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ABSTRACT
Testing driven development (TDD) is a technique where test cases

are used to guide the development of a system. This technique

introduces several advantages at the time of developing a system,

e.g. writing clean code, good coverage for the features of the system,

and evolutionary development. In this paper we show how the

capabilities of a testing focused development methodology based on

TDD andmodel-based testing, can be enhanced by integrating static

and runtime verification into its workflow. Considering that the

desired system properties capture data- as well as control-oriented

aspects, we integrate TDD with (static) deductive verification as

an aid in the development of the data-oriented aspects, and we

integrate model-based testing with runtime verification as an aid

in the development of the control-oriented aspects. As a result of

this integration, the proposed development methodology features

the benefits of TDD and model-based testing, enhanced with better

coverage regarding data aspects, and the validation of the overall

system with respect to the model, regarding the control aspects.
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1 INTRODUCTION
Minimising bugs is a major objective in software development,

but accomplishing this objective to a satisfactory degree is often

difficult. In fact, few experts are overly surprised when bugs are

found even in well-known programs or algorithms, e.g. [21]. The

need of software development techniques which help programmers

to spot bugs early on is apparent.
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Programmers can use several techniques which help to develop

implementations with less bugs. The most used technique to in-

crease confidence in the correctness of the developed software is

undoubtedly testing. To a lesser extent formal methods are used.
They offer stronger guarantees, but their use has started to gain

popularity only recently, and they are not applied nearly as widely

as their potential suggests.

Besides the more traditional way of performing testing, testing
driven development (TDD) is a technique where test cases are used
to drive the development of the program. Therein, test cases form

a light-weight ‘specification’ of program units, guiding the pro-

grammer who aims at satisfying the given test-cases. Using this

technique, programmers tend to write cleaner code with good cov-

erage for the desired system features, as every feature is accounted

with test cases. This helps limiting the introduction of bugs.

Another testing technique is model-based testing (MBT), which

in turn is part of model based development. In MBT, tests are au-

tomatically generated (also) from model artefacts, and frequently

executed to check whether the test passes or not (after providing a

checker for expected outputs, the oracle). In order to perform MBT

one must write a model from which the test cases are obtained.

In this paper we show how the capabilities of a testing focused de-

velopment methodology based on TDD and MBT, can be enhanced

by integrating static and runtime verification into its workflow.

Considering that the desired system properties can be separated

into data-oriented aspects (e.g. how a method modifies the fields of

a class) and control-oriented aspects (e.g. proper flow of execution

of the methods), we integrate TDD with (static) deductive verifica-

tion, and we integrate MBT with runtime verification. The former

integration comes as an aid in the development, and debugging,

of the data aspects, whereas the latter helps the development, and

debugging, of the control-oriented part.

Regarding the data aspects, we first define (empty) methods

needed in the classes, and we write contracts (i.e. Hoare triples) for
them. Then, we write test cases covering all contracts, and we pro-

ceed by applying TDD. (As we so far only have emptymethods, tests

will in principle fail for the lack of even an initial implementation.)

After some iterations in TDD, where method implementations are

developed, and some early bugs may be discovered and fixed, we

use deductive verification to formally verify the methods. If some

of the contracts cannot be (fully) verified, we generate (potentially

failing) test cases covering the parts of the implementation that

could not be proven correct, and continue by applying TDD focused

on these new tests. Then, we iterate on these steps, ideally until

the methods are fully verified (with respect to their data-oriented

unit specifications).

Regarding the control aspects, we start by writing a model for

these aspects. Next, we useMBT to generate test cases, and continue

with the development of the program by attempting to get a desired
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coverage over the model, e.g. transition coverage. After this, we

produce a monitor specification from the model, in order to then

runtime verify the overall system implementation with respect to

the model. This monitor specification can be further extended to

cover aspects not covered by the model. (In particular, forbidden

behaviour is often not made explicit in models, but very much so

in monitor specifications.)

As a result of this integration, our proposed methodology fea-

tures the benefits of using TDD and MBT, but enhanced with: [WA:

add disadvantages? (heavy)]

• better coverage regarding data aspects (possibly including

coverage metrics);

• early detection of bugs which may be missed when applying

traditional TDD;

• the validation of the overall system behaviour with respect

to the model (understood as a specification)

• the inclusion of aspects often neglected in models (and in

MBT), like nested methods calls and forbidden behaviour.

The authors have earlier made technical contributions which

are used in this work, in deductive verification [3], proof based

test generation [6], and combined static and runtime verification

[5]. The corresponding tools are used, together with other tools, in

the examples we discuss (see Sec. 4). The proposed development

process does, however, not depend on the exact tools used in the

different steps.

Structure of the paper. Sec. 2 provides a brief introduction to

TDD, MBT, and static and runtime verification. Sec. 3 presents an

overview of our proposed methodology. Sec. 4 illustrates in more

detail our methodology through its application in the development

of a small Java program. Sec. 5 ellaborates on the benefits of using

our proposed methodology. Sec. 6 discusses related work and Sec. 7

concludes the paper.

2 BACKGROUND
In this section we briefly introduce the concepts we build upon in

this work.

2.1 Testing-driven development
Testing-driven development (TDD) is a software development tech-

nique [9]. In this technique, the test cases serve as a guide for

developing the different parts (units) of the system. Pragmatically,

the test cases can be seen as (unit) specifications, however in a lim-

ited sense, as the wanted behaviour is only given for exactly these

tests, and the programmer has to extrapolate from that herself.

Performing TDD consists of the following steps:

(i) Write test cases that initially fail;

(ii) Write code making the tests pass;

(iii) Refactor the code.

These steps are usually known as Red, Green, and Refactor, respec-

tively. The idea is that before implementing the methods of the

system one should, first, write test cases for all of them. Such test

cases will immediately fail, as the methods are not (properly) im-

plemented yet. Then, one proceeds to implement the methods. The

implementation of a method is considered to be ready once its test

cases succeed. Finally, one should remove from the implementation

all the duplication of code (if any) introduced in order to make the

test pass.

In general, by using TDD, programmers limit the introduction of

bugs to a certain extent. In addition, this technique presents other

benefits like writing clean code, good coverage for the features of

the system, and evolutionary development.

On the negative side, developers usually complain that they do

not think in terms of tests and that it takes more time to develop

the code, so it is imperative to break such resistance to change

the way they develop software. After adopting TDD though, many

programmers agree with the benefits of using it.

2.2 Model Based Testing
Unit testing focuses on writing tests which analyse the computa-

tion performed by the unit on the data. In contrast to that, model-

based testing (MBT) [42] provides better support for testing con-
trol-oriented aspects, e.g. the flow of execution of the methods in

the program under test. Most models that are used to generate tests

for control-oriented aspects are based on variants of finite-state
machines.

In general, MBT tools can automatically generate test cases from

the model which might also contain the expected output in order

to automate the decision on whether the test passes or not [2, 41].

In addition, they may generate failing traces which simplifies the

detection of pitfalls in the program under test.

More concretely, MBT involves doing the following:

(i) Writing an abstract model (sometimes the model is annotated

to capture the relationship between tests and requirements);

(ii) Generating abstract tests from the model, which implies defin-

ing a test selection and coverage criteria;

(iii) Generating concrete test cases, which implies the creation of

an adaptor to convert abstract tests into concrete test cases;

(iv) Executing the tests on the system under test (SUT) and assign-

ing verdicts;

(v) Analysing the test results and taking corrective action.

Note that a fault in the test case might not necessarily mean that

there is a problem with the implementation: the verdict might be

due to a fault in the adaptor code or in the model.

Among the benefits of using MBT, it is usually mentioned [42]

that it increases the possibility of finding errors, it reduces testing

cost and time (programmers spend less time and effort on writing

tests and analysing results as it generates shorter test sequences),

it improves the test quality (by considering coverage of the model

and of the SUT), it might detect requirements defects, it gives trace-

ability between requirements and the model, and between informal

requirements and generated test cases, and that it helps the updat-

ing of test suites when the requirements evolve.

On the negative side, among other things MBT cannot guarantee

to find all differences between the model and the implementation,

it needs skilled model designers, and it is mostly used for functional

testing. Moreover, unless you keep an updated table relating re-

quirements with the model, you might get the wrong model from

outdated requirements. Finally it is indeed an overhead to write the

model (which might be wrong) and to develop the adaptor (which

might also introduce errors).
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2.3 Deductive Verification
In deductive verification, correctness properties of a program (unit)

are captured in logical formulae, e.g., in first-order logic, high-

order logic, program logic, etc. These formulas are then proved by

deduction in a (logic) calculus [3, 25].

There are three main approaches that one may adopt to perform

deductive verification. Let us call these three approaches Proof
Assistants, Program Logic, and Verification Condition Generation.

Proof Assistants are interactive theorem provers which, in gen-

eral, target some high-order logic [11, 43]. These provers are not

language-oriented. Instead, they provide a language in which both

the syntax and the semantics of the program under scrutiny have

to be described. In addition, the correctness properties have to be

modelled within the logic handled by the proof assistant. Then, one

may use the proof assistant to develop the proof of the properties.

Concerning Program Logic, Hoare Logic [29] may be the most

well-known program logic to analyse programs. Hoare logic offers

both a clear notation to describe programs and their properties, and

a set of axioms and inference rules which may be used to verify

the properties [37]. In this logic, properties are described by using

Hoare triples.
In the Verification Condition Generation approach, programs are

annotated with assertions representing the desired correctness

properties [31]. Then, this assertions may be used to generate first-

order logic verification conditions which later may be discharged

by using some automatic prover [22].

A benefit of deductive program verification is that once a prop-

erty (contract) for a given unit is proven, there is a very high confi-

dence that the method is correct (provided the property is correct).

Another advantage is that one does not need to run the program,

reducing the need to find test cases and to set or simulate runtime

environments.

One disadvantage of this technique is that it is not possible, in

general, to be applied automatically. Also, the method requires con-

tracts of called (library) code and loop invariants. So one can argue

that it requires a highly specialised person to do such verification,

as the critics go for many other formal methods techniques. Besides,

many properties of the program cannot be proved statically and

are required to be analysed during program execution.

2.4 Runtime Verification
Runtime verification (RV) [26, 27, 33] is a technique focused on

monitoring software executions. It detects violations of properties

which occur while the program under scrutiny ‘runs’. Moreover,

RV provides the additional possibility of reacting to the incorrect

behaviour of the program whenever an error is detected.

Properties verified with RV are specified using any of the fol-

lowing approaches: (i) annotating the source code of the program

under scrutiny with assertions [32]; (ii) using a high level specifica-

tion language [35]; or (iii) using an automaton-based specification

language [4, 17].

In order to perform the verification of the properties, RV intro-

duces the use of monitors. A monitor is a piece of software that

runs in parallel to the program under scrutiny, controlling that the

execution of the latter does not violate any of the properties. In

Testing Driven
 Development
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 Model-Based  
      Testing

control

   Model
Definition

   Methods
 Signature
  Definition

Model

Figure 1: A testing focused development workflow.

addition, monitors usually create a log file where they add entries

reflecting the verdict obtained when a property is verified.

In general, monitors are automatically generated from the an-

notated/specified properties [14, 15, 18, 36, 38], which is of course

a big advantage. Another advantage is that one can check also

properties which are not provable statically, thus complementing

static verification. Finally, the fact of monitoring the real execution

makes the technique appealing since this particular execution, and

deployment, may not have been covered at testing time.
1

The main disadvantages of this technique is that one can only

capture errors that are witnessed by current executions and cannot

say much, in general, about other runs. Depending on the context,

adding a monitor adds time and space overheads which might

be prohibitive in some cases (e.g., in small devices, or when the

response time of the system is critical).

3 COMBINING TESTINGWITH STATIC AND
RUNTIME VERIFICATION

In this section we provide an overview of the proposed develop-

ment methodology. As a starting point, for presentation purposes,

we describe a methodology using two styles of testing, TDD and

MBT, not yet using deductive or runtime verification. Thereafter,

we enhance the methodology by integrating (static) deductive verifi-

cation and runtime verification in the workflow. A detailed example

demonstrating the usage of the methodology will be provided in

the next section (Sec. 4).

3.1 A Testing Focused Development
Fig. 1 illustrates an abstract view of a purely testing focused work-

flow. Based on the insight that the desired properties of a system

can be largely divided into data- and control-oriented aspects, we

can view the methodology as consisting of two stages focussing on

data and control, respectively.

Regarding the data stage, first we define the signatures of the

methods, and provide stub implementations to enable compilation.

Then, we use TDD as explained in Sec. 2.1. Here, the various aspects

of the desired computation on the data have to be accounted with

(unit) test cases.

Regarding the control stage, we start by writing a model fo-

cussing on the control aspects of the system. Then, we continue

developing our program by using model-based testing, in a sim-

ilar manner to how Behaviour Driven Development (BDD) [13] is
performed. BDD is an extension of TDD where one focuses on the

1
The monitor can also log the execution of the program in order to perform a ‘post

mortem’ analysis which could give more insights into why the error occurred.
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behaviour of the system instead of units of code. In general, every

feature of the system is divided into scenarios of the form GIVEN-
WHEN-THEN, e.g. GIVEN certain condition, WHEN some operation

is performed, THEN something should happen. In [16], Colombo

et al. show how the BDD features can be written as models for

model-based testing. For instance, the scenario,

GIVEN we are in state unlogged
WHEN method log is ran successfully

THEN we are in state logged

would be represented in a model as a transition from the initial

state unlogged to the state logged, which is triggered whenever the

method log is ran successfully.

In the spirit of this pattern, we continue by generating test cases

which trigger the transitions of the model, aiming at triggering

each transition at least once. In terms of BDD, this would be sim-

ilar to considering a whole scenario every time we iterate in the

development cycle.

Thus, one would continue iterating on this stage until transi-

tion coverage over the model is accomplished. Note that failing to

accomplish this would probably mean that the implementation is

erroneous (assuming that the model is correct of course).

Finally, we proceed to complete the overall implementation of the

system, by implementing the system level layer(s). In the simplest

case, in a stand alone, command line application in, say, Java, this

may correspond to implementing the class containing the method

main.
Once the development of the overall implementation of system is

completed, we will have an implementation that is likely to feature:

• clean code;

• good coverage over the data aspects;

• high coverage over the control aspects;

However,

• the unit test cases only specify the wanted behaviour for

some specific inputs, not for all inputs;

• we have no information regarding the unit test coverage;

• all unit test cases need to be written by hand;

• we have no evidence that the overall system implementation

fulfils the control aspects of the desired properties.

3.2 A methodology integrating testing and
verification

The aforementioned shortcomings of the purely testing focussed

methodology indicate the potential for an improved methodology,

which we present in the following.

In [4, 5], Ahrendt et al. show how runtime monitors can be opti-

mised by combining the use of runtime verification with deductive

verification. In these works, the authors consider the integration of

data- and contol-aspects in the specification, but their separation

in the verification. From that work, we inherrit the overall idea

to use static and runtime verifiction in combination, however in a

different way. In the development process we propose here, static

and runtime verification techniques are not integrated with each

other directly, but either of them is integrated with TDD and MBT,

respectively. As a result, we obtain the workflow illustrated in Fig. 2.

Regarding the data stage, we start by defining the signatures of

all the methods associated to data aspects, providing a stub imple-

mentation to allow their compilation. Next, we define contracts, i.e.,
properties written as pre/post-conditions (Hoare triples), for the

different methods. These contracts focus on the data aspects. We

then proceed to apply TDD, adding one test at a time, and make it

pass by further developing the implementation.

Once we have implemented the methods, we proceed to use

deductive verification in order to verify them. The verification of a

contract produces either (1) a closed proof, i.e. the contract is fully

verified, or (2) an unclosed (partial) proof, i.e., the contract is not

(fully) verified.

In relation to (1), this means that the method fullfils the contract.

In relation to (2), this case usually means that either (i) there is a

bug in the program, or (ii) the deductive verifier has not enough

information to finish the proof. Here, we can use symbolic execution
[28, 30] to generate test cases covering the execution of the parts of

the method which are in conflict with the contract, and then reason

about which one of the previous scenarios is the most likely to be

happening [6, 34]. In general, if the test case succeeds right away,

then it is the case that the verifier has not enough information to

finish the proof. If the test does not pass, we modify the imple-

mentation to make the test succeed, i.e. we apply TDD. Thus, we

have a retrofitting loop between deductive verification and TDD,

i.e. deductive verification provides new tests for TDD. As a remark,

in Sec. 4 we will show an example on how this retrofitting loop

can detect bugs which could not be detected right away by using

traditional TDD.

Regarding the control stage, we start working in the exact same

manner as described in Sec. 3.1. However, once we have imple-

mented the method in charge of running the system, now we move

on to the use of runtime verification.

To use runtime verification, first, we need to produce a monitor

specification from the model. By considering the results given by

Falzon et al. [24], we can convert the model into a monitor specifi-

cation in a quite straightforward manner. We then use this specifi-

cation to generate a monitor, in order to runtime verify the overall

system implementation with respect to the model. Here, we use the

test cases generated with model-based testing in the previous step

as traces to guide the monitored execution.

Once the overall system implementation is runtime verified, we

can proceed to further extend the monitor in order to cover aspects

not covered by the model. For instance, we can add new transitions

going to violating states to analyse forbidden behaviour. In addition,

by using runtime verification we can simplify the analysis of control

aspects focus on nested method calls, as model-based testing is

mainly focused on the entire execution of the methods.

Once the development of the overall implementation of system is

completed, we will have an implementation that is likely to feature:

• clean code;

• high (unit) test coverage (in terms of specific metrics) guar-

anteed by the use of deductive verification [6];

• high coverage over the control aspects (transition coverage

on the model);

• good evidence that the overall implementation of the system

fulfills the control aspects (guaranteed by the use of runtime

verification);



Testing Meets Static and Runtime Verification FormaliSE’18, June 2018, Gothenburg, Sweden

Testing Driven
 Development

data

 Model-Based  
      Testing

   Runtime Verification

control

 Contracts
 Definition    Model

Definition

Monitor
   Spec.   Methods

 Signature
  Definition

Contracts
Verification

(partial)
Proofs

Deductive Verification

Test Case 
Generation

(symbolic execution)

Test
Cases

Model

   Model
Translation

Monitor
Generation

Monitor
Extension

Monitored
Execution

Overall
Implementation

Figure 2: Integrating deductive and runtime verification in the workflow.

In conclusion, by integrating deductive verification and runtime

verification into its workflow, we have enhanced the methodology

proposed in Sec. 3.1.

4 OUR METHODOLOGY IN ACTION
In this section we describe how to use the development methodol-

ogy described in Sec. 3.2. To depict this, we use a running example

consisting on the development in Java of a small bank systemwhere

users log in to perform transactions. Below, we provide a brief de-

scription of the system.

In a nutshell, we will perform the following steps:

(1) Definition of methods signature, providing stub implemen-

tation to allow their compilation;

(2) Definition of contracts accounting all the data aspects;

(3) Use of TDD, creating test cases covering the contracs;

(4) Deductive verification of the implementation, and use of

retrofitting loop when necessary;

(5) Writing the model covering the control aspects of the system;

(6) Use of model-based testing;

(7) Implementation of the method that runs the system;

(8) Translation of the model to a monitor specification;

(9) Generation of a monitor;

(10) Runtime verification of the overall implementation w.r.t. the

model;

(11) Extension of the monitor to consider safety (control) aspects.

A repository with the whole documentation of the system, and

the developed sources, is available from [1]. On this repository, one

can found several branches covering the steps above, e.g. branch

step1 covers the first step, branch step2 covers the second step, and

so on. Having all of these branches will allow the reader to (i) have

a proper understanding on the work performed at each step, and

(ii) have a clear view on how the development evolves from one

step to the other.

Running Example: Bank System Our running example consists

on the development in Java of a small bank system where users log

in to perform transactions. This system has the following classes:

• Account: The class representing the accounts of the bank.
• Category: Different categories for a user.
• DataBase: This class is used to emulate a database.

• HashTable: Open addressing Hashtable with linear probing

as collision resolution.

• Main: The class Main.

• SystemCentral: The class SystemCentral is used to keep

track of centralised data.

• User: The class representing the users of the bank.
• UserInterface: The class representing the interface offered
to the users in order to interact with their accounts.

Classes Account, Category, HashTable, and User are developed
in the data stage; whereas classes UserInterface, and Main are

developed on the control stage. Note that the classes DataBase
and SystemCentral are used to emulate the interaction with the

database, and the centralised data for the bank. Thus, these two

files are provided with the running example, i.e. their development

is not part of the running example.

On this paper, we focus only on the development of the classes

HashTable (steps 1,2, and 3), UserInterface (step 4), and Main
(steps 5 and 6). In addition, we mainly deal with the following data

and control aspects of the system:

• The set of logged user has to be implemented using an open

addressing hashtable with linear probing as collision resolu-

tion (data aspect).

• A user has to be logged to perform a transaction (control

aspect).
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/*@ public normal_behaviour

@ requires size < capacity ;

@ ensures

(\exists int i; i >= 0 && i < capacity; h[i] == u);

@ assignable size,h[*] ;

@ also

@ public normal_behaviour

@ requires size >= capacity ;

@ assignable \nothing ;

@ */

public void add(Object u, int key) { }

Figure 3: Contracts for method add.

4.1 Methods Signature Definition
We start applying our methodology by defining the signatures

of all the methods associated to data aspects, providing a stub

implementation to allow their compilation
2
.

4.2 Contracts Definition
We then continue by defining contracts accounting all the data

aspects of the system. Here, we use the Java Modelling Language
(JML) [32] to write the contracts. By using JML one can specify

both pre- and postconditions of methods calls, and class invariants.

In general, contracts written in JML are annotated in the source

code, previous to the corresponding method signature.

Regarding class HashTable, Fig. 3 illustrates the contracts de-

fined for the method add, which is used to add an object into a

hashtable. The first contract correseponds to the case where there

is room in the hashtable for a new object, i.e. after adding the object,

there exists an index in the hashtable such that the new object can

be found there. The second contract corresponds to the case where

the hashtable is full, i.e. the hashtable should not be modified.

In addition, Fig. 4 illustrates one of the contracts defined for the

method delete, which is used to remove objects from the hashtable.

It corresponds to the case where there is an object in the position

of the computed hash code for key. Then, the object is replaced by

null in the hashtable, the size of the hashtable decreases by one,

and the removed object is returned by the method. The objects in

the other positions should remain the same.

4.3 Testing Driven Development
Once all the contracts are in place, we proceed to define test cases

for them, and then we use TDD in order to implement the methods.

Here, we use JUnit to write and check the (unit) test cases [10]
3
.

Regarding the class HashTable, Fig. 5 and Fi. 6 illustrate part of

the developed implementation for method add, and the developed

implementation of method delete, respectively. In both imple-

mentations we have intentionally introduced bugs which are not

detected by the test cases that were used in this step. In method

add, the condition of the while j <= capacity, should actually be

2
The source code consisting in only the methods signature is available in [1], on the

branch initial-code.
3
All the test cases are avaiable from [1], under the path src/test/java/bank.

/*@ public normal_behaviour

@ requires key >= 0 ;

@ requires h[hash_function(key)] != null ;

@ requires size > 0 ;

@ ensures \result == \old(h[hash_function(key)]) ;

@ ensures h[hash_function(key)] == null

&& size == \old(size) - 1;

@ ensures (\forall int j; j >= 0 && j < capacity

&& j != hash_function(key) ; h[j] == \old(h[j])) ;

@ assignable size,h[*] ;

@ */

public Object delete(int key) { }

Figure 4: One of the contracts for method delete.

public void add (Object u, int key) {

if (size < capacity) {

/* Code intentionally ommited */

while (h[i] != null && j <= capacity) {

if (i == capacity-1) i = 0;

else { i++; }

j++;

}

/* Code intentionally ommited */

}}

Figure 5: Part of the implementation of method add.

public Object delete (int key) {

if (key >= 0) {

if (h[key] == null) return null;

else { Object ret = h[key] ;

h[key] = null ;

size = size - 1;

return ret;

}

} else { return null; } }

Figure 6: Implementation of method delete.

j < capacity; and in method delete, we are not computing the

hash code of key before checking the hashtable.

Note that the test cases we have written for method add do not

detect the bug because the only manner to trigger it would be by

analysing the while loop when dealing with a full hashtable, but

whenever that is the case, the while is not executed; and that the

test case analysing the contract of method delete succees because

the value of key coincides with its hash code, and it is between the

bounds of the hashtable. However, these bugs are detected in the

following step.

As a remark, note that one contract may be associated to more

than one test case. For instance, the first contract of method add
covers two cases: one where the position of the computed hash

code for the object is free, i.e. the object is stored in that position;

and one where such position is occupied, i.e. the method shoud
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@Test

public void test_add_1(){

int idx = hash.hash_function(3) ;

hash.add(new Integer(42),idx);

assertEquals(hash.h[idx],new Integer(42));

}

@Test

public void test_add_2(){

int idx = hash.hash_function(3) ;

hash.add(new Integer(42),idx);

hash.add(new Integer(3),0);

hash.add(new Integer(38),2);

HashTable aux = new HashTable(3) ;

aux.add(new Integer(42),idx);

aux.add(new Integer(3),0);

aux.add(new Integer(38),2);

assertArrayEquals(hash.h,aux.h);

}

}

Figure 7: Test cases covering the first contract ofmethod add.

look for nearest following index which is free. Fig. 7 depicts two

test cases covering this contract.

4.4 Deductive Verification
Contracts Verification
After all themethods associated to the data aspects are implemented,

we use KeY [3] to verify them. KeY is a deductive verification tool

for data-centric functional correctness properties of Java programs.

Given a Java program with JML annotations on its methods, KeY

generates formulae in Java Dynamic Logic, and attempts to prove

them. In addition, KeY comes with a user interface where users can

interact with the prover, and look at proof tree generated by it.

Regarding the class HashTable, all its methods are automaticaly

verified, with exception of the methods add, and delete. In relation
to method add, as it contains a loop to look for the next available in-
dex, then KeY needs more information to deal with its first contract,

i.e. it needs a loop invariant. Thus, we introduce a loop invariant,

and run KeY again. Still, but now due to the bug, KeY is not able

to fully prove the contract. This time the issue is that KeY cannot

prove that body of the loop fulfills the loop invariant. However, by

taking a look at the proof tree, we can quickly realise about the

bug in the condition of the while. After fixing it by removing the

equality comparison from the buggy condition, KeY fully verifies

the contract.

In relation to method delete, due to the bug KeY cannot fully

verify the contract depicted in Fig. 4. In order to analyse the issue,

this time instead of looking at the information in the proof tree, we

proceed to generate new test cases for it covering the issue.

4.5 Test Case Generation
Here, in order to (automatically) generate the test cases we use

KeyTestGen [6]. KeyTestGen is a tool which automatically generate

public Object delete (int key) {

if (key >= 0) {

int i = hash_function(key);

if (h[i] == null) return null;

else { Object ret = h[i] ;

h[i] = null ;

size = size - 1;

return ret;

}

} else { return null; } }

Figure 8: Fixing the implementation of method delete.

test cases covering the execution of the parts of the implementation

of the method which are in conflict with the contract. In particular,

this tool has an option to include the postcondition of the contract

as part of the oracle for the test. Thereby, if the tool succees to

generate a test case, then there is a bug in the source code.

Therefore, we run KeyTestGen including the postcondition of the

contract in the oracle. This generates the file TestGeneric0_delete.java,
which contains a test case representing a counter-example for the

contract, i.e. there is a bug in the implementation
4
. Thus, we apply

again TDD with focus on making this new test succeed.

By analysing this new test case, one can notice that there is an

exception regarding an index being out of bounds when accesing

the hashtable. This is really concrete hint towards realising that

we are not computing the hash code of the key before checking

the hashtable. Then, we fix the implementation of delete as it is
illustrated in Fig. 8. After introducing this fix, KeY fully verifies the

contract.

4.6 Model Definition
Once we are done with the data aspects, we move on to the control

stage. On this stage, we start by defining the model describing the

control aspects of the system.

Regarding the class UserInterface, Fig. 9 depicts the model

representing the following control aspect: A user has to be logged to
perform a transaction. On this model, the transitions have the form

q1
pre |foo |post |action
−−−−−−−−−−−−−−−−−−→ q2. A transition from state q1 to state q2

can only be taken if pre holds whenever the method foo is called.
When a transition is taken, post has to be checked. If it holds, then

before reaching q2, action has to be executed. On the contrary, the

test case should fail, i.e. post works as the condition of an assertion.

In terms of modelJUnit, these transitions can be implemented as

illustrated in Fig. 10.

4.7 Model-based Testing
In order to perform MBT, here we use modelJUnit [41]. ModelJUnit

is an extension of JUnit, which supports model-based testing. In this

extension, the models are written as Java classes, and the test cases

are automatically generated from the model. Thereby, we continue

our development by writing Fig. 9 model in terms of modelJUnit,

4
This file is avaiable from [1], under the path src/test/java/bank.
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Loдoutstart Loдin

true | login() | getUser()!=null | skip;

true | logout() | getUser()==null | skip;

true | deposit() | true | skip;

true | withdraw() | true | skip;

Figure 9: Model for control aspects of the system.

public boolean fooGuard(){

return state = State.Q1 && pre ;

}

@Action

public void foo() {

state = State.Q2;

adapter.foo();

assertTrue(post);

action;

}

Figure 10: Model transition in modelJUnit terms.

done (Logout, login, Login)

done (Login, logout, Logout)

done (Logout, login, Login)

done (Login, deposit, Login)

done Random reset(true)

done (Logout, login, Login)

done (Login, withdraw, Login)

done (Login, logout, Logout)

done (Logout, login, Login)

done (Login, deposit, Login)

Figure 11: Trace followed by the test case accomplishing
transition coverage over the model.

and then using this tool to automatically generate test cases, with

focus on triggering each transition of the model (at least once)
5
.

Once the class is fully implemented, modelJUnit is able to gen-

erate a test case which accomplishes transition coverage over the

model. Fig. 11 illustrates the trace followed by this test, where the

tuple (q1, f oo,q2) means, “given that we are in state q1, after exe-
cuting f oo we move to state q2”. Note that this trace is produced
by modelJUnit.

4.8 Overall Implementation
Next, we implement the method main in class Main. For simplicity,

we implement this method as a loop where the user is requested to

enter the desired action, and then the appropiate method in class

UserInterface is called. Fig. 12 illustrates part of the implementa-

tion for this method, where we have intentionally introduced a bug.

5
The files BankAdapter.java, BankModel.java, and BankTest.java, which implement

the model are available from [1], under the path src/test/java/bank.

switch (inputLine) {

case "deposit":

System.out.print("Enter␣the␣amount:");

amount = in.next();

aux = Integer.parseInt(amount);

f.deposit(aux);

break;

case "withdraw":

System.out.print("Enter␣the␣amount:");

amount = in.next();

aux = Integer.parseInt(amount);

f.deposit(aux);

break;

Figure 12: Part of the implementation for method main.

As the code for calling both deposit and withdraw is practically
identical, the programmer may just copy and paste it. This could

lead to the introduction of a bug, in the case that the programmer

forgets to replace the method call for the appropiate. Here, we as-

sume that this was what actually happened, i.e. we assume that we

have forgoten to replace the call to method deposit by a call to

method delete.

4.9 Runtime Verification
Model Translation
Once the method main is ready, we proceed to verify whether its

implementation fulfills the control aspects w.r.t. to Fig. 9 model.

First, by following the ideas in [24], we translate this model

(Fig. 9) into a DATE specification [17]. Fig. 13 depicts part of the

obtained DATE6. For space reasons, we have ommited the transi-

tions and new states related to the methods deposit and withdraw.
However, from its current version one could infer how to complete

this monitor in a quite straightforward manner. Regarding DATE,

transitions are of the form q1
e |cond 7→act
−−−−−−−−−−−→ q2. A transition from

state q1 to state q2 is enabled to be taken if whenever the event e
occurs, the condition cond holds. In addition, when the transition is

taken, an action act can be executed. Note that, given the method

foo, the events foo↓ and foo↑ occur whenever foo is called, and
foo terminates its execution, respectively.

Monitor Generation
Second, we use the runtime verifier Larva [18] to automatically

generate source code for the monitor. This code includes the Java

classes implementing the monitor, and AspectJ code to link the

program to those classes
7
.

Monitored Execution
Finally, we use the trace previously produced by modelJUnit as a

guide to verify that the method main fulfills the aspects. By looking

6
The file prop_deposit.ppd containing this translation is available in [1], on the root

directory.

7
The files generated by Larva are available from [1], under the path src/main/larva,
and src/main/aspects.
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Loдoutstart Loдin

idle_in

idle_out

bad_login

bad_logout

login()↓ | true 7→ skip

logout()↓ | true 7→ skiplogout()↑ | getUser() == null 7→ skip

logout()↑ | getUser() != null 7→ skip

login()↑ | getUser() != null 7→ skip

login()↑ | getUser() == null 7→ skip

Figure 13: Part of the ppDATE specification generated from the model.

loдoutstart bad
logout()↓

Figure 14: Extending the monitor for safety checks.

public void deposit(int money){

if (u != null && money > 0)

u.getAccount().deposit(money);

}

Figure 15: Implementation of method deposit, in class
UserInterface.

at the log file generated by the monitor, we notice that when execut-

ing method withdraw, the monitor logs information about method

deposit. Thus, we inspect the code and realise that the case for

withdraw is actually making a method call to deposit. Then, we
fix this issue and re-run the trace. This time, the execution of the

trace goes as expected, i.e. method main fulfills the aspects w.r.t.

Fig. 9.

Extending the Monitor
Once we have analysed the overall implementation of the sys-

tem w.r.t. to the model, we can extend the monitor to consider

safety like properties. For instance, we could add the transition

depicted in Fig. 14 to verify that it is never the case that a call to

method logout occurs while the user is not logged in the system.

In addition, we could check the integrity of the data flow through

nested method calls. Fig. 15 illustrates the implementation of the

deposit, in class UserInterface. This method has an inner call

to the method deposit of the class Account. Then, we can have a

monitor checking that both methods deposit are called with the

exact same argument
8
.

8
The file args_integrity.ppd available in [1], describes a monitor verifying this property.

5 DISCUSSION
In this section we ellaborate on the benefits that are obtained from

intregrating deductive and runtime verification into the workflow

of the methodology introduced in Sec. 3.2.

By integrating TDD with deductive verification, we are enhanc-

ing our methodology with the following features: (i) early detection

of certain bugs which could have being missed, by using TDD in

isolation, e.g. the bug intentionally inserted in the implementation

of method delete, described in Sec. 4; (ii) detection of certain bugs

which cannot be detected by using TDD in isolation, e.g. the bug

intentionally inserted in the implementation of method add, de-
scribed in Sec. 4; (iii) high (unit) test coverage (in terms of specific

metrics).

In relation to (i), as the (unit) test cases which are used for TDD

only specify the wanted behaviour for some specific inputs, instead

of for all possible inputs, it may be the case a method has bug, but

the test cases do not cover it. In this cases, the use of deductive

verification could detect the bug, as this verification technique

analyses every possible run of the method.

In relation to (ii), it might be possible to have certain bug in the

implementation of a method which is not detected because it is

never reached by any of the runs of the method. For instance, the

bug intentionally inserted in the implementation of method add
(Sec. 4) could only be detected by running the while loop against a

full hashtable. However, whenever the hashtable is full, this method

never reaches this loop, i.e. this bug cannot be detected by any of

the test cases. Anyhow, by using deductive verification one can

detect this bug, e.g. as described in Sec. 4, and then fix it.

In relation to (iii), assuming that the contracts of the methods

cover all of its possible calls, if the method is fully verified then it

guarantees statement coverage, as all the possible execution paths

on the method are going to be accounted by the test cases. In

the case that a method is not fully verified, by generating test

cases using symbolic execution it is possible to guarantee several

kind of coverages. For instance, depending on how it is set up,

KeyTestGen can automatically generate test cases which guarantee

either full feasible path coverage, full feasible branch coverage, or
Modified Condition / Decision coverage [6]. Note that all the previous
coverage metrics subsumme statement coverage.
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Regarding the integration of MBT with runtime verification,

this enhances our methodology by adding good evidence that the

overall implementation of the system fulfills the model used for

MBT. As mentioned in Sec. 2.2, one of the disadvantages of MBT is

that it cannot guarantee to find all differences between the model

and the (overall) implementation of the system. However, by using

the test cases (i.e. traces) generated from the model as a guide, we

can use runtime verification to analyse whether the system behaves

as it is described in the model.

6 RELATEDWORK
Development methodologies.[9, 13]. Model-based techniques as

development [24].

Data- and control-oriented aspects division. [5]. Maybe [20].

Another line of research to consider is the combination of testing

with either static analysis, or verification techniques. This is a really

active area of reasearch, e.g. [12, 19, 23, 39, 40]. In general, these

works aim at test case generation for either debugging, or verifying

source code. Therefore, having a direct comparison between them

and our work would not be fair, as we focus on the development of

software instead. However, some works in these lines were a good

inspiration for defining our methodology.

Testing + deductive verification [6, 34].

Model-based testing + runtime verification [7, 8].

7 CONCLUSIONS
In this paper we have presented a development methodology based

on the combination of testing driven development (TDD) andmodel-

based testing (MBT), enhanced by the integration of (static) deduc-

tive verification and runtime verification on its workflow. We have

also ellaborated on the benefits obtained from the integration of

these techniques (Sec. 5).

To illustrate how it can be used, we have provided an example

describing a concrete application of our methodology on its full

extent. This example consisted on the development of a small Java

application. Several tools were used to develop it, e.g. JUnit, KeY,
modelJUnit, and Larva.
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