
A Lattice-based Approach to Mashup Security

Jonas Magazinius
Chalmers

Aslan Askarov
Cornell University

Andrei Sabelfeld
Chalmers

ABSTRACT
A web mashup is a web application that integrates content
from different providers to create a new service, not offered
by the content providers. As mashups grow in popularity,
the problem of securing information flow between mashup
components becomes increasingly important. This paper
presents a security lattice-based approach to mashup secu-
rity, where the origins of the different components of the
mashup are used as levels in the security lattice. Declas-
sification allows controlled information release between the
components. We formalize a notion of composite delimited
release policy and provide considerations for practical (static
as well as runtime) enforcement of mashup information-flow
security policies in a web browser.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Information flow con-
trols

General Terms
Security, Languages

Keywords
Web mashups, security policies, lattices, information flow,
declassification, noninterference

1. INTRODUCTION
A web mashup is a web application that integrates content

from different providers to create a new service, not pro-
vided by the content providers. As mashups are becoming
increasingly popular, the problem of securing information
flow between mashup components is becoming increasingly
important.

1.1 Web mashups
Web mashups consist of a hosting page, usually called

the integrator, and a number of third-party components,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’10 April 13–16, 2010, Beijing, China.
Copyright 2010 ACM 978-1-60558-936-7 ...$10.00.

often called widgets, gadgets, blocks, or pipes. An exam-
ple of a mashup-based application is a web site that com-
bines the data on available apartments from one source (e.g.,
Craigslist) with the visualization functionality of another
source (e.g., Google Maps) to create an easy-to-use map in-
terface.

The number of web mashups is rapidly increasing. For
example, a directory service for mashups programmableweb.
com registers on average three new mashups every day. This
directory contains more than 4000 registered mashups and
1000 registered content provider API’s.

1.2 Mashup security
Mashup applications, by their nature, involve interaction

between various page components. Often these components
are loaded from different origins. Here, origins are identi-
fied by an Internet domain, protocol, and a port number, a
standard convention which we also follow in this paper.

Cross-origin interaction within the browser is currently
regulated by the so-called Same-Origin Policy (SOP). SOP
classifies documents based on their origins. Documents from
the same origin may freely access each other’s content, while
such access is disallowed for documents of different origins.

Unfortunately, the SOP mechanism turns out to be prob-
lematic for mashup security. First, origin tracking in SOP
is only partial and allows content from different sources to
coexist under the same origin. For example, an HTML tag
with an src attribute can load content from some other origin
and integrate it in the current document. Once integrated,
such content is considered to be of the same origin as the
integrating document. This means that the content is ac-
cessible to scripts in other documents from the same origin.

Of particular concern here is document inclusion via script
tags. When a script tag is used to load JavaScript code
from a different origin, the loaded script is integrated into
the document, and thereby can freely interact with it. For
the same reasons, interaction between different components
loaded in this fashion is unrestricted.

The problem of script-tag inclusion for mashup applica-
tions is that the integrator must trust the third parties to
protect its secrets and not to override trusted data with un-
trusted. Effectively, the security of the integrator no longer
relies only upon itself, but also on the security of the third
parties whose scripts are included.

So far, these issues have been resolved using the iframe
tag. The iframe tag borrows a part of the integrator’s win-
dow space to display another document. Since the integrated
content is loaded in a separate document, the SOP applies,
and the sensitive information of the integrator is protected.

!"
#"

$%&'()*&+)"

,-.)*/'"0)123#45&/678"

,01)-9&"0)123#4:078"

;<"&)=0&"

>?@@"&)=0&"

$.)*/'"(*A('&"

B*C*D1)-9&"(*A('&"

Figure 1: Polarized trust in mashups

However, this also severely reduces the possibilities for inter-
action between the documents. A number of techniques for
secure communication between documents have been pro-
posed to bypass the restrictions, but, due to JavaScript’s
dynamic nature, ensuring confidentiality has proved to be
complicated. See Barth et al. [10] for a number of attacks
on mashup communication techniques.

The phenomenon is illustrated in Figure 1, where there
are two inclusions from site B into site A. The first inclu-
sion (B.html) is by an iframe tag, while the second inclusion
(B.js) is by a script tag. This implies two levels of trust:
either full or no trust, but also two modes of interaction.
Either the content is fully trusted and integrated in the doc-
ument with full interactivity, or the content is not trusted
at all and loaded in a separate document with very limited
interactivity.

To sum up, today’s mashups trade the users’ confidential-
ity and integrity for functionality. In order to deal with this
problem, we aim at requiring the same separation between
cross-origin content within documents as we have between
documents.

1.3 Lattice-based approach
We propose a lattice-based approach to mashup security.

The security lattice is built from the origins of the mashup
components so that each level in the lattice corresponds to
a set of origins. The key element in the approach is that the
security lattice is inferred directly from the mashup itself.

The security lattice is used to label the classified objects,
where an object’s label corresponds to the origin from which
it is loaded. The labels are used to track information flow
within the browser. One may use a range of techniques, such
as static and/or dynamic analysis to ensure that information
from one origin does not flow to another one unless the in-
formation has been declassified (in case of confidentiality)
or endorsed (in case of integrity) for that specific target.

The enforcement mechanism controls possible channels for
communicating data from within the page to the outside
environment, such as by following links or submitting forms.

In order for the components of one origin to securely re-
lease information to another origin, declassification [33] is
required. We propose a mechanism that allows origins to
specify escape hatches [31] for declassifying objects. The
novelty of our mechanism is that a piece of data may be re-
leased only if all origins that own the data agree that it can
be released. This approach provides a much-desired flexibil-

ity for composite secure data release.
At two extreme instances of our framework, we obtain

an isolation of iframes and the flexibility of the script tag
for including third-party content. The main benefit of our
approach is that it allows a fine-grained control over infor-
mation propagation within the browser.

1.4 Attacker model
We assume an honest user that runs a trusted browser on

a trusted machine. The web attacker [9] is an owner of ma-
licious web sites that the user might be accessing. The web
attacker is weaker than, for example, the classical Dolev-
Yao attacker [18], because the web attacker may not inter-
cept or modify arbitrary messages. This implies that the
web attacker is unable to mount man-in-the-middle attacks.
Instead, the network capabilities of the web attacker are re-
stricted to the standard network protocols of communication
with servers in the domain of attacker’s control.

In contrast to Barth et al. [9], we do not assume a par-
ticular separation of web sites on trusted and untrusted.
Instead, different component of a web site (or mashup) have
different interests and only trust themselves and their secu-
rity policies.

The gadget attacker [9] is a web attacker with the possi-
bility that an integrator embeds a gadget of the attacker’s
choice. Our attacker is richer than the gadget attacker.
First, we take into account that different content providers
might have different interests and protect gadgets from each
other. Second, the integrator itself might be a malicious
web site. Hence, we refer to our attacker as a decentralized
gadget attacker.

Social engineering attacks such as phishing are not in the
scope of the paper. Note that since we focus on distinguish-
ing intended vs. unintended inter-domain communication,
injection attacks (such as by cross-site scripting) are not
prevented, but the payload of the injection is restricted from
unintended inter-domain communication.

1.5 Sources and sinks
Security sources and sinks correspond to the end-points,

where security-sensitive data enters and leaves the system.
For confidentiality, we consider secret sources, where secret
information enters the system, and public sinks, where pub-
lic output happens. For integrity, untrusted sources and
trusted sinks are of the respective importance. Most of the
discussion in this paper is focused on confidentiality. Sec-
tion 5.1 briefly discusses an integrity extension.

User-sensitive data can be stored in browser cookies, form
input, browsing history, and other secret sources (cf. the
list of sensitive sources used by Netscape Navigator 3 [27]).
Client-side scripts have full read access to such data. The
need for read access is often well-justified: one common us-
age is form validation, where (possibly sensitive) data is val-
idated on the client side by a script, before it is passed over
to the server. Read access is necessary for such a validation.

We assume that public sinks are observable by the at-
tacker. A script must not leak information from secret sources
to public sinks. Examples of public sinks are communication
to attacker-observable web sites or interaction with parts of
the host site that the script is not allowed to. As we describe
further, fine granularity of the lattice-based approach allows
us to express such policies.

1.6 Scenarios

Below are some motivating scenarios for our approach.

1.6.1 Dangerous goods
Consider a scenario of a trucking company that uses a

web-based application for managing truck data. In this con-
text, sensitive data that this application needs to operate on
includes information such as truck load and scheduled stops.
In order to visualize the location of the trucks to the user, the
application uses the Google Maps API [2]. This visualiza-
tion requires that the web application supplies coordinates
of each truck when making API calls. With the current tech-
nology, Google Maps API can only be used through script
inclusion, which means that the code supplied by Google
has access to the entire page it is part of. Due to the limi-
tations of the Same-Origin Policy, the company must trust
that Google’s code is not malicious or that Google’s security
is not compromised.

1.6.2 Advertising
In online advertisement, ad providers seek tight interac-

tion of the ads with pages that provide context for adver-
tisements. Hence, the iframe-based solution often turns out
to be too restrictive. On the other hand, ad scripts need
to be constrained from giving full trust, since a malicious
advertiser can compromise sensitive data.

Unlike previous work that restricts language for advertise-
ment to a strict subset, e.g., AdSafe [14], we allow interac-
tions between trusted code and ads as long as information-
flow policies of the trusted origin are respected. Such poli-
cies may prevent any flows from the trusted origin to the
ad provider, or perhaps, allow some restricted flow, such
as releasing certain keywords or releasing some part of user
behavior.

2. LATTICE-BASED FLOW IN MASHUPS
To deal with the problem of cross-origin content within

a document, we propose an approach based on security lat-
tices. An interesting aspect in the mashup setting is that
we can infer the levels of the lattice from the mashup itself.
The origins of the components of the mashup become the
levels of the security lattice. The security lattice is used
to label nodes in the Document Object Model-tree (DOM-
tree), a tree representation of the underlying document. To
allow a controlled release of information we also propose a
declassification mechanism.

2.1 Information lattice
We draw on the information lattice [16, 21] in our model

of secure information flow. The lattice model is a natural
fit for modeling both confidentiality and integrity. In gen-
eral, a lattice is a partially ordered set with join (t) and
meet (u) operations for computing the least upper bound
and the greatest upper bound, respectively. The security lat-
tice is based on a security order on security levels, elements
of the lattice. The security order expresses the relative re-
strictiveness of using information at a given security levels.
Whenever two elements `1 and `2 are ordered `1 v `2, then
the usage of information at level `2 is at least as restrictive
as usage of information at level `1. More restrictive levels
correspond to higher confidentiality and to lower integrity,
in the respective cases of modeling confidentiality and in-
tegrity. The intention is that higher confidentiality (lower

integrity) information does not affect lower confidentiality
(higher integrity) in a secure system.

The lattice operators t and u are useful for computing the
security level of information that is produced by combining
information at different security levels. A simple example
of an information lattice is a lattice with two elements low
and high, where low v high and high 6v low . These lev-
els may correspond to public and secret information in a
confidentiality setting and to malicious and non-malicious
information in an integrity setting.

2.2 The domain lattice
The elements of the security lattice are simply sets of

origins ordered by the set relation. At the bottom of lat-
tice, denoted by ⊥, is the empty set. Single origins (i.e.,
singleton origin sets) form a flat structure. In the nota-
tion above, origins o1, . . . , on correspond to levels `1, . . . , `n,
where ⊥ v `1,. . . ,⊥ v `n so that for any ` and i we have
` 6= ⊥ & ` v `i =⇒ ` = `i.

When content from one origin is combined with content
from another origin, the level of the result is the join of the
origins. Indeed, the levels in the lattice correspond to sets of
origins ` = {o1, . . . , on}, where ` v `′ if and only if we have
the set inclusion ` ⊆ `′. This allows data to be combined and
used within the browser and still prevents it from leaking to
external targets.

DOM-tree nodes (including the affiliated variables) are
labeled with security levels when a new document is loaded
from an origin server. The origin of the document is the base
level of the lattice. As the document is being parsed and
the DOM-tree is built, we use the origins of the contents in
the document for labeling new objects. All HTML tags that
have an src attribute can fetch content (e.g., images, scripts,
or style sheets) from any origin, which will be incorporated
into the current document.

One interesting aspects of the lattice model is the treat-
ment of subdomains. The Same Origin Policy treats sub-
domains the in same way as any other domain, with the
exception of one case. In current browsers one may change
the document.domain property of a document loaded from
a subdomain to the domain it is a subdomain of. When this
is done, the subdomain is considered as a part of the domain.
This means that the subdomain can access and can be ac-
cessed from any document loaded from the domain, since
they are now considered to be of the same origin according
to the SOP.

Translating this behavior to the security lattice would
mean a merge of the origins or an uncontrolled declassifi-
cation of all contents belonging to either the subdomain or
the domain. This behavior can be supported using a lattice-
based approach, but since we aim at a more fine-grained
control over information flow in the browser, we prefer that
subdomains are treated as any other domains.

2.2.1 Examples
The examples below clarify how the lattice model reflects

security goals in different contexts.

Single domain.
We start with a simple example of a page, loaded from a

single domain, that does not reference any third-party con-
tent. This represents most regular pages that only contain
content from the origin domain. In this case, the interest-

!"

!"

Figure 2: Single domain lattice

!"#$

!$ #$

!$

Figure 3: Two-domain mashup lattice

!"#$

!$ #$

!$

Figure 4: Declassification

!"#"$%

!"#% !"$% #"$%

!% #% $%

!%

Figure 5: Three-domain mashup lattice

ing part of the lattice consists only of that domain and the
bottom label, as can be seen in Figure 2.

Simple mashup with two domains.
In the scenarios of Dangerous Goods and Advertising from

Section 1.6, we have content from two origin domains com-
bined to create a mashup. Figure 3 shows the lattice for
the Advertising scenario. Information flow between the con-
tent provider and advertisement provider is disallowed. The
Dangerous Goods scenario features declassification of cer-
tain content from one domain to the other. This is a one-way
flow of information, portrayed in Figure 4.

As we elaborate in Section 3, each origin can provide a
set of escape hatches that specifies what information can
be released and to what origin. In the Dangerous Goods
scenario, this corresponds to the coordinates of the truck.

Complex mashup with multiple domains.
More complex mashups, such as the iGoogle portal or the

social networking site Facebook, include content from multi-
ple domains. In such mashups, when a content is combined
from two origins, the level of the result is raised to the join
of the levels. Figure 5 shows the lattice for a mashup com-
bining content from three origins.

2.3 Embedded third-party content
When communication between the content and its origin

is allowed by default, as is the case with the SOP, one needs
to identify how third-party content, that is included in a
document, is labeled.

In browsers today, any third-party content included in a
document is considered to have the document’s origin re-
gardless of the actual origin of the included content. This
turns problematic in a mashup setting, because the third-
party content may be freely send to the document’s origin.
Instead, we associate the third-party content with its actual
origin. This choice has an important security implication:
information has to be declassified before it is communicated
to other origins. That is, third-party content may not be
sent to the document’s origin without being declassified by
the third-party.

2.4 Declassification
While mashups without cross-domain communications ex-

ist (cf. the simple version of an advertisement scenario),
flexible information flow within mashups is often desired
(cf. combination of Craigslist and Dangerous Goods with
Google Maps). It is crucial to have a permissive and yet se-
cure cross-domain mechanism that does not allow one com-
ponent to leak information from another without an explicit
permission. How do we ensure that information release in-
tended by one component is not abused by another compo-
nent or, perhaps, by a malicious integrator? For example,
one component of a mashup may agree to release a piece
of data but only if is averaged with a piece of data of an-
other component. Or, an email service agrees to release the
addresses from the user’s contact list but only to a certain
type of social network web sites. What we seek is a frame-
work, where individual components may declare what they
are willing to release. The information may include data
that is controlled by other components, but the actual re-
lease is only allowed if all the owner components agree on
releasing the data. This brings us to the next section, where

we formalize this kind of policies.

3. FORMAL POLICY
Our formal security policy is an extension of the delim-

ited release [31] policy to multiple origins. Delimited release
defines the declassification policy as a set of escape hatches
which declare what information about secrets can be declas-
sified. In a multiple-origin setting, the policy declaration is
spread across multiple origins. We let every origin define its
set of escape hatches. This reflects the origin’s own view on
declassification. An origin can freely declassify expressions
that are as restrictive as its own level, but is limited in de-
classification of expressions that involve other origins. In or-
der for such declassifications to be allowed, a corresponding
declaration has to be present in the declassification policies
of the other involved origins. The rest of this section speci-
fies how a composite declassification policy is derived based
on the individual policies, and defines our security condition
which we dub composite delimited release.

An escape hatch is represented as a pair (e, `), where e is
an expression to be declassified and ` is a target level of the
declassification. For a given origin o, denote by E(o) a set
of escape hatches of that origin.

Consider a simple example of declassifying expression x+
y, where x has a security level of origin A and y has a security
level of origin B. We want to allow release of x + y only if
both A and B agree on the declassification of x + y. We
call all origins willing to declassify a particular expression
declassifying origins or declassifiers.

Definition 1 (Declassifiers). Given an expression e
that is to be declassified to a target security level `, and a
set of origins o1 . . . on with respective declassification poli-
cies E(o1) . . . E(on), define declassifying origins for e to `
as follows:

declassifiers(e, `, o1 . . . on) = {oi | (e, `′) ∈ E(oi) ∧ `′ v `}

The expression e is simply looked up in the set of escape
hatches of E(oi) in the definition above.

Note that declassifiers(e, `, o1 . . . on) by itself corresponds
to a security level. We next define when a declassification
is allowed. Informally, when an expression e is declassified
from a source level `source to a target level `target , there needs
to be enough origins willing to declassify that expression.
Formally, this is captured by the following definition.

Definition 2 (Allowed declassifications). For an
expression e of level `source , declassification of e to a target
level `target is allowed if

`source v `target t declassifiers(e, `target , o1 . . . on)

We use notation allowed(e, `source , `target ,O) for allowed de-
classifications, where O abbreviates a set of origins o1 . . . on.

Example.
Assume variables x and y with levels Γ(x) = {A} and

Γ(y) = {B}. Consider origin A with declassification policy
E(A) = {(x + y,⊥)}. A allows declassification of x + y to
the public level. Assume also that B has no reference of y
in its declassification policy E(B). The composite of these
policies allows declassification of x + y to target level {B},
because declassifiers(x + y, {B}, AB) = {A} and {A,B} v

{B} t {A}. However, declassifying x+ y to ⊥ is disallowed,
because the inequality for allowed declassifications does not
hold if the target level is ⊥: {A,B} 6v ⊥ t {A}.

An example scenario for this kind of policy is a challenge-
response pattern, where B poses the challenge y, A performs
some computation with y and A’s private value x and de-
classifies the result of the computation to B.

Composite policy.
We now show how a composite declassification policy can

be constructed from individual policies of every origin.

Definition 3. Given origins O, define by Compose(O)
escape hatches (e, `) that are allowed according to the declas-
sification policies of O:

Compose(O) = {(e, `) | (e, `′) ∈ Ẽ(o)

for some `′ and o ∈ O ∧ allowed(e,Γ(e), `,O}

Note that Compose(o1 . . . on) is monotonic in origins. Adding
a new origin never makes declassification policy more restric-
tive.

Composite delimited release.
Based on the definition of composite policy, we can now

extend the condition of delimited release [31] to a setting
with multiple origins.

We associate every object x in the browser model with a
security level Γ(x), where Γ is a mapping from object names
to security levels. We model the browser as a transition
system 〈S, 7→〉, where S ranges over possible states s, and
7→ defines transitions between states. We denote by s(x)
the value of a variable x in a state s, and lift this notation
to values of expressions in a given state. Denote by ∼`

equivalence of two states up to a level `:

s1 ∼` s2 , ∀x . Γ(x) v ` . s1(x) = s2(x)

We write s ⇓ s′ whenever s′ is a terminal state in a se-
quence of transitions s 7→ s1 . . . 7→ s′.

For a set of escape hatches, we define indistinguishability
of states up to a security level ` based on this set of escape
hatches:

Definition 4 (Indistinguishability of states). For
a set of escape hatches E say that states s and s′ are indis-
tinguishable by E up to ` (written s I(E, `) s′) if ∀(e, `′) ∈ E
such that `′ v ` it holds that s(e) = s′(e).

This allows us to define our security condition.

Definition 5 (Composite delimited release). For
origins O, a system 〈S, 7→〉 satisfies composite delimited re-
lease if for every level ` and any states s1 and s2 such that
s1 ∼` s2 and s I(Compose(O), `) s′ then whenever s1 ⇓ s′1
and s2 ⇓ s′2 it holds s′1 ∼` s

′
2.

This definition uses composite policies to filter out dis-
allowed declassifications. For instance, in a system with
two origins A and B, such that A’s declassification policy
is empty, B’s code cannot declassify any information about
A’s data. In browser-specific settings this prevents unin-
tended leakage of information.

The composite delimited release precisely regulates what
information can be declassified, because the escape hatches

document.location = "http://evil.com/leak?secret="+encodeURI(form.CardNumber.value);

(a) Leak via URL

if (form.CardType.value == "VISA") new Image().src="http://evil.com/leak?VISA=yes";
else new Image().src="http://evil.com/leak?VISA=no";

(b) Implicit flow

Figure 6: Explicit and implicit flows

are related to the initial values in the program. For exam-
ple, assume that both A and B contain only (x + y,⊥) in
their escape hatch sets, where Γ(x) = {A} and Γ(y) = {B}.
Assume there is also x′ with Γ(x′) = {A}. Composite de-
limited release allows declassification of the initial value of
x+y. If, however, x is updated to x′, which is different from
the initial values of x, then the declassification of x + y is
rejected.

Composite delimited release can be enforced in two steps.
The first step checks that all declassifications are allowed,
i.e., all involved origins agree on the declassified escape hatches.
Second step has to ensure that the value of an escape hatch
expression is not changed since the start of the system. Such
an enforcement can be done both statically [31] and dynam-
ically [5].

4. ENFORCEMENT CONSIDERATIONS
This section provides practical considerations for imple-

menting an enforcement mechanism for the policies that we
have discussed. Enforcement can be realized by a collection
of different techniques, which we bring up in this section.
Regardless of the technique used, we need to consider all
possible communication channels. This includes direct com-
munication channels such as XMLHttpRequest, but also in-
direct ones such as modification of the DOM tree or commu-
nication requests that happen after the user follows a link
on a page.

4.1 Information-flow tracking
When tracking the actual information flow in JavaScript

code, a combination of standard information-flow control [17,
26, 34] can be used with tracking information flow in the
presence of language features such as dynamic code evalua-
tion.

4.1.1 Explicit and implicit flow
To illustrate simple flows, consider an application that

processes a credit card number. Such applications often em-
ploy simple validating scripts on the client side before the
number is sent to the server. Assume fields CardNumber and
CardType contain the actual number and type of the card.
Figure 6(a) corresponds to an explicit flow, where secret data
is explicitly passed to the public sink via URL. Figure 6(b)
illustrates an implicit [17] flow via control flow: depending
on the secret data, there are different side effects that are
visible for the attacker. The program branches on whether
or not the credit card number type form.CardType.value

is VISA, and communicates this sensitive information bit
to the attacker through the URL. These flows are relatively
well understood [30]. Note that these attacks demonstrate
different sinks for communicating data to the attacker: the
former uses the redirection mechanism, and the latter cre-
ates a new image with the source URL leading to the at-

tacker’s web site.

4.1.2 Beyond simple flows
While tracking explicit and implicit flows is relatively well-

understood [17, 26, 34], JavaScript and DOM open up fur-
ther channels for leaking information. One particular chal-
lenge is the dynamic code evaluation feature of JavaScript,
which that evaluates a given string by the function eval().
Static analysis is bound to be conservative when analyzing
programs that include eval(), especially if strings to be eval-
uated are not known at the time of analysis. However, recent
progress on dynamically analyzing programs for secure in-
formation flow [32, 6, 5] shows how to enforce versions of
security that are insensitive to program nontermination ei-
ther purely dynamically or by hybrids of static and dynamic
techniques.

Vogt et al.[35] show how a runtime monitor can be used
for tracking information flow. They modify the source code
of the Firefox browser, adding a monitor to the JavaScript
engine. Although they adopt the simplistic high-low security
lattice (see the discussion in Section 6), their enforcement
can be extended with our lattice model in a straightforward
fashion. With Vogt’s implementation as a starting point,
our larger research program pursues modular enforcement
by hybrid mechanisms that combines monitoring with on-
the-fly static analysis for a languages with dynamic code
evaluation [5], timeout [28], tree manipulation [29], and com-
munication primitives [5].

4.2 Communication channels
Any action that results in a request being sent is po-

tentially a communication channel. While some of the ac-
tions were intended for this purpose, some have unintention-
ally arisen from the design of the browser. These channels
need to be controlled in order to prevent information leaks.
The channels can be categorized in navigation channels and
content-request channels.

4.2.1 Navigation channels
Navigation channels are the result of navigation in the

browser. When the browser navigates to a new page, a re-
quest that is sent to the target location may include any
information from the current document. Some navigation
channels are one-way, since the document initiating the nav-
igation is usually unloaded to make place for the new docu-
ment. Below we list possible navigation channels.

Window navigation.
When a browser window navigates to a new page, a new

document is requested and loaded inside that window, re-
placing the current document. Window navigation is initi-
ated by setting the location attribute of the window to a new
address. Another way to navigate windows is by spawning

new ones, using the window.open() method, or navigating
previously spawned windows to a new address.

Frame navigation.
Frame navigation may happen when a frame parent resets

the src attribute of the frame node. This applies to frame
nodes created by both the frame tag and the iframe tag.
This replaces the document currently loaded in the frame
with the document being requested. However, the parent of
the frame persists, and access to the content from the parent
frame or other frames is restricted by SOP.

Links and forms.
An often disregarded form of navigation is user interac-

tion with links and forms. Note that the target of a link or
a form of one of the components may be modified by an-
other component. As a result, information about the user
interaction may be leaked to an arbitrary origin.

4.2.2 Content-request channels
Content-request channels stem from the different possibil-

ities for requesting new content within the browser. These
channels are two-way channels, since the requested content
is included in the current document.

The XMLHttpRequest object.
The XMLHttpRequest object allows JavaScript code to

request content from the origin of the document. In mashups,
this corresponds to the origin of the integrator. In current
browsers, the XMLHttpRequest communication channel is
the only communication channel restricted by the SOP. In a
mashup, this prevents components from requesting content
from arbitrary origins.

In our approach, components can communicate with their
respective origin regardless of the origin of the document.
The information that can be communicated in this manner
is restricted by the information flow policy. This makes our
approach more permissive than the current standards, while
still maintaining confidentiality.

DOM-tree modification.
When DOM nodes are added or modified this can result in

new content being requested from arbitrary origins. These
requests can carry information in the URL being requested
as well as in the content received. This creates an uninten-
tional communication channel through which an attacker
may leak information.

5. EXTENSIONS
We discuss an extension with integrity policies and appli-

cability of our approach to server-side mashups.

5.1 Integrity
While the primary focus of this paper is confidentiality,

we briefly discuss integrity extensions to our approach. In
an extension to integrity, the security levels need to reflect
both confidentiality and integrity of data. Such levels are
denoted as pairs `C ; `I , where `C is a confidentiality com-
ponent, and `I is an integrity component of the level. Each
of the components is, as previously, a set of involved ori-
gins, where integrity component enlists origins that trust
that level. Therefore, integrity ordering is dual to the one

A, B,C;A, B,C⊥;⊥

⊥;A, B,C

A, B, C;⊥

least confidential; most trusted

most confidential; least trusted

Figure 7: Combined security lattice

of confidentiality: the more origins the label includes, the
more trusted it is. The bottom ⊥ corresponds to trust by
no origin, the least trusted level.

Figure 7 shows the combined security lattice for both con-
fidentiality and integrity, assuming three origins A,B, and
C. The least restrictive level is ⊥;A,B,C, corresponding to
the least confidential and the most trusted data. The most
restrictive level is A,B,C;⊥ corresponding to the most con-
fidential and least trusted data.

Note that this extension allows one to reason not only
about pure integrity policies, but also about the relationship
between integrity and confidentiality [25]. In both cases,
policies for endorsing untrusted data [3] are important.

5.2 Server-side mashups
This paper has so far considered client-side mashups, where

the components are combined in the browser. However, our
approach may just as well be applied on the server side. If
none of the mashup components contains user-specific infor-
mation or if the integrator has access to all required user
information, then the components may be combined on the
server side. This opens up for the possibility of statically an-
alyzing all code before delivering it to the client. A popular
example of such a mashup is the social network Facebook
[1], which combines static analysis of the third-party code
with rewriting of the code to ensure isolation.

6. RELATED WORK
We discuss most related work on declassification, moni-

toring information-flow in browsers, and access control in
mashups.

Declassification.
Much progress has been recently made on policies along

the dimensions of declassification [33] that correspond to
what information is released, where in the systems it is re-
leased, when and by whom. Combining the dimensions re-
mains an open challenge [33]. Recently, the what and where
dimensions, and sometimes their combinations, received par-
ticular attention [23, 4, 8, 11, 5].

The who dimension of declassification has been investi-
gated in the context of robustness [25, 3], but in separation
from what is declassified. Lux and Mantel [22] investigate a
bisimulation-based condition that helps expressing who (or,
more precisely, what input channels) may affect declassifi-
cation.

The composite delimited release policy we suggest in this
paper combines the what and who dimensions. The escape

hatches express the what and the ownership of the origins
of the escape-hatch policies expresses the who.

Monitoring information flow in browsers.
Vogt et al.[35] show how a runtime monitor can be used

for tracking information flow. They modify the source code
of the Firefox browser, adding a monitor to the JavaScript
engine. However, their experiments show that it is often
desirable for JavaScript code to leak some information out-
side the domain of origin: they identify 30 domains such as
google-analytics.com that should be allowed some leaks.
Their solution is to white-list these domains, and therefore
allow any leaks to these domains, opening up possibilities
for laundering. With our approach, these domains can be
integrated into a policy with declassification specifications of
exactly what can be leaked to which security level, avoiding
information laundering.

Mozilla’s ongoing project FlowSafe [19] aims at empow-
ering Firefox with runtime information-flow tracking, with
dynamic information-flow reference monitoring [6, 7] at its
core.

Yip et al. [37] present a security system, BFlow, which
tracks information flow within the browser between frames.
In order to protect confidential data in a frame, the frame
cannot simultaneously hold data marked as confidential and
data marked as public. BFlow not only focuses on the client-
side but also on the server-side in order to prevent attacks
that move data back and forth between client and server. By
applying our method within documents, we obtain a finer-
grained information-flow tracking than that of BFlow.

Access control in mashups.
Access control in mashups has been an active area of re-

cent research. Access-control policies have the known limi-
tation compared to information-flow policies that once the
data is allowed access, it can be used by an application arbi-
trarily, and potentially, in an insecure way. We discuss some
recent highlights in this area below.

Wang et al. [36] draws analogies between mashups and
operating systems and defines protection and communica-
tion abstractions for the browser in their proposal Mashu-
pOS. MashupOS expands the trust model of the SOP to bet-
ter match the trust relationships found in a mashup. Two
HTML tags are suggested to implement the abstractions,
ServiceInstance and Friv . The tag ServiceInstance is used
to load a service into an isolated region of memory, which
can then be connected to a Friv which is responsible for
displaying the content. The combination is similar to an
iframe, but with more flexibility and protection. The isola-
tion between content is controlled by the SOP.

OMash, by Crites et al., [13] simplifies the abstractions
of MashupOS. They propose that every document should
declare a public interface through which all communication
with other documents is handled. OMash does not rely on
the SOP for isolation. Instead, each document is isolated
apart from the public interface. This does not handle cross-
origin content within the same document.

Jackson et al. proposed Subspace [20], a framework for
secure communication between mashup components based
on existing browser features. Each component is loaded in
an iframe originating from a subdomain of the integrator and
communication is achieved by relaxing the domain attribute
of the documents so that a communication object can be

shared.
Smash [15], proposed by De Keukelaere et al., is another

high-level communication framework for mashups. The com-
ponents are isolated from each other, but can communicate
using a high-level interface in the framework. Isolation is
achieved by loading each component in an iframe. The frag-
ment identifier channel [12] is used as a communication prim-
itive. The communication primitive can be exchanged for a
more suitable solution, as the actual communication is man-
aged at a lower level in the framework. As this framework
relies on existing browser features, it can be easily adapted.
However, once a piece of information has been communi-
cated to another component, control over its use is lost.

7. CONCLUSION
We have proposed a lattice-based approach to the mashup

security problem. By representing origin domains as incom-
parable security levels in a lattice, we have a natural model,
where no information between the origins is allowed, unless
explicitly prescribed by a declassification policy. We have
formalized the security guarantees that combine the aspects
of what can be released and by who. We have discussed
practical issues with security policies and integrating their
enforcement into browsers.

Compared to much work on access-control policies in web
browsers, we are able to track the flow of information in a
more fine-grained way. Compared to other work on tracking
information flow in the browser, we are able to offer a rich
decentralized security-policy model.

Future work includes a formalization of a fully-fledged
combination of the what dimension of declassification (as
expressed by escape hatches) and the who dimension (as ex-
pressed by the decentralized label model [24]). Another line
of work is a practical evaluation by implementation. Yet
another intriguing direction focuses on integrity aspects, as
sketched in Section 5.1.

8. REFERENCES
[1] Facebook. http://www.facebook.com.

[2] Google Maps API. http://code.google.com/apis/maps.

[3] A. Askarov and A. Myers. A semantic framework for
declassification and endorsement. In Proc. European
Symp. on Programming, LNCS. Springer-Verlag, 2010.
To appear.

[4] A. Askarov and A. Sabelfeld. Localized delimited
release: Combining the what and where dimensions of
information release. In Proc. ACM Workshop on
Programming Languages and Analysis for Security
(PLAS), pages 53–60, June 2007.

[5] A. Askarov and A. Sabelfeld. Tight enforcement of
information-release policies for dynamic languages. In
Proc. IEEE Computer Security Foundations
Symposium, July 2009.

[6] T. H. Austin and C. Flanagan. Efficient
purely-dynamic information flow analysis. In Proc.
ACM Workshop on Programming Languages and
Analysis for Security (PLAS), June 2009.

[7] T. H. Austin and C. Flanagan. Permissive dynamic
information flow analysis. Technical Report
UCSC-SOE-09-34, University of California, Santa
Cruz, 2009.

[8] A. Banerjee, D. Naumann, and S. Rosenberg.
Expressive declassification policies and modular static
enforcement. In Proc. IEEE Symp. on Security and
Privacy, pages 339–353, May 2008.

[9] A. Barth, C. Jackson, and J. C. Mitchell. Securing
frame communication in browsers. In Proc. USENIX
Security Symposium, 2008.

[10] Adam Barth, Collin Jackson, and William Li. Attacks
on javascript mashup communication. In Proc. of Web
2.0 Security and Privacy 2009 (W2SP 2009), May
2009.

[11] G. Barthe, S. Cavadini, and T. Rezk. Tractable
enforcement of declassification policies. In Proc. IEEE
Computer Security Foundations Symposium, June
2008.

[12] J. Burke. Cross domain frame communication with
fragment identifiers.
http://tagneto.blogspot.com/2006/06/
cross-domain-frame-communication-with.html, June
2006.

[13] Steven Crites, Francis Hsu, and Hao Chen. Omash:
enabling secure web mashups via object abstractions.
In CCS ’08: Proceedings of the 15th ACM conference
on Computer and communications security, pages
99–108, New York, NY, USA, 2008. ACM.

[14] D. Crockford. Making javascript safe for advertising.
adsafe.org, 2009.

[15] Frederik De Keukelaere, Sumeer Bhola, Michael
Steiner, Suresh Chari, and Sachiko Yoshihama. Smash:
secure component model for cross-domain mashups on
unmodified browsers. In WWW ’08: Proceeding of the
17th international conference on World Wide Web,
pages 535–544, New York, NY, USA, 2008. ACM.

[16] D. E. Denning. A lattice model of secure information
flow. Comm. of the ACM, 19(5):236–243, May 1976.

[17] D. E. Denning and P. J. Denning. Certification of
programs for secure information flow. Comm. of the
ACM, 20(7):504–513, July 1977.

[18] D. Dolev and A. Yao. On the security of public-key
protocols. IEEE Transactions on Information Theory,
2(29):198–208, August 1983.

[19] B. Eich. Flowsafe: Information flow security for the
browser. https://wiki.mozilla.org/FlowSafe, October
2009.

[20] Collin Jackson and Helen J. Wang. Subspace: secure
cross-domain communication for web mashups. In
WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 611–620, New
York, NY, USA, 2007. ACM.

[21] J. Landauer and T. Redmond. A lattice of
information. In Proc. IEEE Computer Security
Foundations Workshop, pages 65–70, June 1993.

[22] A. Lux and H. Mantel. Who can declassify? In
Workshop on Formal Aspects in Security and Trust
(FAST’08), volume 5491 of LNCS, pages 35–49.
Springer-Verlag, 2009.

[23] H. Mantel and A. Reinhard. Controlling the what and
where of declassification in language-based security. In
Proc. European Symp. on Programming, volume 4421
of LNCS, pages 141–156. Springer-Verlag, March 2007.

[24] A. C. Myers and B. Liskov. A decentralized model for

information flow control. In Proc. ACM Symp. on
Operating System Principles, pages 129–142, October
1997.

[25] A. C. Myers, A. Sabelfeld, and S. Zdancewic.
Enforcing robust declassification and qualified
robustness. J. Computer Security, 14(2):157–196, May
2006.

[26] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and
N. Nystrom. Jif: Java information flow. Software
release. Located at http://www.cs.cornell.edu/jif,
July 2001–2009.

[27] Netscape. Using data tainting for security.
http://wp.netscape.com/eng/mozilla/3.0/handbook/
javascript/advtopic.htm, 2006.

[28] A. Russo and A. Sabelfeld. Securing timeout
instructions in web applications. In Proc. IEEE
Computer Security Foundations Symposium, July
2009.

[29] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking
information flow in dynamic tree structures. In Proc.
European Symp. on Research in Computer Security,
LNCS. Springer-Verlag, September 2009.

[30] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE J. Selected Areas in
Communications, 21(1):5–19, January 2003.

[31] A. Sabelfeld and A. C. Myers. A model for delimited
information release. In Proc. International Symp. on
Software Security (ISSS’03), volume 3233 of LNCS,
pages 174–191. Springer-Verlag, October 2004.

[32] A. Sabelfeld and A. Russo. From dynamic to static
and back: Riding the roller coaster of information-flow
control research. In Proc. Andrei Ershov International
Conference on Perspectives of System Informatics,
LNCS. Springer-Verlag, June 2009.

[33] A. Sabelfeld and D. Sands. Declassification:
Dimensions and principles. J. Computer Security,
17(5):517–548, January 2009.

[34] V. Simonet. The Flow Caml system. Software release.
Located at http:

//cristal.inria.fr/~simonet/soft/flowcaml/, July
2003.

[35] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross site scripting
prevention with dynamic data tainting and static
analysis. In Proc. Network and Distributed System
Security Symposium, February 2007.

[36] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin
Jackson. Protection and communication abstractions
for web browsers in mashupos. SIGOPS Oper. Syst.
Rev., 41(6):1–16, 2007.

[37] Alexander Yip, Neha Narula, Maxwell Krohn, and
Robert Morris. Privacy-preserving browser-side
scripting with bflow. In EuroSys ’09: Proceedings of
the 4th ACM European conference on Computer
systems, pages 233–246, New York, NY, USA, 2009.
ACM.

