Deductive Search for Errors in
Free Data Type Specifications
using Model Generation

Wolfgang Ahrendt

Department of Computing Science,
Chalmers University of Technology, Géteborg, Sweden
ahrendt@cs.chalmers.se

Abstract. The presented approach aims at identifying false conjectures
about free data types. Given a specification and a conjecture, the method
performs a search for a model of an according counter specification. The
model search is tailor-made for the semantical setting of free data types,
where the fixed domain allows to describe models just in terms of in-
terpretations. For sake of interpretation construction, a theory specific
calculus is provided. The concrete rules are ‘executed’ by a procedure
known as model generation. As most free data types have infinite do-
mains, the ability of automatically solving the non-consequence problem
is necessarily limited. That problem is addressed by limiting the instan-
tiation of the axioms. This approximation leads to a restricted notion of
model correctness, which is discussed. At the same time, it enables model
completeness for free data types, unlike approaches based on limiting the
domain size.

1 Introduction

The main approaches to abstract data type (ADT) specification have in common
that, unlike in pure first order logic, only certain models are considered. In the
initial semantics approach, the domain is identified with one particular quotient
over the set of terms, where the size of the single equivalence classes is ‘mini-
mal’. In the loose semantics approach, the signature is split up into constructors
and (other) function symbols. Here, the semantical domain is identified with
any quotient over the set of constructor terms. The function symbols are inter-
preted as mappings over such domains. The term ‘loose’ refers the possibility of
one specification having a ‘polymorphic’ meaning, i.e. owning different models,
varying particularly in the interpretation of the (non-constructor) function sym-
bols. In contrast to that, initial semantics is always ‘monomorphic’. This paper
is concerned with free data type specifications, which are an important special
case of loose specifications. Free data types own the additional property that
different constructor terms denote different elements. The domain is therefore
fixed to be the set of constructor terms. The only thing which is left open is
the interpretation of the function symbols. Given an ADT specification and a

conjecture ¢, we call it an error if ¢ is not a consequence of the axioms AX
regardless of whether the error intuitively lies in the axioms or the conjecture.
The issue of non-consequence translates to the existence of certain models. A
formula ¢ is not a consequence of a set AX of axioms, if there exists a model
of AX which violates ¢. Our method performs the construction of such models,
which in the case of free data types reduces to the construction of interpreta-
tions. The advantage of having fixed domains is opposed by the disadvantage of
domain infinity, caused by recursive constructors. As interpretations over infi-
nite domains are not even countable, an automated procedure can hardly solve
the issue of non-consequence in a total way. Instead, the issue is approached by
solving the non-consequence problem for an approximation of the specification.
The method generates models for finitely many, ground instantiated axioms. To
decide if the model found is extendible to the original axioms, i.e. if the model
actually reveals an error, the user can vary the number of ground instances. In
spite of these restrictions, the method is complete with respect to error detec-
tion. This means that the output will complain about a conjecture whenever the
conjecture is faulty.

2 Free Data Types

In the described approach, the distinction between constructors and other func-
tion symbols is such important that we completely separate both. We simply
call the non-constructor function symbols ‘functions’. In the following, if X" is a
family of sets, X’ denotes the union of all sets in X'.

Signature. An ADT signature X is a tuple (S,C,F,«), where S is a finite set
of sort symbols, C = {C| s € S} is a finite family of disjoint, S-indexed sets of
constructor symbols, F = {Fs| s € S} is a finite family of disjoint, S-indexed
sets of functions (C N F = @), and o : CUF — S* gives the argument sorts for
every constructor or function symbol.

Ezample 1. We consider the following signature ¥ = (S,C, F,«) for stacks of
natural numbers (the constructors are written sans serif):
S = {Nat, Stack}

C = {{zero,succ} nas, {nil, push}stacr} F = {{pred, top} nat, {pop, del}stack }
a(succ) = Nat a(push) = [Nat Stack] «(zero) = a(nil) = A (no arguments)
a(pred) = Nat a(top) = a(pop) = Stack «a(del) = [Nat Stack]

A concrete syntax for X' can look like:

functions
sorts pred : Nat — Nat;
Nat = zero | succ(Nat); top : Stack — Nat;
Stack = nil | push(Nat; Stack); pop : Stack — Stack;

del : Nat x Stack — Stack;
Terms. A signature induces terms in general, and constructor terms in partic-
ular. T’s; is the set of all terms, T is the set of terms of sort s. V is the set of
variables of sort s. CT; is the set of all constructor terms, C'T is the set of con-
structor terms of sort s, and CTx = {CTs| s € S}. We only consider signatures

where CTy # () for all s € S. For a term ¢t € T's with at least ¢ arguments, t};
denotes the i-th argument of t, such that I(t1,...,¢;,...,tn)i= t;.

Semantics (of functions and terms). An F-interpretation T assigns to each

function symbol f, with f € Fs and a(f) = s1...s,, a mapping Z(f) : CTs, x
. x CTs, — CTs. If T is an F-interpretation, then the pair (CTx,Z) is a

freely generated X -algebra. A variable assignment B : Vy — CTyx is a mapping,

such that, for z € Vi, B(z) € CTs. For every F-interpretation Z and variable

assignment 3, the valuation valz g : Ty, — CTx of terms is defined by:

—wvalz g(z) = B(z), forz € Vx.

—walz g(f(t1,...,tn)) = Z(f)(valz (t1), ..., valz 5(tn)), for f € F.

—wvalz glc(ts, ..., tn)) = clvalz g(t1), ... ,valz g(t,)), forceC.

We discuss some particular features of these definitions: (a) Only function, not

the constructors are interpreted by Z. (b) For a given X, all freely generated

X -algebras have the same domain, which is C7y, the sorted partitioning of the

set of constructor terms. (Therefore, val is not indexed by the domain.) (c) The

valuation of terms can be seen as a combination of standard valuations, see

“valz g(f(-,...)) = Z(f)(valz g(-),...)”, and Herbrand structure valuations, see

”»

“valz g(c(-,...)) = c(valz 5(-),...)".

Equalities are the only atoms in our logic. Forys is the set of first order
equality formulae, built from atoms by —, A, V, —, V and 3. Literals (€ Lity)
are equalities and negated equalities. Clauses (€ Cly) are disjunctions of literals.
The contrary of a formula ¢, Contr(p), the free variables of which are z1, ..., z,,
is defined by Contr(y) = Jz;....3x,. —p. The valuation valz g of terms and
formulae is defined as usual. It is not indexed over some domain, as the domain
is fixed.We just point out that in Vz.p and 3zx.p, the z is semantically quantified
over CTs, if x € V5. Given an F-interpretation Z, a formula ¢ € Fory is valid in
Z, abbreviated ‘Z |= ¢, if for all variable assignments 3 it holds that valz g(p) =
true. A freely generated X-algebra (CTx,Z) is a model of ¢ € Fory resp. & C
Fors,if T |E @ resp. T =14 for all ¢ € ¢. Given & C Fory, and ¢ € Fory, then
© s a consequence of P, abbreviated ‘? [Ex ¢, if every model of @ is a model
of p. [Ex ¢ abbreviates) Ex ¢.

Ezample 2. Let ¥ = (S,C,F,a) be an ADT signature with

S = {Nat, Bool} C = {{zero,succ} nat, {tt, ff} Boor} F = {{}~at- {P} Boot}
a(succ) = a(p) = Nat a(zero) = a(tt) = a(ff) = A Then:

— Ex succ(succ(succ(zero))) # succ(zero)
— {p(zero) = tt, p(z) = tt = p(succ(z)) =tt} Ex p(z) =tt

(‘=" is the equality symbol of the object logic. ‘#’ abbreviates negated equality.)
An ADT specification is a pair (X, AX), where X is an ADT signature and
AX C Foryx. AX is the set of azioms. The notions of model and consequence
are extended to specifications (while overloading ‘=’ a bit): (CTx,Z) is a model
of (¥, AX) if it is a model of AX. ¢ is a consequence of (¥, AX), abbreviated
(X, AX) E o, if AX Ex .

“X,AX) £ ¢ abbreviates that ¢ is not a consequence of (¥, AX).

Ezample 3. The specification NatStack is given by (¥, AX), where ¥ is taken
from Ezample 1 and AX is given by

AX = { pred(succ(n)) =n , top(push(n,st)) =n, pop(push(n,st)) = st,

del(n, nil) = nil , del(n, push(n,st)) = st ,
n #n' — del(n,push(n', st)) = push(n/, del(n, st)) }

Given a specification SPEC and a formula ¢, it may be that neither ¢ nor
the opposite, Contr(p), is a consequence of a specification SPEC. For instance,
neither (a) NatStack E pred(n) # n nor (b) NatStack | In. pred(n) = n
holds. This is due to the underspecification of pred. In one model of NatStack,
Z(pred)(zero) is zero, falsifying (a). In another model of NatStack, Z(pred)(zero)
is succ(zero), falsifying (b).

Proposition 1. Let X = (S,C,F,a) be an ADT signature and (X, AX) an
ADT specification. Then:

(X, AX) o
<~
there exists an F-interpretation with T |= AX U Contr(y)

In that context, we call (X, AX U Conir(y)) a ‘counter specification’, and Z the
‘counter interpretation’. Our method mainly constructs such counter interpreta-
tions.

Given a specification (¥, AX) and a conjecture @, the method consists in
three steps. The first is to construct and normalise the counter specification
(¥, AX U Contr(p)). A specification is normalised if its axioms are clauses
(€ Clx). Particularly, the existential quantifiers introduced by Conitr are Skolem-
ized away. The Skolemization handling has to respect our particular semantical
setting, by adding the Skolem symbols to the functions, not to the constructors!
The second and main step is the search for, and construction of, an according
interpretation, see the following section. In the case of success, the last step con-
sists in some post-processing, for sake of giving the user feedback in terms of
the original specification and conjecture. We give examples for such output in
section 7.

3 Explicit Reasoning about Interpretations

The core of the proposed method constructs F-interpretations for normalised
ADT specifications. We can think of an F-interpretation Z being a set of (in
general infinite) tables, one for each function f € F. The basic idea of our
approach is to perform reasoning about F-interpretations using a representation
that immediately describes individual lines of interpretation tables. In particular,
we represent lines of these tables as atoms, using the three argument predicate
‘T.I(f, (ct1,-..,cty), ct) represents the information that Z(f)(ct1,...,cty) is ct.
It is important to note that such atoms are not part of the object logic, used
in formulae € Fory, if only because the object signatures we consider do not
contain predicate symbols. Instead, I-atoms are formulae on the meta level. These
(and others) will be used for a kind of ‘meta reasoning’. Beside ‘T-atoms’, we will

use some others, calling them all ‘meta atoms’. Each set of I-atoms represents
a part of some F-interpretation, if the set is functional in the last arguments,
i.e. if there are no two I-atoms I(g, (ct1,. .., cty), cto) and I(g, (ct1, ..., cty), cty)
with different constructor terms cto and ctj. An arbitrary set of I-atoms, not
necessarily being functional, describes an interpretation candidate. The search
for proper interpretations consists mainly in the construction of interpretation
candidates, by inferring new I-atoms using proof rules. Other proof rules reject
candidates, e.g. as soon as they turn out not to be functional.

The inferred I-atoms do not have the pure form sketched above, in general.
Some constructor terms may be unknown, initially, and must be searched for.
They are represented by place holders, which are replaced later. Consider a func-
tion f : Nat — Nat, and suppose we are searching for the value of Z(f)(zero).
The following discussion is supported by the tree depicted here.

I(f, (zero), val(f(zero)))

search_Nat (val(f(zero)))

is(val(f(ze.ro)), zero) is(val(f(zero)), succ(argl(val(f(zero)))))
‘I(f, (zero), zero)‘ search_Nat(argl(val(f(zero))))

is(argl(val(f(zero)))/), zero) ~ :

is(val(f(zero)), succ(zero))

‘I(f, (zero), succ(zero))‘

The search is initialised by creating the I-atom I(f, (zero), val(f(zero))). Its last
argument, val(f(zero)), acts as a placeholder for the constructor term which we
search for, and its syntax tells that it replaces the constructor term which equals
‘val(f(zero))’. As such, this atom does not contain much information. However,
it is only meant to be a starting point. The search for a more informative last
argument is initialised by adding another meta-atom, search_Nat(val(f(zero))),
to the model candidate. This atom causes a branching of the candidate, where
each branch corresponds to one constructor of the sort Nat. On the first branch,
we assume valz(f(zero)) to equal zero, by inferring is(val(f(zero)), zero). On
the second branch, we assume valz(f(zero)) to equal a constructor term start-
ing with succ, by inferring an atom of the form is(val(f(zero)), succ(...)). The
left out argument of succ(...) is explained now. On this branch wvalz(f(zero))
equals succ(t) for some t € CTng. What we know about t is (a) that it is
the first argument of succ(t), i.e. t = succ(t) 1= valz(f(zero))li, and there-
fore represent ¢ using the syntax argl(val(f(zero))), such that we actually have
is(val(f(zero)), succ(argl(val(f(zero))))). What we also know about ¢ is (b) that ¢
is a constructor term € CTy,: which we have to search for further. Correspond-
ing to the above discussion, we also add search_Nat(argl(val(f(zero)))) to the
second branch. This search-atom causes another split, which is sketched in tree.

Coming back to our first branch, it remains to propagate the information from
is(val(f(zero)), zero) to the initial atom I(f, (zero), val(f(zero))), by inferring
I(f, (zero), zero). A similar propagation happens twice on the first subbranch
of the second branch, leading to the atom I(f, (zero), succ(zero)).

Looking at the leaves of the tree, we see that the different possible values of
Z(f)(zero) are enumerated. If this was everything we wanted, we should not have
chosen a deductive treatment. But at first, this mechanism will interfere with
others explained below. And at second, the stepwise construction of constructor
terms from the outer to the inner allows to reject a model candidate earlier, in
some cases it enables rejection in finite time at all. In our example, the term
succ(argl(val(f(zero)))) represents all (i.e. infinitely many) terms starting with
succ.

After this demonstration, we introduce the rules we used, denoting them in
a tableaux style. z, y, 2z, fv and tv are rule variables.

search_Nat(x) I(fv, tv, z) is(z, succ(y))
is(x, zero) is(z, succ(argl(z))) is(z, 2) is(y, z)
search_Nat(argl(z)) I(fv, tv, 2) is(x, succ(z))

In the following, we turn over to use a linear notation for such rules, using
the general pattern:

conclusion
~ N
ati,...,atp, = ati1,...,alin, 5 .- Atmyy---, 0bmn,, -
premise 1.extension m.extension

This simplifies the task of defining the transformation of specifications into rules.
Moreover, this notation of rules is very close to the input notation of the tool
we later use for rule execution.

4 Transforming the Signature

The linear notation of the above search_Nat-rule is:
search_Nat(xz) — is(z,zero) ; is(x,succ(argl(z))), search_Nat(argl(z)) .
We now define the general case.

Definition 1. Let X = (S,C, F,«a) be an ADT signature, with s € S and Cys =
{c1,...,¢n}, where |a(c;)| < |a(ey)| fori < j. Then

TransSorts(s)

search_s(z) = TransConstrs(z,c1) 5 ... ; TransConstrs(x,cp) .

Note the semi-colon between the different extensions of the rule. The condition
la(e;)| < |a(e;)| ensures that we order the extensions after the number of the
constructor’s arguments. The individual extensions are defined as follows.

Definition 2. Let X be an ADT signature, with ¢ € Cy.
—if la(e)| =0, then: TransConstrs(z,c) = {is(z,c) }

—if a(c) = s1...8n, then:
TransConstrs (z, c)

{ is(z, c(argl(z),...,argn(x))) , searchjsl(argl(a:)) , ..., search_s,(argn(x)) }

In concrete rules resulting from the transformation, we skip the set braces. Here
is the result of TransSorts (Stack):
search_Stack(x) —
is(z, nil) ;
is(x, push(argl(z),arg2(x))) , search_Nat(argl(z)) , search_Stack(arg2(z)) .
We now introduce the handling of (in)equality, discussing concrete rules, for Nat
and Stack at first.
same(succ(z), zero) — .
same(push(z1,z2), push(y1,y2)) — same(z1,y1) , same(z2,y2)
different(zero, zero) — .
different(push(z1, z2), push(yi,y2)) — different(zy,y) ; different(zo,y2) .
The first and the third rule cause the proof procedure to reject a model candidate.
Note that the last rule is a branching rule. We define the general case now:

Definition 3. Let ¥ = (S,C,F,a) be an ADT signature. The rules reflecting
the ‘freely generatedness’, are contained in FreeGeny, = TestSamex, U TestDiffs,.

— TestSamey is the smallest set fulfilling:
e for each two different constructors ci, c2 of the same sort ({c1,c2} C Cs),

where |a(c1)| = n and |afc2)| = m,

same(ci(Z1,...,Zn), 2(Y1y---yYm)) — . € TestSamey
o for each constructor ¢ € Cs, where |a(c)] =n #0
same(c(z1, ..., %n), c(Y1,---,Yn)) € TestSames
— same(z1, Y1), ... , same(Zn, Yn) -

— TestDiffs, is the smallest set fulfilling:
e for each constructor c € Cs,
x if a(c) = A, then
different(c, ¢) — . € TestDiffs
x if la(c)] =n #0, then:
different(c(z1, ..., 2n), c(Y1,---,Yn)))
— different(zy, y1) ; ... ; different(z,, y,) . } € TestDiffs
The same- and different-atoms are introduced either by transformed axioms
(see below), or by the following rule which ‘checking’ for functionality.
I(fv, tv, 2) , I(fu, tv,2") — same(z,2’) .
In the end of section 3, we encountered the two rules:
is(z,succ(y)) , is(y,z) — is(x,succ(z)) .
I(fv, tv,z) , is(z,z) — I(fv, tv,z) .
The general case of such ‘replacement’ rules is described here only informally. The
first rule must be provided for each constructor, and for each of a constructor’s
argument positions. The second rule is general enough. In addition, we need
similar rules to replace each position in the tuples of I-atoms, as well as rules for
replacing arguments of same() and different().

5 Transforming the Axioms

The rules discussed so far only consider the signature. But we actually are search-
ing for a model of a specification, i.e. for a model of its axioms. In our approach,
also (or particularly) the axioms are transformed to rules. We now explain this
transformation, using very simple examples at the beginning. We start with
ground equalities. Let fi(ct1) = fa(ct2) be an axiom, where fi, f» are functions
of some sort s, and ctq, cty are constructor terms. This equality can be repre-
sented by the rule:

— I(fl,(ct1>,va|(f1(ct1))) N search_s(val(fl(ctl))) N I(fg,(ct2>,va|(f2(ct2))) y
search_s(val(f2(cts))) , same(val(fi(ct1)),val(f2(ct2))) -

The rule intuitively says that we have to search for the two last arguments of
the I-atoms, but with the constraint that they have to be the same. The empty
premise means that the extension atoms can be added to any model candidate. In
practice, the rule will be applied towards the beginning, before the initial model
candidate branches. A transformation of fi(ct1) # fa(cts) results in almost the
same rule, just that we have ‘different’ instead of ‘same’.

The rule for fi(ct;) = f2(ctz) can be optimised, by loss of its symmetry.
Instead of twice searching for something that should finally be the ‘same’ thing,
it suffices to search for one of both:

= I(f1, (ctr),val(fa(ctz))) , 1(f2, (ct2), val(fa(cta))) ; searchs(val(fy(ct2))) -

This is of course more efficient. Moreover, the examples are easier to understand
when the resulting rules are as short as possible. On the other hand, the defini-
tion of the transformation is much simpler in a version that is not optimised and
therefore more regular. In this paper, only define the unoptimised transformation
formally. However, in the example transformations, we also show the optimised
versions, which are more readable. A formal definition of the optimised transfor-
mation is given in [Ahr01, Sect. 3.2.3]. (Note that the rule for fi(ct1) # fa(ct2)
cannot be optimised similarly.)

The next example shows that, in general, we have to transform function
terms in a recursive manner. The (again quite artificial) axiom fi(fa(ct1)) = cto
translates to the rule:

— I(f2,<6t1>,va|(f2(ct1))) y search_s(val(fg(ctl))) s I(f1,<Va|(f2(Ct1))>,Ct2) .

Intuitively, this says that the last argument of I(fs, (ct1), val(fa(ct1))) is a not
yet known constructor term, which has to be searched for. What is known about
val(fa(ct1)) is represented by the I-atom I(fi, (val(fa2(ct1))), cta).

So far, we discussed ground axioms, for simplicity. We now consider the axiom
f(z) = ct. The resulting rule is:

s(z) = I(f,(z),ct) .
‘Binding’ variables by sort predicates is a technique widely used. The operational
meaning for the above rule is that, whenever we have s(ct') on the current branch,
for some ct’, then we can infer I(f, (ct'), ct). In general, we can have functions
on both side, as well as nested functions. The transformation then follows the
same patterns as sketched above for the ground case, but finally ‘binding * all

variables by providing sort atoms in the rule premise. We demonstrate this in
another example: the commutativity axiom f(x,y) = f(y,) becomes

s(x), s(y) —

ICf, (2,), val(f(y,2))) , I(f, (y,), val(f(y,®))) , search_s(val(f(y,))) .
Note again that = and y are ‘rule variables’. They do not appear on the branches,
which are always ground. The application of this rule generates a new place
holder val(f(ct, ct")) for every pair ct and ct’ for which s-predicates are provided.
The difference between our usage of val terms, and computing new place holder
symbols in each rule application, is that we can possibly reuse the val terms, even
when applying other rules. Therefore, the usage of val terms has similarities to
the usage of e-terms in free variable tableaux, described in [GA99]. In our context,
the less place holders we produce, the less searches we start.

In the general case, axioms of normalised specifications are clauses, i.e. dis-
junctions of equalities and inequalities. The according rules can directly reflect
the disjunction in the ‘branching’, by transforming each literal to a distinct
extension of the rule.

Definition 4. Be X = (S,C,F,«a) an ADT signature and ax € Kly,
with ax = lity V ...V lity, Var(az) = {z1,...,zn} and sort(z;) = s;. Then:
TransAziomy (ax) =
si(z1) , «-, Sm(xm) — TransLits(lity) 5 ... ; TransLits(lit,) .
In the following definition of TransLits; and its subparts, we use ‘Rep(t)’ to factor
out a certain case distinction. The ‘representation’ of a term ¢ € Ts;, Rep(t), is
defined to be t itself, if ¢ contains only constructors and variables, or val(t), if ¢
contains any functions. In particular, Rep is the identity for variables as well as
for constructor terms.
Definition 5. Let X = (S,C,F,a) be an ADT signature.
— Let t1,ty € Ts for some s € S. Then:
TransLity (t; = to) =
{ same(Rep(t1), Rep(t2)) , TransTermx(t1) , TransTermyx(t2) }

TransLits (t1 # t2) =
{ different(Rep(t1), Rep(t2)) , TransTermx(t1) , TransTerms(t2) }

— Lett € Ts;. Then:
e if t contains no functions, then: TransTermx(t) = 0
e ift =a with a € Fs, a(a) = A, then:
Trans Termx (t) = { I(a, (), val(a)), search_s(val(a)) }
o ift=f(t1,...,t,) with f € Fs, a(f) = s1...8p, then:
TransTerms: (t) =
{ I(f,(Rep(t1), ..., Rep(t,)),val(t)) , search_s(val(t)) }
U

n
U TransTermy(t;)
i=1

o ift =c(t1,...,tn) with ¢ € Cs, a(c) = s1...8,, and if t contains func-
tions, then:

TransTerms (t) =
{ is(val(t), c(Rep(t1),..., Rep(tn))) } U 'L_Jl TransTerms (t;)

Note that TransTerms(t) is empty exactly when Rep(t) is t. This means that the
recursion stops at terms that can be represented by themselves in the resulting
rules. In contrast, function terms can only appear nested in val terms, i.e. place
holders. Also note that we took the liberty to take over the variables as they
are, even if in the rules they act as ‘rule variables’, to be matched/instantiated
by rule application.

As an example, we show the result of transforming the (normalised) last
axiom of NatStack (see Example 3).

TransAzioms(n =m V del(n,push(m,st)) = push(m, del(n, st)))

Nat(n), Nat(m), Stack(st)

i

me(n,m) ;
same(val(del(n, push(:::, si), val(push(m, del(n, st)))),
I(del, (n, push(m, st)), val(del(n, push(m, st)))),
search_Stack(val(del(n, push(m, st)))),
is(val(push(m, del(n, st))), push(m, val(del(n, st)))),
I(del, {n, st), val(del(n, st))),
search_Stack(val(del(n, st))) .

3

~— —~
~—

The optimised version results in a shorter rule:

Nat(n), Nat(m), Stack(st)
%
same(n,m) ;

I(del, (n, push(m, st)), val(push(m, del(n, st)))),
is(val(push(m, del(n, st))), push(m, val(del(n, st)))),
I(del, {n, st),val(del(n, st))),
search_Stack(val(del(n, st))) .

We also show the transformation of another, simpler axiom:

TransAzioms (pop(push(n, st)) = st)

nat(n), stack(st)
_)
same(val(pop(push(n, st))), st),

I(pop, (push(n, st)), val(pop (push(n, st)))),
search_Stack (val(pop(push(n, st)))) .

In this quite typical axiom pattern, the optimised transformation gains an enor-
mous simplification:
nat(n) , stack(st) — I(pop,{push(n,st)), st) .

6 Model Generation for Approximated Specifications

The rules transformed from the axioms can only be applied if the current model
candidate contains appropriate sort atoms. Ideally, we would need to have s(ct)
for every constructor term ct of sort s, and that for each sort. This cannot be
realized in finite time. But what we want is a method which terminates in case
there is a model. This makes the real difference to the traditional (refutational)
methods for proving conjectures. Our approach to the issue of model construc-
tion for free data type specifications does not solve the problem completely. An
automated method hardly can. Instead we construct a model of an approxima-
tion of the specification.

Let us assume now that the constructors are recursive (which is mostly the
case) and, therefore, determine an infinite domain. The set of (quantifier free)
axioms is then equivalent to an infinite set of ground azxioms, which results
from instantiating the variables by all constructor terms. We now approximate
the specification by considering a finite subset of these ground axioms, which
results from instantiating the variables by a finitely many constructor terms.
Particularly, we limit the number of instances by limiting their ‘size’, which is
simply defined to be the number of constructors. (X, AX<,)’ denotes such an
‘n-restricted specification’, where the axioms are instantiated by all constructor
terms of maximal size n. The instantiation of axioms is reflected by applying
the rules transformed from the axioms, where the arguments of the matched
sort atoms are the instances. Therefore, to make the rules search for a model
of (¥, AX<,)’, we just initialise the first model candidate to be the set of sort
atoms for all constructor terms up to size n. In the theorems below, we call this
‘n-initialisation’. In practice, the n has to be rather small. But, depending on
the signature, the number of terms is significantly bigger than their maximal
size.

On this initial ‘model candidate’ (at first only containing sort atoms), the
rules, transformed from a (counter) specification, are ‘executed’ by some proce-
dure. We use a procedure known as model generation ([MB88], [FHI1]), which
can be seen positive, regular hyper tableaux. The regularity ensures termination
in case every matching rule has at least one extension not adding anything new
to the branch. If one branch cannot be extended further, model generation stops.
In the theorems below, we call this ‘termination by saturation’ (in contrast to
‘termination by rejection’). Our realization uses the tool ‘MGTP’ (model gener-
ation theorem prover, [FH91]) for executing the described rules. The input of a
model generation procedure is a set of what they called ‘clauses’, which corre-
sponds to what we called ‘rules’. These ‘clauses’ have the general form depicted
in the end of section 3. In addition, the rules must be ‘range restricted’, which

means that each variable must also occur on the left side of ‘—’. Our rules fulfil
that restriction.

Taking the basic model generation procedure which is implemented in MGTP
as an execution model for the transformed rules, we state the following

Theorem 1. (n-restricted model correctness)

Let (¥, AX) be a normalised ADT spec., n € N and R = TransSpec((¥, AX)).
If the n-initialised model generation procedure with input R terminates by sat-
uration, then (a) (¥, AX<y) has a model, and (b) for every F-interpretation
T which corresponds to the I-atoms on the saturated branch, it holds that T |=
(¥, AX<p).

Theorem 2. (model completeness)

Let (¥, AX) be a normalised ADT spec., n € N and R = TransSpec((¥, AX)).
If (¥, AX) has a model, then an n-initialised, fair model generation procedure
with input R terminates by saturation, and for every F-interpretation T which
corresponds to the I-atoms on the saturated branch, it holds that T |= (X, AX<p).

The fairness in Theorem 2 is a requirement not implemented in MGTP. In prac-
tice, this is less important than in theory, as the search for constructor terms
builds small terms first, and as small terms usually suffice to find a validating in-
terpretation. However, the rules as such are complete, and this independent of n!
Note that the theorem says “If (¥, AX) has a model” instead of “If (¥, AX<,)
has a model”. We translate the completeness result to the non-consequence prob-
lem we are originally interested in. If it holds that (¥, AX) [~ ¢, then model
generation applied to the transformation of (X', AX U Contr(y)) terminates by
saturation.

Both proofs for these theorems are nontrivial, particularly the completeness
argument, which requires a termination argument, to be inferred from the model
which is assumed to exist. The detailed proofs are given in [Ahr01].

7 Implementation and Examples

The method is implemented as a JAVA program, which, given a specification
(¥, AX) and a conjecture o, (a) computes the transformation of the normal-
isation of (¥, AX U Conir(p)), (b) calls MGTP, and in case of saturation (c)
analyses the saturated branch, producing an output both to the prompt and to
a IWTEX file, telling why ¢ might not be a consequence of (¥, AX).

For instance, given NatStack and the conjecture del(top(st),st) = pop(st),
the (abbreviated) WTEX output is:
the conjecture del(top(ST), ST) = pop(ST)
is violated by the following variable assignment: ST : nil
and by the following evaluation of conjecture subterms:
del (top(ST),ST) : nil
top(ST) : zero
pop(ST) : push(zero,nil)

The interpretation found by the system satisfies the axioms,

if instantiated by constructor terms with less than 4 constructors!

(end of output)

The warning reminds the user on what we called n-restricted correctness. Nev-
ertheless, the system tells that the specification allows pop(nil) being evaluated
to push(zero, nil), in which case del(top(nil), nil) = pop(nil) is false, and therefore
the conjecture is false. This shows that either the conjecture or the specification
has to be changed. Another example for a false conjecture on NatStack which
the system complains about is push(top(st), pop(st)) = st.

Due to the n-restricted correctness, the system possibly can complain about
a conjecture that actually is a consequence of the axioms. This happens for
instance when we ask if p(z) = tt is a consequence of (see Example 2, page 3):

{p(zero) = tt, p(z) = tt — p(succ(z)) = tt}
The system complains about this conjecture, because it can always construct
I(p, (succ(ct)), ff) for a ct which is slightly bigger than the size restriction n.

The last example we mention here is based on a specification taken from
[Thu98]. Even if [Thu98] also investigates errors in specifications, this error is
neither discussed nor detected nor even intended there. We refer to that revealed
error not to blame the author, but to demonstrate how easily such errors hap-
pen, even in a context where one is very aware of the possibility of errors. (In
general, an more open exchange of errors that really happen would be of great
benefit to the development of error revealing techniques.) The cited specifica-
tion is intended to describe a ‘merge sort’ algorithm. The two main axioms are:
sort(empty) = empty and sort(append(l,1')) = merge(sort(l), sort(l')).

Our system, when being asked if the singleton list is stable under sort,
i.e. sort(cons(n,empty)) = cons(n,empty), complains and suggests to evaluate
sort(cons(n,empty)) to empty (!), as this is consistent with the specification,
which does not specify at all how to sort a singleton. (To comprehend this, it
suffices to know two more axioms: merge(empty,l’) = I’ and merge(l,empty) =1.)
As any other sorting reduces to sorting the singleton, the specification does not
specify the sorting of any (but the empty) list.

8 Related Work and Conclusion

The works related to our task and approach can be divided in two (overlapping)
fields: (1.) model construction and (2.) detecting faulty conjectures. In the first
area, there are several methods searching for finite domain models. The methods
described in [Sla94] and [ZZ96] search for models of a fixed size, whereas [BT98]
dynamically extends the finite domain. As free data types usually have infinite
domains, these finite domain methods cannot directly be applied to our setting.
(A further discussion follows bellow.) Other methods in the first area are more
syntax oriented, describing models by (extensions of) formulae ([FL96], [CP00]).
These approaches construct models for first order formulae, usually not con-
taining equalities. Our object logic, however, is completely equality based and,
because of constructor generatedness, beyond first order. In the second area, a

lot of work is done in the context of initial (or rewrite) semantics, where due to
monomorphicity, the notions of proof and consistency are very close ([Bac88]).
Also where monomorphicity is imposed by purely sysntactical means, the de-
tection of faulty conjectures reduces to proving their opposite ([Pro92]). In that
context, even the correction of faulty conjectures is examined ([Pro96], [MBI94]).

To the best knowledge of the author, the only work that is similarly dedicated
to the detection of faulty conjectures in loose specifications (not even restricted
to free data types), is [Thu98,RSTO01]. There, a ‘counter example’ is essentially
a falsifying variable assignment, rather than a falsifying model. Unsurprisingly,
that method, as well as ours, cannot totally solve the issue of non-consequence.
During the construction of falsifying variable assignments, the method produces
side condition, the consistence of which left to be judged by the user. Like in our
approach, the user has to take the final decision. The assignment of values to
axiom variables is included in our method (see the example outputs). Moreover,
our method analyses possible valuation of function terms.

We conclude by stressing the main features of the presented approach and its
implementation. We provide a fully automated method which is tailor-made for
detecting non-consequence between a free data type specification and a conjec-
ture. It searches for a counter model, basically by constructing an interpretation
table and searching for its entries. The user receives feedback in form of variable
assignments and subterm evaluations which falsify the conjecture. To enable ter-
mination, the property of a falsifying interpretation to actually be a model of
the specification is approximated only. This is done by instantiating the axioms
with terms of a limited size only. This size is a parameter of the method and
its implementation. The price of the limited term size is a restricted model cor-
rectness: a model of a limited instantiation is not necessarily a model of the full
specification. The user must attack this problem by (a) examining the proposed
term evaluations and (b) varying the term size limit.

It is important not to confuse our limited instantiation of the axioms with a
limited domain size. In our case, by increasing the limit we can only lose models,
and by decreasing the limit, we can only gain models. This is the very reason
why our model completeness result is not restricted by the chosen limit. Such a
monotonous behaviour would not hold if we varied domain sizes. We could not
gain model completeness by following a similar approach like [BT98] (see above).
Model construction is the means rather that the purpose of our method. We
finally want to detect faulty conjectures. From this pint of view, having model
completeness is worth to pay a price for. The system indeed detects all non-
consequences, even if it detects to many. At the same time, the restrictions are
kept transparent to the user (see the example output above). In case the error is
real, it is usually not difficulty to comprehend once one is pointed to. Providing
unexpected valuations of function terms then helps to identify underspecified
properties which are the source of errors.

Acknowledgements I am grateful to Reiner Hahnle for his general support as well
as for many, many, fruitful discussions, and for carefully checking the proofs in [Ahr01].
I am also grateful to Sonja Pieper for implementing the presented method.

References

[Ahr01]

[Bac88]

[BT9S]

[CPO0]

[FHO1]

[FL96]

[GA99]

[MBSS]

Wolfgang Ahrendt. Deduktive Fehlersuche in Abstrakten Datentypen. 2001.
Dissertation (preversion, in German), University of Karlsruhe, available under
http://www.cs.chalmers.se/ ahrendt/cade02/diss.ps.gz.

Leo Bachmair. Proof by consistency in equational theories. In Proc. Third
Annual Symposium on Logic in Computer Science, Edinburgh, Scotland, pages
228-233. IEEE Press, 1988.

Francois Bry and Sunna Torge. A deduction method complete for refutation
and finite satisfiability. In Proc. 6th European Workshop on Logics in Al
(JELIA), volume 1489 of LNAI, pages 122-136. Springer-Verlag, 1998.
Ricardo Caferra and Nicolas Peltier. Combining enumeration and deductive
techniques in order to increase the class of constructible infinite models. Jour-
nal of Symbolic Computation, 29:177-211, 2000.

Hiroshi Fujita and Ryuzo Hasegawa. A model generation theorem prover in
KL1 using a ramified-stack algorithm. In Koichi Furukawa, editor, Proceedings
8th International Conference on Logic Programming, Paris/France, pages 535—
548. MIT Press, 1991.

Christian Fermiiller and Alexander Leitsch. Hyperresolution and automated
model building. Journal of Logic and Computation, 6(2), 1996.

Martin Giese and Wolfgang Ahrendt. Hilbert’s e-terms in Automated Theo-
rem Proving. In Neil V. Murray, editor, Automated Reasoning with Analytic
Tableauzr and Related Methods, International Conference, Saratoga Springs,
USA, volume 1617 of LNAI, pages 171-185. Springer-Verlag, 1999.

Rainer Manthey and Frangois Bry. SATCHMO: A theorem prover imple-
mented in Prolog. In Proceedings 9th Conference on Automated Deduction,
volume 310 of LNCS, pages 415—434. Springer-Verlag, 1988.

[MBI94] Raul Monroy, Alan Bundy, and Andrew Ireland. Proof plans for the correc-

[Pro92]

[Pro96]

tion of false conjectures. In Frank Pfenning, editor, Proc. 5th International
Conference on Logic Programming and Automated Reasoning, Kiev, Ukraine,
volume 822 of LNAI, pages 54—68. Springer-Verlag, 1994.

Martin Protzen. Disproving conjectures. In D. Kapur, editor, Proc. 11th
CADE, Albany/NY, USA, volume 607 of LNAI pages 340-354. Springer-
Verlag, 1992.

Martin Protzen. Patching faulty conjectures. In Michael McRobbie and John
Slaney, editors, Proc. 18th CADE, New Brunswick/NJ, USA, volume 1104 of
LNCS, pages 77-91. Springer-Verlag, 1996.

[RST01] Wolfgang Reif, Gerhard Schellhorn, and Andreas Thums. Flaw detection in

[Sla94]

[Thu9s]

[ZZ.96]

formal specifications. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow,
editors, Automated Reasoning, IJCAR 2001 Siena, Italy, June 18-23, 2001
Proceedings, volume 2083 of LNAI Springer-Verlag, 2001.

John Slaney. FINDER: finite domain enumerator. In Alan Bundy, editor, Proc.
12th CADE, Nancy/France, volume 814 of LNCS, pages 798-801. Springer-
Verlag, 1994.

Andreas Thums. Fehlersuche in Formalen Spezifikationen. diploma thesis,
Fakultét fiir Informatik, Universitdt Ulm, 1998.

Jian Zhang and Hantao Zhang. Generating models by SEM. In Michael
McRobbie and John Slaney, editors, Proc. 18th CADE, New Brunswick/NJ,
USA, volume 1104 of LNCS, pages 309-327. Springer-Verlag, 1996.

