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We consider a Bayesian statistician (B) communicating with an untrusted
third party (A). B wants to convey useful answers to the queries of A, but with-
out revealing private information. For example, we may want to give statistics
about how many people suffer from a disease, but without revealing whether a
particular person has it. This requires us to strike a good balance between utility
and privacy. In this extended abstract, we summarise our results on the inherent
privacy and robustness properties of Bayesian inference [1]. We formalise and
answer the question of whether B can select a prior distribution so that a com-
putationally unbounded A cannot obtain private information from queries. Our
setting is as follows:

(i) B selects a model family (FΘ) and a prior (ξ).

(ii) A is allowed to see FΘ and ξ and is computationally unbounded.

(iii) B observes data x and calculates the posterior ξpθ|xq but does not reveal
it. Instead, B responds to queries at times t “ 1, . . . as follows.

(iv) A sends a query qt to B.

(v) B responds qtpθtq where θt is drawn from the posterior: θt „ ξpθ|xq.

We show that by choosing FΘ or ξ appropriately, the resulting posterior-sampling
mechanism satisfies generalised differential privacy and indistinguishability prop-
erties. The intuition is that robustness and privacy are linked via smoothness.
Learning algorithms that are smooth mappings—their output (eg. a spam fil-
ter) varies little with perturbations to input (e.g. similar training corpora)—are
robust: outliers have reduced influence, and adversaries cannot easily discover
private information. Consequently, robustness and privacy may be simultane-
ously achieved and perhaps are deeply linked.

Our results [1] show that mild assumptions are sufficient to obtain a differentially-
private mechanism in the Bayesian setting. As a first step, we generalise the
definition of differential privacy [2] to arbitrary dataset spaces S. To do so, we
introduce the notion of differential privacy under a pseudo-metric ρ on the space
of all datasets.
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Definition 1 (pε, δq-differential privacy under ρ.). A conditional distribu-
tion P p¨ | xq on pΘ,SΘq is pε, δq-differentially private under a pseudo-metric
ρ : S ˆ S Ñ R` if, for all B P SΘ and for any x P S, then P pB | xq ď
eερpx,yqP pB | yq ` δρpx, yq @y.

Our first assumption is that the FΘ is smooth with respect to some metric d:

Assumption 1 (Lipschitz continuity) Let dpa, bq fi | ln a{b|. There exists
L ą 0 such that, for any θ P Θ: dppθpxq, pθpyqq ď Lρpx, yq, @x, y P S .

As it can be hard for this assumption to hold uniformly over Θ, we relax it
by only requiring that B’s prior probability ξ is concentrated in the smoothest
members of the family:

Assumption 2 (Stochastic Lipschitz continuity) Let ΘL be the set of L-
Lipschitz parameters. Then Dc ą 0 such that, @L ě 0: ξpΘLq ě 1´ expp´cLq .

One consequence of either of those assumption is that the posterior is robust, in
the sense that small dataset changes result in small changes in the posterior:

Theorem 1. If ξ is a prior on Θ and ξp¨ | xq and ξp¨ | yq are the respective
posterior distributions for datasets x, y P S, then the posterior KL-divergence
satisfies: D pξp¨ | xq } ξp¨ | yqq ď Opρpx, yqq, with linear terms depending on L, c.

Consequently, one way to answer queries would be to use samples from the
poster distribution. In fact, we show that such posterior-sampling mechanisms
are differentially private:

Theorem 2. Under Assumption 1, the posterior is p2L, 0q-differentially private
under ρ. Under Assumption 2, the posterior ξ is
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As the adversary performs more queries, he obtains more information about the
true dataset. Finally, we bound the effort required by an adversary to be ε-close
to the true dataset:

Theorem 3. The adversary can distinguish between data x, y with probability

1´ δ if ρpx, yq ě Op ln 1{δ
n q, with a linear dependency on L or c.

We have shown that both the privacy and robustness properties of Bayesian
inference are inherently linked through the choice of prior distribution. Such
prior distributions exist for example in well known conjugate families. There is
also a natural posterior sampling mechanism through which differential privacy
and dataset indistinguishability can be achieved.
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