
Dedu
tive Sear
h for Errors in

Free Data Type Spe
i�
ations

using Model Generation

Wolfgang Ahrendt

Department of Computing S
ien
e,

Chalmers University of Te
hnology, G�oteborg, Sweden

ahrendt�
s.
halmers.se

Abstra
t. The presented approa
h aims at identifying false 
onje
tures

about free data types. Given a spe
i�
ation and a 
onje
ture, the method

performs a sear
h for a model of an a

ording 
ounter spe
i�
ation. The

model sear
h is tailor-made for the semanti
al setting of free data types,

where the �xed domain allows to des
ribe models just in terms of in-

terpretations. For sake of interpretation 
onstru
tion, a theory spe
i�



al
ulus is provided. The 
on
rete rules are `exe
uted' by a pro
edure

known as model generation. As most free data types have in�nite do-

mains, the ability of automati
ally solving the non-
onsequen
e problem

is ne
essarily limited. That problem is addressed by limiting the instan-

tiation of the axioms. This approximation leads to a restri
ted notion of

model 
orre
tness, whi
h is dis
ussed. At the same time, it enables model


ompleteness for free data types, unlike approa
hes based on limiting the

domain size.

1 Introdu
tion

The main approa
hes to abstra
t data type (ADT) spe
i�
ation have in 
ommon

that, unlike in pure �rst order logi
, only 
ertain models are 
onsidered. In the

initial semanti
s approa
h, the domain is identi�ed with one parti
ular quotient

over the set of terms, where the size of the single equivalen
e 
lasses is `mini-

mal'. In the loose semanti
s approa
h, the signature is split up into 
onstru
tors

and (other) fun
tion symbols. Here, the semanti
al domain is identi�ed with

any quotient over the set of 
onstru
tor terms. The fun
tion symbols are inter-

preted as mappings over su
h domains. The term `loose' refers the possibility of

one spe
i�
ation having a `polymorphi
' meaning, i.e. owning di�erent models,

varying parti
ularly in the interpretation of the (non-
onstru
tor) fun
tion sym-

bols. In 
ontrast to that, initial semanti
s is always `monomorphi
'. This paper

is 
on
erned with free data type spe
i�
ations, whi
h are an important spe
ial


ase of loose spe
i�
ations. Free data types own the additional property that

di�erent 
onstru
tor terms denote di�erent elements. The domain is therefore

�xed to be the set of 
onstru
tor terms. The only thing whi
h is left open is

the interpretation of the fun
tion symbols. Given an ADT spe
i�
ation and a




onje
ture ', we 
all it an error if ' is not a 
onsequen
e of the axioms AX ,

regardless of whether the error intuitively lies in the axioms or the 
onje
ture.

The issue of non-
onsequen
e translates to the existen
e of 
ertain models. A

formula ' is not a 
onsequen
e of a set AX of axioms, if there exists a model

of AX whi
h violates '. Our method performs the 
onstru
tion of su
h models,

whi
h in the 
ase of free data types redu
es to the 
onstru
tion of interpreta-

tions. The advantage of having �xed domains is opposed by the disadvantage of

domain in�nity, 
aused by re
ursive 
onstru
tors. As interpretations over in�-

nite domains are not even 
ountable, an automated pro
edure 
an hardly solve

the issue of non-
onsequen
e in a total way. Instead, the issue is approa
hed by

solving the non-
onsequen
e problem for an approximation of the spe
i�
ation.

The method generates models for �nitely many, ground instantiated axioms. To

de
ide if the model found is extendible to the original axioms, i.e. if the model

a
tually reveals an error, the user 
an vary the number of ground instan
es. In

spite of these restri
tions, the method is 
omplete with respe
t to error dete
-

tion. This means that the output will 
omplain about a 
onje
ture whenever the


onje
ture is faulty.

2 Free Data Types

In the des
ribed approa
h, the distin
tion between 
onstru
tors and other fun
-

tion symbols is su
h important that we 
ompletely separate both. We simply


all the non-
onstru
tor fun
tion symbols `fun
tions'. In the following, if X is a

family of sets, X denotes the union of all sets in X .

Signature. An ADT signature � is a tuple (S; C;F ; �), where S is a �nite set

of sort symbols, C = fC

s

j s 2 Sg is a �nite family of disjoint, S-indexed sets of


onstru
tor symbols, F = fF

s

j s 2 Sg is a �nite family of disjoint, S-indexed

sets of fun
tions (C \ F = ;), and � : C [ F ! S

�

gives the argument sorts for

every 
onstru
tor or fun
tion symbol.

Example 1. We 
onsider the following signature � = (S; C;F ; �) for sta
ks of

natural numbers (the 
onstru
tors are written sans serif):

S = fNat ;Sta
kg

C = ffzero; su

g

Nat

; fnil; pushg

Sta
k

g F = ffpred ; topg

Nat

; fpop; delg

Sta
k

g

�(su

) = Nat �(push) = [Nat Sta
k ℄ �(zero) = �(nil) = � (no arguments)

�(pred ) = Nat �(top) = �(pop) = Sta
k �(del ) = [Nat Sta
k ℄

A 
on
rete syntax for � 
an look like:

sorts

Nat ::= zero j su

(Nat);

Sta
k ::= nil j push(Nat ; Sta
k);

fun
tions

pred : Nat ! Nat ;

top : Sta
k ! Nat ;

pop : Sta
k ! Sta
k ;

del : Nat � Sta
k ! Sta
k ;

Terms. A signature indu
es terms in general, and 
onstru
tor terms in parti
-

ular. T

�

is the set of all terms, T

s

is the set of terms of sort s. V

s

is the set of

variables of sort s. CT

�

is the set of all 
onstru
tor terms, CT

s

is the set of 
on-

stru
tor terms of sort s, and CT

�

= fCT

s

j s 2 Sg. We only 
onsider signatures



where CT

s

6= ; for all s 2 S. For a term t 2 T

�

with at least i arguments, t#

i

denotes the i-th argument of t, su
h that l(t

1

; : : : ; t

i

; : : : ; t

n

)#

i

= t

i

.

Semanti
s (of fun
tions and terms). An F-interpretation I assigns to ea
h

fun
tion symbol f , with f 2 F

s

and �(f) = s

1

: : : s

n

, a mapping I(f) : CT

s

1

�

: : : � CT

s

n

! CT

s

. If I is an F-interpretation, then the pair (CT

�

; I) is a

freely generated �-algebra. A variable assignment � : V

�

! CT

�

is a mapping,

su
h that, for x 2 V

s

, �(x) 2 CT

s

. For every F-interpretation I and variable

assignment �, the valuation val

I;�

: T

�

! CT

�

of terms is de�ned by:

{ val

I;�

(x) = �(x), for x 2 V

�

.

{ val

I;�

(f(t

1

; : : : ; t

n

)) = I(f)(val

I;�

(t

1

); : : : ; val

I;�

(t

n

)), for f 2 F .

{ val

I;�

(
(t

1

; : : : ; t

n

)) = 
(val

I;�

(t

1

); : : : ; val

I;�

(t

n

)), for 
 2 C.

We dis
uss some parti
ular features of these de�nitions: (a) Only fun
tion, not

the 
onstru
tors are interpreted by I. (b) For a given �, all freely generated

�-algebras have the same domain, whi
h is CT

�

, the sorted partitioning of the

set of 
onstru
tor terms. (Therefore, val is not indexed by the domain.) (
) The

valuation of terms 
an be seen as a 
ombination of standard valuations, see

\val

I;�

(f(�; : : :)) = I(f)(val

I;�

(�); : : :)", and Herbrand stru
ture valuations, see

\val

I;�

(
(�; : : :)) = 
(val

I;�

(�); : : :)".

Equalities are the only atoms in our logi
. For

�

is the set of �rst order

equality formulae, built from atoms by :, ^, _, !, 8 and 9. Literals (2 Lit

�

)

are equalities and negated equalities. Clauses (2 Cl

�

) are disjun
tions of literals.

The 
ontrary of a formula ', Contr('), the free variables of whi
h are x

1

; : : : ; x

n

,

is de�ned by Contr(') = 9x

1

: : : : 9x

n

: :'. The valuation val

I;�

of terms and

formulae is de�ned as usual. It is not indexed over some domain, as the domain

is �xed.We just point out that in 8x:' and 9x:', the x is semanti
ally quanti�ed

over CT

s

, if x 2 V

s

. Given an F-interpretation I, a formula ' 2 For

�

is valid in

I, abbreviated `I j= '', if for all variable assignments � it holds that val

I;�

(') =

true. A freely generated �-algebra (CT

�

; I) is a model of ' 2 For

�

resp. � �

For

�

, if I j= ' resp. I j=  for all  2 �. Given � � For

�

and ' 2 For

�

, then

' is a 
onsequen
e of �, abbreviated `� j=

�

'', if every model of � is a model

of '. j=

�

' abbreviates ; j=

�

'.

Example 2. Let � = (S; C;F ; �) be an ADT signature with

S = fNat ;Boolg C = ffzero; su

g

Nat

; ftt; ffg

Bool

g F = ffg

Nat

; fpg

Bool

g

�(su

) = �(p) = Nat �(zero) = �(tt) = �(ff) = � Then:

{ j=

�

su

(su

(su

(zero))) 6

:

= su

(zero)

{ fp(zero)

:

= tt; p(x)

:

= tt ! p(su

(x))

:

= ttg j=

�

p(x)

:

= tt

(`

:

=' is the equality symbol of the obje
t logi
. ` 6

:

=' abbreviates negated equality.)

An ADT spe
i�
ation is a pair h�;AXi, where � is an ADT signature and

AX � For

�

. AX is the set of axioms. The notions of model and 
onsequen
e

are extended to spe
i�
ations (while overloading `j=' a bit): (CT

�

; I) is a model

of h�;AXi if it is a model of AX . ' is a 
onsequen
e of h�;AXi, abbreviated

`h�;AXi j= '', if AX j=

�

'.

`h�;AXi 6j= '' abbreviates that ' is not a 
onsequen
e of h�;AXi.



Example 3. The spe
i�
ation NatSta
k is given by h�;AXi, where � is taken

from Example 1 and AX is given by

AX = f pred(su

(n))

:

= n ; top(push(n; st))

:

= n ; pop(push(n; st))

:

= st;

del (n; nil)

:

= nil ; del(n; push(n; st))

:

= st ;

n 6

:

= n

0

! del (n; push(n

0

; st))

:

= push(n

0

; del (n; st)) g

Given a spe
i�
ation SPEC and a formula ', it may be that neither ' nor

the opposite, Contr('), is a 
onsequen
e of a spe
i�
ation SPEC. For instan
e,

neither (a) NatSta
k j= pred(n) 6

:

= n nor (b) NatSta
k j= 9n: pred(n)

:

= n

holds. This is due to the underspe
i�
ation of pred . In one model of NatSta
k,

I(pred )(zero) is zero, falsifying (a). In another model of NatSta
k, I(pred )(zero)

is su

(zero), falsifying (b).

Proposition 1. Let � = (S; C;F ; �) be an ADT signature and h�;AXi an

ADT spe
i�
ation. Then:

h�;AXi 6j= '

()

there exists an F-interpretation with I j= AX [ Contr(')

In that 
ontext, we 
all h�;AX [Contr(')i a `
ounter spe
i�
ation', and I the

`
ounter interpretation'. Our method mainly 
onstru
ts su
h 
ounter interpreta-

tions.

Given a spe
i�
ation h�;AXi and a 
onje
ture ', the method 
onsists in

three steps. The �rst is to 
onstru
t and normalise the 
ounter spe
i�
ation

h�;AX [ Contr(')i. A spe
i�
ation is normalised if its axioms are 
lauses

(2 Cl

�

). Parti
ularly, the existential quanti�ers introdu
ed by Contr are Skolem-

ized away. The Skolemization handling has to respe
t our parti
ular semanti
al

setting, by adding the Skolem symbols to the fun
tions, not to the 
onstru
tors!

The se
ond and main step is the sear
h for, and 
onstru
tion of, an a

ording

interpretation, see the following se
tion. In the 
ase of su

ess, the last step 
on-

sists in some post-pro
essing, for sake of giving the user feedba
k in terms of

the original spe
i�
ation and 
onje
ture. We give examples for su
h output in

se
tion 7.

3 Expli
it Reasoning about Interpretations

The 
ore of the proposed method 
onstru
ts F-interpretations for normalised

ADT spe
i�
ations. We 
an think of an F-interpretation I being a set of (in

general in�nite) tables, one for ea
h fun
tion f 2 F . The basi
 idea of our

approa
h is to perform reasoning about F-interpretations using a representation

that immediately des
ribes individual lines of interpretation tables. In parti
ular,

we represent lines of these tables as atoms, using the three argument predi
ate

`I'. I(f; h
t

1

; : : : ; 
t

n

i; 
t) represents the information that I(f)(
t

1

; : : : ; 
t

n

) is 
t.

It is important to note that su
h atoms are not part of the obje
t logi
, used

in formulae 2 For

�

, if only be
ause the obje
t signatures we 
onsider do not


ontain predi
ate symbols. Instead, I-atoms are formulae on the meta level. These

(and others) will be used for a kind of `meta reasoning'. Beside `I-atoms', we will



use some others, 
alling them all `meta atoms'. Ea
h set of I-atoms represents

a part of some F-interpretation, if the set is fun
tional in the last arguments,

i.e. if there are no two I-atoms I(g; h
t

1

; : : : ; 
t

n

i; 
t

0

) and I(g; h
t

1

; : : : ; 
t

n

i; 
t

0

0

)

with di�erent 
onstru
tor terms 
t

0

and 
t

0

0

. An arbitrary set of I-atoms, not

ne
essarily being fun
tional, des
ribes an interpretation 
andidate. The sear
h

for proper interpretations 
onsists mainly in the 
onstru
tion of interpretation


andidates, by inferring new I-atoms using proof rules. Other proof rules reje
t


andidates, e.g. as soon as they turn out not to be fun
tional.

The inferred I-atoms do not have the pure form sket
hed above, in general.

Some 
onstru
tor terms may be unknown, initially, and must be sear
hed for.

They are represented by pla
e holders, whi
h are repla
ed later. Consider a fun
-

tion f : Nat ! Nat , and suppose we are sear
hing for the value of I(f)(zero).

The following dis
ussion is supported by the tree depi
ted here.

I(f; hzeroi; val(f(zero)))

sear
h Nat(val(f(zero)))

is(val(f(zero)); zero)

I(f; hzeroi; zero)

is(val(f(zero)); su

(arg1(val(f(zero)))))

sear
h Nat(arg1(val(f(zero))))

is(arg1(val(f(zero)))); zero)

is(val(f(zero)); su

(zero))

I(f; hzeroi; su

(zero))

.

.

.

The sear
h is initialised by 
reating the I-atom I(f; hzeroi; val(f(zero))). Its last

argument, val(f(zero)), a
ts as a pla
eholder for the 
onstru
tor term whi
h we

sear
h for, and its syntax tells that it repla
es the 
onstru
tor term whi
h equals

`val(f(zero))'. As su
h, this atom does not 
ontain mu
h information. However,

it is only meant to be a starting point. The sear
h for a more informative last

argument is initialised by adding another meta-atom, sear
h Nat(val(f(zero))),

to the model 
andidate. This atom 
auses a bran
hing of the 
andidate, where

ea
h bran
h 
orresponds to one 
onstru
tor of the sort Nat . On the �rst bran
h,

we assume val

I

(f(zero)) to equal zero, by inferring is(val(f(zero)); zero). On

the se
ond bran
h, we assume val

I

(f(zero)) to equal a 
onstru
tor term start-

ing with su

, by inferring an atom of the form is(val(f(zero)); su

(: : :)). The

left out argument of su

(: : :) is explained now. On this bran
h val

I

(f(zero))

equals su

(t) for some t 2 CT

Nat

. What we know about t is (a) that it is

the �rst argument of su

(t), i.e. t = su

(t)#

1

= val

I

(f(zero))#

1

, and there-

fore represent t using the syntax arg1(val(f(zero))), su
h that we a
tually have

is(val(f(zero)); su

(arg1(val(f(zero))))). What we also know about t is (b) that t

is a 
onstru
tor term 2 CT

Nat

whi
h we have to sear
h for further. Correspond-

ing to the above dis
ussion, we also add sear
h Nat(arg1(val(f(zero)))) to the

se
ond bran
h. This sear
h-atom 
auses another split, whi
h is sket
hed in tree.



Coming ba
k to our �rst bran
h, it remains to propagate the information from

is(val(f(zero)); zero) to the initial atom I(f; hzeroi; val(f(zero))), by inferring

I(f; hzeroi; zero). A similar propagation happens twi
e on the �rst subbran
h

of the se
ond bran
h, leading to the atom I(f; hzeroi; su

(zero)).

Looking at the leaves of the tree, we see that the di�erent possible values of

I(f)(zero) are enumerated. If this was everything we wanted, we should not have


hosen a dedu
tive treatment. But at �rst, this me
hanism will interfere with

others explained below. And at se
ond, the stepwise 
onstru
tion of 
onstru
tor

terms from the outer to the inner allows to reje
t a model 
andidate earlier, in

some 
ases it enables reje
tion in �nite time at all. In our example, the term

su

(arg1(val(f(zero)))) represents all (i.e. in�nitely many) terms starting with

su

.

After this demonstration, we introdu
e the rules we used, denoting them in

a tableaux style. x, y, z, fv and tv are rule variables.

sear
h Nat(x)

is(x; zero) is(x; su

(arg1(x)))

sear
h Nat(arg1(x))

I(fv; tv; x)

is(x; z)

I(fv; tv; z)

is(x; su

(y))

is(y; z)

is(x; su

(z))

In the following, we turn over to use a linear notation for su
h rules, using

the general pattern:

at

1

; : : : ; at

n

| {z }

premise

!


on
lusion

z }| {

at

11

; : : : ; at

1n

1

| {z }

1:extension

; : : : ; at

m

1

; : : : ; at

mn

m

| {z }

m:extension

:

This simpli�es the task of de�ning the transformation of spe
i�
ations into rules.

Moreover, this notation of rules is very 
lose to the input notation of the tool

we later use for rule exe
ution.

4 Transforming the Signature

The linear notation of the above sear
h Nat-rule is:

sear
h Nat(x) ! is(x; zero) ; is(x; su

(arg1(x))); sear
h Nat(arg1(x)) :

We now de�ne the general 
ase.

De�nition 1. Let � = (S; C;F ; �) be an ADT signature, with s 2 S and C

s

=

f


1

; : : : ; 


n

g, where j�(


i

)j � j�(


j

)j for i � j. Then

TransSort

�

(s)

=

sear
h s(x) ! TransConstr

�

(x; 


1

) ; : : : ; TransConstr

�

(x; 


n

) :

Note the semi-
olon between the di�erent extensions of the rule. The 
ondition

j�(


i

)j � j�(


j

)j ensures that we order the extensions after the number of the


onstru
tor's arguments. The individual extensions are de�ned as follows.

De�nition 2. Let � be an ADT signature, with 
 2 C

�

.

{ if j�(
)j = 0, then: TransConstr

�

(x; 
) = f is(x; 
) g



{ if �(
) = s

1

: : : s

n

, then:

TransConstr

�

(x; 
)

=

f is(x; 
(arg1(x); : : : ; argn(x))) ; sear
h s

1

(arg1(x)) ; : : : ; sear
h s

n

(argn(x)) g

In 
on
rete rules resulting from the transformation, we skip the set bra
es. Here

is the result of TransSort

�

(Sta
k):

sear
h Sta
k(x) !

is(x; nil) ;

is(x; push(arg1(x); arg2(x))) ; sear
h Nat(arg1(x)) ; sear
h Sta
k(arg2(x)) :

We now introdu
e the handling of (in)equality, dis
ussing 
on
rete rules, for Nat

and Sta
k at �rst.

same(su

(x); zero) ! :

same(push(x

1

; x

2

); push(y

1

; y

2

)) ! same(x

1

; y

1

) ; same(x

2

; y

2

) :

di�erent(zero; zero) ! :

di�erent(push(x

1

; x

2

); push(y

1

; y

2

)) ! di�erent(x

1

; y

1

) ; di�erent(x

2

; y

2

) :

The �rst and the third rule 
ause the proof pro
edure to reje
t a model 
andidate.

Note that the last rule is a bran
hing rule. We de�ne the general 
ase now:

De�nition 3. Let � = (S; C;F ; �) be an ADT signature. The rules re
e
ting

the `freely generatedness', are 
ontained in FreeGen

�

= TestSame

�

[TestDi�

�

.

{ TestSame

�

is the smallest set ful�lling:

� for ea
h two di�erent 
onstru
tors 


1

, 


2

of the same sort (f


1

; 


2

g � C

s

),

where j�(


1

)j = n and j�(


2

)j = m,

same(


1

(x

1

; : : : ; x

n

); 


2

(y

1

; : : : ; y

m

)) ! : 2 TestSame

�

� for ea
h 
onstru
tor 
 2 C

s

, where j�(
)j = n 6= 0

same(
(x

1

; : : : ; x

n

); 
(y

1

; : : : ; y

n

))

! same(x

1

; y

1

) ; : : : ; same(x

n

; y

n

) :

�

2 TestSame

�

{ TestDi�

�

is the smallest set ful�lling:

� for ea
h 
onstru
tor 
 2 C

s

,

� if �(
) = �, then

di�erent(
; 
) ! : 2 TestDi�

�

� if j�(
)j = n 6= 0, then:

di�erent(
(x

1

; : : : ; x

n

); 
(y

1

; : : : ; y

n

))

! di�erent(x

1

; y

1

) ; : : : ; di�erent(x

n

; y

n

) :

�

2 TestDi�

�

The same- and di�erent-atoms are introdu
ed either by transformed axioms

(see below), or by the following rule whi
h `
he
king' for fun
tionality.

I(fv; tv; z) ; I(fv; tv; z

0

) ! same(z; z

0

) :

In the end of se
tion 3, we en
ountered the two rules:

is(x; su

(y)) ; is(y; z) ! is(x; su

(z)) :

I(fv; tv; x) ; is(x; z) ! I(fv; tv; z) :

The general 
ase of su
h `repla
ement' rules is des
ribed here only informally. The

�rst rule must be provided for ea
h 
onstru
tor, and for ea
h of a 
onstru
tor's

argument positions. The se
ond rule is general enough. In addition, we need

similar rules to repla
e ea
h position in the tuples of I-atoms, as well as rules for

repla
ing arguments of same() and di�erent().



5 Transforming the Axioms

The rules dis
ussed so far only 
onsider the signature. But we a
tually are sear
h-

ing for a model of a spe
i�
ation, i.e. for a model of its axioms. In our approa
h,

also (or parti
ularly) the axioms are transformed to rules. We now explain this

transformation, using very simple examples at the beginning. We start with

ground equalities. Let f

1

(
t

1

)

:

= f

2

(
t

2

) be an axiom, where f

1

, f

2

are fun
tions

of some sort s, and 
t

1

, 
t

2

are 
onstru
tor terms. This equality 
an be repre-

sented by the rule:

! I(f

1

; h
t

1

i; val(f

1

(
t

1

))) ; sear
h s(val(f

1

(
t

1

))) ; I(f

2

; h
t

2

i; val(f

2

(
t

2

))) ;

sear
h s(val(f

2

(
t

2

))) ; same(val(f

1

(
t

1

)); val(f

2

(
t

2

))) :

The rule intuitively says that we have to sear
h for the two last arguments of

the I-atoms, but with the 
onstraint that they have to be the same. The empty

premise means that the extension atoms 
an be added to any model 
andidate. In

pra
ti
e, the rule will be applied towards the beginning, before the initial model


andidate bran
hes. A transformation of f

1

(
t

1

) 6

:

= f

2

(
t

2

) results in almost the

same rule, just that we have `di�erent' instead of `same'.

The rule for f

1

(
t

1

)

:

= f

2

(
t

2

) 
an be optimised, by loss of its symmetry.

Instead of twi
e sear
hing for something that should �nally be the `same' thing,

it suÆ
es to sear
h for one of both:

! I(f

1

; h
t

1

i; val(f

2

(
t

2

))) ; I(f

2

; h
t

2

i; val(f

2

(
t

2

))) ; sear
h s(val(f

2

(
t

2

))) :

This is of 
ourse more eÆ
ient. Moreover, the examples are easier to understand

when the resulting rules are as short as possible. On the other hand, the de�ni-

tion of the transformation is mu
h simpler in a version that is not optimised and

therefore more regular. In this paper, only de�ne the unoptimised transformation

formally. However, in the example transformations, we also show the optimised

versions, whi
h are more readable. A formal de�nition of the optimised transfor-

mation is given in [Ahr01, Se
t. 3.2.3℄. (Note that the rule for f

1

(
t

1

) 6

:

= f

2

(
t

2

)


annot be optimised similarly.)

The next example shows that, in general, we have to transform fun
tion

terms in a re
ursive manner. The (again quite arti�
ial) axiom f

1

(f

2

(
t

1

))

:

= 
t

2

translates to the rule:

! I(f

2

; h
t

1

i; val(f

2

(
t

1

))) ; sear
h s(val(f

2

(
t

1

))) ; I(f

1

; hval(f

2

(
t

1

))i; 
t

2

) :

Intuitively, this says that the last argument of I(f

2

; h
t

1

i; val(f

2

(
t

1

))) is a not

yet known 
onstru
tor term, whi
h has to be sear
hed for. What is known about

val(f

2

(
t

1

)) is represented by the I-atom I(f

1

; hval(f

2

(
t

1

))i; 
t

2

).

So far, we dis
ussed ground axioms, for simpli
ity. We now 
onsider the axiom

f(x)

:

= 
t. The resulting rule is:

s(x) ! I(f; hxi; 
t) :

`Binding' variables by sort predi
ates is a te
hnique widely used. The operational

meaning for the above rule is that, whenever we have s(
t

0

) on the 
urrent bran
h,

for some 
t

0

, then we 
an infer I(f; h
t

0

i; 
t). In general, we 
an have fun
tions

on both side, as well as nested fun
tions. The transformation then follows the

same patterns as sket
hed above for the ground 
ase, but �nally `binding ' all



variables by providing sort atoms in the rule premise. We demonstrate this in

another example: the 
ommutativity axiom f(x; y)

:

= f(y; x) be
omes

s(x); s(y) !

I(f; hx; yi; val(f(y; x))) ; I(f; hy; xi; val(f(y; x))) ; sear
h s(val(f(y; x))) :

Note again that x and y are `rule variables'. They do not appear on the bran
hes,

whi
h are always ground. The appli
ation of this rule generates a new pla
e

holder val(f(
t; 
t

0

)) for every pair 
t and 
t

0

for whi
h s-predi
ates are provided.

The di�eren
e between our usage of val terms, and 
omputing new pla
e holder

symbols in ea
h rule appli
ation, is that we 
an possibly reuse the val terms, even

when applying other rules. Therefore, the usage of val terms has similarities to

the usage of �-terms in free variable tableaux, des
ribed in [GA99℄. In our 
ontext,

the less pla
e holders we produ
e, the less sear
hes we start.

In the general 
ase, axioms of normalised spe
i�
ations are 
lauses, i.e. dis-

jun
tions of equalities and inequalities. The a

ording rules 
an dire
tly re
e
t

the disjun
tion in the `bran
hing', by transforming ea
h literal to a distin
t

extension of the rule.

De�nition 4. Be � = (S; C;F ; �) an ADT signature and ax 2 Kl

�

,

with ax = lit

1

_ : : : _ lit

n

, Var(ax) = fx

1

; : : : ; x

m

g and sort(x

i

) = s

i

. Then:

TransAxiom

�

(ax) =

s

1

(x

1

) ; : : : ; s

m

(x

m

) ! TransLit

�

(lit

1

) ; : : : ; TransLit

�

(lit

n

) :

In the following de�nition of TransLit

�

and its subparts, we use `Rep(t)' to fa
tor

out a 
ertain 
ase distin
tion. The `representation' of a term t 2 T

�

, Rep(t), is

de�ned to be t itself, if t 
ontains only 
onstru
tors and variables, or val(t), if t


ontains any fun
tions. In parti
ular, Rep is the identity for variables as well as

for 
onstru
tor terms.

De�nition 5. Let � = (S; C;F ; �) be an ADT signature.

{ Let t

1

; t

2

2 T

s

for some s 2 S. Then:

TransLit

�

(t

1

:

= t

2

) =

f same(Rep(t

1

);Rep(t

2

)) ; TransTerm

�

(t

1

) ; TransTerm

�

(t

2

) g

TransLit

�

(t

1

6

:

= t

2

) =

f di�erent(Rep(t

1

);Rep(t

2

)) ; TransTerm

�

(t

1

) ; TransTerm

�

(t

2

) g

{ Let t 2 T

�

. Then:

� if t 
ontains no fun
tions, then: TransTerm

�

(t) = ;

� if t = a with a 2 F

s

, �(a) = �, then:

TransTerm

�

(t) = f I(a; hi; val(a)); sear
h s(val(a)) g

� if t = f(t

1

; : : : ; t

n

) with f 2 F

s

, �(f) = s

1

: : : s

n

, then:

TransTerm

�

(t) =

f I(f; hRep(t

1

); : : : ;Rep(t

n

)i; val(t)) ; sear
h s(val(t)) g

[

n

S

i=1

TransTerm

�

(t

i

)



� if t = 
(t

1

; : : : ; t

n

) with 
 2 C

s

, �(
) = s

1

: : : s

n

, and if t 
ontains fun
-

tions, then:

TransTerm

�

(t) =

f is(val(t); 
(Rep(t

1

); : : : ;Rep(t

n

))) g [

n

S

i=1

TransTerm

�

(t

i

)

Note that TransTerm

�

(t) is empty exa
tly when Rep(t) is t. This means that the

re
ursion stops at terms that 
an be represented by themselves in the resulting

rules. In 
ontrast, fun
tion terms 
an only appear nested in val terms, i.e. pla
e

holders. Also note that we took the liberty to take over the variables as they

are, even if in the rules they a
t as `rule variables', to be mat
hed/instantiated

by rule appli
ation.

As an example, we show the result of transforming the (normalised) last

axiom of NatSta
k (see Example 3).

TransAxiom

�

( n

:

= m _ del(n; push(m; st))

:

= push(m; del (n; st)) )

=

Nat(n); Nat(m); Sta
k(st)

!

same(n;m) ;

same(val(del (n; push(m; st))); val(push(m; del(n; st))));

I(del ; hn; push(m; st)i; val(del (n; push(m; st))));

sear
h Sta
k(val(del(n; push(m; st))));

is(val(push(m; del(n; st))); push(m; val(del (n; st))));

I(del ; hn; sti; val(del (n; st)));

sear
h Sta
k(val(del (n; st))) :

The optimised version results in a shorter rule:

Nat(n); Nat(m); Sta
k(st)

!

same(n;m) ;

I(del ; hn; push(m; st)i; val(push(m; del(n; st))));

is(val(push(m; del(n; st))); push(m; val(del (n; st))));

I(del ; hn; sti; val(del (n; st)));

sear
h Sta
k(val(del (n; st))) :

We also show the transformation of another, simpler axiom:

TransAxiom

�

( pop(push(n; st))

:

= st )

=

nat(n); sta
k(st)

!

same(val(pop(push(n; st))); st);

I(pop ; hpush(n; st)i; val(pop(push(n; st))));

sear
h Sta
k(val(pop(push(n; st)))) :



In this quite typi
al axiom pattern, the optimised transformation gains an enor-

mous simpli�
ation:

nat(n) ; sta
k(st) ! I(pop; hpush(n; st)i; st) :

6 Model Generation for Approximated Spe
i�
ations

The rules transformed from the axioms 
an only be applied if the 
urrent model


andidate 
ontains appropriate sort atoms. Ideally, we would need to have s(
t)

for every 
onstru
tor term 
t of sort s, and that for ea
h sort. This 
annot be

realized in �nite time. But what we want is a method whi
h terminates in 
ase

there is a model. This makes the real di�eren
e to the traditional (refutational)

methods for proving 
onje
tures. Our approa
h to the issue of model 
onstru
-

tion for free data type spe
i�
ations does not solve the problem 
ompletely. An

automated method hardly 
an. Instead we 
onstru
t a model of an approxima-

tion of the spe
i�
ation.

Let us assume now that the 
onstru
tors are re
ursive (whi
h is mostly the


ase) and, therefore, determine an in�nite domain. The set of (quanti�er free)

axioms is then equivalent to an in�nite set of ground axioms, whi
h results

from instantiating the variables by all 
onstru
tor terms. We now approximate

the spe
i�
ation by 
onsidering a �nite subset of these ground axioms, whi
h

results from instantiating the variables by a �nitely many 
onstru
tor terms.

Parti
ularly, we limit the number of instan
es by limiting their `size', whi
h is

simply de�ned to be the number of 
onstru
tors. `h�;AX

�n

i' denotes su
h an

`n-restri
ted spe
i�
ation', where the axioms are instantiated by all 
onstru
tor

terms of maximal size n. The instantiation of axioms is re
e
ted by applying

the rules transformed from the axioms, where the arguments of the mat
hed

sort atoms are the instan
es. Therefore, to make the rules sear
h for a model

of `h�;AX

�n

i', we just initialise the �rst model 
andidate to be the set of sort

atoms for all 
onstru
tor terms up to size n. In the theorems below, we 
all this

`n-initialisation'. In pra
ti
e, the n has to be rather small. But, depending on

the signature, the number of terms is signi�
antly bigger than their maximal

size.

On this initial `model 
andidate' (at �rst only 
ontaining sort atoms), the

rules, transformed from a (
ounter) spe
i�
ation, are `exe
uted' by some pro
e-

dure. We use a pro
edure known as model generation ([MB88℄, [FH91℄), whi
h


an be seen positive, regular hyper tableaux. The regularity ensures termination

in 
ase every mat
hing rule has at least one extension not adding anything new

to the bran
h. If one bran
h 
annot be extended further, model generation stops.

In the theorems below, we 
all this `termination by saturation' (in 
ontrast to

`termination by reje
tion'). Our realization uses the tool `MGTP' (model gener-

ation theorem prover, [FH91℄) for exe
uting the des
ribed rules. The input of a

model generation pro
edure is a set of what they 
alled `
lauses', whi
h 
orre-

sponds to what we 
alled `rules'. These `
lauses' have the general form depi
ted

in the end of se
tion 3. In addition, the rules must be `range restri
ted', whi
h



means that ea
h variable must also o

ur on the left side of `!'. Our rules ful�l

that restri
tion.

Taking the basi
 model generation pro
edure whi
h is implemented in MGTP

as an exe
ution model for the transformed rules, we state the following

Theorem 1. (n-restri
ted model 
orre
tness)

Let h�;AXi be a normalised ADT spe
., n 2 N and R = TransSpe
(h�;AXi).

If the n-initialised model generation pro
edure with input R terminates by sat-

uration, then (a) h�;AX

�n

i has a model, and (b) for every F-interpretation

I whi
h 
orresponds to the I-atoms on the saturated bran
h, it holds that I j=

h�;AX

�n

i.

Theorem 2. (model 
ompleteness)

Let h�;AXi be a normalised ADT spe
., n 2 N and R = TransSpe
(h�;AXi).

If h�;AXi has a model, then an n-initialised, fair model generation pro
edure

with input R terminates by saturation, and for every F-interpretation I whi
h


orresponds to the I-atoms on the saturated bran
h, it holds that I j= h�;AX

�n

i.

The fairness in Theorem 2 is a requirement not implemented in MGTP. In pra
-

ti
e, this is less important than in theory, as the sear
h for 
onstru
tor terms

builds small terms �rst, and as small terms usually suÆ
e to �nd a validating in-

terpretation. However, the rules as su
h are 
omplete, and this independent of n!

Note that the theorem says \If h�;AXi has a model" instead of \If h�;AX

�n

i

has a model". We translate the 
ompleteness result to the non-
onsequen
e prob-

lem we are originally interested in. If it holds that `h�;AXi 6j= ', then model

generation applied to the transformation of `h�;AX [ Contr(')i terminates by

saturation.

Both proofs for these theorems are nontrivial, parti
ularly the 
ompleteness

argument, whi
h requires a termination argument, to be inferred from the model

whi
h is assumed to exist. The detailed proofs are given in [Ahr01℄.

7 Implementation and Examples

The method is implemented as a JAVA program, whi
h, given a spe
i�
ation

h�;AXi and a 
onje
ture ', (a) 
omputes the transformation of the normal-

isation of h�;AX [ Contr(')i, (b) 
alls MGTP, and in 
ase of saturation (
)

analyses the saturated bran
h, produ
ing an output both to the prompt and to

a L

A

T

E

X �le, telling why ' might not be a 
onsequen
e of h�;AXi.

For instan
e, given NatSta
k and the 
onje
ture del(top(st); st)

:

= pop(st),

the (abbreviated) L

A

T

E

X output is:

the 
onje
ture del( top( ST ), ST ) = pop( ST )

is violated by the following variable assignment: ST : nil

and by the following evaluation of 
onje
ture subterms:

del(top(ST),ST) : nil

top(ST) : zero

pop(ST) : push(zero,nil)



The interpretation found by the system satis�es the axioms,

if instantiated by 
onstru
tor terms with less than 4 
onstru
tors!

(end of output)

The warning reminds the user on what we 
alled n-restri
ted 
orre
tness. Nev-

ertheless, the system tells that the spe
i�
ation allows pop(nil) being evaluated

to push(zero; nil), in whi
h 
ase del (top(nil); nil)

:

= pop(nil) is false, and therefore

the 
onje
ture is false. This shows that either the 
onje
ture or the spe
i�
ation

has to be 
hanged. Another example for a false 
onje
ture on NatSta
k whi
h

the system 
omplains about is push(top(st); pop(st))

:

= st.

Due to the n-restri
ted 
orre
tness, the system possibly 
an 
omplain about

a 
onje
ture that a
tually is a 
onsequen
e of the axioms. This happens for

instan
e when we ask if p(x)

:

= tt is a 
onsequen
e of (see Example 2, page 3):

fp(zero)

:

= tt; p(x)

:

= tt ! p(su

(x))

:

= ttg

The system 
omplains about this 
onje
ture, be
ause it 
an always 
onstru
t

I(p; hsu

(
t)i; ff) for a 
t whi
h is slightly bigger than the size restri
tion n.

The last example we mention here is based on a spe
i�
ation taken from

[Thu98℄. Even if [Thu98℄ also investigates errors in spe
i�
ations, this error is

neither dis
ussed nor dete
ted nor even intended there. We refer to that revealed

error not to blame the author, but to demonstrate how easily su
h errors hap-

pen, even in a 
ontext where one is very aware of the possibility of errors. (In

general, an more open ex
hange of errors that really happen would be of great

bene�t to the development of error revealing te
hniques.) The 
ited spe
i�
a-

tion is intended to des
ribe a `merge sort' algorithm. The two main axioms are:

sort(empty)

:

= empty and sort(append (l; l

0

))

:

= merge(sort(l); sort(l

0

)).

Our system, when being asked if the singleton list is stable under sort ,

i.e. sort(
ons(n; empty))

:

= 
ons(n; empty), 
omplains and suggests to evaluate

sort(
ons(n; empty)) to empty (!), as this is 
onsistent with the spe
i�
ation,

whi
h does not spe
ify at all how to sort a singleton. (To 
omprehend this, it

suÆ
es to know two more axioms:merge(empty; l

0

)

:

= l

0

andmerge(l; empty)

:

= l.)

As any other sorting redu
es to sorting the singleton, the spe
i�
ation does not

spe
ify the sorting of any (but the empty) list.

8 Related Work and Con
lusion

The works related to our task and approa
h 
an be divided in two (overlapping)

�elds: (1.) model 
onstru
tion and (2.) dete
ting faulty 
onje
tures. In the �rst

area, there are several methods sear
hing for �nite domain models. The methods

des
ribed in [Sla94℄ and [ZZ96℄ sear
h for models of a �xed size, whereas [BT98℄

dynami
ally extends the �nite domain. As free data types usually have in�nite

domains, these �nite domain methods 
annot dire
tly be applied to our setting.

(A further dis
ussion follows bellow.) Other methods in the �rst area are more

syntax oriented, des
ribing models by (extensions of) formulae ([FL96℄, [CP00℄).

These approa
hes 
onstru
t models for �rst order formulae, usually not 
on-

taining equalities. Our obje
t logi
, however, is 
ompletely equality based and,

be
ause of 
onstru
tor generatedness, beyond �rst order. In the se
ond area, a



lot of work is done in the 
ontext of initial (or rewrite) semanti
s, where due to

monomorphi
ity, the notions of proof and 
onsisten
y are very 
lose ([Ba
88℄).

Also where monomorphi
ity is imposed by purely sysnta
ti
al means, the de-

te
tion of faulty 
onje
tures redu
es to proving their opposite ([Pro92℄). In that


ontext, even the 
orre
tion of faulty 
onje
tures is examined ([Pro96℄, [MBI94℄).

To the best knowledge of the author, the only work that is similarly dedi
ated

to the dete
tion of faulty 
onje
tures in loose spe
i�
ations (not even restri
ted

to free data types), is [Thu98,RST01℄. There, a `
ounter example' is essentially

a falsifying variable assignment, rather than a falsifying model. Unsurprisingly,

that method, as well as ours, 
annot totally solve the issue of non-
onsequen
e.

During the 
onstru
tion of falsifying variable assignments, the method produ
es

side 
ondition, the 
onsisten
e of whi
h left to be judged by the user. Like in our

approa
h, the user has to take the �nal de
ision. The assignment of values to

axiom variables is in
luded in our method (see the example outputs). Moreover,

our method analyses possible valuation of fun
tion terms.

We 
on
lude by stressing the main features of the presented approa
h and its

implementation. We provide a fully automated method whi
h is tailor-made for

dete
ting non-
onsequen
e between a free data type spe
i�
ation and a 
onje
-

ture. It sear
hes for a 
ounter model, basi
ally by 
onstru
ting an interpretation

table and sear
hing for its entries. The user re
eives feedba
k in form of variable

assignments and subterm evaluations whi
h falsify the 
onje
ture. To enable ter-

mination, the property of a falsifying interpretation to a
tually be a model of

the spe
i�
ation is approximated only. This is done by instantiating the axioms

with terms of a limited size only. This size is a parameter of the method and

its implementation. The pri
e of the limited term size is a restri
ted model 
or-

re
tness: a model of a limited instantiation is not ne
essarily a model of the full

spe
i�
ation. The user must atta
k this problem by (a) examining the proposed

term evaluations and (b) varying the term size limit.

It is important not to 
onfuse our limited instantiation of the axioms with a

limited domain size. In our 
ase, by in
reasing the limit we 
an only lose models,

and by de
reasing the limit, we 
an only gain models. This is the very reason

why our model 
ompleteness result is not restri
ted by the 
hosen limit. Su
h a

monotonous behaviour would not hold if we varied domain sizes. We 
ould not

gain model 
ompleteness by following a similar approa
h like [BT98℄ (see above).

Model 
onstru
tion is the means rather that the purpose of our method. We

�nally want to dete
t faulty 
onje
tures. From this pint of view, having model


ompleteness is worth to pay a pri
e for. The system indeed dete
ts all non-


onsequen
es, even if it dete
ts to many. At the same time, the restri
tions are

kept transparent to the user (see the example output above). In 
ase the error is

real, it is usually not diÆ
ulty to 
omprehend on
e one is pointed to. Providing

unexpe
ted valuations of fun
tion terms then helps to identify underspe
i�ed

properties whi
h are the sour
e of errors.

A
knowledgements I am grateful to Reiner H�ahnle for his general support as well

as for many, many, fruitful dis
ussions, and for 
arefully 
he
king the proofs in [Ahr01℄.

I am also grateful to Sonja Pieper for implementing the presented method.



Referen
es

[Ahr01℄ Wolfgang Ahrendt. Deduktive Fehlersu
he in Abstrakten Datentypen. 2001.

Dissertation (preversion, in German), University of Karlsruhe, available under

http://www.
s.
halmers.se/~ahrendt/
ade02/diss.ps.gz.

[Ba
88℄ Leo Ba
hmair. Proof by 
onsisten
y in equational theories. In Pro
. Third

Annual Symposium on Logi
 in Computer S
ien
e, Edinburgh, S
otland, pages

228{233. IEEE Press, 1988.

[BT98℄ Fran�
ois Bry and Sunna Torge. A dedu
tion method 
omplete for refutation

and �nite satis�ability. In Pro
. 6th European Workshop on Logi
s in AI

(JELIA), volume 1489 of LNAI, pages 122{136. Springer-Verlag, 1998.

[CP00℄ Ri
ardo Caferra and Ni
olas Peltier. Combining enumeration and dedu
tive

te
hniques in order to in
rease the 
lass of 
onstru
tible in�nite models. Jour-

nal of Symboli
 Computation, 29:177{211, 2000.

[FH91℄ Hiroshi Fujita and Ryuzo Hasegawa. A model generation theorem prover in

KL1 using a rami�ed-sta
k algorithm. In Koi
hi Furukawa, editor, Pro
eedings

8th International Conferen
e on Logi
 Programming, Paris/Fran
e, pages 535{

548. MIT Press, 1991.

[FL96℄ Christian Ferm�uller and Alexander Leits
h. Hyperresolution and automated

model building. Journal of Logi
 and Computation, 6(2), 1996.

[GA99℄ Martin Giese and Wolfgang Ahrendt. Hilbert's �-terms in Automated Theo-

rem Proving. In Neil V. Murray, editor, Automated Reasoning with Analyti


Tableaux and Related Methods, International Conferen
e, Saratoga Springs,

USA, volume 1617 of LNAI, pages 171{185. Springer-Verlag, 1999.

[MB88℄ Rainer Manthey and Fran�
ois Bry. SATCHMO: A theorem prover imple-

mented in Prolog. In Pro
eedings 9th Conferen
e on Automated Dedu
tion,

volume 310 of LNCS, pages 415{434. Springer-Verlag, 1988.

[MBI94℄ Raul Monroy, Alan Bundy, and Andrew Ireland. Proof plans for the 
orre
-

tion of false 
onje
tures. In Frank Pfenning, editor, Pro
. 5th International

Conferen
e on Logi
 Programming and Automated Reasoning, Kiev, Ukraine,

volume 822 of LNAI, pages 54{68. Springer-Verlag, 1994.

[Pro92℄ Martin Protzen. Disproving 
onje
tures. In D. Kapur, editor, Pro
. 11th

CADE, Albany/NY, USA, volume 607 of LNAI, pages 340{354. Springer-

Verlag, 1992.

[Pro96℄ Martin Protzen. Pat
hing faulty 
onje
tures. In Mi
hael M
Robbie and John

Slaney, editors, Pro
. 13th CADE, New Brunswi
k/NJ, USA, volume 1104 of

LNCS, pages 77{91. Springer-Verlag, 1996.

[RST01℄ Wolfgang Reif, Gerhard S
hellhorn, and Andreas Thums. Flaw dete
tion in

formal spe
i�
ations. In Rajeev Gor�e, Alexander Leits
h, and Tobias Nipkow,

editors, Automated Reasoning, IJCAR 2001 Siena, Italy, June 18-23, 2001

Pro
eedings, volume 2083 of LNAI. Springer-Verlag, 2001.

[Sla94℄ John Slaney. FINDER: �nite domain enumerator. In Alan Bundy, editor, Pro
.

12th CADE, Nan
y/Fran
e, volume 814 of LNCS, pages 798{801. Springer-

Verlag, 1994.

[Thu98℄ Andreas Thums. Fehlersu
he in Formalen Spezi�kationen. diploma thesis,

Fakult�at f�ur Informatik, Universit�at Ulm, 1998.

[ZZ96℄ Jian Zhang and Hantao Zhang. Generating models by SEM. In Mi
hael

M
Robbie and John Slaney, editors, Pro
. 13th CADE, New Brunswi
k/NJ,

USA, volume 1104 of LNCS, pages 309{327. Springer-Verlag, 1996.


