
Testing the usability of the Android ListView component

A. Lautenbach

September 28, 2011

Abstract

Since the usability of an Application Program-
ming Interface (API) is a major factor of its
success, API design needs to be driven by us-
ability concerns. The usability of an API can
be evaluated in a similar way as the usability
of other products. Usability testing with real
users is the best method to evaluate usability.

The Android operating system for mobile
phones has become popular among users and
application developers. With the open Android
API, the development of ListView components
seems harder than the development of other
GUI components. So in order to reveal us-
ability defects in its interface, a usability test
for the scenario of developing a ListView with
icons was conducted with 5 test users.

One usability problem was identified, namely a
mismatch of the level of abstraction provided
by the interface and the level of abstraction ex-
pected by the users. The addition of an ex-
tra class to meet the users expectations or the
improvement of the existing documentation is
proposed as possible solutions.

1 Introduction
The field of software engineering has grown rapidly over
the last decades, and efficient code reuse has become a
major force to tackle the inherent complexity. In order
to facilitate code reuse, many software components are
modularised so that they can be used independently, em-
ploying the principle of information hiding as coined by
David Parnas [19].

An application programming interface (API) pro-
vides an abstraction for application developers, exposing
the functionality of specific modules or products. An ap-
plication developer can use them in spite of being com-
pletely unaware of their internal structure or implemen-
tation.

One of the key realisations regarding API design is
that it is a domain to which human factors and usability-
engineering principles apply, suggesting that it should

be a user-centric activity. This is a simple and yet of-
ten neglected fact, as Ken Arnold pointed out [1]. Mar-
ket leaders such as Microsoft have recognised this, and
have started to employ usability-engineering principles
to guide their API-design processes [8].

The API of a successful product will be used of-
ten and in diverse contexts during its life time. This
leads to some general requirements and guidelines which
have been identified by industry experts such as Joshua
Bloch [6] and Krzysztof Cwalina [9]. These guidelines are
widely accepted by the developer community [4, 16] and
are the subject of recent scientific research, an overview
of which was made by M.F. Zibran [23].

In the last few years, the use of so-called “smart-
phones” for more than mobile telephony has increased
greatly. Smartphone is the term used for a high-end
mobile phone which is a hybrid of a personal digital as-
sistant (PDA) and a mobile phone. Recent smartphones
also feature multimedia capabilities such as music and
video players, fast internet access and cameras. As it
has often been speculated in the past, the switch from
mobile telephones to mobile personal computers has be-
gun. Mobile applications for all kinds of scenarios are
becoming increasingly important. The mobile applica-
tion market is still expected to grow in large steps and
thus attracts much attention and many investors, since
it holds the promise of high profit margins.

A multitude of operating systems for smartphones
have been developed in recent years, such as Symbian,
webOS, Blackberry OS, iOS, Android, Windows Phone
7, and others. Their manufacturers are competing for
users and market shares as this usually translates to
more revenue.

The availability of applications which simplify users’
lives is often an important decision factor for or against
a certain platform. A single platform provider could not
possibly provide for all the needs of their users, so it is
important for them to have open APIs to allow third-
party application development. This also implies that
the platform and the APIs should be attractive for mo-
bile developers, so that many of them will start to write
applications for the platform in question, thus increasing
its market value.

There are mainly two different kinds of mobile devel-



A. Lautenbach Testing the usability of the Android ListView component

opers. Some are hobby programmers who write applica-
tions just for fun, for their own and others amusement.
The other group consists of professional developers writ-
ing commercial software. These two groups are not mu-
tually exclusive, but there is usually a difference in how
they approach the decision which platform to support
with their applications.

The most important decision factor for professional
developers is the potential user base, i.e., the market
share of the platform and its expected market share in
the future. In addition, they prefer to develop for multi-
ple popular platforms to further increase their potential
user base. Another important goal for them is to keep
the development time short to maximise profits, there-
fore ease of development is also of importance. Ease
of development is usually achieved through good devel-
opment tools and clear, complete and well-documented
APIs.

For hobby developers on the other hand, personal
platform preference and ease of development are usually
of paramount importance. They usually only develop
their applications for a single platform.

Therefore, clear, complete and easy to use APIs can
have a big impact on the success of a mobile platform
as a whole, which is actually also true for products and
technologies in general [5, 6, 15, 16, 18, 21].

As part of the team which designed the GravityZoo
API for the GravityZoo platform, I got professionally
interested in API design and the process of designing
APIs with a high usability. For obvious reasons, usabil-
ity is the prime design directive. While working on the
GravityZoo client for the Android platform, I also got
well acquainted with different Android APIs, including
parts of the GUI APIs. One of the components I de-
veloped was a wrapper for the Android ListView which
could take both text and corresponding icons as input.
A ListView is a list of scrollable and clickable compo-
nents. A number of different classes and components are
needed to construct a fully functional ListView compo-
nent. The ListView component turned out to be less
intuitive than most of the other GUI parts. As a result,
I started to investigate the cause of this difficulty.

Therefore, the problem statement for this bachelor
thesis reads as follows: What usability issues exist in
the interface of the ListView component of the Android
API, and how could they be alleviated?

Two research questions need to be answered in order
to be able to address the problem statement. First, how
can you define a user-friendly API, and secondly, how
can the usability of an API be measured.

The general outline of the paper is as follows. First
a general background for API usability issues will be es-
tablished in section 2. To place the ListView component
in its context, a short introduction to the Android op-

erating system is subsequently given in section 3. Then
the setup of the usability tests will be described (section
4), which is followed by a discussion of the background
of the test users (section 5). Subsequently the results of
the tests will be presented (section 6). Finally, some con-
clusions will be drawn and recommendations for further
research will be given in section 7.

2 API Usability
In this section the research questions what a user-
friendly API is and how you can measure API usability
will be addressed.

2.1 Characteristics of User-Friendly
APIs

As was argued before, API design is an activity to which
usability-engineering principles apply [1, 8]. This implies
that the usual definitions and techniques from usability-
engineering can be used as reference points to develop
the concepts of user-friendliness and usability measure-
ments tailored specifically to API design. It also means,
that the whole design process needs to be user-centric,
in order to achieve the highest possible usability.

Usability expert Jakob Nielsen mentions the follow-
ing attributes as constituting the field of usability [18]:

• Learnability

• Efficiency

• Memorability

• Errors

• Satisfaction

The point “Errors” refers to the user making as little
errors on the way to the desired outcome as possible,
whereas “Satisfaction” is about user satisfaction, i.e., the
user should like to use the product in question. For a
more in-depth discussion of all these points, see chapter
2.2 of Nielsen’s book Usability Engineering [18].

Additionally, Java and API design expert Joshua
Bloch, formerly Distinguished Engineer at Sun Microsys-
tems Inc., nowadays Chief Java Architect at Google
Inc., recognizes the following elements as constituting
a “good” API [6, 7]:

• Easy to learn

• Easy to use, even without documentation

• Hard to misuse

• Easy to read and maintain code that uses it

• Sufficiently powerful to satisfy requirements

• Easy to evolve

• Appropriate to audience

(v. September 28, 2011, p.2)



Testing the usability of the Android ListView component A. Lautenbach

It is quite obvious that there are direct correlations
between these two lists, the latter seemingly a refinement
of the former.

“Know your user” is one of the most important guide-
lines in usability-engineering [18]. It should be obvious
that APIs are used by programmers, so the user base
is already narrowly defined, which makes it possible to
make a couple of assumptions. Yet programmers are
rather diverse and have different mentalities and work-
flows. Even though they all may write software for a
living, an embedded-systems programmer usually has
different needs and expectations than a programmer of
business software or middleware, just as a senior pro-
grammer usually has a different work-flow or problem-
solving approach than a beginning programmer. Conse-
quently, in order to be most effective the context of an
API and its expected user base should also have a high
impact on its design.

Many API-design guidelines [4, 6, 9] and other pub-
lications related to API design [5, 16] exist, but little
research has been done to falsify them. Recent research
has picked up on this, trying to scrutinise claims, idioms
and patterns commonly accepted as correct. For exam-
ple, the impact of the design patterns Factory Method
and Abstract Factory on API usability has been exam-
ined [10], as well as the implications of parameters in
object constructors [20] and where to place a method in
an object-oriented API [21].

It should be noted that API stability naturally fol-
lows from high usability. If an API is easy to use and
there is good error prevention, i.e., it is hard to mis-
use, then the need for change is minimal. Additionally,
a good API is expected to evolve so that changes inte-
grate easily without breaking backward compatibility.

2.2 Measuring API Usability

According to Nielsen [18], one of the best ways to mea-
sure usability is to conduct usability testing. Usability
testing is done by testing a product through direct user
interaction. During a usability test a group of test users
will be confronted with one or more concrete usage sce-
narios for the product in question. The scenarios should
be designed in such a way that they capture the essence
as well as the full scope of the tasks which should be ac-
complished with the product. This implies that usability
testing is a relative measure with respect to the testers
participating in the study and the tasks the testers have
to accomplish.

Usability testing can also be applied to measure API
usability. According to Jeffrey Stylos, Steven Clarke
and Brad Myers, qualitative studies using the “think-
ing aloud” method [17, 18] have yielded good results in
practice [22].

In order to analyse the results from API usability

studies, people from Microsoft’s usability labs have suc-
cessfully used an adaptation of the cognitive-dimensions
framework [8]. The cognitive-dimensions framework was
originally proposed by Green and Petre to evaluate
structures in terms of their cognitively relevant aspects
[13, 14]. In the design phase it can be used as a heuristic
to guide the design process, and when a usability study
has been conducted it can help to interpret the results.

Personas [14] are a theoretical instrument to define
a set of typical characteristics of different personality
types. Following the example of the Visual Studio us-
ability group, we will distinguish the personas of oppor-
tunistic, pragmatic and systematic programmers, as de-
scribed in [8, 14, 20].

It can be assumed that developers using the Android
APIs have a background in developing mobile or web ap-
plications. These two fields are mainly driven by rapid
application development, which implies that the most
common types of developers will be pragmatic and op-
portunistic programmers.

3 The Android Operating
System

In order to understand the context in which the
ListView component is used, a short overview of the An-
droid platform, its design and use of certain GUI APIs
will be given here. Next, the Android ListView compo-
nent will be described.

3.1 The Android Platform

The Android operating system developed by Google Inc.
has managed to gain a considerable share of the smart-
phone market in just a few years. This is partly at-
tributed to the large amount of applications available in
Google’s software store called Android Market, which is
the result of an open platform that is popular among
application developers due to easy-to-use APIs, develop-
ment tools and the use of the popular programming lan-
guage Java. According to Google, there are more than
200,000 applications available in the Android Market [2].

Operating systems for smartphones have some rather
unique requirements, constraints and properties in gen-
eral. In comparison to desktop computers or laptops, the
computing power and memory space of smartphones are
quite limited. Moreover, depending on the specific prod-
uct their hardware equipment can differ greatly. Display
size and quality often vary, and some phones have a cam-
era, GPS and other optional components, whereas oth-
ers have none or only a subset of them. The trade-off
between phone size, weight, battery run-time and com-
puting power needs to be considered, too. Frequent lo-
cation and network changes also pose interesting chal-
lenges. Therefore, operating systems for smartphones

(v. September 28, 2011, p.3)



A. Lautenbach Testing the usability of the Android ListView component

<?xml version=”1.0” encoding=”utf−8”?>
<LinearLayout

android:orientation=”vertical”
android:layout width=”fill parent”
android:layout height=”fill parent”>

<TextView
android:layout width=”fill parent”
android:layout height=”wrap content”
android:text=”@string/hello” />

</LinearLayout>

Listing 1: res/layout/main.xml

have to be both flexible and efficient.

Android knows four different types of applica-
tion components, namely Activities, Services, Content
Providers and Broadcast Receivers. For the usability
test discussed in this paper only activities are relevant,
so we will ignore the rest.

An activity is the basic building block for user-
interfaces on Android, because one activity corresponds
to a single screen. So an application with a complex user-
interface usually consists of multiple activities which are
stacked upon each other, which is then called the “Back
Stack”.

An activity has hooks for different states of its life-
cycle, such as its creation and destruction. The only
hook of interest in the tasks of this usability test is the
onCreate hook, which is called after the activity has
been fully constructed. It is often the main starting point
for a user-interface-based application.

Another important device for GUI programming on
Android is the use of XML files to construct user-
interfaces. This can best be demonstrated with a simple
example. Eclipse is the standard IDE used for Android
development. When a new Android project is created in
Eclipse, it will contain the template of a simple Hello-
World application. The application uses a TextView in
a LinearLayout, which is comparable to a JLabel in a
FlowLayout of the Java Swing libraries. However, this
GUI structure is not defined in the Java code, but in
an XML file. The Android plug-in for Eclipse automat-
ically parses and compiles the XML files in the project
resource folder res/layout during the build. The re-
sult is a static resource class called R, which provides
access to different resources, such as references to GUI
components constructed from an XML layout file.

Listing 1 shows the content of the XML file from
the standard Hello-World template. Note that the
TextView is embedded in the LinearLayout. Its text
refers to another resource, namely another XML file

public class TestActivity extends Activity
{

@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}
}

Listing 2: excerpt from TestActivity.java

(res/values/strings.xml) which contains a name-
value pair for the key “hello” with the content “Hello
World, TestActivity!”.

Listing 2 shows the Java code of the activity which
refers to the XML layout file in order to construct its
GUI. R.layout.main is an integer reference to the layout
file main.xml, and setContentView sets the main view
of the activity. The top-most component in main.xml

is the LinearLayout, so effectively the LinearLayout

containing the TextView is set as the view of the activity.
The text “Hello World, TestActivity!” will be shown
when the application is started.

In combination this accomplishes the same as the
code shown in listing 3.

For an in-depth discussion of the different features of
the Android platform, see the official Android developer
documentation [12].

When browsing the Android APIs, it quickly be-
comes apparent that many of the recent findings for good
API design have already been applied, e.g., the create-
set-call pattern as described in [20].

3.2 The Android ListView component
and the adapter pattern

The main part of the ListView component is the
class android.widget.ListView itself. It is respon-
sible for displaying a list of scrollable and clickable
items, but the data for the items comes from an
android.widget.ListAdapter.

ListView is a subclass of AdapterView, which is an
abstract view component. An AdapterView receives its
data from an Adapter, which in turn is an interface to
be implemented by a concrete adapter class. This is the
adapter pattern at work, as described by Gamma et al.
[11]. It decouples the view from the model, because only
the adapter needs to know about both the model and the
view in order for the view to be able to display the data.
The model and the view can remain unchanged. This
is a common pattern which is also extensively used for
Eclipse plug-in development and the Eclipse Rich Client
Platform. A good explanation of the basic principle can

(v. September 28, 2011, p.4)



Testing the usability of the Android ListView component A. Lautenbach

public class TestActivity extends Activity
{

@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);

TextView tv = new TextView(this);
tv.setText(R.string.hello);

LinearLayout ll = new LinearLayout(this);
ll.addView(tv);

setContentView(ll);
}
}

Listing 3: Hello-World example without XML GUI

be found in [3].

For the ListView, a number of predefined
adapters exist for different data sources, for exam-
ple ArrayAdapter for a simple list of items, or
CursorAdapter which wraps a cursor object holding the
results of a database query.

There is also a special activity which simplifies
the construction of an activity using a ListView,
android.app.ListActivity.

For the exact interfaces exposed by the aforemen-
tioned classes, see the official API reference [12].

4 Usability Testing
The following sections will introduce the test setup, the
test environment and the test tasks, in that order.

4.1 Test Setup

The usability test was set up as a qualitative study using
the “thinking-aloud” method [17, 18, 22]. Its goal is to
evaluate the usability of the ListView component. Ac-
cording to Nielsen a number of five test users provides a
reasonable trade-off between finding usability problems
and the time needed to conduct and analyse the exper-
iments. See chapter 6 “Usability Testing” of Nielsen’s
book for more details [18]. The five test users which
were chosen are personal acquaintances of the experi-
menter and have no prior experience with mobile ap-
plication development. They will be referred to by the
aliases User1 to User5.

The tests were all done in different locations, either
at the test user’s home or at his work place, depending
on his preference. However, the tests were all done with
the same laptop, the same mobile phone and the same

software setup, which will be discussed in more detail
later.

The tests were designed so that novice users should
be able to complete all tasks within the time limit of one
hour, in order to keep the produced data manageable
and the test users interested. If a user did not complete
the tasks within one hour, the test was stopped.

The most basic measure taken during the tests was
the time a user needed to complete each task. A task was
viewed as completed when an application which satisfied
the requirements was successfully executed on the mobile
phone.

Screen casts were recorded during all tests, so that
video material was available which could be reviewed and
analysed after the test. Audio was not recorded, but the
experimenter took notes of his observations during the
tests, especially those that would not show on the video
such as questions or reasoning for specific actions.

The testers were allowed to use any resource avail-
able to them, which explicitly included search engines
and online resources. This was decided on the basis
that nowadays pretty much all programmers have con-
stant broadband internet access, and prohibiting access
to it would lead to artificial test conditions which are not
based on real usage scenarios.

Questions from the test users were encouraged dur-
ing the tests, but they also were informed that only gen-
eral questions relating to the ListView component could
be answered by the experimenter. However, the experi-
menter was allowed to give tips and help on issues that
were not directly related to the interface of the ListView
component, such as the keyboard short-cut in Eclipse to
organise imports automatically.

Before the tests, all users were given a questionnaire
with questions about their general programming back-
ground and about their knowledge of the specific task
domain. They also received a few follow-up questions
after the tests, such as to their former experience with
the adapter pattern.

It was also explicitly explained to the testers that the
usability of the ListView component is to be evaluated,
not the performance of the tester. Moreover, they were
made aware of the screen recordings and the general test
procedure.

After the test, all users had the opportunity to give
feedback via a simple feedback form pertaining to the
tasks and the test procedure.

The tasks for a usability test should be designed in
such a way that they are as representative of the ac-
tual use as possible. For programming in general this
includes the tasks of code reading, understanding, adap-
tation and writing. For Android ListViews in particu-
lar however, there is no data available which would re-
veal typical usage scenarios. The time limit of one hour

(v. September 28, 2011, p.5)



A. Lautenbach Testing the usability of the Android ListView component

also excluded a number of more complex scenarios which
would require more foreknowledge. Consider for instance
a ListView using the CursorAdapter, which next to the
adapter pattern also uses the cursor pattern, usually in
correlation with a database.

The scenario of implementing a ListView with a cus-
tom icon and text per list item was chosen because it
seemed to have the appropriate level of difficulty.

4.2 Test Environment
The test environment was set up as follows. The com-
puter on which the experiments were conducted was
a Lenovo ThinkPad T500, with an Intel Core 2 Duo
P8700 processor @2.53 GHz, 4 GB of RAM and a 15.4”
widescreen with a resolution of 1680x1050, using Win-
dows 7 Professional as operating system.

The smartphone used as the test device was an HTC
Desire running Android 2.2. The programs could also
have been tested in the Android emulator which is part
of the Android SDK, but using a real device is faster and
usually perceived as more fun for the tester. However,
for the analysis of the usability test this also had the
disadvantage that the user interface of the device was
not captured with the screen cast.

The screen casts were recorded with CamStudio ver-
sion 2.6b.

Google Chrome version 12 was opened with 3 pre-set
tabs before the tests began and was explicitly brought
to the test user’s attention. The tabs had windows open
to the Android API reference, to the reference for the
ListView class, and to Google’s official ListView tuto-
rial.

The Android SDK and Eclipse with the Android
plug-in were also pre-installed, including the necessary
HTC Desire device drivers. Every tester used a new
workspace with the same settings, and every task of a
test was developed in its own Android project.

4.3 Test Tasks
In the following the three individual tasks will be dis-
cussed in detail.

Task 1: Hello-World application
The first task instructed the user to write a Hello-World
application with the use of a TextView. As discussed
in section 3, a new Android project in Eclipse already
contains a Hello-World template. Therefore, the goal
of the task was to write the same application without
defining the GUI in an XML file. A possible solution
was already shown in listing 3.

Apart from being a warm-up task, it required the
test user to go through the whole build process at least
once and let him run a simple program on the test de-
vice. This gave the user an early success experience and
familiarised him with the basic development process.

There is an official Hello-World tutorial which de-
scribes a solution to this task, so it could theoretically
be solved by just copying and pasting the code from the
tutorial.

Task 2: ListView with text

The second task was designed to familiarise the test user
with the use of the ListView component. The task was
to write a simple ListView with eight given European
city names as items. The simplest solution for this task
is described in the official ListView tutorial and involves
an ArrayAdapter. So once again copy and paste would
have been enough to solve the task.

ArrayAdapters need two pieces of data. First, they
need a reference to the TextView which should be used
to display the items. The TextView has to be defined
in an XML file. Secondly, the ArrayAdapter needs an
array or list of objects which represents the data. On
each data object, toString() is called to retrieve the
text to set on the TextView.

The idea behind this task was to give the test user
another early success story, while also introducing him
to the basic concepts used in the ListView. That is, the
use of the adapter to combine the view with the data,
and the use of references of view components defined in
XML to construct more complex GUI components.

Task 3: ListView with text and icons

Finally, the last task extends the former task by requir-
ing that a different icon be placed next to each city name
given in the previous task. The icons were provided.
This is the task which is expected to require most of
the time, as the solution can not be readily found in the
official documentation, and there is no trivial solution.

This task requires all the basic tasks which program-
mers most often have to master when dealing with an
API: to read and understand existing code, to adapt the
existing code and to write new code.

Since this is by far the most complex of the three
tasks, it is also expected that it will help to identify the
most usability issues. The other tasks have been rather
easy so that they are expected to only reveal usability
issues of little significance.

5 Background of the Test Users
In order to be able to understand the test results, the
background of the test users has to be taken into account.

5.1 General educational and
programming background

All of the users have a similar academic background,
since they did the same bachelor study at Maastricht
University, and three of them also did the same mas-
ter. Three are currently PhD students, one is a master

(v. September 28, 2011, p.6)



Testing the usability of the Android ListView component A. Lautenbach

student who is about to graduate and one is a bachelor
student who is also in the later stages of the study.

In a short depiction of how the persona of a system-
atic, pragmatic and opportunistic programmer would ap-
proach a programming task in general, two would cate-
gorise themselves as being opportunistic, and the other
three as being pragmatic.

The number of years of programming experience in
general ranged from 6 to 12 years, with a mean of 9.2
years. On average they have programmed in 5.8 different
programming languages, with Java (5 of 5), Matlab (4
of 5) and C++ (3 of 5) being the most common.

Their mean number of years of experience with Java
in particular is 7, and four of the five testers have used
Java as their main programming language during their
last project. For three of them, their last non-trivial
programming experience with Java was less than a week
ago, and for the other two it was between 3 and 6 months
ago.

Two test users indicated that they have programmed
for a commercial project at least once, and three declared
that they also did hobby projects next to their university
projects.

Some basic software design patterns are known to
all, and all but one have used at least some of them
in production code already. The theory of the adapter
pattern is known to four, but only two have applied it in
production code so far.

5.2 Knowledge of the task domain

All test users had used the Eclipse IDE before, so it
needed no introduction. Although two of the testers had
not used Eclipse in more than two years, the others had
used it recently.

GUI programming for Android and other mobile
platforms, or with the use of XML layout files, was new
to all the participants. Therefore, they received a very
short introduction to some basic Android development
concepts from the experimenter before the tests com-
menced. This included a brief explanation of Activities,
a demonstration of what a ListView component looks
like and how a new Android project can be created in
Eclipse. But most importantly, a quick explanation of
the use of XML layout files in Android and the use of
the local resource class R was given.

During the tests the experimenter provided help and
tips when they were unrelated to the task at hand. More-
over, the experimenter also provided some more exten-
sive help when it came to the general understanding of
the XML layout files, and how they can be used. This
certainly influenced the test results, but knowledge of the
use of XML layout files can usually be assumed before
a ListView component is written by an Android devel-
oper. The reasoning is that the use of XML layout files

Figure 1: Completion Times

is a very basic technique on the Android platform, which
is integrated in all official tutorials from the beginning.
But ListViews are slightly advanced components which
are usually not used by total beginners. Therefore, the
help provided for XML layout files by the experimenter
was considered to bridge that gap.

6 Usability Test Results
In the following, the test results will be discussed per
task.

6.1 Task 1 Results: Hello-World
application

All the participants finished task 1 in 3 to 6 minutes,
without any problems. An overview of the times per
task per user can be found in figure 1.

Three testers explored the reference of the TextView

class to figure out the correct methods to call and wrote
the Java code themselves. The remaining two simply
copied the code from the official Hello-World tutorial.
There were no surprises here.

6.2 Task 2 Results: ListView with text

As explained in the task description, task 2 required the
use of an XML file containing a TextView, which could
be referenced in the ArrayAdapter. All testers strug-
gled a little bit with understanding the concept and how
it can be used for user-interface construction. However,

(v. September 28, 2011, p.7)



A. Lautenbach Testing the usability of the Android ListView component

with the help of the official ListView tutorial and occa-
sional explanations from the experimenter they all fig-
ured it out in the end.

The time to completion differed greatly for this task.
The mean of the completion time was 12.2 minutes, but
the fastest tester finished after 5 minutes whereas the
slowest needed 23 minutes.

However, User3 who needed the most time slightly
misunderstood the task at first. He thought he was not
allowed to use XML layout files, so he started to look for
more complex solutions than was necessary. So this was
in part a failing of the experimenter. Moreover, when
User3 had already completed the task, a defect of the
automatic build feature in Eclipse prevented him from
compiling the solution, which prompted him to assume
that there was something wrong with his code, which
was not the case. It was resolved by a hint from the
experimenter to try to clean the project, but the user
had already lost another 5 minutes to this issue.

User4 started out with examining the interface of
the ListView API and looked for an append method
or something similar to add elements directly to the
ListView object. When that was unsuccessful he also
turned to the ListView tutorial. This reveals that User4
expected the ListView to contain its own data elements.

User1, User2 and User5 started directly with the
ListView tutorial and more or less just copied the solu-
tion, so there was not much to be learned about the use
of the interface.

6.3 Task 3 Results: ListView with text
and icons

Both User1 and User4 did not manage to finish this task
in the given time limit. But User4 had a clear path to
the solution when time ran out, he probably would have
needed only a few more minutes to finish. User1 seemed
rather lost, though.

Only counting the people who completed the task,
the mean of the completion time was 34.3 minutes, with
a minimum of 30 and a maximum of 40 minutes.

After figuring out that the ListView tutorial does
not cover this scenario, the first step of all participants
was to look for a simple constructor of the ArrayAdapter
which could take both text and images as input data.
Failing to find this, they all turned to Google to look for
answers, and many different solutions were found that
way.

One of the easiest and most popular ways to im-
plement a ListView with custom icons is to subclass
ArrayAdapter and override its getView method. Unfor-
tunately, the documentation for the getView method is
non-existent in the API reference of the ArrayAdapter.
One has to go to the reference of Adapter to get a proper
description of that method. The getView method re-

ceives an index of the data for which a view is requested,
and returns the view to display for that data item. So to
solve the task, the view which should be returned by the
getView() call should consist of a LinearLayout con-
taining an ImageView and a TextView. Then the text of
the TextView, and the icon depicted with the ImageView
can be dynamically adapted during the getView call,
based on the position of the item.

An intermediate step taken by almost all participants
was to first develop a ListView which used a single icon
for all items. This only requires a minimal adjustment
of the solution of task 2. The XML file from solution 2
has to be changed so that it contains a LinearLayout

holding a TextView and an ImageView with a hard-
coded reference to the icon which should be used. Then
only a different constructor of ArrayAdapter has to be
used, namely one which takes a complex view contain-
ing a TextView, and the ID of that TextView. Then
the ArrayAdapter will return the complex view as the
item, and will only adapt the content of the TextView,
identified by the given ID. Every participant got at least
this far. But User1 kept looking for a simpler solution
than writing a custom adapter, finding it hard to believe
that such a seemingly simple task should have to be so
complex.

Only User2 seemed to understand the relationship
between the ListView and the different ListAdapters

immediately. Once you realise that the adapter pattern
is used there, it should be obvious that either an adapter
must exist which is sufficient for the task, or the solution
must be reached by implementing an adapter yourself.
User2 did state that he knew this particular usage pat-
tern of the adapter from the Eclipse Rich Client Platform
(RCP) API. But he also wasted quite some time look-
ing for a simpler solution, hoping that he could avoid to
write a custom adapter.

None of the other participants seemed to make the
connection to the adapter pattern, at least no one even
mentioned the adapter as a pattern in this context. On
the other hand, this is completely ignored in the Android
documentation, too. Unless you have previously been
exposed to this specific usage scenario of the adapter
pattern, the connection is not obvious.

By now it should be clear that there was a definite
mismatch of what the test users expected from the in-
terface and what the ListView component offered.

What seems a little bit surprising is that almost
no one looked further than the ArrayAdapter; other
adapters such as SimpleAdapter were not even consid-
ered.

6.4 Test Feedback

The feedback form which was presented to all partici-
pants after the test yielded a few notable results.

(v. September 28, 2011, p.8)



Testing the usability of the Android ListView component A. Lautenbach

The question whether the tester liked to use the API
resulted in three positive, one neutral and one negative
answers.

The API documentation, however, was declared in-
sufficient by all participants, especially with respect to
task 3. Only User2 complained about a lack of docu-
mentation of the XML features instead of a lack of doc-
umentation for ListViews with icons, who incidentally
is also the only user who understood the underlying pat-
tern and has an extensive commercial background.

One participant also stated that task 3 was too dif-
ficult because it required too much background knowl-
edge.

7 Conclusions and Future
Research

The conducted usability test only revealed one major
usability issue, namely the mismatch in the level of ab-
straction exposed by the ListView component, and the
level of abstraction users expect for the given scenario.
The test users kept looking for an option to add icons to
the ArrayAdapter. Displaying custom icons next to a
list of items is a common scenario which they expected
to be directly supported by the API, which is not the
case.

The problem was that, even though the eventual so-
lution is quite simple, it was not perceived as such by the
people who did not recognize the underlying pattern.

To alleviate this problem, one could extend the offi-
cial ListView tutorial with material on how to achieve
the above-mentioned effect, and to improve the docu-
mentation of the ListView and ArrayAdapter classes.
This is what the test users themselves suggested and
would be the least invasive.

Another possible solution would be to add a sub-
class of the ArrayAdapter to the official API, for the
special case of a ListView with icons and text, just as
the ArrayAdapter is a special adapter for a ListView

where only a TextView needs to change. The API de-
signers probably considered this API bloat, because such
a class can easily be written by the developer himself.

It is conspicuous that the testers characterised as be-
ing opportunistic both failed to finish within the time
limit. This leads to the hypotheses that the above men-
tioned usability issue is worse for opportunistic program-
mers than for pragmatic programmers.

The validity of the performed tests is somewhat lim-
ited, because none of the test users are actual Android
developers. It is further limited by the fact that they all
have a highly similar academic background.

In the future, it would be interesting to repeat this
usability test with two test groups, one using a solution
with a custom ArrayAdapter subclass, and one with

improved documentation and extended tutorials. This
could provide insight into the question which of the two
proposed solutions would be better suited for alleviating
the discussed usability problem.

To determine whether the new proposed class should
indeed be added to the API, it might be interesting to
conduct a study on how many open-source projects cur-
rently use a ListView with icons, and what their per-
ceived level of difficulty was for implementing such a
component.

It would also make sense to repeat the usability test
with a more heterogeneous test group to validate the
findings. In addition, the tasks could be adapted to in-
clude pure code-reading tasks, and tasks which test for
“debugability”.

Acknowledgements

I would like to thank my supervisor Jos Uiterwijk
from Maastricht University for his constructive feedback,
ideas and patience.

Moreover, I would like to thank my former colleagues
from GravityZoo, who also supported me while writing
this thesis, especially in the first few stages while I was
still employed at GravityZoo.

Finally, I owe a debt of gratitude to my family and
friends for their reviews and general advice on writing a
paper.

References

[1] Arnold, K. (2005). Programmers are people, too.
ACM Queue, Vol. 3, No. 5, pp. 54–59.

[2] Barra, Hugo (2011). Android statistics.
http://googleblog.blogspot.com/2011/05/

android-momentum-mobile-and-more-at.html.

[3] Beaton, W. (2008). Adapters. http://

www.eclipse.org/ articles/article.php?

file=Article-Adapters/index.html.

[4] Blanchette, J. (2008). The little manual of API
design. http://chaos.troll.no/~shausman/

api-design/api-design.pdf.

[5] Bloch, J. (2001). Effective Java. Programming
Language Guide. The Java Series. Addison-
Wesley, Upper Saddle River, NJ, USA.

[6] Bloch, J. (2006). How to design a good API and
why it matters. OOPSLA ’06: Companion to
the 21st ACM SIGPLAN Symposium on Object-
Oriented Programming Systems, Languages, and
Applications, pp. 506–507, ACM, New York, NY,
USA.

(v. September 28, 2011, p.9)



A. Lautenbach Testing the usability of the Android ListView component

[7] Bloch, J. (2007). Google Tech Talks: How
to design a good API and why it mat-
ters. http://www.youtube.com/watch?v=

aAb7hSCtvGw.

[8] Clarke, S. (2004). Measuring API usability. Dr.
Dobb’s Journal Special Windows/.NET Supple-
ment, Vol. 28, No. 05, pp. S6–S9.

[9] Cwalina, K. and Abrams, B. (2008). Framework
Design Guidelines. Microsoft .NET Development
Series. Addison-Wesley, Upper Saddle River, NJ,
USA.

[10] Ellis, B., Stylos, J., and Myers, B.A. (2007). The
factory pattern in API design: A usability eval-
uation. ICSE ’07: Proceedings of the 29th In-
ternational Conference on Software Engineering,
pp. 302–312, IEEE Computer Society, Washing-
ton, DC, USA.

[11] Gamma, E., Helm, R., Johnson, R., and Vlis-
sides, J. (1995). Design Patterns. Elements of
Reusable Object-Oriented Software. Professional
Computing Series. Addison-Wesley, Indianapolis,
IN, USA.

[12] Google Inc. (2011). Android API reference.
http://developer.android.com/reference/.

[13] Green, T. R. G. and Petre, M. (1996). Usabil-
ity analysis of visual programming environments:
A “cognitive dimensions” framework. Journal of
Visual Languages and Computing, Vol. 7, No. 2,
pp. 131–174.

[14] Green, T. R. G., Blandford, A., Church, L.,
Roast, C.R., and Clarke, S. (2006). Cognitive
dimensions: Achievements, new directions, and
open questions. Journal of Visual Languages and
Computing, Vol. 17, No. 4, pp. 328–365.

[15] Henning, M. (2006). The rise and fall of CORBA.
ACM Queue, Vol. 4, No. 5, pp. 28–34.

[16] Henning, M. (2007). API design matters. ACM
Queue, Vol. 5, No. 4, pp. 24–36.

[17] Lewis, C. and Rieman, J. (1993). Task-
centered user interface design. http://hcibib.
org/tcuid/.

[18] Nielsen, J. (1993). Usability Engineering. Morgan
Kaufmann, San Francisco, CA, USA.

[19] Parnas, D. L. (1972). On the criteria to be used
in decomposing systems into modules. Commun.
ACM, Vol. 15, No. 12, pp. 1053–1058.

[20] Stylos, J. and Clarke, S. (2007). Usability im-
plications of requiring parameters in objects con-
structors. ICSE ’07: Proceedings of the 29th In-
ternational Conference on Software Engineering,

pp. 529–539, IEEE Computer Society, Washing-
ton, DC, USA.

[21] Stylos, J. and Myers, B.A. (2008). The impli-
cations of method placement on API learnabil-
ity. SIGSOFT ’08/FSE-16: Proceedings of the
16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 105–
112, ACM, New York, NY, USA.

[22] Stylos, J., Clarke, S., and Myers, B.A. (2006).
Comparing API design choices with usability
studies: A case study and future directions. PPIG
18: Proceedings of the 18th Annual Workshop of
the Psychology of Programming Interest Group,
pp. 131–139.

[23] Zibran, M.F. (2008). What makes APIs difficult
to use? International Journal of Computer Sci-
ence and Network Security, Vol. 8, No. 4, pp.
255–261.

(v. September 28, 2011, p.10)


