
Random Visual GUI Testing: Proof of Concept
Emil Alégroth

Chalmers University of Technology
Department of Computer Science and Engineering

SE-412 96 Göteborg, Sweden
Emil.Alegroth@Chalmers.se

Abstract—Market demands for higher quality software and
shorter time-to-market delivery have resulted in a need for new
automated software testing techniques. Most automated testing
techniques are designed for regression testing that limit their fault
finding ability to faults explicitly tested in scenarios/scripts. To
overcome this limitation, companies define test processes with
several test techniques, e.g. unit testing and random testing
(RT). RT is a technique that can be performed manually or
automatically with tools such as Fuzz, DART and Quickcheck.
However, these tools operate on lower levels of system abstraction,
leaving a gap for a Graphical User Interface (GUI), bitmap level,
automated RT technique.

In this paper we present proof of concept for Random Visual
GUI testing (RVGT), a novel automated test technique that
combines GUI based testing, Visual GUI Testing, with random
testing. Proof of concept for RVGT is evaluated in a three phase
study with results that show that RVGT is applicable for both
functional and non-functional/quality requirement conformance
testing. Furthermore, results from a survey performed in in-
dustry indicate that there is industrial need for the technique.
These pivotal results show that further research into RVGT is
warranted.

Keywords-Visual GUI testing; Random testing; Proof of Con-
cept

I. INTRODUCTION

The demands for higher software quality and faster time
to market delivery are continuously increasing in software in-
dustry. These demands force software development companies
to focus a larger percentage of time on development, leaving
less time for software quality assurance. Quality assurance
that can constitute more than 40 percent of the development
cost of a system [1]. To aid companies to reach higher
quality and lower development time a plethora of automated
testing techniques have been developed, e.g. unit testing [2],
record and replay [3], and Visual GUI Testing [4], [5]. These
automated testing techniques are used for regression testing,
i.e. to ensure that the system under test (SUT) still conforms
to the system requirements after change or maintenance of the
system [6].

Most test tools focus on functional requirement confor-
mance testing but there are also tools that can test a system’s
non-functional/quality requirement (NFR) conformance. How-
ever, most of these tools focus on performance, availability and
other quantifiable types of NFRs, whilst NFRs like usability
and user experience are left without support. This is one reason
why automated testing is not considered a replacement to man-
ual testing. Another reason is because most automated testing

techniques are only able to find faults, functional or NFR re-
lated, which have been specified in the scripted test scenarios.
Therefore, a common industrial practice is to complement the
automated scenario-based testing with manual test techniques
such as random or exploratory testing. Both these techniques
are generally performed through interaction with the SUT’s
GUI but with the important distinction that with exploratory
testing the practitioner aims at identifying the cause of a fault,
not just that there is a fault, which is the case with random
testing [7], [8]. However, in contrast to exploratory testing,
random testing can be performed automatically with tools such
as Direct Automated Random Testing (DART) [9], Fuzz [10]
and Quickcheck [11]. Automated random testing is however
generally performed on lower levels of system abstraction. A
gap therefore exists for a high-level technique that can perform
user emulated random testing through the SUT’s GUI.

In our previous work we have evaluated an automated test
technique, referred to as Visual GUI Testing (VGT) [4], [5].
VGT uses image recognition to interact with a SUT through
its GUI bitmap layer, i.e. what is shown to the human user on
the computer monitor. The image recognition is what differ-
entiates VGT from previous GUI based test techniques, e.g.
coordinate- or component/widget-based record and replay [3].
These techniques require access to the SUT’s components, un-
derlying APIs or source code, which limits their applicability
dependent on SUT implementation. In contrast, VGT is more
flexible since the image recognition makes it non-intrusive
and independent of SUT implementation, operating system or
even platform, e.g. desktop, mobile or cloud. Furthermore, the
image recognition allows the technique to emulate human user
behavior since all interactions with the SUT are performed
through, and with, the same interfaces a human uses, i.e.
GUI bitmaps and the operating system’s mouse and keyboard
operations. Therefore, VGT also has the potential to perform
automated GUI bitmap based random testing, which in the
continuation of this paper will be referred to as Random
Visual GUI Testing (RVGT). However, to the author’s best
knowledge, no research has been conducted on RVGT, either
for conformance testing of functional or non-function/quality
requirements.

In this paper we aim to bridge this gap in research with
results from a three phase study with the goal of providing
proof of concept that VGT is applicable for automated ran-
dom functional requirement and NFR conformance testing.
Furthermore the study will present a survey performed at the



Swedish safety-critical software development company, Saab
AB, which shows that there is a need for further research into
RVGT and that it perceivably can have positive impact on
industrial testing. Thus, the research questions that this study
aims to answer are,

1) RQ1: Can random testing be combined with Visual
GUI Testing to perform automated, GUI bitmap based,
random testing?

2) RQ2: Can random Visual GUI Testing be used to verify
system conformance to non-functional/quality require-
ments?

3) RQ3: Is there a need for/interest in random Visual GUI
Testing in industrial practice?

The continuation of this paper is structured as follows.
Section II will present related work regarding random testing,
automated random testing and VGT, followed by the research
methodology used in this study in Section III. In Section IV
the results of the study will be presented. Finally the paper
vill be concluded in Section V.

II. RELATED WORK

Random testing (RT) is a technique that is commonly used
to complement automated testing in industry. The technique
is performed through random generation of, and/or random
execution, of test cases with the overall aim to cover the
input space of a system. Thus, providing test coverage of
both common and uncommon cases that appear during system
usage and which may be faulty. Furthermore, the technique can
be performed manually, e.g. through random interaction with
the system under test (SUT) to force it into a faulty state, or
automatically by using tools, e.g. Direct Automated Random
Testing (DART) [9], Fuzz [10] and Quickcheck [11]. In addi-
tion, even though RT is based on random execution of, often
mutually exclusive, SUT interactions, studies have shown that
RT has equal or even higher fault finding ability than structured
test techniques because of higher input coverage [11], [12].

Furthermore, RT allows the user to quantify the significance
that a test will not fail and formulate statements like ”it is
certain that program P will not fail more than once in 10.000
calculations”. The conventional theory behind such a statement
comes from the equation,

1

φ
=

1

1− (1− e)1/N

where φ is the failure rate, 1/φ is the Mean Time To Failure
(MTTF), e is the probability that one failure will be observed
and N the number of test runs [8]. Hence, the number of tests
required to acquire a confidence of 1-e for a given MTTF is,

log(1− e)

log(1− φ)

This value can for instance be used as a quality metric of
the tested software. However, as with all techniques, RT has
drawbacks including, but not limited to, that it can be difficult
to define the input space, observe/evaluate the RT output,
develop proper oracles to support RT, etc.

Another technique similar to RT that is often used in
industry is exploratory testing (ET), defined as simultaneous
learning, test design, and test execution [13]. ET is based on
random input to identify faults but instead of using mutually
exclusive interactions this technique relies on cognitive deci-
sion making and the user to use previous test results to narrow
in on the cause of a fault. Because of this cognitive element,
ET is primarily a manual practice that human testers perform
without knowing about it, i.e. if a human finds a fault, he/she
naturally tries to find its cause [7]. In summary, ET focuses
on depth, i.e. finding the cause of a fault, whilst RT focuses
on breath, i.e. finding many faults but necessarily not what
causes them.

RT and ET are primarily performed manually on a GUI
level because there is a gap in terms of tool-support. However,
this gap could potentially be filled by Visual GUI Testing
(VGT) [4], a novel test technique that is currently emerging
in industry. VGT is a tool supported technique that uses
scenario-based scripts and image recognition to interact with
the system under test (SUT) through its GUI on a bitmap
level, i.e. interaction against what is actually shown to the
user on the computer monitor. The image recognition allows
VGT to emulate human user behavior and could perceivably
therefore be used for automated RT and ET. This hypothesis
is supported by previous work into VGT that has shown the
technique’s industrial applicability for scenario-based system
and acceptance test automation, resulting in modular scripts
that could be randomized on a test suite level of abstraction [4],
[5]. However, to the author’s best knowledge, there are no
studies that use image recognition to perform automated GUI
based RT.

As stated, VGT is a novel automation technique, and as
with any new automated test technique it requires verification.
One approach that is common to verify test techniques, ora-
cles, etc., is mutation testing. Mutantion testing is conducted
through fault injection into the SUT, e.g. by randomly mod-
ifying input to, or operations in, the SUT to produce faulty
output that the tested technique should be able to capture.
Even though these faults are artificially created, studies have
shown that these faults are equally difficult, or even more
difficult, to identify than industrial grade faults [14]. In this
study, mutation testing is used to verify RVGT’s ability to find
faults related to a system’s functional requirements.

III. METHODOLOGY

The study presented in this paper consists of three phases.
In the first phase, a proof of concept study was performed to
evaluate VGT’s applicability for random testing of functional
requirement conformance. The evaluation was performed on
two calculator applications, tested with a RVGT script written
in the open source VGT tool, Sikuli [15]. In the second
phase, another RVGT script was developed to evaluate VGT’s
applicability for random testing of non-functional/quality re-
quirement (NFR) conformance. This evaluation was performed
with a commercial Swedish bus-travel application to show
RVGT’s applicability on real-world applications. Both phase



one and two were performed on a computer with an 3.07GHz
Intel(R) Core(TM) i7 CPU, 6GB of RAM, two GeForce
GTX 460 graphic cards with SLi support and the Windows
7 Professional Operating System. In the third phase of the
study a survey was performed in industry, at the company
Saab AB, to evaluate the industrial need of RVGT. Thus, this
study follows the principles of the circular knowledge transfer
model described by Gorschek et al. [16]. The model highlights
the importance of research knowledge transfer/development in
incremental parts. It also states that laboratory experimentation
is a good idea before industrial deployment to catch research
problems and thereby save unnecessary costs for industry.
Hence, this study aims to be an initial building block for
future research into RVGT, such as industrial evaluation of
the technique, further technical improvement of random testing
algorithms, etc. The continuation of this section will describe
each phase of the study in more detail.

A. Phase One: Calculator evaluation

In the first phase of the study a RVGT script was written
to test the functional requirement conformance of calculator
applications. Thus, this phase was performed with simplistic
applications that have limited generalizability. However, this
choice of applications was motivated by the exploratory nature
of this phase of the study since it was unknown if VGT was at
all applicable for GUI based random testing. Therefore, a SUT
was required that could receive random input but for which it
was possible to construct a dynamic oracle. Hence, an oracle
that based on random input values could evaluate an expected
output for comparison to the actual output from the SUT. The
RVGT script was written using Sikuli [15], an open source
VGT tool, which uses Python as a scripting language. Python
is an object-oriented programming language that supports all
aspect of a conventional programming language such as loops,
branching, randomization, etc. However, in Sikuli the Python
language has been extended with a set of methods that use the
tool’s image recognition capabilities. These additional methods
allow the user to write scripts that can interact with any bitmap
displayed on the computer monitor and through scenarios that
exactly emulate human user interaction with the SUT.

The RVGT script was developed using a modularized
architecture, consisting of four main parts. The first part
of the script contained a set of variables to configure the
script’s speed, the tool’s image recognition sensitivity, etc.
Furthermore, this part of the script contained the GUI bitmap
components to allow Sikuli’s image recognition algorithm to
interact with the calculators. The bitmaps were stored in lists
which made them simple to change in order to migrate the
RVGT script from one calculator to another. The second part
of the script contained the script oracle that based on the
randomized input numbers, generated in the range of -100.000
to 100.000 and a randomized calculator operation, calculated
the expected output. The third part of the script defined the
GUI interaction with the SUT, i.e. translated the randomized
input numbers into click interactions that Sikuli could perform
using the mouse-cursor. Input to the calculators was given as

Fig. 1. Windows calculator interface.

Fig. 2. Simple Java calculator interface

mathematical operations following the pattern,

Clearcalculator,

Input1[0, 100.000], (Optional)Negation,

Operation[addition, subtraction,multiplication, division],

Input2[0, 100.000], (Optional)Negation,

Equals.

Hence, if two positive single digit numbers were randomly
generated the script would perform five interactions with the
SUT whilst two negative six digit random numbers would
require 17 interactions. Each mathematical operation was
followed by an assertion to verify that the output from the
calculator was equal to the expected output. The fourth and
final part of the script produced output. Output that consisted
of what the randomized numbers were, what mathematical
operation that was used, what expected value the oracle had
calculated, what the actual value from the calculator was and
finally a verdict of the performed assertion.

In order to evaluate the RVGT script it was applied on two
calculators, the standard Windows calculator and a custom
Java calculator, GUI’s shown in Figure 1 and Figure 2. The
RVGT script was developed for the Windows calculator and
then migrated to the custom Java calculator. To test the
RVGT script’s capabilities for long-term testing they were
executed 10.000 times for each calculator during which the
execution time and number of faults were measured. Due to the
simplicity of the SUTs, the hypothesis was that there would be
no faults in either the Windows or the custom Java calculator.
Hence, any fault found by the RVGT script would most likely
be a false positive caused either by the image recognition
failure or faulty implementation of the RVGT script itself.

Consequently, since the RVGT script, as expected, did not
find any faults in the calculators, other than false positives, the



custom Java calculator was modified by introducing mutants
into it, for mutantion testing [14]. These mutants caused the
calculator to randomly calculate a faulty value in 10 percent
of all calculations, also when calculations were performed
by a human. In addition, the Java calculator was modified
with an additional output module to track which of the
calculations were faulty. The RVGT script was then executed
against the mutated Java calculator during which 1000 tests
were generated. After the execution the result logs from the
RVGT script and the calculator were analyzed through visual
inspection to determine how many of the randomly infused
mutants the RVGT script had been able to kill. The visual
inspection was performed by comparing the output logs from
the calculator and the RVGT script.

It must however be stressed that a calculator is a quite
simplistic system in comparison with most industrial grade
systems. However, it is not completely irrelevant to showcase
proof of concept since many industrial systems build on basic
GUIs with only a few buttons and minimalistic output to the
user even though the functionality of the SUT’s backend might
be quite extensive and/or complex. An example of such a
system is the airport management system presented in [4],
which had a shallow simplistic GUI, but which controlled
safety-critical functionality.

In summary, phase one aimed to provide the proof of
concept support for RVGT’s applicability to test functional
requirement conformance. This was achieved through devel-
opment of a RVGT script to test calculator applications.

B. Phase Two: Commercial web-application

In phase two, the evaluation of RVGT was expanded also
to verification of non-functional/quality requirement (NFR)
conformance. Furthermore, to gain a broader view of RVGT’s
applicability, the evaluation in this phase was performed with
a commercial web-service, which in the continuation of this
paper will be referred to as the travel planner. The travel
planner, screenshot of its GUI shown in Figure 3, is a web-
application that allows the user to schedule bus-travel in parts
of Sweden. Bus-travel is calculated based on user input that
should consist of a start location, an end location and timing
information. These input can be given by the user either as text
strings or by clicking on a map. Output from the application is
presented in a list of different bus travel alternatives, including
departure times, if the bus fare will be late, etc. One feature of
the travel planner, which is relevant for the evaluation, is that
it automatically suggests a list of alternative locations based
on the first three letters that the user inputs to the application.

The choice to perform the evaluation on this application
was motivated by its representativeness for commercial web-
applications and thus of importance/interest for the knowledge
transfer to industry, as expressed by Gorschek et al. [16]. How-
ever, since access to the actual non-functional requirements
of the application could not be acquired during the study,
they had to be reverse-engineered based on industrial best
practice. Ten NFRs were created for the evaluation, presented
in Table I, based on their representativeness for actual NFRs

Fig. 3. The traveler planner text input GUI.

Nr NFR Description Type
1 The “travel planner” shall provide the user with

alternative bus stops within 1 second after the
first three letters of a bus stop, or location, has
been given as input.

Performance

2 No trips before the current, or user selected, time
shall be presented as available.

Reliability

3 After a user clicks the “search-trip” button it
shall take maximum 5 seconds before a result
is presented.

Performance

4 Late fares shall be presented in a clear way that
they are late.

Usability

5 When a user clicks the update button, for a
previous search, he/she shall receive new data
from the server regarding the trip.

Availability

6 The service shall be available 90 percent of the
time.

Availability

7 It shall be possible for a user to provide traveling
input in different ways, as textual input or by
clicking on a map.

Usability

8 The “travel planner” application shall work in
several different browsers.

Portability

9 It shall be possible for a blind user to tab through
the entire interface without getting stuck in a
“sink-hole”.

Usability

10 The “travel planner” shall not accept negative
time input.

Usability

TABLE I
THE NFRS THAT WERE TESTED BY THE NFR RVGT SCRIPT.

used in industry. Representativeness was evaluated through
comparison to industrial NFRs, i.e. best practice, which were
available during the study. Furthermore, the NFRs were chosen
to cover different types of NFRs, including both qualitative and
quantitative requirement types, i.e. Performance, Reliability,
Usability, Availability and Portability.

Once the NFRs had been defined, a RVGT script was
developed to test them. Similar to the script in phase one,
the travel planner RVGT script was based on a modular
architecture with one part for setting up properties of the script,
one part that contained the actual tests, one part for output,
etc. The largest difference between the scripts developed in
phase one and phase two was that randomization in phase
two was performed on two different levels of abstraction,
i.e. on both an input level but also in what order the tests
were executed. Hence, during script execution against the



travel planner, which was performed with 1000 tests, each of
the test cases were chosen randomly with a 1/10 probability.
Furthermore, all textual and numeric input to the application
was randomized. For the textual input the randomization was
achieved by randomly inputting three letters to the application
and then choosing the top alternative that was suggested by
the application. A similar scheme was used for numeric input,
e.g. time.

In summary, phase two aimed to identify support for
RVGT’s applicability for automated random testing of NFR
conformance, evaluated on a commercial web-application us-
ing constructed, yet realistic, NFRs. However, it should once
again be stressed that due to the small number of NFR tests
the evaluation only has limited representativeness for industrial
NFR testing.

C. Phase Three: Industrial survey

In the third phase of the study, a questionnaire survey was
performed at the company Saab AB to evaluate if there is a
need for RVGT in practice. The questionnaire was anonymous,
voluntary and was handed out to 13 industrial practitioners
that were chosen through convenient sampling. Ten people
answered the survey, leaving a response rate of 77 percent.
The industrial need for RVGT was evaluated with the question,
“What effect would the introduction of RVGT perceivably
have at Saab?”, which was presented as a forced choice
question with the three alternative answers,

1) Make current testing worse
2) Not change anything
3) Improve current testing

Included in the questionnaire was a one page summary of
RVGT and the proof of concept evaluations performed in phase
one and phase two.

IV. RESULTS

In phase one of the evaluation, a RVGT script was developed
to randomly test the functionality of two calculators. Results of
the first and second part of phase one found no faults in either
the Windows calculator or the custom Java calculator that was
developed for the evaluation. However, the script still reported
that 0.59 percent (less than one percent) of the tests failed
with false positive test results. The false positives occurred
either because of a mismatch between how the calculator and
the oracle rounded fractions, i.e. the precision of the fractions
were different which caused the result comparison to fail, or
due to image recognition failure. The image recognition failure
occurred when an input number with two subsequent nines was
generated, e.g. 199 or 991, since the mouse curser changed the
GUI state such that the image recognition algorithm could not
find the second nine. This problem only appeared for nines
and could easily have been solved by replacing the image for
the button in the script. However, both these issues show the
difficulties of constructing a perfectly functioning oracle, even
for simplistic applications.

In the third part of phase one, mutants were introduced
into the Java calculator, causing it to produce faulty output

10 percent of the time. Analysis of the output from the
calculator showed that 112 mutants were introduced, for the
1000 generated tests, of which 100 percent could be identified
and killed by the RVGT script. However, the script reported
114 failures, i.e. 2 false positives. Analysis of these two
failures showed that they were caused by the same oracle
problem as in the first two parts of phase one. In summary,
phase one provided proof of concept of RVGT’s applicability
to test functional requirement conformance but that oracle
creation can be difficult, which caused the RVGT script to
have a trustworthiness of 99 percent.

In phase two, 1000 tests were randomly performed with
random input to test 10 quality attributes, summarized in
Table I, for the travel planner application. Out of the 1000
generated tests, two threw exceptions of which one was a
fatal exception that caused that particular test to fail. Hence,
999 tests were completed and one failed due to an exception.
Figure 4 visualizes the test results and also shows that the test
cases were chosen with an even distribution. Further analysis
of the results shows that the tests had overall high success-
rate but with test number 4 being an outlier. Figure 4 shows
that the travel planner primarily struggled with performance
and availability tests. Worth noting is that the 10 test cases,
due to the eighth NFR conformance test (See Table I), were
performed in two different web-browsers, i.e. every time this
test case was randomly chosen the script switched from one
web-browser to the other. Analysis of the test case success-rate
showed no significant difference between the two browsers
since the 114 browser switches were uniformly distributed
over the 1000 generated tests. This test also showcases VGT’s
flexibility and ability to work seamlessly with several GUI
based application once.

Analysis of the outlier, test 4, showed that its low success-
rate was caused by faulty oracle implementation. If the result-
ing list of available bus fares from a search did not include
any late fare the test failed. Thus, once again showing the
difficulties of developing a perfect oracle. Further analysis of
the results showed that most failures were caused by high
network latency that caused the scripts’ assertions to time out
when the travel planner application did not respond within the
specified time frame. The result that was the most puzzling was
that the travel planner in some cases accepted negative time
input in test 10. No explanation was found for this behavior
since it could not be replicated manually.

In phase three, a survey was performed with 10 industrial
practitioners to evaluate if there is an industrial need for
RVGT. Results of the survey provide support for a need of
the technique since most of the industrial practitioners stated
that RVGT would perceivably improve the company’s current
testing (Median value 3, see question in Section III-C).

Consequently, the results from the evaluations performed in
phase one, two and three provide proof of concept that RVGT
is applicable for conformance testing of both functional and
non-functional/quality requirements. However, this research is
only pivotal, showing that the technique is at all applicable
and that there is an industrial need for the technique. Future



Fig. 4. Summary of the results from experiment 4. Each bar shows the
number of successful and failed NFR test cases.

RQ RQ an-
swer

Summary

1 Yes The random test script, developed in phase one to test
calculators, provides proof of concept for random
Visual GUI Testing’s (RVGT) applicability to test
functional requirements.

2 Yes The random test script, developed in phase two for
the commercial “travel planner” application provides
proof of concept for random Visual GUI testing’s ap-
plicability to test non-functional/quality requirements
of different types, i.e. performance, availability, reli-
ability and usability requirements.

3 Yes The results from the questionnaire survey provides
support that there is an industrial need for random
Visual GUI Testing.

TABLE II
SUMMARY OF THE COLLECTED RESULTS FROM EACH EXPERIMENT AND

THEIR CONNECTION TO THE RESEARCH QUESTIONS.

work therefore includes evaluation of RVGT on more types
of software systems, web, desktop, industrial software, etc.,
as well as other requirement types, e.g. robustness, safety and
security.

V. CONCLUSION

Random Visual GUI Testing (RVGT) takes the strengths
from Visual GUI Testing (VGT), e.g. flexibility and user
emulation, and combines it with the practices of random
testing to create an automated GUI based random testing
technique. To the author’s best knowledge there is no previous
work that focuses on the combination of random testing and
image recognition-based system under test (SUT) interaction.
However, there are other tools available for automated random
testing but these tools interact with the SUT on a lower
level of system abstraction, which limit their capabilities
for testing, for instance, non-functional/quality requirement
(NFR) conformance, e.g. SUT usability. These tests are instead
performed manually in industry.

In this paper we have presented a three phase evaluation
study with the goal of providing initial proof of concept for
RVGT, i.e. that the technique is applicable for both functional
and NFR conformance testing. Phase one of the study was

performed with two calculator applications for which a test
script was written in the open-source tool Sikuli [15] that gen-
erated and inputted random numbers through GUI interaction
and then compared the visual output automatically. To test
the fault-finding ability of RVGT, mutation testing was used
to introduce faults in a calculator’s operations that caused it
to produce faulty output 10 percent of the time in a long-
term test with 1000 generated RVGT test cases. 112 mutants
were generated that could all be identified by the RVGT script.
In phase two, a script was written for a commercial web-
application to test its NFR conformance. Results showed that
RVGT works for test cases executed in random order, with
random textual and numeric input, asserted through automated
visual inspection. Furthermore, in phase three, a questionnaire
survey was performed with 10 industrial practitioners at the
company Saab AB that showed a need for the technique.

In summary, this study provides initial proof of concept
that RVGT can be applied for GUI based random testing
of functional as well as non-functional/quality requirement
conformance testing. Furthermore, the study shows that there
is a need for the technique in industry which also shows that
further research into RVGT is warranted.

REFERENCES

[1] I. Jovanović, “Software testing methods and techniques,” The IPSI BgD
Transactions on Internet Research, p. 30, 2009.

[2] M. Olan, “Unit testing: test early, test often,” Journal of Computing
Sciences in Colleges, vol. 19, no. 2, pp. 319–328, 2003.

[3] A. Adamoli, D. Zaparanuks, M. Jovic, and M. Hauswirth, “Automated
gui performance testing,” Software Quality Journal, pp. 1–39, 2011.

[4] E. Börjesson and R. Feldt, “Automated system testing using visual gui
testing tools: A comparative study in industry,” ICST, 2012.

[5] E. Alegroth, R. Feldt, and H. Olsson, “Transitioning manual system test
suites to automated testing: An industrial case study,” ICST, 2012.

[6] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing test
cases for regression testing,” Software Engineering, IEEE Transactions
on, vol. 27, no. 10, pp. 929–948, 2001.

[7] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case
study,” in 2005 International Symposium on Empirical Software En-
gineering, 2005. IEEE, 2005, p. 10.

[8] R. Hamlet, “Random testing,” Encyclopedia of software Engineering,
1994.

[9] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated
random testing,” in ACM Sigplan Notices, vol. 40, no. 6. ACM, 2005,
pp. 213–223.

[10] J. Forrester and B. Miller, “An empirical study of the robustness of
windows nt applications using random testing,” in Proceedings of the
4th conference on USENIX Windows Systems Symposium-Volume 4.
USENIX Association, 2000, pp. 6–6.

[11] K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random
testing of haskell programs,” in Acm sigplan notices, vol. 35, no. 9.
ACM, 2000, pp. 268–279.

[12] W. Gutjahr, “Partition testing vs. random testing: The influence of
uncertainty,” Software Engineering, IEEE Transactions on, vol. 25, no. 5,
pp. 661–674, 1999.

[13] J. Bach, “Exploratory testing explained,” Online: http://www. satisfice.
com/articles/et-article. pdf, 2003.

[14] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?[software testing],” in Software Engineer-
ing, 2005. ICSE 2005. Proceedings. 27th International Conference on.
IEEE, 2005, pp. 402–411.

[15] T. Yeh, T. Chang, and R. Miller, “Sikuli: using gui screenshots for search
and automation,” in Proceedings of the 22nd annual ACM symposium
on User interface software and technology. ACM, 2009, pp. 183–192.

[16] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A model for
technology transfer in practice,” Software, IEEE, vol. 23, no. 6, pp.
88–95, 2006.


