pro-
gram (4) as in (5). Vari-
able hl is the corresponding
high image of low variable
l. Two dedicated threads
are spawned with different
local snapshots of w and
s, written as ŵ and ŝ, re-
spectively. The second ded-
icated thread, which updates the high image of l to 1, waits (P(ŵ)) for the first one to
finish, and the first one indicates when the second one should start (V(ŝ)). By doing so,
and by properly updating w and s in the main thread, the command hl := 1 is never
executed before the if statement. Note that the first dedicated thread does not need to
synchronize with previous ones. Hence, the top-level transformation rule, presented at
the beginning of the section, initializes the semaphore w to 1.

wd := newSem(1);
skip; skip;
l := 0; sd := newSem(0);
fork((λŵdŝd.P(ŵd); hl := 0; V(ŝd))

@wdsd);
wd := sd

(6)

The thread d also needs to be modified to
include an update to hl. Let us rewrite d as
in (6). Semaphore variables wd and sd do not
play any important role here, since just one dedi-
cated thread is spawned. Note that if we run pro-
grams (5) and (6) in parallel, it might be possible
that the updates of low variables happen in a dif-
ferent order than the updates of their corresponding high images. In order to avoid this,
we introduce three global semaphores, called a, b, and m. The final transformed code is
shown in Fig. 7, where c′1 runs in parallel with d′1. Semaphore variables a and b ensure
that the queuing processes update high images in the same order as the low assignments
occur. Since a and b are globals, we protect their access with the global semaphore m.
As in the original program, h2 can only have the final value 0. From now on, we assume
that the semaphore a is allocated and initialized with value 1 .

Let us modify program (4) by adding assignments to high and low variables:

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1; h2 := h2 + 1; l := 3 ‖ d (7)

The final value of h2 is 1. As before, this code still suffers from internal timing leaks.
By putting fork’s around high conditionals and introducing updates for high images as

9

c′1 : w := newSem(1);
s := newSem(0);
fork((λŵ ŝ.P(ŵ);

if h1 then h2 := 2 ∗ h2 + hl;
skip;

else skip;
V(ŝ))@ws);

w := s
s := newSem(0);
P(m); l := 1; b := newSem(0);

fork((λŵ ŝâb̂.P(ŵ); P(â); hl := 1;

V(b̂); V(ŝ))@wsab);
a := b; V(m);
w := s

d′1 : wd := newSem(1);
skip; skip;
sd := newSem(0);
P(m); l := 0; b := newSem(0);

fork((λŵdŝdâb̂.P(ŵd); P(â); hl := 0;

V(b̂); V(ŝd))@wdsdab);
a := b; V(m);
wd := sd

Fig. 7. Transformed code for program (4)

in program (5), we would introduce 2 as a new possible final value for h2, when h1 is
positive. The new value arises from executing h2 := h2 + 1 before the if statement.

In order to remove this race, we use synchronization to guarantee that compu-
tations on high data are executed in the same order as they appear in the original
code. However, this synchronization should not lead to recreating timing leaks: waiting

c′2 : c′1; s := newSem(0);
fork((λŵ ŝ.P(ŵ); h2 := h2 + 1; V(ŝ))@ws)
w := s;
P(m); l := 3; b := newSem(0);

fork((λŵ ŝâb̂.P(ŵ); P(â); hl := 3; V(b̂);
V(ŝ))@wsab);

a := b; V(m);
‖ d′1

(8)

for the if to finish before ex-
ecuting h2 := h2 + 1; l :=
3 would imply that the timing
of the low assignment l := 3
could depend on h1. We resolve
this problem by spawning dedi-
cated threads for assignments to
high variables and synchronizing,
via semaphores, these threads with
other threads that either read from or write to high data. The dedicated thread to compute
h2 := h2 + 1 will wait until the last dedicated thread in c′1 finishes. The transformed
code is shown in (8). Note that spawned dedicated threads are executed in the same
order as they appear in the main thread.

if h1 then h2 := 2 ∗ h2 + l; skip else skip;
l := 1; h2 := h2 + 1; l := 3;
fork(h2 := 5) ‖ d

(9)

Let us modify program (7) to in-
troduce a fork as in (9). The fi-
nal value of h2 is 5. However, the
rewritten program will spawn sev-
eral dedicated threads: for the conditional, for updating high images, h2 :=
h2 + 1, and h2 := 5, which need to be synchronized. In particular,
h2 := 5 cannot be executed before h2 := h2 + 1 finishes. Thus, we
need to synchronize dedicated threads in the main thread with the dedicated
threads from their children. This is addressed by the transformation in (10),
where d∗ spawns a new thread that waits on w ′ to perform h2 := 5. In order to be
able to receive a signal on w ′, it is necessary to firstly receive a signal on ŵ , which
can be only done after computing h2 := h2 + 1. Note that the transformation spawns a
new thread to wait on ŵ in order to avoid recreating timing leaks. When a fork occurs
inside a loop in the source program, there is potentially a number of dynamic threads
that need to wait for the previous computation on high data to finish. This is resolved

10

by passing-the-baton technique: whichever thread receives a signal first (P(ŵ)) passes
it to another thread (V(ŵ)).

c′2;
s := newSem(0);
fork((λŵ ŝ.w ′ := newSem(0);

fork((λŵ ŝŵ ′.P(ŵ); V(ŵ);
V(ŝ); V(ŵ ′))@ŵ ŝw ′); d∗)

@ws);
w := s; ‖ d′1

(10)

The examples above show how to close
internal timing leaks by spawning dedicated
threads that perform computation on high
data. We have seen that some synchroniza-
tion is needed to avoid producing different
outputs than intended in the original pro-
gram. Transformed programs introduce per-
formance overhead related to synchroniza-
tion. This overhead comes as a price for not modifying the run-time environment when
preventing internal timing leaks.

6 Geo-localization example

hotel l := nextHotel();
hotelLocl := getHotelLocation(hotel l);
dh := distance(hotelLocl, userLoch);
closesth := hotel l;
while (moreHotels?()) do
hotel l := nextHotel();
hotelLocl := getHotelLocation(hotel l);
d′h := distance(hotelLocl, userLoch);
if (d′h < dh) then dh := d′h; closesth := hotel l

else skip

ih := 0;
while (moreTypeRooms?(closesth)) do
typeh := nextTypeRoom(closesth);
showTypeRoom(typeh, ih);
ih := ih + 1;

Fig. 8. Geo-localization example

Inspired by a scenario from mo-
bile computing [1], we give an
example of closing timing leaks
in a realistic setting. Modern mo-
bile phones are able to compute
their geographical positions. The
widely used MIDP profile [10] for
mobile devices includes API sup-
port for obtaining the current po-
sition of the handset [11]. Further-
more, geo-localization can be ap-
proximated by using the identity
of the current base station and the
power of its signal. It is desirable
that such information can only be
used by trusted parties.

Consider the code fragment in Fig. 8. This fragment is part of a program that runs
on a mobile phone. Such a program typically uses dynamic thread creation (which
is supported by MIDP) to perform time-consuming computation (such as establishing
network connections) in separate threads [12, 14].

The program searches for the closest hotel in the area where the handset is located.
Once found, it displays the types of available rooms at that hotel. Variables have sub-
scripts indicating their security levels (l for low and h for high). Suppose that hotell
and hotelLocl contain the public name and location for a given hotel, respectively.
The location of the mobile device is stored in the high variable userLoch. Variables
dh and d′h are used to compute the distance to a given hotel. Variable closesth stores
the location of the closest hotel in the area. Variable ih is used to index the type of
rooms at the closest hotel. Variable typeh stores a room type, i.e., single, double, etc.
Function nextHotel() returns the next available hotel in the area (for simplicity, we as-
sume there is always at least one). Function getHotelLocation() provides the location

11

of a given hotel, and function distance() computes the distance between two loca-
tions. Function moreHotels?() returns true if there are more hotels for nextHotel() to
retrieve. Function moreTypeRooms?() returns true if there are more room types for
nextTypeRoom(). Function showTypeRoom() displays room types on the screen.

This code may leak information about the location of the mobile phone through the
internal timing covert channel. The source of the problem is a conditional that branches
on secret data, where the then branch performs two assignments while the else branch
only skip. However, internal timing leaks can be closed by the transformation given
in Section 5 (provided the transformed program runs under a round-robin scheduler).
This example highlights the permissiveness of the transformation. For instance, the type
systems by Boudol and Castellani [3, 4] reject the example because both high condi-
tionals and low assignments appear in the body of a loop. Transformations in [22, 13]
also reject the example due to the presence of a high loop in the code.

7 Soundness

This section shows that a transformed program is secure and refines the source program
in a suitable sense. The details of the proofs for lemmas and theorems shown in this
section are to appear in an accompanying technical report.

Security We identify two kinds of threads. High threads are dedicated threads intro-
duced by the transformation and threads in the source program spawned inside a high
conditional or a high loop. Other threads are low threads. We designate high threads
by arranging that they have a distinguished local variable called ~. It is not difficult to
modify the transformation in Section 5 to guarantee this.

In order to prove non-interference under round-robin schedulers, we firstly need to
exploit some properties of programs produced by the transformation.

Definition 3. A command c is syntactically secure provided that (i) there are no ex-
plicit flows, i.e., assignments x := e with high e and low x; (ii) each low thread,
fork((λ~x.c′) @~e), in c satisfies the following: there are no high conditionals or high
loops or V() or P() operations related to synchronize high threads, except inside high
threads forked in c′; and (iii) in high threads, there are neither low assignments nor
forks of low threads.

Lemma 1. If Γ `t c ↪→ c′ then c′ is syntactically secure.

We let γ and δ range over threadpool configurations. We assume, for convenience in
the notation, that γ = 〈|〈(c0,m0) . . .〉, g, h, j|〉. We also define γ.pool = 〈(c0,m0) . . .〉,
γ.globals = g, γ.heap = h, and γ.next = j. A program configuration γ is called
syntactically secure if every command in γ.pool and every command in a waiting queue
of γ.heap is syntactically secure.

A thread configuration (c,m) is low, noted low?(m), if and only if ~ /∈ dom(m).
Define low?(i, γ) if and only if the ith thread in γ.pool is low. Define γL as the subse-
quence of thread configurations (ci,mi) in γ.pool that are low. For each thread config-
uration (ci,mi) ∈ γ that is low, define lowpos(i, γ) (and, for simplicity in the notation,

12

lowpos(i, γ.pool)) to be the index of the thread but in γL. The key property of a round-
robin scheduler is that the next low thread to be scheduled is independent of the values
of global or local variables, the states of high threads (running or blocked), and even
the number of high threads in the configuration. We can formally capture this property
as follows. Define nextlow(γ) = j mod (#γ.pool) where j is the least number such
that j ≥ γ.next and low?(j mod (#γ.pool), γ).

Definition 4 (Low equality). Define P =L P ′ for threadpools P = 〈(c1,m1) . . .〉 and
P ′ = 〈(c′1,m′

1) . . .〉 (not necessarily the same length) if and only if ci ≡ c′j for all i, j
such that low?(mi), low?(m′

j), and lowpos(i, P) = lowpos(j, P ′). Define γ =L δ if
and only if γ and δ are syntactically secure, γ.globals =L δ.globals, γ.pool =L δ.pool,
lowpos(nextlow(γ), γ) = lowpos(nextlow(δ), δ), and all threads blocked in γ.heap
and δ.heap are high.

Theorem 1. Let γ and δ be configurations such that γ =L δ. If γ →∗ γ′ and δ →∗ δ′

where γ′, δ′ are terminal configurations, then γ′ =L δ′. Here→∗ refers to the semantics
using the round-robin scheduler RR.

Corollary 1 (Security). If Γ ` c ↪→t c′ then c′ is secure under round-robin scheduling.

Refinement For programs produced by our transformation, the result from a round-
robin computation from any initial state is a result from the original program using the
fully nondeterministic scheduler. In fact, any interleaving of the transformed program
matches some interleaving of the original code.

Theorem 2. Suppose Γ ` c ↪→t c′ and g′1 and g′2 are global memories for c′ such that
(c′, g′1) ⇓ g′2 using the nondeterministic scheduler ND . Let g1 and g2 be the restrictions
of g′1 and g′2 to the globals of c. Then (c, g1) ⇓ g2 using ND .

8 Related work
Variants of possibilistic noninterference have been explored in process-calculus set-
tings [7, 6, 18, 8, 15], but without considering the impact of scheduling.

As discussed in the introduction, a series of work by Volpano and Smith [25, 27, 23,
24] suggests a special protect(c) statement to hide the internal timing of command c in
the semantics. In contrast to this work, we are not dependent on the randomization of the
scheduler. To the best of our knowledge, no proposals for protect() implementation
avoid significantly changing the scheduler (unless the scheduler is cooperative [17]).

Boudol and Castellani [3, 4] suggest explicit modeling of schedulers as programs.
Their type systems, however, reject source programs where assignments to public vari-
ables follow computation that branches on secrets.

Smith and Thober [26] suggest a transformation to split a program into high and
low components. Jif/split [31] partitions sequential programs into distributed code on
different hosts. However, the main focus is on security when some trusted hosts are
compromised. Neither approach provides any formal notion of security or refinement.

A possibility to resolve the internal timing problem is by considering external tim-
ing. Definitions sensitive to external timing consider stronger attackers, namely those

13

that are able to observe the actual execution time. External timing-sensitive security de-
finitions have been explored for multithreaded languages by Sabelfeld and Sands [22]
as well as languages with synchronization [19] by Sabelfeld and message passing [20]
by Sabelfeld and Mantel. Typically, padding techniques [2, 22, 13] are used to ensure
that the timing behavior of a program is independent of secrets. Naturally, a stronger
attacker model implies more restrictions on programs. For example, loops branching
on secrets are disallowed in the above approaches. Further, padding might introduce
slow-down and, in the worst case, nontermination.

Another possibility to prevent internal timing leaks in programs is by disallowing
any races on public data, as pursued by Zdancewic and Myers [30] and improved by
Huisman et al. [9]. However, such an approach rejects innocent programs such as l :=
0 ‖ l := 1 where l is a public variable.

9 Conclusion
We have presented a transformation that closes internal timing leaks in programs with
dynamic thread creation. In contrast to existing approaches, we have not appealed to
nonstandard semantics (cf. the discussion on protect()) or to modifying the run-time
environment (cf. the discussion on interaction with schedulers). Importantly, the trans-
formation is not overrestrictive: programs are not rejected unless they have symptoms of
flows inherent to sequential programs. The transformation ensures that the rest of inse-
curities (due to internal timing) are repaired. Our target language includes semaphores,
which have not been considered in the context of termination-insensitive security.

Future work includes introducing synchronization and declassification primitives
into the source language and improving the efficiency of the transformation: instead of
dynamically spawning dedicated threads, one could refactor the program into high and
low parts and explicitly communicate low data to the high part, when needed (and high
data to the low part, when prescribed by declassification).
Acknowledgments This work was funded in part by the Swedish Emergency Management
Agency and in part by the Information Society Technologies program of the European Com-
mission, Future and Emerging Technologies under the IST-2005-015905 Mobius project.

References

[1] Report on resource and information flow security requirements, Mar. 2006. Deliverable
D1.1 of the EU IST FET GC2 MOBIUS project, http://mobius.inria.fr/.

[2] J. Agat. Transforming out timing leaks. In Proc. POPL’02, pages 40–53, Jan. 2000.
[3] G. Boudol and I. Castellani. Noninterference for concurrent programs. In Proc. ICALP’01,

volume 2076 of LNCS, pages 382–395. Springer-Verlag, July 2001.
[4] G. Boudol and I. Castellani. Non-interference for concurrent programs and thread systems.

Theoretical Computer Science, 281(1):109–130, June 2002.
[5] D. E. Denning and P. J. Denning. Certification of programs for secure information flow.

Comm. of the ACM, 20(7):504–513, July 1977.
[6] R. Focardi and R. Gorrieri. Classification of security properties (part I: Information flow).

In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design, volume
2171 of LNCS, pages 331–396. Springer-Verlag, 2001.

[7] K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed process
behaviour. In Proc. ESOP’00, volume 1782 of LNCS. Springer-Verlag, 2000.

14

[8] K. Honda and N. Yoshida. A uniform type structure for secure information flow. In Proc.
ACM Symp. on Principles of Programming Languages, pages 81–92, Jan. 2002.

[9] M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation of observational
determinism. In Proc. IEEE Computer Security Foundations Workshop, July 2006.

[10] JSR 118 Expert Group. Mobile information device profile (MIDP), version 2.0. Java
specification request, Java Community Process, Nov. 2002.

[11] JSR 179 Expert Group. Location API for J2ME. Java specification request, Java Commu-
nity Process, Sept. 2003.

[12] J. Knudsen. Networking, user experience, and threads. Sun Techni-
cal Articles and Tips http://developers.sun.com/techtopics/
mobility/midp/articles/threading/, 2002.

[13] B. Köpf and H. Mantel. Eliminating implicit information leaks by transformational typing
and unification. In FAST’05, volume 3866 of LNCS. Springer-Verlag, July 2006.

[14] Q. H. Mahmoud. Preventing screen lockups of blocking operations. Sun Tech-
nical Articles and Tips http://developers.sun.com/techtopics/
mobility/midp/ttips/screenlock/, 2004.

[15] F. Pottier. A simple view of type-secure information flow in the pi-calculus. In Proc. IEEE
Computer Security Foundations Workshop, pages 320–330, June 2002.

[16] A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler. In
Proc. IEEE Computer Security Foundations Workshop, pages 177–189, July 2006.

[17] A. Russo and A. Sabelfeld. Security for multithreaded programs under cooperative schedul-
ing. In Proc. PSI’06, volume 4378 of LNCS. Springer-Verlag, June 2006.

[18] P. Ryan. Mathematical models of computer security—tutorial lectures. In R. Focardi and
R. Gorrieri, editors, FOSAD, volume 2171 of LNCS. Springer-Verlag, 2001.

[19] A. Sabelfeld. The impact of synchronisation on secure information flow in concurrent
programs. In Proc. PSI’01, volume 2244 of LNCS. Springer-Verlag, July 2001.

[20] A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed programs.
In Proc. Symp. on Static Analysis, volume 2477 of LNCS. Springer-Verlag, Sept. 2002.

[21] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

[22] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proc. IEEE Computer Security Foundations Workshop, pages 200–214, July 2000.

[23] G. Smith. A new type system for secure information flow. In Proc. IEEE Computer Security
Foundations Workshop, pages 115–125, June 2001.

[24] G. Smith. Probabilistic noninterference through weak probabilistic bisimulation. In Proc.
IEEE Computer Security Foundations Workshop, pages 3–13, 2003.

[25] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.
In Proc. ACM Symp. on Principles of Programming Languages, pages 355–364, Jan. 1998.

[26] S. F. Smith and M. Thober. Refactoring programs to secure information flows. In PLAS
’06, pages 75–84, New York, NY, USA, 2006. ACM Press.

[27] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. J. Com-
puter Security, 7(2–3):231–253, Nov. 1999.

[28] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J.
Computer Security, 4(3):167–187, 1996.

[29] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT
Press, Cambridge, MA, 1993.

[30] S. Zdancewic and A. C. Myers. Observational determinism for concurrent program secu-
rity. In Proc. IEEE Computer Security Foundations Workshop, pages 29–43, June 2003.

[31] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using replication and partitioning
to build secure distributed systems. In Proc. IEEE Symp. on Security and Privacy, pages
236–250, May 2003.

15

