
CADE-20

Workshop on Disproving -
Non-Theorems, Non-Validity,

Non-Provability

Tallinn, Estonia, July 22, 2005

Wolfgang Ahrendt, Peter Baumgartner, Hans de Nivelle

(Organizers)

Preface

The Disproving Workshop was held at the 20th International Conference on Automated
Deduction, in Tallinn, Estonia. The name automated theorem proving or automated
deduction derives from the fact that the field traditionally focussed on the art of au-
tomatically finding proofs. Initially, researchers were mainly motivated by the wish to
build computer systems that could automatically solve hard, mathematical problems.
When searching for a very hard proof, it is quite acceptable for a system to eat up all
resources and to never to give up. After all that is what we, researchers are also doing
all the time.

However in the last years, one has become aware of the fact that for many applications,
one needs to take more of an engineer’s approach. In particular, one needs to be aware
of resources. In order to use resources efficiently, it is essential to be able to efficiently
recognize non-theorems. As an example, consider a situation where an automated the-
orem proving system is used as assistant for automatically solving subtasks in a larger,
interactive project. In this context, the requirements to the automated theorem prover
are quite different than in mathematics. In case, the user is working on a faulty conjec-
ture, he should find out as early as possible. In addition, in case it cannot find a proof,
the prover should provide as much information as possible, so that the user can correct
the conjecture. The papers collected in this volume address this topic from different
angles.

M. Demba, F. Alexandre and K. Bsäıes study how to correct faulty (universally quan-
tified) conjectures by adding additional assumptions. The method is based on fold-
ing/unfolding rules.

In the paper by Ph. Rümmer, the problem of obtaining counter examples from invalid
formulas in Java Dynamic Logic is studied. Dynamic Logic is an extension of first-
order logic which can reason about programs in a natural way. A subfragment of Java
Dynamic Logic is defined, for which the invalidity problem can be reduced to the validity
problem. Using this, a verification condition can be proven incorrect.

M. Bezem describes experiments of a more mathematical nature: A geometric logic
prover is adopted to find the minimal counter models against the assumption that all
lattices are distributive.

A. Stump presents an implementation in progress of the congruence closure algorithm.
The implementation takes place in a new programming language RSP1, which has a
typesystem so rich that it can express correctness conditions as types. As a consequence,
correctness of the program follows from its type correctness.

In addition to the contributed papers, there are two abstracts by the invited speakers.
The first invited speaker, J. Giesl, discusses methods for proving non-termination of
term rewrite systems using the dependency pair method. The method can prove non-
termination of the term rewrite system under the innermost reduction strategy. This is
particularly important, because innermost reduction corresponds to the execution model
of standard programming langauges. The second invited speaker, B. Cook, describes

i

the use of automated reasoning tools at Microsoft.

We are indebted to the members of the program committee for their reviewing efforts.
We made use of the Easy Chair system by Andrei Voronkov, which simplified the effort
of organizing the reviewing process. Special thanks also deserve our invited speakers
Jürgen Giesl and Byron Cook (the latter being joint invited speaker with the ESCAR
workshop).

Wolfgang Ahrendt,
Peter Baumgartner,

Hans de Nivelle

Members of the program committee:

– Wolfgang Ahrendt, Department of Computing Science, Chalmers University of
Technology, Göteborg, Sweden.

– Peter Baumgartner, Max-Planck Institut für Informatik, Saarbrücken, Germany.

– Johan Bos, University of Edinburgh, Scotland, United Kingdom.

– Chris Fermüller, Technische Universität Wien, Vienna, Austria.

– Ulrich Furbach, AI Research Group, University of Koblenz-Landau, Germany.

– Bernhard Gramlich, Technische Universität Wien, Vienna, Austria.

– Bill McCune, Mathematics and Computer Science Division, Argonne National
Laboratory, Chicago, USA.

– Hans de Nivelle, Max-Planck Institut für Informatik, Saarbrücken, Germany.

– Harald Ruess, Computer Science Laboratory, SRI International, Menlo Park, USA.

– Renate Schmidt, School of Computer Science, University of Manchester, Manch-
ester, UK.

– Carsten Schürmann, Department of Computer Science, Yale University, New Haven,
USA.

– Graham Steel, Mathematics Reasoning Group, Centre for Intelligent Systems and
their Applications, School of Informatics, Edinburgh, UK.

– Cesare Tinelli, Department of Computer Science, University of Iowa, Iowa City,
USA.

– Andrei Voronkov, Department of Computer Science, University of Manchester,
Manchester, UK.

– Calogero Zarba, Department of Computer Science University of New Mexico, USA.

ii

Contents

Disproving Termination of Term Rewriting
Invited talk by Jürgen Giesl 1

Validated Construction of Congruence Closures
Aaron Stump 2

Correction of faulty conjectures and programs extraction
M. Demba, F. Alexandre and K. Bsäıes 13

Disproving Distributivity in Lattices Using Geometric Logic
Marc Bezem 24

Generating Counterexamples for Java Dynamic Logic
Philipp Rümmer 32

Automatic theorem proving for program verification engines
Invited talk by Byron Cook 45

iii

Disproving Termination of Term Rewriting?

Jürgen Giesl, René Thiemann, Peter Schneider-Kamp

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{giesl|thiemann|psk}@informatik.rwth-aachen.de

We focus on the termination analysis of term rewrite systems (TRSs) [1], since
term rewriting provides a general mechanism to model evaluation in different
programming languages. Therefore, techniques for termination analysis of TRSs
can often be adapted to other programming languages afterwards. However,
almost all existing techniques for automated termination analysis try to prove
termination and there are hardly any methods to prove non-termination.

In this work, we introduce techniques to disprove termination of TRSs within
the so-called dependency pair framework [3, 4]. Apart from disproving full termi-
nation, we also present new methods which can disprove termination under the
innermost evaluation strategy (i.e., they can disprove innermost termination).
Innermost termination is particularly important in practice, since it corresponds
to termination under the eager call-by-value evaluation strategy used in many
programming languages.

The benefits of our results are twofold. First, detecting non-termination au-
tomatically can be very helpful for software development when debugging pro-
grams. Second, we show that combining termination and non-termination tech-
niques within the dependency pair framework is particularly useful: On the one
hand, termination techniques also help for disproving termination, because they
identify those parts of a TRS which may cause non-termination. On the other
hand, non-termination techniques are helpful for proving termination, because
they can detect “dead ends” during a termination proof attempt.

We implemented and evaluated our contributions in the automated termina-
tion prover AProVE [2]. Due to these results, AProVE was the winning tool in
the International Competition of Termination Provers 2005 [5], both for proving
and for disproving (innermost) termination of term rewriting.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
2. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination

proofs with AProVE. In Proc. RTA ’04, LNCS 3091, pages 210–220, 2004.
3. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:

Combining techniques for automated termination proofs. In Proc. LPAR ’04, LNAI
3452, pages 301–331, 2005.

4. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-
tion of higher-order functions. In Proc. FroCoS ’05, LNAI, 2005. To appear.

5. International Competition of Termination Provers 2005. http://www.lri.fr/

~marche/termination-competition/

? Supported by the Deutsche Forschungsgemeinschaft DFG under grant GI 274/5-1.

Validated Construction of Congruence Closures

Aaron Stump
Dept. of Computer Science and Engineering

Washington University in St. Louis
St. Louis, Missouri, USA

Web: http://www.cse.wustl.edu/~stump/

July 1, 2005

Abstract

It is by now well known that congruence closure (CC) algorithms can be viewed
as implementing ground completion: given a set of ground equations, the CC algo-
rithm computes a convergent rewrite system whose equational theory conservatively
extends that of the original set of equations. We call such a rewrite system a CC for
the original set. This paper describes work in progress to create an implementation
of a CC algorithm which is validated, in the following sense. Any non-aborting,
terminating run of the implementation is guaranteed to produce a CC for the input
set of equations. Note that aborting or failing to terminate can happen for imple-
mentations of CC algorithms only due to bugs in code; the algorithms themselves
are usually proved terminating and correct. Validation of an implementation of a
CC algorithm is achieved by implementing the algorithm in RSP1, a dependently
typed programming language. Type checking ensures that proofs of convergence
and conservative extension are well-formed.

1 Introduction

Thanks to work of Kapur and Bachmair and Tiwari, it is now clear that congruence
closure (CC) algorithms can be viewed as a form of ground completion [5, 2]. The cited
works show that many congruence closure algorithms from the literature can be viewed
as constructing a convergent rewrite system for an input set of ground equations. The
rewrite system is expressed over an extension of the signature for the input equations.
Hence, the equational theory of the rewrite system produced by the CC algorithm is
a conservative extension of the equational theory of the input equations, but generally
not equivalent.

There is ongoing interest in the automated reasoning community in validity checking
tools that can produce independently checkable evidence for the results they report.
When a tool reports a formula to be valid, the evidence is a proof of validity. When a
tool reports a formula to be invalid, the evidence is a countermodel. Producing proofs is
important for exporting results from validity checkers to proof assistants, and for some
approaches to applications like proof-carrying code [3, 4, 7]. Producing independently
checkable proofs can also increase confidence in the results of the validity checker, which

2

is often a highly optimized and complex piece of software. Proof production can also
be used to increase performance of certain kinds of validity checkers (see [8] and works
cited there).

In previous work, Rob Klapper and I describe how to implement certain proof-
producing decision procedures, including one based on CC, which are statically validated
in the following sense [6]. Any non-aborting, terminating run of the decision procedure
that reports the input formula valid is guaranteed to produce a well-formed proof of
validity for that formula. Note that the issue here is the possibility of bugs in the im-
plementation of the proof-producing decision procedure. The decision procedure itself,
as an algorithm, has been proven (on paper) to terminate and produce a well-formed
proof if the input formula is valid. But it is all too easy in mainstream programming
languages to write code which accidentally produces ill-formed proofs. Tracking down
the sources of ill-formed proofs can be extremely time-consuming, particularly for large
input formulas. With validated proof production, such bugs never arise: the proofs are
guaranteed to check.

Our approach to achieving a validated implementation is to implement the decision
procedure in RSP1, an imperative programming language with dependent types [9].
Leaving aside the imperative features, which are not used in this paper, RSP1 can be
thought of as a dependently typed version of the core functional part of a language
like Ocaml. Just as in Ocaml, datatypes can be declared by the user. Unlike in Ocaml,
these datatypes can be indexed by terms. So instead of having just a datatype of proofs,
we can have a datatype of proofs indexed by the formula (encoded as an element of a
datatype of formulas) which is proved. Proofs of encoded formula phi have type pf
phi. A function’s expectation of a proof of a particular formula can thus be recorded
in a type, and compile-time type checking then ensures that proofs are manipulated
in a type-safe way. Pattern-matching constructs are available, just like in Ocaml, but
are dependently typed to enable manipulation of term-indexed datatypes. A compiler
for RSP1 to Ocaml has been implemented, enabling reasonably fast execution of code
validated by the RSP1 type checker. RSP1 currently lacks parametric polymorphism,
so some datatypes, notably lists, must have different versions for different types of
constituent data.

Our previous work concerns validated proof production from congruence closure (and
other automated reasoning algorithms). The current paper is concerned with validated
model generation from a CC algorithm. In particular, work in progress is described
to implement a validated version of Shostak’s algorithm, as cast in the framework of
Abstract Congruence Closure [2]. The implementation explicitly manipulates proofs
showing the rewrite system constructed by the algorithm is convergent and has an
equational theory conservatively extending the ground equations supplied as input. It
is not our goal to develop a formal theory of convergence from first principles (see
instead, e.g., [1]). Instead, we take the classic results of such a theory for granted,
and simply seek to establish statically that conditions sufficient (by that theory) for
convergence hold. The proofs of these conditions can be produced by the implementation
and independently checked. But as for the previous implementation of validated proof-
producing congruence closure, the implementation is done in RSP1, and RSP1 type
checking statically ensures that those conditions will hold for the CCs produced. It
has turned out that getting an implementation with validated model generation has

3

required a different, more intricate approach to the CC algorithm than was necessary
for validated proof production. In particular, it has proven useful to model the data
structures used in Abstract Congruence Closure much more faithfully than was necessary
to get validated proof production. Hence, the implementation described below is done
from scratch, without any code or proof reuse from the earlier implementation.

What use is it to have model generation from a CC algorithm statically validated?
After all, it is relatively inexpensive to check that the (ground) rewrite system produced
(the CC) is convergent, particularly since the algorithm produces a shallow system: all
right hand sides of rules are constant symbols and all left hand sides are either constants
or applications of a function symbol to a list of constant symbols as arguments. It can
also be easily checked that the CC produced entails the original equations. It is not
immediately obvious how to check that the equational theory of the CC is a conser-
vative extension of the equational theory of the original equations, although perhaps
this can be done. So having statically validated model generation may not greatly in-
crease confidence in the individual results reported by the implementation. It certainly
should increase confidence in the correctness of the implementation itself. Furthermore,
having an implementation like the one (in progress) described in this paper actually
implemented in a proof assistant based on dependent type theory, like Coq, would con-
fer an additional benefit: the proof assistant could trust that any CC produced by the
implementation was correct, without actually having to build any of the proofs. Type
checking shows that the proofs would check if produced. There are a few places in the
current implementation where some modest changes would be required to support this.
In particular, there are a few places where a type checker cannot easily see that the code
cannot fail. It should be possible to eliminate these, but it proved more convenient not
to insist on avoiding all such situations here.

In the rest of the paper, the current implementation in progress is described. This
implementation comprises 2000 lines of RSP1, including a number of currently unproved
lemmas. In the setting of this paper, the implementation is presented at the level of
datatypes and function specifications. Hence, familiarity with the syntax of RSP1 is not
necessary for reading the rest of the paper. Detailed knowledge of BT (I will use this
abbreviation from now on to refer to [2]) is also not required, though it will be useful. The
implementation currently comprises the simplification and extension phases of Shostak’s
CC algorithm (in the terminology of Abstract Congruence Closure). The latter is non-
trivial in this context, since it is where new constant symbols are introduced, and hence
where conservative extension must be shown. The work yet remaining to be done is
admittedly substantial: orientation, deletion, deduction, collapse, and composition must
be implemented. Nevertheless, many important issues show up just in simplification and
extension, including design of the datatype for the CC, with which we begin.

2 The Datatype for CCs

Abstract Congruence Closure (ACC) problems consist of a set of equations to be pro-
cessed and the convergent rewrite system resulting from the processing so far. In addi-
tion, in BT, the set of new constant symbols introduced so far is also part of an ACC
problem, but we maintain information about the new constants in a different way, dis-

4

cussed below. As mentioned above, the rewrite system is shallow. There are two kinds
of rewrite rules. C-rules are of the form c → d, where c and d are constant symbols
not occuring in the original input equations. D-rules are of the form f(c1, . . . , cn)→ d,
where c1, . . . , cn and d are all new constant symbols not occurring in the original equa-
tions. Note that n may be 0 in this case, to map a constant from the original equations
to a new constant. Hence, in the implementation, we take the following definitions for
ACC problems:

cc_t :: type;;
mkcc :: olist => l:crlist => drlist l => cc_t;;

These declare that cc t is a type, and that to form one, using the term constructor
mkcc, you must supply three things. The first is an olist, whose declaration as the
datatype of lists of formulas is omitted here. Also omitted is the simple declaration of
the datatype o of formulas. The second item needed by mkcc is an element of the type
crlist, which we declare (see below) as the datatype for lists of C-rules. The third item
is a drlist l, which is a list of D-rules. The index l in the type drlist l indicates,
as we shall see below, that no constants used in any D-rule in the list appears as the
left hand side of a C-rule in l.

2.1 The Datatype for Lists of C-rules

Lists of C-rules may be built using the datatype determined by the following declara-
tions:

crlist :: type;;
crn :: crlist;;
crc :: c2:const =>

c1:const =>
gtc c2 c1 =>
l:crlist =>
const_apart c2 l =>
const_apart c1 l =>
crlist;;

The empty list of C-rules is formed using the 0-ary constructor crn. To add a
C-rule to an existing crlist, the constructor crc is used. It requires the left and
right hand sides (c2 and c1, respectively) of the C-rule. We declare const as the
type for new constant symbols; the definition involves a trick, and is postponed to the
discussion of conservative extension below. The constructor crc next requires a proof
that c2 is greater than c1 in a certain basic ordering on the new constant symbols.
This requirement is taken from BT. We will associate natural numbers with consts,
and then order consts by number (discussed below). Next, crc requires the crlist
to which the C-rule c2 → c1 is to be added. Finally, proofs that c2 and c1 are apart
from l are required. The intended meaning of const apart c l for any c and l is that
c does not appear as the left hand side of any rule in the list of C-rules l. The rules

5

for const apart are straightforward, although they rely on an auxiliary judgment neqc
that two consts are distinct.

So when a list of C-rules is built, it is guaranteed to be convergent: the left hand
side of each rule is less than the right hand side, and no const appears on the left hand
side of two C-rules in the list. We do not formally express in our RSP1 implementation
the property of being convergent. As remarked above, developing a full formal theory
of convergent rewrite systems is beyond the scope of this project. Hence, we formally
express other conditions, which are sufficient for convergence. The proof of sufficiency
is done outside RSP1, on paper.

2.2 The Datatype for Lists of D-rules

As remarked at the start of this Section, the type for lists of D-rules all of whose consts
are apart from a list l of C-rules (where a const is apart from a C-rule if it is different
from that C-rule’s left hand side) is drlist l:

drlist :: crlist => type;;
drn :: l:crlist => drlist l;;
drc :: n:nat =>

f:func n =>
cs:clist n =>
d:const =>
l:crlist =>
L:drlist l =>
A:const_apart d l =>
T:term_apart n f cs l L =>
As:const_list_apart n cs l =>
drlist l;;

The first declaration says that drlist is a datatype indexed by crlists. For any
crlist l, the empty list of D-rules apart from l can be formed using the constructor
drn. To add a D-rule to an existing list of D-rules, the constructor drc is used. Recall
that a D-rule is of the form f(c1, . . . , cn) → d, where c1, . . . , cn, d are new constant
symbols (consts) not occurring in the original input equations. The first four arguments
to drc are all the constituent pieces of the D-rule. The type func n is for function
symbol of (fixed single) arity n, which is declared to be of type nat. The latter is the
standard datatype for natural numbers in unary, with constructors z (for zero) and s
(for successor). The type clist n is the type for lists of length n of consts. Then drc
requires an l which is a crlist, and the existing drlist l to which to add the new
D-rule. BT shows termination is preserved in this situation, since each such new D-rule
is contained in a natural reduction ordering. To ensure local confluence, drc requires
several proofs about items’ being apart. All the consts in the new D-rule must be
apart from l, which is expressed in the types for arguments A and As. And the left hand
side, f(c1, . . . , cn), of the new D-rule is required to be different from the left hand side
of any D-rule in the existing list of D-rules (L). The declarations for term apart and
const list apart are unsurprising and omitted here.

6

2.3 Datatypes for Terms and Lists of Terms

Our implementation of Shostak’s CC algorithm processes equations between terms.
Terms are declared as follows:

i :: type;;
apply :: n : nat => func n => ilist n => i;;
injconst :: c:const => i;;

A term, of type i, is either an application of a function symbol of arity n (func n) to
a list of n terms (ilist n); or an injection of one of our new constant symbols. The
datatype for lists of terms is declared as follows. Note that the type ilist for such
lists is indexed by a nat, which gives the length of the list (this is a standard trick in
dependently typed programming):

ilist :: nat => type;;
ilistn :: ilist z;;
ilistc :: i => n : nat => ilist n => ilist (s n);;

2.4 The Intrinsic Style

The style of encoding used here for CCs is what we might call the intrinsic style.
Datatypes whose elements are intended to have some property are declared in such
a way that only elements which have the property can actually be constructed. This is
because the constructors take in proofs of all the required properties. Here, the prop-
erties are those which show convergence (apartness of constant symbols and left hand
sides of D-rules, and containment of C-rules in the basic well-founded ordering on con-
stants). We cannot form an element of type cc t which does not have those properties.
Hence, a certain kind of soundness is built right in to the datatype for CCs. This is a
strong protection against soundness bugs. Unfortunately, it also seems to complicate
the rest of the implementation substantially, since every time a CC or constituent part
of one must be manipulated, many proofs are required. Some of these proofs might not
be essential to the soundness of the operation in question, but they must typically be
supplied anyway. In contrast, an extrinsic style would not require proofs to construct
elements of a datatype like cc t. The proofs would be kept completely separate from the
data, and passed around as additional arguments as necessary. It would be interesting
to try the implementation again in the extrinsic style, but for the time being, we forge
ahead intrinsically to the simplification and extension phases of Shostak’s CC algorithm
in RSP1.

3 Simplification and Extension

The simplification phase of Shostak’s CC algorithm, in the Abstract Congruence Closure
framework, is intended to put terms into canonical form with respect to the current list
of C-rules and D-rules computed thus far. Our implementation just uses linear search
through the lists of C-rules and D-rules to find a match, simplifying terms bottom-up;
it is conceivable that an indexing data structure could be used for better efficiency.

7

rec
simplify :: l:crlist =c>

e:olist =c>
L:drlist l =c>
b1:nat =c>
bound_crlist b1 l =c>
bound_drlist b1 l L =c>
q:{x:i, B:bound_term b1 x} =c>
{y:i,
D:provese (mkcc e l L) (equals q.x y),
C:canonical y l L,
B:bound_term b1 y} = ...

Figure 1: Declaration for simplify

After a term has been put into canonical form by simplification, it is handed off to
the extension phase. Extension introduces new constant symbols bottom-up for every
subterm of the input term which is not already the injection of a const. At the end
of extension, the input term has been reduced to a single const, and new D-rules of
the form t → d have been added for any subterm t of the input term for which a new
const d was introduced. Since such consts must be fresh, some mechanism is needed
to enable simplification to keep track of what the next const to be introduced may
safely be. The mechanism used here is to associate a number with each const, and
then bound the set of consts used in the C-rules and D-rules. The next fresh const to
generate may safely be any that has an associated number greater than the bound on
the consts already used by the C-rules and D-rules. Both simplification and extension
require fairly elaborate helper functions to process lists of arguments in applications.
Space limitations prevent further discussion of these, which are essentially the natural
extensions of simplification and extension to lists of terms.

3.1 Simplification

The declaration for simplify, which implements simplification, is given in Figure 1.
This declaration, whose body has been omitted (“...”), says that simplify is a re-
cursive computational function. The symbol =c> (as opposed to =>) is used in RSP1
to indicate that a function is computational and may pattern match on its argument.
The other function space (=>) is used for the types of term constructors. The notation
q:{x:i, B:bound term b1 x} declares that argument q is a dependent record consist-
ing of a term x and a proof term B of type bound term b1 x (more on this shortly). The
function simplify takes in all its arguments, and returns a record of resulting values
(“{y:i, ... }”).

Let us look at the arguments and the resulting values to simplify. The first three
arguments, l, e, and L are the constituent pieces of the CC with respect to which
simplify is supposed to rewrite a term. That term is given by the x field of the
argument q, which, as just explained, is a dependent record. In addition to the CC

8

and the term to rewrite using that CC, simplify requires proofs that all the consts
occurring in several different entities are bounded. That is, the numbers associated
with those consts are less than the bound, which is the nat number b1. We require
for simplification a proof that the consts in the C-rules and the D-rules are bounded
(bound crlist b1 l and bound drlist b1 l L, respectively). We also require a proof
that all the consts appearing in the term x are bounded by b1 (bound term b1 x).
This will enable us to prove that any term returned by simplification has all its consts
bounded by that same bound; this is expressed by the field B in the record returned
by simplify. That record also contains a field y for the canonical form that simplify
computes for x, and a proof (field D) that the CC implies that x equals y (proof rules for
the provese judgment, that a CC derives a single formula, are omitted here for space
reasons). Finally, the record returned by simplify has a field C for a proof that the
canonical form y is indeed canonical with respect to the C-rules and D-rules supplied.

3.2 Extension

Figure 2 gives the declaration for extend, which implements extension. This function
takes in the same first three arguments as simplify, which are the constituent parts of
the CC as it stands before extension. Since extend may add new D-rules to the CC,
it returns a new drlist, as field L2 of the returned record. As simplify did, extend
also takes in a bound b1 on the consts occurring in the lists of C-rules and D-rules.
The record q required as the last argument contains the term x to extend, a proof C
that x is canonical, and a proof that all the consts occurring in x are bound by b1.
As discussed above, the latter two proofs are produced by simplify so they may be
provided to extend.

The record of values returned by extend returns quite an assortment of different
proofs for the different invariants maintained by the code. First, extension always
produces a const as its result, which is returned in the field c. This const, like all
consts, has an associated number, which is returned as the field z. A proof certifying
the association is also returned (field aa). Since extension may introduce new constants,
a new bound must be produced on the consts occuring in the list of C-rules and the
updated list (L2) of D-rules. This bound is returned in the field b, and proofs of the
new bounds on the lists of C-rules and D-rules are returned in fields B1 and B2.

Finally, we come to the proofs (d1 and d2) that the old CC is equivalent to the new
CC. Proof rules for the judgment provescc are omitted here, but they say, naturally
enough, that one CC entails another if it entails all the other’s equations, C-rules, and D-
rules. So we are insisting here that the equational theories of the two CCs are equivalent,
which seems incompatible with the fact that the new CC may be just a conservative
extension of the starting CC, due to the introduction of new constants. We return to
this point shortly, but first comment on the last of the returned values. The proof
returned in field d3 shows that the new CC entails that the input term (q.x) equals the
(injection of the) returned constant c. The proofs A1 and A2 show that the returned
const is apart from the C-rules and is not used in the left hand side of any D-rule in
the new CC, respectively. The latter is needed to show that the D-rule obtained by
non-trivially extending the arguments of an application does not have a left hand side
already occurring in the list of D-rules.

9

rec
extend :: l:crlist =c>

e:olist =c>
L:drlist l =c>
b1:nat =c>
bound_crlist b1 l =c>
bound_drlist b1 l L =c>
q:{x : i, C:canonical x l L, D: bound_term b1 x} =c>
{c:const,
z:nat,
aa:assoc_num z c,
b:nat,
g1:gte b b1,
g2:gt b z,
L2:drlist l,
B1:bound_crlist b l,
B2:bound_drlist b l L2,
d1:provescc (mkcc e l L) (mkcc e l L2),
d2:provescc (mkcc e l L2) (mkcc e l L),
d3:provese (mkcc e l L2) (equals q.x (injconst c)),
A1:const_apart c l,
A2:const_apart2 c l L2} = ...

Figure 2: Declaration for extend

10

Finally we come to the issue of conservative extension. The argument for conserva-
tive extension in BT proceeds by induction on the form of proofs of equalities between
terms without newly introduced constants that can be conducted in the new CC. It
shows how to transform such proofs into ones which can be conducted in the old CC.
Returning such a proof from extend would (most naturally) require returning a RSP1
function representing the inductive argument. While possible in RSP1, this is a bit out-
side the current programming methodology. We would prefer to return just an element
of a datatype for a proof, instead of an RSP1 function.

The trick we use for this comes in the declarations for const, and the associated
proof rule:

const :: type;;
mkcanon :: i => nat => const;;
peSpecial :: cc:cc_t => t:i => n:nat =>

provese cc (equals t (injconst (mkcanon t n)));;

We introduce new consts with the constructor mkcanon. The trick is that we index
new constants with the term they are intended to represent in the extension of the
CC. So mkcanon t n is the const, with associated number n, representing term t in
the extension. The peSpecial proof rule then just says that logically, the mkcanon
constructor is transparent: mkcanon expressions equal the terms (t) they are intended
to represent. Hence, the equational theories are the same, even though we introduce
new constants.

References

[1] CoLoR: a Coq Library on Rewriting and Termination. Available at
http://color.loria.fr, 2005.

[2] L. Bachmair and A. Tiwari. Abstract Congruence Closure and Specializations. In
David McAllester, editor, 17th International Conference on Automated Deduction,
volume 1831 of LNAI, pages 64–78. Springer-Verlag, 2000.

[3] E. Contejean and P. Corbineau. Reflecting Proofs in First-Order Logic with Equality.
In R. Nieuwenhuis, editor, 20th International Conference on Automated Deduction,
2005.

[4] E. Deplagne, C. Kirchner, H. Kirchner, and Q. Nguyen. Proof Search and Proof
Check for Equational and Inductive Theorems. In F. Baader, editor, Conference on
Automated Deduction - CADE-19, Miami, USA, 2003.

[5] D. Kapur. Shostak’s congruence closure as completion. In H. Comon, editor, 8th
International Conference on Rewriting Techniques and Applications, pages 23–37.
Springer-Verlag, 1997.

[6] R. Klapper and A. Stump. Validated Proof-Producing Decision Procedures. In
C. Tinelli and S. Ranise, editors, 2nd International Workshop on Pragmatics of
Decision Procedures in Automated Reasoning, 2004.

11

[7] G. Necula. Proof-Carrying Code. In 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 106–119, January 1997.

[8] A. Stump and L.-Y. Tan. The Algebra of Equality Proofs. In Jürgen Giesl, editor,
16th International Conference on Rewriting Techniques and Applications, 2005.

[9] E. Westbrook and A. Stump. A Language-based Approach to Functionally Cor-
rect Imperative Programming. 10th ACM SIGPLAN International Conference on
Functional Programming, 2005.

12

Correction of faulty conjectures and programs extraction

M. Demba1, F. Alexandre2, and K. Bsäıes1

1 Faculté des Sciences de Tunis, DSI
Campus Universitaire 2092 Tunis, Tunisie
{moussa.demba,khaled.bsaies}@fst.rnu.tn

2 LORIA BP 239
54506 Vandoeuvre-lès-Nancy, France

alexandr@loria.fr

Abstract. We present a method for patching faulty conjectures in automatic theorem
proving. The method is based on well-known folding/unfolding rules [2]. The conjec-
tures we are interested in here are implicative formulas that are of the following form :
∀x (∃Y Γ (x, Y)← ∆(x)) where Γ and ∆ are conjunction of atoms and no variable of Y
occurs in ∆. A faulty conjecture is a statement ∀x ϕ(x), which is not provable in some
given definite logic program P, i.e, M(P) 6|= ϕ, where M(P) means the least Herbrand
model of P, but it would be if enough conditions, say P, were assumed to hold, i.e.,
M(P ∪Q) |= (ϕ← P), where Q is a definition of P.
Key words: Predicate synthesis, program synthesis, inductive theorem proving, implica-
tive formulas, folding/unfolding, abduction.

1 Introduction

We consider a theory T of definite logic programs (definite clauses) and implicative for-
mulas. Given a conjecture ϕ :∀x (∃Y Γ (x, Y)← ∆(x)) such thatM(T) 6|= ∀x (∃Y Γ (x, Y)←
∆(x)), our aim is to turn ϕ into a theorem, by inserting assumptions into the right-hand-
side of ϕ. An assumption is represented by a predicate say P defined by some program
P. P is said to be a corrective predicate of ϕ if we have M(T ∪ P) |= ∀x∀y (Γ (x, y)←
∆(x), P (x, y)). To synthesize P we exploit the information derived from a failed proof
attempt of ϕ using the proof-as-program paradigm. This kind of predicate synthesis
formalizes the problem of abduction [11, 8].

Let us consider the specification for the subtraction function in natural numbers :
given two natural numbers v and w, find U such that v + U = w. To this specification
corresponds the implicative formula :

∀v∀w(∃Uplus(v, U,w)← nat(v), nat(w))
which is false, as we discover while attempting to prove it, for example there is no
U verifying 2 + U = 1. Nevertheless, there are particular values for the universally
quantified variables for which the formula is true. In general, a theorem prover will do
nothing more but reject this conjecture. However, in many cases it is strongly interesting
to know why the conjecture is false, and how it can be corrected. One can expect that the
formula is valid on the assumption that v ≤ w. The incomplete proof of this conjecture
can be mapped into a corrective predicate P which is here the relation ≤ over natural
numbers. In this paper we present a method which provides a computable definition of
P.

This paper extends the use of corrective predicates considered in [3] by adding the
rule of structural induction to deal with generalization technique.

Throughout the paper, Γ , ∆ and Λ denote conjunctions of atoms; ϕ and π de-
note implicative formulas; A and B denote atoms, and θ and σ denote substitutions.
Afterwards, existentially quantified variables are distinguished from universal variables
by giving them upper-case letters, and the variables of the form ?x are called meta-
variables. mgu means most general unifier and < πi | Pi > denotes the formula πi and
its corrective predicate Pi.

The rest of the paper is organized as follows: section 2 presents the inference rules,
in section 3 we present the patching process and in section 4 we present some related
works.

2 Inference rules

We prove conjectures containing existential quantifiers while providing explanations of
the failures. Each inference rule is associated with a procedure construction of corrective
predicates. The synthesized program is then the set of definite clauses generated during
the proof attempt.

Definition 1 (Partial correctness). Let ϕ : Γ (x, Y) ← ∆(x) be an implicative
formula whose predicates are defined by the program P. Let Q be a program defining a
predicate P . The program Q is partially correct for P with respect to ϕ iff M(P ∪Q) |=
∀x ∀y (Γ (x, y)← ∆(x), P (x, y)).

Definition 2 (Unfolding right (nfi)). Let P be a program, π0 : Γ ← ∆,A a formula
and C = {c1, . . . , ck} the set of clauses of P such that ci : Bi ← ∆i and there exists a
substitution θi = mgu(Bi, A). Then nfi3 on π0 w.r.t to the atom A yields a conjunction
of k formulas:

< π0 : (Γ ← ∆,A) | P0 >
↓ nfi

< πi : (Γ ← ∆,∆i)θi | Pi >i=1,...,k

The set of definite clauses {P0θi ← Pi, i = 1, ..., k} is generated and added to the program
to be synthesized.

Example 1. Consider the formula π0 : plus(u, v, w) ← plus(v, u, w) and the corre-
sponding corrective predicate is P0(u, v, w) . The predicate plus is defined as follows:

PLUS

plus(0, x, x) ←
plus(s(x), y, s(z))← plus(x, y, z)
nat(0) ←
nat(s(x)) ← nat(x)

The application of nfi on π0 with θ1 = {v/0, u/x,w/x} and θ2 = {v/s(x),
u/y, w/s(z)} yields the two following formulas:

π1 : plus(x, 0, x) ← | P1(x)
π2 : plus(y, s(x), s(z))← plus(x, y, z) | P2(y, x, z)

and the corrective clauses synthesized are:
P0(x, 0, x)← P1(x)
P0(y, s(x), s(z))← P2(y, x, z).

Next we have to synthesize the definitions of P1 and P2 by proving π1 and π2.
3 nfi stands for negation as failure inference.

14

Definition 3 (Unfolding left (dci)). Let P be a program and π the formula Γ,A←
∆. Suppose there exists a clause c : B ← ∆′ in P and an existential substitutions
θ = mgu(B,A). The rule of dci4 applied on π w.r.t the atom A yields the singleton
{π′}:

< π : (Γ,A← ∆) | P >
↓ dci

< π′ = ((Γ,∆′)θ ← ∆) | P ′ >

The clause Pθ ← P ′ is then generated.

Example 2. Consider the formula π : plus(s(u), s(v), s2(w))← plus(u, v, w) and P (u, v, w)
the corresponding corrective predicate. Then dci on π yields:

π′ : plus(u, s(v), s(w))← plus(u, v, w) | P ′(u, v, w)
and the clause P (u, v, w)← P ′(u, v, w) is generated.

Definition 4 (Folding right (cutr)). Let π1 : Γ ← ∆1,∆2 and π0 : Λ ← Π be two
formulas satisfying the following conditions : (i) θ is a substitution such that Πθ = ∆1,
(ii) for any local variable x in Π, xθ is a variable and does not occur other than in Πθ,
and (iii) θ replaces different local variables in Π with different local variables in ∆1.
Then cutr (cut right) on π1 using π0 yields the singleton {π2}:

< π0 : (Λ← Π) | P0 >
↓
...

< π1 : (Γ ← ∆1,∆2) | P1 >
↓ cutr

< π2 : (Γ ← Λθ,∆2) | P2 >

The clause P1 ← P0θ, P2 is generated and added to the set of clauses of the program to
be synthesized. The rule of cutr controls the application of induction hypotheses.

Example 3. Going back to the example 1, one can remark that the right hand side of
π2 is an instance of the right hand side of π0 with the substitution θ = {v/x, u/y, w/z}.
We can therefore apply the rule of cutr on π2 using π0, and we get the formula

π3 : plus(y, s(x), s(z))← plus(y, x, z) | P3(y, x, z)
and the definite clause P2(y, x, z)← P0(y, x, z), P3(y, x, z) is generated.

Definition 5 (Folding left (cutl)). Let π1 : Γ1, Γ2 ← ∆ and π0 : Λ ← Π be two
formulas satisfying the following conditions : (i) θ is a substitution such that Λθ = Γ1,
(ii) for any local variable z in Λ, zθ is a variable and does not occur other than in Λθ,
and (iii) θ replaces different local variables in Λ with different local variables in Γ1. Then
the application of cutl (cut left) on π1 using π0 yields the singleton {π2}:

< π0 : (Λ← Π) | P0 >
↓
...

< π1 : (Γ1, Γ2 ← ∆) | P1 >
↓ cutl

< π2 : (Πθ, Γ2 ← ∆) | P2 >

4 dci stands for definite clause inference.

15

The clause P1 ← P0θ, P2 is generated.

Definition 6 (Structural induction (indstr)). We present the rule of structural in-
duction for the case the variables are of type natural number. Let π0 : Γ (n,m,X) ←
be a formula and P0(n,m,X) the corresponding corrective predicate. Then structural
induction w.r.t n yields:

π1 : Γ (0,m,X) ← | P1(m,X)
π2 : Γ (s(u),m,X) ← Γ (u, ?m,x) | P2(u,m,X, ?m,x)

The variable m in the hypothesis of π2 is a meta-variable (an existential variable that
occurs in the hypothesis) as it is not used for induction [1]. In the hypothesis it is written
?m. Notice that π2 is not an implicative formula but it will be if ?m is instantiated by a
universal variable. The synthesized program is:

P0(0,m,X) ← P1(m,X)
P0(s(u),m,X) ← P0(u,m,X), P2(u,m,X, ?m,x)

Example 4. Consider the formula π : plus(v, U,w) ← associated with the corrective
predicate P0(v, U,w). By structural induction w.r.t v, we obtain:

π1 : plus(0, U, w) ← | P1(U,w)
π2 : plus(s(x), U, w)← plus(x, u, ?w) | P2(x,U,w, u, ?w)

the predicate P0 is defined by
P0(0, U, w) ← P1(U,w)
P0(s(x), U, w)← P0(x, u, ?w), P2(x,U,w, u, ?w)

Definition 7 (Simplification rule (simp)). Let π : A,Γ ← B,∆ be a formula such
that there exists θ satisfying Aθ = B and θ substitutes only existential variables of A.
Then simp on π yields the singleton {π′} :

< π : (A,Γ ← B,∆) | P >
↓ simp

< π′ : (Γθ ← ∆) | P ′ >

The clause Pθ ← P ′ is then generated.

Example 5. Consider the formule
π : plus(x, y,X), plus(X, z, V)← plus(x, y, t) | P (x, y,X, z, V, t)

With the existential substitution θ = {X/t}, π can be simplified into
π′ : plus(t, z, V)← | P ′(t, z, V)

The clause P (x, y, t, z, V, t)← P ′(t, z, V) is then generated.

Definition 8 (POSTULATE (post)). Let π : Γ ← be an implicative formula and P
be a corrective predicate associated with π. Then the application of the rule of postulate
on π yields the formula true and the corrective clause P ← Γ .

< Γ ← | P >
↓ post

< true | true >

Example 6. In the example (1) page 14, to complete the proof of π1 we can postulate
plus(x, 0, x), and we obtain the corrective clause P1(x)← plus(x, 0, x).

16

Proposition 1 ([6, 3]). The rules of nfi, dci, indstr, simp and post preserve partial
correctness.

Proposition 2 ([3]). The rules of cutr and cutl preserve partial correctness.

Definition 9 (FAILURE (fail)). Let P be a program, π : Γ ← ∆ be a formula and
P be a corrective predicate associated with π. If no atom of Γ is unifiable with no clause
head of P and thatM(P) |= ∆ then the rule of failure is applied and yields the formula
false:

< Γ ← ∆ | P >
↓ fail

< false | false >

This rule allows us to detect totally false conjectures.

Proposition 3. The rule of failure preserves partial correctness.

Proof. It is easy to see that the formula Γ ← ∆,P holds as P is the predicate false.

Example 7. Suppose we have to prove the formula : plus(s(v), U, 0) ← nat(v). The
atom plus(s(v), U, 0) is false because in one hand it cannot be reduced using the pro-
gram PLUS and on the other hand we have M(PLUS) |= ∀x nat(x). The formula
plus(s(v), U, 0)← nat(v) is then false and the corresponding corrective predicate is set
to false.

3 Predicate synthesis

We define the notion of counterexemple that allows us to detect and to locate errors in
computer systems. Our definition of counterexemple is similar to the definition of [13].
This automatic generation of counterexemples is an important tool in the design and
debugging of systems.

Definition 10 (Conterexample of a formula). Let P be a program. An example
of an implicative formula Γ ← ∆ is a substitution σ such that: (i) all the universally
quantified variables in the formula are instantiated to ground terms by σ, i.e., ∆σ is
ground, and (ii) M(P) |= ∆σ.
A counterexample is an example σ but M(P) 6|= ∃(Γσ).

Theorem 1 (Propagation of a counterexample [13]). If there is a counterexample
on a node N in a proof tree, there is at least one successor of N on which there is a
counterexample.

Example 8. Let us consider the formula: plus(v, U,w)← nat(v), nat(w) associated with
a corrective predicate P0(v, U,w). The corresponding proof tree is depicted by the fig-
ure (1). The branch corresponding to the case v=s(x) and w=0 cannot be closed since
plus(s(x), U, 0) is fully false and nat(x) is true. Therefore this branch suggests coun-
terexamples of the form {v/sk(x0), w/0, k ≥ 0} where x0 is a ground term. Note that
each node i is associated with a corrective predicate Pi. The logic program correspond-
ing to the figure (1) is :

17

(1) P0(0, U, w) ← P1(U,w)
(2) P0(s(v), U, w) ← P2(v, U,w)
(5) P2(s(v), U, s(w))← P5(v, U,w)
(6) P5(v, U,w) ← P6(v, U,w)
(7) P6(v, U,w) ← P0(v, U,w), P7(v, w)

(3) P1(w,w)←
(8) P7(v, w) ← P8(w)
(9) P8(w) ←

A straightforward unfolding process w.r.t the intermediate predicates simplifies the syn-
thesized program as Q:

P0(0, w, w) ←
P0(s(v), U, s(w))← P0(v, U,w)

A truncation of Q w.r.t the second argument, the argument of the existential variable
which is unchangeable in the recursive call of P0, yields Q′:

P ′
0(0, w) ←
P ′

0(s(v), s(w))← P ′
0(v, w)

which is exactly the definition of the relation ≤, i.e. P ′
0(x, y) means that x ≤ y, and we

have the property of partial correctness:
M(PLUS ∪ Q′) |= (plus(v, U,w)← nat(v), nat(w), P ′

0(v, w))

We show below that corrective predicates are helpful when we are dealing with tail re-
cursive functions with accumulator argument. The verification of such functions requires
generalization technique. To illustrate, let’s take a non-trivial example.

Example 9 (Example of generalization). Suppose we want to prove the true formula:

qrev(x, [], U), rev(U, x)← (1)

where qrev is the tail recursive version of rev and the predicates rev, app and qrev are
defined below. The proof of (1) by induction will fail as induction hypothesis cannot be
applied.

Rev

rev([], []) ←
rev([a|x], z) ← rev(x, y), app(y, [a], z)
app([], x, x) ←
app([a|x], y, [a|z])← app(x, y, z)
qrev([], x, x) ←
qrev([a|x], y, z) ← qrev(x, [a|y], z)

We therefore generalize the formula as follows:
ϕ : qrev(x, z, U), rev(U, V)←

and we have to synthesize a program that computes V in term of the universal variables
x and z. However the proof of ϕ is hard enough. Then one can look for a formula equiv-
alent to ϕ but which is easier to prove than ϕ. Our aim is to improve the provability
of ϕ using corrective predicates. To do that we are looking for a maximal corrective
predicate5 P0 that satisfies.

(qrev(x, z, U), rev(U, V)←)↔ P0(x, z, V) (2)

To prove the original formula it is sufficient to synthesize a computable definition of P0

and to show if z=[] then V=x and P0(x, [], x) is true. In order to achieve this purpose
5 P is maximal for ϕ iff the formula ϕ↔ P holds.

18

we start by structural induction on the variable x of type list and we get:

qrev([], z, U), rev(U, V) ← | P1(z, V) (3)
qrev([a|x], z, U)rev(U, V)← qrev(x, ?z, u)rev(u, V)|P2(a, x, z, V, ?z, u, v) (4)

where ?z is a meta-variable. The corrective clauses :
P0([], z, V) ↔ P1(z, V)
P0([a|x], z, V)↔ P0(x, ?z, u, v), P2(a, x, z, V, ?z, u, v)

are generated. We apply the rule of dci on (3) and we postulate the atom rev(z,v):
P0([], z, V) ← P1(z, V)
P1(z, V) ↔ rev(z, V)
P0([a|x], z, V)↔ P0(x, ?z, u, v), P2(a, x, z, V, ?z, u, v)

with the existential substitutions {?z/[a|z], U/u, V/v}, (4) is simplified into true, i.e. P2

is set to true and the synthesized program is:
P0([], z, V) ↔ P1(z, V)
P1(z, V) ↔ rev(z, V)
P0([a|x], z, v) ↔ P0(x, [a|z], u, v)

by unfolding process the intermediate predicate P1 is eliminated, we get:

P0([], z, V) ↔ rev(z, V) (5)
P0([a|x], z, v)↔ P0(x, [a|z], v) (6)

that can be compiled into a Prolog program. When unfolding the right-hand-side of (6)
w.r.t (5),we obtain :

P0([a], z, v)↔ rev([a|z], v)
by the definition of rev we get:

P0([a], z, v)↔ rev(z, u), app(u, [a], v).
The constant [a] can now be generalized on both sides, and we get a computable defini-
tion of P0: P (x, z, v)↔ rev(z, u), app(u, x, v).
We replace in (2) P0 by its definition and we get:

qrev(x, z, u), rev(u, v)↔ rev(z, u), app(u, x, v).
Now if z = [] we have the formula:

qrev(x, [], U), rev(U, y)↔ rev([], u), app(u, x, v).
By the definition of rev, we have: qrev(x, [], u), rev(u, y)↔ app([], x, v), and by the def-
inition of app, we have:

qrev(x, [], U), rev(U, x)↔ true
this completes the proof of the conjecture (1).

4 Related Works

Franǒvà et al. [5] and Protzen [12] have investigated the problem of patching faulty
conjectures, but there methods are illustrated by simple examples in arithmetic and
where the error can be detected in the base cases (not in the recursive calls). Also
Monroy et al. have introduced a method for correcting faulty conjectures [10]. However,
they only partially deal with the problem of correcting faults. For example, they cannot
build a corrective predicate, only identify it as long as it is present in the working theory.
Monroy has proposed in [9] another method that consists of a collection of construction

19

commands and is able to synthesize corrective predicates. Kapur et al. have proposed
an interesting method based on corrective predicates to define classes of formulas where
inductive validity is decidable [7].

5 Final Remarks

We have presented a method for patching faulty conjectures by synthesizing definite pro-
grams. The contribution of the paper is mainly the construction of corrective predicates
by completing failed proof attempts and the method is integrated with the interactive
theorem prover SPES [4]. Patching faulty conjectures is particularly interesting when
the formulas to be proved have to be (over-)generalized. We have tested our method
on several examples on natural numbers, lists and trees, see [3], and it is successfully
implemented in the functional language Objective Caml. If our proof system is used to
prove a faulty conjecture, it will on the fly to build a candidate corrective predicate.
As illustrated in the table (1), the original conjecture is not necessary false. For ex-
ample, the conjecture (18) specifies the sort algorithm by permutations and we have
synthesized the algorithm of sort by insertion. We are currently trying to characterize
the conjectures that can be corrected and to propose a general method for spotting
incorrect generalization. Another interesting track is to show that our method may be
used for finding bugs in recursive algorithms and for discovering attacks on security
protocols.

References

1. R.M. Burstall. Proving properties of programs by structural induction. Computer journal, 12(1)
41-48, 1969.

2. R.M. Burstall and J.A Darlington. Transformation System for Developing Recursive Programs.
Journal of the Association for Computing Machinery, 24(1) 44-67, 1977.

3. A. Francis, K. Bsäıes and M. Demba. Predicate synthesis from inductive proof attempt of faulty
conjectures. In M. Bruynooghe, editor Proc. of the 13th International Symposium on Logic-based
Program Synthesis and Transformation LOPSTR’03. Uppsala, Sweden, August 25-27, 2003. Revised
selected papers. LNCS 3018, Springer-Verlag, 2004.

4. A. Francis, K. Bsäıes, J.P. Finance and A. Quéré, A. SPES: A System for Logic Program Transfor-
mation. In A. Voronkov Proc. of the International Conference on Logic Programming and Automated
Reasoning LPAR’92, volume 624 of LNAI. St. Petersburg 1992.

5. M. Frǎnová and Y. Kodratoff. Predicate synthesis from formal specifications. In B. Neumann,
editor, proceedings of the 10th European Conference on Artificial Intelligence ECAI’92, pages 87–
91, England, 1992.

6. L. Fribourg. Extracting Logic Programs from Proofs that Use Extended Prolog Execution and
Induction. In J.M. Jaquet, editor Constructing Logic Programs, Chapter 2, pages 39–66, Wiley,
1993.

7. J. Giesl and D. Kapur. Decidable classes of inductive theorems. In IJCAR’01, First International
Joint Conference on Automated Reasoning, Italy, 2001.

8. A. Kakas, R.A. Kowalski, and F. Toni. Handbook of logic in Artificial Intelligence and Logic Pro-
gramming, volume 5, chapter The Role of Abduction in Logic Programming, pages 235–324. Oxford
University Press, 1998.

9. R. Monroy. The use of Abduction and Recursion-Editor Techniques for the Correction of Faulty
Conjectures. In Automated Software Engineering, 2000.

10. R. Monroy, A. Bundy, and A. Ireland. Proof plan for the correction of false conjectures. In F. Pfen-
ning, editor, Proceedings of the 5th Int. Conf. on Logic Programming and Automated Reasoning,
LPAR’94, volume 822 of LNAI, pages 54–64, Kiev, Ukraine, Springer-Verlag, 1994.

20

No Conjectures Corrective predicate Definitions

1 flip(x, Y), f lip(Y,Z)← P(x,Z) P (leaf(x), leaf(x))←
P (branch(x, y), branch(v, w))

← P (x, v), P (y, w)

2 qrev(x, z,X), qrev(X, [], t)← P(x,z,t) P (x, z, t)↔ qrev(z, x, t)

3 half(y, s(0))← P(y) y = s2(0) ; y = s3(0)

4 half(x, Y), double(Y,Z)← P(x) P (0)←
P (s2(x))← P (x)

5 sort(l, l)← list(l) P(l) P ([])←
P ([a])←
P ([a, b|l])← inf(a, b), P ([b|l])

6 even(z)← plus(x, y, z) P(x,y,z) P (0, y, y)← even(y)
P (s(0), y, s(y))← odd(y)
P (s2(x), y, s2(z))← P (x, y, z)

7 even(n)← len(x, n) P(x,n) P ([], 0)←
P ([a, b|x], s2(n))← P (x, n)

8 insert(a, l, [a|l])← list(l) P(a,l) P (a, [])←
P (a, [b|l])← P (a, l), inf(a, b)

9 (x− y) + z = (x+ z)− y P(x,y) P (x, 0)←
P (s(x), s(y))← P (x, y)

10 app(u, v,X), len(X,N)←list(u) P(u,v,N) P ([], v,N)← len(v,N)
P ([a|u], v, s(N))← P (u, v,N)

11 ord(v)← ord(u), place(a, u, v) P(a,u,v) P (a, [], [a])←
P (a, [b|u], [a, b|u])← a ≤ b
P (a, [b|u], [b|v])← P (a, u, v), b ≤ a

12 ord(U), insert(a, U, y)← ord(y) P(a,y) P (a, [a])←
P (a, [b|y])← P (a, y)

13 place(a, u, V), ord(V)← ord(u) P(a,u,V) P (a, [], [a])←
P (a, [b|u], [a, b|u])← lessthan(a, [b|u])
P (a, [b|u], [b|V])← P (a, u, V)

lessthan(b, V)

14 qrev(x, [], T), rev(x, T)← P(x,T) is generalized to the conjecture (16)

15 qrev(x, [], X), qrev(X, [], x)← P(x,X) is generalized to the conjecture (2)

16 qrev(x, z, T), rev(t, T)← P(x,z,t) P (x, z, t)↔ rev(z, u), app(u, x, t)

17 mult(U, v, w)← nat(v), nat(w) P (w, v) P (0, 0)←. P (0, s(u))←
P (s(u), v)← Q(u, v, w), P (w, v)
Q(0, 0, s(0))←
Q(s(u), v, s(w))← Q(u, v, w)

18 perm(x, Y), ord(Y)← list(x) P(x,Y) P ([], [])←
P ([a|x], Y)← P (x, y), Q(a, y, Y)
Q(a, [], [a])←
Q(a, [b|t], [a, b|t])← inf(a, b)
Q(a, [b|y], [b|t])← inf(b, a), Q(a, y, t)

19 even(z)← plus(x, x, z) P(x,z) is generalized to the conjecture (6)
Table 1. Patched conjectures and programs extracted.

21

true

nfi

nfi

dci

cutl

simp

simp

dci
 true

fail

 false

2. plus(v,U,w)<− nat(v), nat(w) | P2.

4. plus(s(v),U,0)<− nat(v) | P4.

5. plus(s(v),U,s(w))<− nat(v), nat(w) | P5.

6. plus(v,U,w)<− nat(v), nat(w) | P6.

7. nat(v), nat(w)<− nat(v), nat(w) | P7.

8. nat(w)<− nat(w) | P8.

0. plus(v,U,w)<− nat(v), nat(w) | P0.

1. plus(0,U,w)<− nat(w) | P1.

Fig. 1. Proof tree of plus(v,U,w)← nat(v), nat(w).

22

11. C. S. Peirce. Collected Papers of Charles Sanders Peirce. C. Harston and P. Weiss. editors, Harvard
University Press, 1959.

12. M. Protzen. Patching faulty conjectures. In M. McRobbie and Slaney, editors, Proceedings of
the 13th Int. Conf. on Automated Deduction, CADE13, volume 1104 of LNAI, pages 77–91, New
Brunswick, NJ,USA, 1996.

13. A. Sakurai and H. Motoda. Proving Definite Clauses without Explicit Use of Inductions. In
K. Furukawa, H. Tanaka, and T. Fujisaki, editors, Proceedings of the 7th Conference, Logic Pro-
gramming’88, volume 383 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1988.

23

Disproving Distributivity in Lattices Using

Geometric Logic∗

Marc Bezem†

Abstract

We report on experiments finding countermodels with a theorem prover for geomet-
ric logic. The main insight we acquire here is that it can be necessary to strengthen
the geometric theory in order to find certain models. More precisely, we have added
to the the theory of lattices an equality theory which enforces the system to con-
sider quotients of the syntactic models. In this way our system recovered the two
minimal 5-point lattices which are not distributive. One of these is modular and
the other is not. Disproving distributivity in modular lattices has been the most
demanding test so far. We discuss the results and some variations on the equality
theme.

1 Introduction

Geometric logic, also called coherent logic, originated in algebraic geometry, see for
example [6, Sect. 16.4]. In this note we will work in the first-order fragment of geometric
logic (abbreviated by GL) consisting of (implicitly) universally quantified implications
of the following form:

A1 ∧ · · · ∧An → E1 ∨ · · · ∨ Em

Here the Ai are first-order atoms. In contrast to resolution logic [11], where the Ej must
also be atoms, they may here be existentially quantified conjunctions of atoms. Thus
the general format of a geometric formula reads:

A1 ∧ · · · ∧An → ∃~x1.C1 ∨ · · · ∨ ∃~xm.Cm (1)

where the Cj are conjunctions of atoms. The special cases n = 0, m = 0 and no
existential quantification, in all possible combinations, are understood to be included.
(If the premiss is empty we leave out the → as well.) A geometric theory is a set of
geometric formulas. Closed atoms will also be called facts.

What then are the virtues of GL, given the fact that the existential quantifiers could
easily be skolemized after which the formula becomes equivalent to a set of clauses?
First of all, skolemization changes the meaning of the formula. The skolemized formula
is stronger than the original formula and equivalence can only be obtained by postulating

∗Please note that this is work in progress.
†Department of Computer Science, Bergen University, P.O. Box 7800, N-5020 Bergen, Norway,

bezem@ii.uib.no

24

• weak instances of the Axiom of Choice, called Skolem axioms, and

• for the constructivist, instances of the Independence of Premiss Axiom:

(∀x. (φ(x)→ ∃y. ψ(x, y))) → ∀x∃y. (φ(x)→ ψ(x, y))

Thus your reasoning assistant works on a different problem than you! This is unfortunate
if you are interested in constructive proofs and not only in classical truth. It may also
be difficult to guide your assistant.

GL has a natural proof theory from which proof objects easily can be obtained.
Reasoning in GL is constructive and can be used for, e.g., the constructivization of
classical abstract algebra, see [5]. The proof theory is sound and complete with respect
to Tarskian semantics. As a consequence, classical logic is conservative over GL. (GL
shares this virtue with resolution logic, but the fragment is much larger.) This may even
palliate the constructivist’s scruples with respect to the abovementioned use of Choice
and Independence of Premiss in the following ironic way. Having proved a geometrical
consequence of a geometrical theory in whatever non-constructive way one can claim
this result to be constructive. A constructivist may then mistrust the methods, but has
to accept the result (and has to work for his own proof).

A substantial number of reasoning problems (e.g., in confluence theory, lattice theory
and projective geometry1) can be formulated directly in GL without any clausification
or skolemization. This gives some additional benefits in terms of guiding an automated
theorem prover and using the proof objects in other logical frameworks. In [1] the
automation of GL has been studied, inspired by the system SATCHMO [8] for resolution
logic.

There are several other reasons why geometric logic is interesting. See [2] for its
relevance to computer science and [10] for one example of its interesting proof-theoretic
properties.

2 Proof system

GL has a natural proof system which is based on forward (ground) reasoning with case
distinction. Existential quantifiers are eliminated by introducing witnesses. In order to
explain this a bit more, let T be a geometric theory. Assume we have a domain I of
initial constants and witnesses, constants introduced during the reasoning process. Let
X be a set of facts in which only constants from I occur. Together I and X form a
so-called (reasoning) state. A reasoning step in this state consists of picking a closed
I-instance C → D of an axiom from T that is invalid in the state. This means that the
premiss C is true in the state, but the conclusion D is not. More precisely, this means
that all facts in C occur in X, but for no disjunct ∃~x.Cj of D there exist witnesses ~w
such that Cj [~x:=~w] is true in X.

As an example, consider a state with I = {0}, X = {Nat(0)} and an axiom

Nat(x)→ ∃y.(Nat(y) ∧ S(x, y)) (2)
1However, the qualifier ‘geometric’ does not come from projective geometry, but refers to the origin

of GL in algebraic geometry.

25

The instance of this axiom with x:=0 is invalid in the state as the premiss is true but the
conclusion is not. The reasoning step now so to say remedies this failure by making the
conclusion of the instance true by adding a witness to I, suggestively denoted as 1, and
adding the facts Nat(1) and S(0, 1) to X. The reasoning process would then continue
in the state with I ′ = {0, 1} and X ′ = {Nat(0), Nat(1), S(0, 1)}. Assume we would like
to prove G = ∃xy.(S(0, x)∧S(x, y)). Then we would pick in the new state the instance
with x:=1 of the above axiom to arrive in a state with constants I ′′ = {0, 1, 2} and facts
X ′′ = {Nat(0), Nat(1), S(0, 1), Nat(2), S(1, 2)}. Now we can stop since the goal G is
true in this state: just take x:=1 and y:=2 and observe that S(0, 1), S(1, 2) ∈ X ′′. Note
that the suggestive names for the witnesses are inessential. It is, however, important to
avoid name conflicts.

In the case of a disjunctive conclusion of the axiom the reasoning process forks and
the goal has to be proved in all the branches corresponding to the disjuncts in the
conclusion. In the special case of an empty disjunction there are no branches and we
are done. This special case corresponds to the Ex Falso rule.

The above procedure actually proves the geometric formula

Nat(x)→ ∃yz.(S(x, y) ∧ S(y, z))

from the axiom (2), since nothing special has been assumed about the constant 0. In
this way the procedure easily generalizes to arbitrary geometric formulas and geometric
theories. The resulting proof system is sound and complete with respect to Tarskian
truth, see for example [1]. Take care that `, in [1] look like backward reasoning
because of their inductive definitions. However, reasoning goes actually forward, since
the activity occurs on the left (contravariance).

Of course it is of crucial importance which instance of which axiom is applied. The
consequence relation applies all (finitely many) invalid instances of all axioms simul-
taneously. This is called the breadth-first strategy. The consequence relation ` applies
only one instance at a time. We have implemented ` with the depth-first (Prolog)
strategy where the first invalid instance is applied.

In this note we will explore the following property of the proof system. If in some
branch the procedure terminates with all axioms true but the goal still false, then
the state in question constitutes a countermodel. This property holds for both the
breadth-first and the depth-first variant. We only consider the latter, since we have not
implemented the former. When used in theorem provers, breadth-first is in many cases
less efficient than depth-first. This is not so clear in the case of disproving, but neither
of the two strategies satisfies negative completeness, the property that a countermodel is
found whenever the goal does not follow from the theory. The reason is that only finite
countermodels are found, whereas in some cases there are only infinite countermodels.
However, even if there exist finite countermodels we do not always find them, but exactly
here we will show how to improve the situation by extending the theory. Finding finite
countermodels with Extended Positive Tableaux has been studied in [3].

3 Lattices

A lattice is a partial ordering equipped with two binary operations called join and
meet yielding the least upper bound and the greatest lower bound, respectively. As

26

GL is currently implemented without function symbols we formalize lattice theory with
ternary predicates j and m for join and meet, respectively, besides a binary predicate
lt for the ordering. The following axioms are taken from the actual input file, but we
have left out those parts that are not relevant for disproving, notably the annotations
for reconstructing proofs and for enforcing certain strategies.

dom(X) => lt(X,X)). % reflexivity
lt(X,Y),lt(Y,Z) => lt(X,Z)). % transitivity
m(X,Y,Z) => lt(Z,X),lt(Z,Y)). % Z lower bound of X,Y,
m(X,Y,Z),lt(U,X),lt(U,Y) => lt(U,Z)). % even the greatest
j(X,Y,Z) => lt(X,Z),lt(Y,Z)). % Z upper bound of X,Y,
j(X,Y,Z),lt(X,U),lt(Y,U) => lt(Z,U)). % even the smallest
lt(X,Y) => m(X,Y,X),j(X,Y,Y)). % minimum and maximum
m(X,Y,Z) => m(Y,X,Z)). % commutativity of m
j(X,Y,Z) => j(Y,X,Z)). % commutativity of j
m(X,Y,U),m(U,Z,V),m(Y,Z,W) => m(X,W,V)). % associativity of m
j(X,Y,U),j(U,Z,V),j(Y,Z,W) => j(X,W,V)). % associativity of j
%equality theory to be inserted here
dom(X),dom(Y) => dom(U),m(X,Y,U)). % existence of meets
dom(X),dom(Y) => dom(U),j(X,Y,U)). % existence of joins

A few remarks are in order here. In addition to ordinary Prolog syntax we use a
domain predicate dom for achieving range restriction, the property that every (implictly)
universally quantified variable occurs on the left-hand side of the implication =>. An
example is the first axiom stating reflexivity. If dom occurs on the right then it means
existential quantification. The last two axioms stating the existence of meets and joins,
respectively, show both uses of dom.

One may miss axioms ensuring that the join and meet relations are functional.2 In
fact the ordering is just a preorder since we have not required antisymmetry. Clearly,
j(a,b,c) and j(a,b,d) imply both lt(c,d) and lt(d,c) without c and d being neces-
sarily equal. However, such c and d may be taken to be equivalent and this equivalence
is a congruence with respect to all predicates involved. Any model can thus be collapsed
into a lattice. The axioms on commutativity and the minimum and the maximum can
be understood as redundant but convenient.

Given the fact that the prover uses a depth-first strategy, the order of the axioms
is important. The typical order is: first the Horn clauses, then clauses with disjunction
(absent above, but present in the equality theory to be inserted later) and finally clauses
with existential quantifiers.

Distributivity of the join over the meet normally reads

(x ∩ y) ∪ z = (x ∪ z) ∩ (y ∪ z)

and can be formalized using ternary predicates as follows:

m(X,Y,U),j(X,Z,V),j(Y,Z,W),m(V,W,R) => j(U,Z,R).

2Actually, the proof system is such that at most one join will be inferred, after which the instance of
the axiom has become true. Similarly for the meet axiom. Completeness is not at stake here.

27

Distributivity is known to be independent of the other lattice axioms and there exist
two minimal countermodels up to isomorphism, graphically depicted as (i) and (ii) in
the following figure.

t

��
��

��
��

��
��

��

22
22

22
22

22
22

22
t

��
��
��
��
��
��
�

++
++

++
++

++
++

+ v

��
��
��
��
��
��
�

,,
,,

,,
,,

,,
,,

,,

::
::

::
: w

��
��
��
��
��
��
��

**
**

**
**

**
**

*

��
��

��
�

r

x

22
22

22
22

22
22

22
y z

��
��

��
��

��
��

��
x y

��
��
��
��
��
��
�

x

66
66

66
66

66
66

66
66

z y

��
��

��
��

��
��

��
��

z

88
88

88
8

b b u

(i) (ii) (iii)

Proving distributivity in GL from the other axioms could be attempted by adding the
following axioms to the above theory

true => m(x,y,u),j(x,z,v),j(y,z,w),m(v,w,r).
j(u,z,r) => goal.

The first axiom postulates a constellation of 7 constants x,y,z,u,v,w,r depicted in
figure (iii) above. Distributivity boils down to j(u,z,r), so it would suffice to prove
goal from the extended theory.

As distributivity is independent, one cannot expect to find a proof. However, one
could hope that the prover would stop and that a countermodel can be read off from the
state. This hope is idle. The prover doesn’t give up constructing new meets applying
the last but one axiom. By the depth-first strategy the last axiom is never applied.
Interchanging the two last axioms doesn’t help. What could help is applying some fair
strategy for the last two axioms. Then the prover would conceivably remain busy with
building an infinite countermodel against distributivity. But it would not stop.

The fundamental problem here is that the prover only considers syntactic models, a
kind of minimal Herbrand models for geometric logic, which in the case of lattice theory
all happen to be infinite . The finite lattices, which are quotients of syntactic models,
are completely ignored. Systems like Paradox [4] and Mace [9] explore the finite models.

In this note we wish to explore another possibility, namely by strengthening the
theory with an equality theory. This has the advantage that one can stay within the
same framework of GL and use the same prover. The idea is to add a decidable equality
to the theory in such a way that, before generating new elements, the prover considers
all possible identifications of existing elements. By including proper congruence axioms
in the equality theory, actually quotient models are constructed. In the case of lattice
theory the following extension is a natural first attempt.

28

dom(X) => eq(X,X)). % reflexivity of eq
eq(X,Y) => eq(Y,X)). % symmetry
eq(X,Y),eq(Y,Z) => eq(X,Z)). % transitivity
eq(X,Y) => lt(X,Y),lt(Y,X)). % congruence wrt lt
eq(X,Y),neq(X,Y) => false). % mutual exclusion
dom(X),dom(Y) => eq(X,Y);neq(X,Y)). % decidability of eq

Again a few remarks are in order. The connective ; is Prolog’s disjunction, so that the
last two axioms express that neq is the negation of eq and that equality is decidable.
Concerning the order of the axioms of the extended theory, the most important point is
that the typical order (first Horn clauses, then general clauses and finally axioms with
existential quantifiers) has been maintained by inserting the equality theory just before
the existential axioms in the theory of lattices. Later we come back to the optimal
placement of the axiom for mutual exclusion.

4 Results and variations

The extended theory from the previous section has been used as input to a depth-first
GL prover. After a considerable run a model was found leaving goal unproven. Relating
the state in which the prover halted with the figure (iii) above, it turned out that the
system had generated three new constants: C0 the meet of x and z, C1 the meet of y
and z and C2 the join of v and w. Moreover the following identifications were made:

u = C0 = C1, v = w = r = C2

Together with x,y,z these form indeed the 5-point lattice (i). The generation of the
constants could somehow be expected: since the meet axiom comes before the join ax-
iom, the ‘missing meets’ are generated first, and then the ‘missing join’, where ‘missing’
depends on the identifications.

It can then also be expected that interchanging the meet and the join axiom may
affect the model found. This is indeed the case: with these two axioms interchanged
the only new constant generated is C0 the join of z and u. Moreover the following
identifications were made:

z = C0 , x = v = r

Consequently we have lt(u,z) and lt(z,x), so actually the 5-point lattice (ii).
Several variations on this theme are possible. A weaker form of distributivity is

called modularity. The modularity axiom normally reads

z ≤ x→ (x ∩ y) ∪ z = x ∩ (y ∪ z)

and can be formalized using ternary predicates as follows:

lt(Z,X),m(X,Y,U),j(U,Z,V),j(Y,Z,W) => m(X,W,V).

Modularity follows from distributivity since (x ∩ y) ∪ z = (x ∪ z) ∩ (y ∪ z) = x ∩ (y ∪ z)
if x ∪ z = x, that is, if z ≤ x. Also modularity is known to be independent of the
other lattice axioms. Of the two minimal countermodels against distributivity, the one

29

depicted in (i) is modular but (ii) is not. This countermodel is easily found (in less
than 10 CPU seconds), where the order of join axiom and the meet axiom doesn’t make
a significant difference. One may ask: why is it easier to disprove a weaker axiom? We
have no good answer to this other than that in the case of modularity one constant less
is involved (r).

As could be expected, the most demanding test is disproving distributivity in mod-
ular lattices. Here the order of the last two axioms was critical: first the meet axiom,
then the join axiom. With the latter axiom preceeding the former no model was found
and the testing platform became in the end unstable.

Critical readers will have observed that there are many possible variations of the
equality theory. Why, for example, only congruence with respect to the ordering relation
lt? It turned out that adding more congruence axioms in many cases slowed down the
search. On the other hand, we can exploit the special property of lattices that equality
is definable in terms of the ordering. Instead of the equality theory one could consider
one single axiom:

dom(X),dom(Y) => lt(X,Y),lt(Y,X);neq(X,Y).

This was sufficient to disprove distributivity in the theory without the modularity axiom.
Some of the countermodels were non-standard in the sense that the mutual exclusion
axiom was not satisfied:

lt(X,Y),lt(Y,X),neq(X,Y) => false.

Note that it is perfectly sound to conclude from such non-standard countermodels that
distributivity cannot be proved in the theory of lattices. Including the mutual exclusion
axiom did in particular help when this axiom was placed at the very begining of the
extended theory. As a general rule, axioms ... => false should precede all other Horn
clauses, since this avoids extending a state before finding it inconsistent. Then even in
the case of modular lattices countermodels against distributivity are found in a couple
of minutes.

The way in which strengthening the equality theory influences the search for coun-
termodels is currently ill-understood. Less models can also mean less countermodels.
Readers willing to independently verify these experiments can contact the author for
the prover, the input files and some guidance on how to use them.

5 Conclusions

Admittedly, the results described here are not very impressive and require a consider-
able amount of human interaction. Specialized model generators like MACE [9] and
Paradox [4] can find 5-point lattices almost instantaneously. For these and many other
problems, MACE and Paradox are simply superior to GL. However, there exist also
simple problems on which GL outperforms these systems. Consider booleans 0, 1 as a
subset of a larger domain and define equality of booleans in the obvious way:

E(0, 0), E(1, 1), ¬E(0, 1), ¬E(0, 1)

30

Assume we are interested in a relation which relates every n-tuple of booleans to a
unique domain element. This can be achieved by the geometric axioms

R(x1, . . . , xn, z) ∧R(y1, . . . , yn, z)→ E(x1, y1) ∧ · · · ∧ E(xn, yn)

E(x1, x1) ∧ · · · ∧ E(xn, xn)→ ∃z. R(x1, . . . , xn, z)

This obviously requires at least 2n elements in the domain. MACE had to give up the
model search with n = 3, Paradox with n = 4. GL finds a model with n = 5 still
instantaneously. The explanation is that MACE and Paradox try to find a model with
a minimal domain, from size 1 onwards. There are very many structures with domains
smaller than 2n. (When asked for a model of size 2n, Paradox promptly returns one.)
GL works almost the opposite way: it generates immediately 2n new and hence different
constants and verifies that the other axiom holds. So the same eagerness of GL that
had to be restrained in the previous section, helps to quickly find a solution here.

References

[1] M.A. Bezem and T. Coquand. Automating Geometric Logic. Report 33/04, Re-
search Group on Mathematical Linguistics, Universitat Rovira i Virgili, Tarragona.

[2] A. Blass. Topoi and computation, Bulletin of the EATCS 36:57–65, 1998.

[3] F. Bry and S. Torge. Model generation for applications – A tableau method complete
for finite satisfiability. Research Report PMS-FB-1997-15, LMU, 1997.

[4] K. Claessen. Paradox, www.cs.chalmers.se/~koen/paradox/

[5] M. Coste, H. Lombardi, and M.F. Roy. Dynamical methods in algebra: effective
Nullstellensätze. Annals of Pure and Applied Logic 111(3):203–256, 2001.

[6] R. Goldblatt. Topoi : the categorial analysis of logic. Revised edition, North-
Holland, 1984.

[7] A. Horn. On sentences which are true of direct unions of algebras, Journal of
Symbolic Logic 16(1):14–21, 1951.

[8] R. Manthey and F. Bry. SATCHMO: a theorem prover implemented in Prolog. In
E. Lusk and R. Overbeek, editors, Proceedings of the 9-th Conference on Automated
Deduction, Lecture Notes in Computer Science 310:415–434, Springer-Verlag, 1988.

[9] W. McCune. Models And Counter Examples, www-unix.mcs.anl.gov/AR/mace/

[10] S. Negri. Contraction-free sequent calculi for geometric theories, with an application
to Barr’s Theorem, Archive for Mathematical Logic 42:389–401, 2003.

[11] J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle, Jour-
nal of the ACM 12(1): 23–41, 1965.

31

Generating Counterexamples for Java Dynamic Logic

Philipp Rümmer∗

July 1, 2005

Abstract

First-Order Dynamic Logic is an extension of First-Order Predicate Logic that
enables propositions about programs to be made in a natural way. The adherence
of a program to certain properties—like preserving invariants or compliance with
pre-/postconditions—can be translated into the statement that a particular for-
mula of Dynamic Logic is valid, which can be proved mechanically using calculi.
Accordingly, dealing with programs that violate a formal specification leads to the
investigation of invalid formulas. We consider a dynamic logic for Java and describe
an approach for proving formulas invalid that works by reduction to the validity
problem. Furthermore, the method allows us to derive concrete counterexamples
for validity, which could be a useful tool for debugging programs or specifications.

1 Introduction

In the area of first-order predicate logic, in most cases deduction is about showing the
validity of formulas, and consequently the employed calculi are mostly optimised for the
positive case of formulas that are in fact valid. When dealing with statements about
programs—with formulas that are valid if a program has certain properties—the more
common case are erroneous programs and thus invalid formulas, however. Though it is
often possible to gain information about the nature of a bug by examining failed proof
attempts (of validity) of the invalid formula, the calculi involved are not tailored to this
purpose. In general attempts of proving invalid formulas will not even terminate.

This paper is concerned with directly proving that formulas of a dynamic logic for
the Java programming language [Bec01] are invalid. Program states are in this logic
modelled as algebras over first-order vocabularies, which means that proving formulas
invalid primarily is a search for algebra operations invalidating the formula. This is in
general a higher-order problem and more difficult than proving formulas valid.

For the special case of algebras modelling program states, however, one can make
use of the fact that programs can in finitely many execution steps only access finitely
many data locations. When only searching for those invalidating states that can really
be reached from some well-defined initial state—finite variants of the initial state—
the problem becomes significantly easier. In this setting algebra operations can be

∗Department of Computer Science and Engineering, Chalmers University of Technology and Göteborg
University, SE-412 96 Göteborg, Sweden, philipp@cs.chalmers.se

32

represented using algebraic datatypes, which in turn can be defined in first-order logic
with arithmetic.

Hence, proving a formula invalid can for a certain fragment of the dynamic logic be
reduced to proving formulas (of the same logic) valid. From such a proof one can also
derive concrete counterexamples for the original formula. When dealing with formulas
assuring the correctness of a program, the counterexample shows a state in which the
program behaves inconsistently with its specification. Since automation of the method
appears to be possible to a large degree, this might result in a practical tool supporting
software development. By employing an existing proof system for validity, the KeY sys-
tem [ABB+05], we can also cover most parts of Java and handle real-world applications.

The following sections make up this paper: Sect. 2 gives a background about va-
lidity and satisfiability of formulas. Sect. 3 introduces the considered dynamic logic
for Java. Sect. 4 describes the approach for disproving formulas and for searching for
counterexamples. The method is illustrated with an example in Sect. 5, and conclusions
and related work are given in Sect. 6, 7.

2 Background: Validity and Satisfiability Problems
(Classical Logics)

Examining whether a formula is satisfiable (whether its negation is invalid) is usually
regarded a more difficult problem than considering its validity. This is supported by the
well-known fact that validity in first-order predicate logic (FOL) is semi-decidable and
not decidable [Fit96]. In general, the truth of the statement is mostly determined by
the underlying notion of semantic structures that govern the evaluation of formulas.1

Given a class S of such structures, (i) a formula is called valid (in S) if and only if it is
evaluated to ‘true’ for all elements S ∈ S, and (ii) a formula is called satisfiable (in S)
if there is an S ∈ S such that the formula is evaluated to ‘true’.

What a structure actually is varies with the kind of the considered logic: for FOL,
structures are algebras over first-order vocabularies (i.e. a universe of individuals that is
equipped with operations according to the vocabulary), whereas modal logics or dynamic
logics are usually given semantics in terms of Kripke structures [HKT00].

2.1 Validity and Satisfiability for First-Order Logic

In theorem proving, most commonly the validity of FOL formulas is examined in the
context of entirely loose semantics, i.e. S is a class SL of all algebras over a certain vo-
cabulary. The satisfiability of formulas is in this framework a difficult problem (for suf-
ficiently rich vocabularies not semi-decidable) because it involves proving the existence
of suitable algebra operations. A restriction to poor vocabularies—that for instance
only contain nullary symbols—or to other decidable fragments of FOL in many cases
diminishes the expressiveness of the logic unacceptably.

On the contrary, when using FOL as a language for program assertions or specifi-
cations, its expressiveness is often augmented by restricting S to a class SPe of arith-

1The common distinction between structures and variable assignments is left out in this document.
Valuations of variables can always be regarded as parts of structures.

33

metic structures, which are structures whose universe encloses the natural numbers and
that provide the standard operations 0, 1,+, ·,≤,

.
= [HKT00]. Particularly interesting

for this paper is the special case of formulas that are exclusively build from the sym-
bols 0, 1,+, ·,≤,

.
=, classical propositional junctors and first-order ∀, ∃-quantification.

If closed formulas of this kind are evaluated in the singleton set S0
Pe

that consists only
of the algebra of natural numbers itself, then validity and satisfiability are the same
property, i.e. a formula is valid if and only if it is satisfiable. At the same time the logic
is theoretically more expressive than FOL with loose semantics. The present document
is motivated by this observation and tries to carry over the result to a dynamic logic
for the Java programming language [GJSB00]: to prove formulas of the dynamic logic
invalid, they are first transformed in a way such that validity and satisfiability become
equivalent.

3 Java Dynamic Logic (JavaDL)

First-order dynamic logic (DL) [HKT00] is a multi-modal extension of FOL in which
modal operators are labelled with programs. There are primarily two kinds of modal
operators that are dual to each other: a diamond formula 〈p〉ϕ expresses that ϕ holds
in at least one final state of program p. Box formulas can be regarded as abbrevia-
tions [p]ϕ ≡ ¬〈p〉¬ϕ as usual. The DL formula that is probably shown most often is
ϕ→ 〈p〉ψ and states, for a deterministic program p, the total correctness of p concerning
a precondition ϕ and a postcondition ψ.

In the sequel, p is a piece of sequential Java code, i.e. a list of Java statements without
static directives like class declarations, and hence the logic is called JavaDL [Bec01].

In order to define a formal semantics of the modal operators it is necessary to capture
Java memory states as structures (here first-order structures, i.e. algebras are used) over
which the formulas ϕ, ψ can be evaluated. Java programs are then given semantics as
partial functions of these structures, i.e. as functions that map pre-state structures to
post-state structures.

3.1 Modelling Java States as Algebras: JavaDL Vocabularies

Reasoning in JavaDL always takes place in the context of a system of Java classes,
which is supposed to be free of compile-time-errors, i.e. statically correct. In the whole
document we assume that such a system is fixed. The context information is employed to
derive a multi-sorted first-order vocabulary such that corresponding structures describe
Java memory contents. A detailed description of this derivation can be found in [Bec01];
the following two sections summarise the aspects important for this paper.

3.1.1 JavaDL Vocabularies: Sorts

JavaDL is based on a typed first-order logic with subsorts that resemble the type hier-
archies of Java. For each declared Java class C the vocabulary contains a sort of the
same name. The interpretation of such a sort is later supposed to be a copy of the set

�

of natural numbers, i.e. objects of C are identified with numbers. This set represents
a reservoir containing both those objects that are already instantiated and those that

34

can possibly be created later by a program: JavaDL uses a constant-domain semantics
in which modal operators never change the domains of existing individuals.

Primitive types are covered by distinguished sorts int , boolean,2 etc. The sort int
is used to represent all different integer types of Java with finite range (a full account
thereof is [Sch02]), and is semantically considered as the infinite set � of mathematical
integers. Accordingly, the interpretations of the other sorts are also fixed to appropriate
sets. For technical reasons, a sort nat that represents natural numbers is declared.

3.1.2 JavaDL Vocabularies: Functions

The sorts int , boolean, etc. for primitive Java types are equipped with common op-
erations, in particular 0, 1,+, ·,≤,

.
= are defined for the integers, and there are con-

stants TRUE, FALSE denoting the two boolean values.
In order to enumerate the particular objects of a class C, we introduce function

symbols objC : nat → C that are interpreted with bijections. Instance attributes

class C { ... T a; ... }

are translated to unary function symbols a : C → T of the same name. Semantically,
such a function can be regarded as an infinite array that contains one entry for each
object of C. For distinguishing instantiated objects from non-instantiated ones, an
implicit attribute boolean <created> is added to each class. Altogether, the instance
attribute vectors model the heap during program execution.

Local variables (and also class attributes) can simply be modelled by declaring con-
stants (nullary function symbols).

3.2 Semantics of Java Dynamic Logic

Semantics of modal logics is usually based on the notion of Kripke structures: struc-
tures provide a set of worlds and transition relations between these worlds. While this
approach can be used to give meaning to JavaDL formulas, following it would be un-
necessarily complicated because the effect of a particular Java program is completely
determined by the initial values of variables and attributes. Given a collection of worlds,
there would be at most one compatible transition relation, which enables us to use a
simpler definition.

The set of all multi-sorted algebras over the vocabulary built in Sect. 3.1 is in the
sequel denoted with SDL. Interpretations of the particular sorts modelling Java are in
SDL chosen to be constant and as already described, for instance a sort C representing a
Java class is always interpreted with the same copy of

�
. Each element of SDL describes

a snapshot that might occur during execution of a program (without information about
the program itself and the instruction pointer), namely the contents of the heap (values
of attributes) and the values of variables.

If S, S′ ∈ SDL are two such states, then we write S
p
−→ S′ to denote that the execution

of the Java program p—when starting with the memory contents described by S—
terminates in state S ′. The evaluation of formulas can directly be defined based on this
notion of state transition:

2JavaDL strictly distinguishes formulas and terms of sort boolean; the latter ones are used to gain a
consistent mapping of Java expressions to first-order terms.

35

Definition 1 (JavaDL Semantics): Suppose that S ∈ SDL is a program state. The value
valS(ϕ) of a JavaDL formula ϕ as an element of {ff, tt} is inductively defined by

valS(〈p〉ϕ) = tt iff there is S ′ ∈ SDL: S
p
−→ S′, valS′(ϕ) = tt

and as is common for all first-order connectives (see for instance [Fit96]).

A central observation is that adjacent worlds S, S ′ ∈ SDL, i.e. worlds with S
p
−→ S′

for an arbitrary program p, are finite variants [HKT00] of each other. This means that
S, S′ agree on the interpretations of symbols for all but finitely many points, which
follows from the fact that a program can in finitely many execution steps only change
the values of finitely many data locations.

3.3 Calculi for the Validity Problem in JavaDL

JavaDL contains arithmetic—as a necessary premise for modelling Java—which directly
entails that there are no sound and complete (and finitary) calculi for validity. The
usual way of coping with this fact is to assume the existence of an oracle handling the
arithmetic fragment of a dynamic logic. For JavaDL, this oracle would be required to
semi-decide the validity problem for JavaDL formulas that do not contain any modal
operators. Adding modal operators with Java programs does not increase the expres-
siveness of the logic, and it is possible to construct relatively complete calculi for JavaDL
validity that translate formulas containing modal operators to formulas without. See
[HKT00, Pla04] for a treatment of this topic.

4 Counterexamples

According to the definition of validity in the previous sections, a JavaDL formula ϕ is
invalid if there is a particular state S ∈ SDL such that valS(ϕ) = ff, or equivalently if
¬ϕ is satisfiable. For a formula that is potentially invalid, it is consequently interesting
(i) to investigate whether an invalidating structure exists at all, and, more specifically,
(ii) to determine such a structure or a set of such structures as counterexample for ϕ.

Definition 2 (Counterexample): A counterexample of a JavaDL formula ϕ is an alge-
bra S ∈ SDL over the vocabulary built in Sect. 3.1 such that valS(ϕ) = ff.

4.1 Derivation of Counterexamples

Because the domains of the algebras that are potential counterexamples for a formula
are fixed, an invalidating one is described uniquely by the interpretations of existing
function symbols, i.e. by the values of defined attributes and of variables. In the presence
of higher-order quantifiers and for a vocabulary containing the functions f1, . . . , fn, a
formula ϕ is consequently invalid if and only if the formula

ψ := ∃f1. . . .∃fn.¬ϕ (1)

is valid (or satisfiable, which is equivalent).3 The values of f1, . . . , fn range over the
corresponding possible operations on the algebra domain, and a counterexample for ϕ
is described by matching choices for f1, . . . , fn.

3The symbols f1, . . . , fn are shamelessly reused and bound instead of introducing higher-order vari-
ables for this purpose.

36

ψ is in general second-order, however, which means that proving its validity can
be more difficult than the validity problem for JavaDL: a relatively complete calculus
would require a more powerful (or more mysterious) oracle for higher-order formulas.
While this could be viable for a large number of practical verification problems, it would
not be possible to directly use implementations of JavaDL validity calculi to this end.
Thus, the next section proposes a setting in which higher-order quantification can be
replaced with first-order quantification over algebraic data types.

4.2 Restriction to a Fragment of JavaDL

In order to reduce the complexity of showing formulas ϕ invalid, we first alter the concept
of a JavaDL structure of Sect. 3.2 slightly. This is possible because the original definition
is very general and also admits program states that cannot occur in reality: during the
actual execution of a program there will never be infinitely many instantiated objects,
and hence only finitely many points of the attribute vectors a : C → T introduced in
Sect. 3.1.2 are really used to store data. A program p that is started in an initial
state S0 ∈ SDL only reaches states S ∈ SDL that are finite variants of S0.

Instead of taking all (usually uncountably many) algebras SDL into account, conse-
quently we only examine the subset SFin

DL
⊆ SDL of finite variants of one particular and

fixed algebra S0 ∈ SDL. If one is interested in investigating the behaviour of programs
in a realistic context, then a suitable choice for S0 is a structure in which the elements of
all attribute vectors are set to some standard value, and in which in particular the value
of the implicit attributes <created> is always FALSE (no objects are instantiated). This
is equivalent to requiring that in SFin

DL
instance attributes of classes are always assigned

some standard value for all but finitely many objects.
The modification of the semantics can be observed by formulas. Based on an initial

state S0 in which no objects are instantiated, and assuming that a Java class C is
declared, for instance the formula

¬ ∀ o : C. <created>(o)
.
= TRUE

is valid in SFin
DL

but not in SDL. Formulas like the one shown are not very meaningful
when making statements about program states, however, and are consequently regarded
as ill-formed and not taken into account: besides other restrictions, proper formulas only
talk about existing objects. Sufficient syntactic criteria for well-formedness (for a similar
purpose) are for instance discussed in [Pla04].

The finite variant restriction entails that the range of the quantification ∃f1, . . . , ∃fn.
in Eq. (1) can be diminished: now it is only necessary to quantify over finitely (but un-
boundedly) many points of f1, . . . , fn, because only those interpretations of the symbols
have to be covered that can actually turn up in algebras of SFin

DL
. In the presence of arith-

metic, such a quantification can be performed using first-order quantifiers, for instance
by quantification over lists.

The oracles that are employed in Sect. 3.3 for examining the validity of JavaDL
formulas are able to handle arithmetic, and can thus be expected also to cover algebraic
datatypes (that in theory are not more difficult than arithmetic, as an encoding of
datatypes into arithmetic is in the present situation always possible). In order to obtain
a relatively complete calculus for the invalidity of JavaDL formulas ϕ in the described

37

fragment, one can therefore (i) derive the negated and quantified formula of Eq. (1),
(ii) replace the higher-order quantification with algebraic datatypes (which is discussed
in the next section), and (iii) use a relatively complete calculus to prove the formula
valid.

4.3 From Higher-Order Quantifiers to Quantified Updates

In order to assign the functions f1, . . . , fn values that are determined by algebraic data
structures, it is necessary to introduce a further operator, the update operator [Bec01,
Pla04]. Updates are in JavaDL usually employed to memorise the effect of assignments
in programs and enable an efficient treatment of the sequentiality inherent in imperative
programming languages.

In the simplest case, terms or formulas can be preceded with expressions of the shape
{f(s1, . . . , sk) := t} that cause one location of a function f to be updated to the value
of t. A valid formula is for instance

{f(1) := 1}
(

1
.
= f(f(1))

)

When dealing with the quantifiers ∃f1. . . .∃fn., the number of cells that need to be
assigned is unbounded, which necessitates the usage of a more general kind of updates
[Rüm05]. Quantified updates allow expressions {for i • f(s1, . . . , sk) := t}, where the
variable i may occur in the terms s1, . . . , sk, t, and can alter the values of unboundedly
or infinitely many locations. A valid formula involving a quantified update is

{for i : int • f(i) := 2 · i+ 1}
(

f(f(3))
.
= 15

)

Being equipped with updates, the particular quantifiers ∃fk. can be replaced with
first-order quantification as follows: the only interesting case are symbols fk = a mod-
elling instance attributes of classes, i.e. symbols a : C → T . As a first solution, we
make use of the algebraic datatype of lists, which can be finitely axiomatised by em-
ploying arithmetic.4 We assume that the datatype is provided through a sort ListOfT
representing lists of T -values, and through an access operator l↓ i that returns the ith
element of a list l. To circumvent some technicalities, the operator is required to be
total and to return the standard value of attribute a (as in Sect. 4.2) when trying to
access non-existing components of l (i is too large).

A formula ∃a.ϕ can then be rewritten to

ψ := ∃ l : ListOfT . {for i : nat • a(obj C(i)) := l↓ i} ϕ, (2)

i.e. the attribute vector a is updated with the values of list l, and with its standard
value in all places that are not determined by l. To see that the rewritten quantifi-
cation has the right effect, one can recall that the evaluation of formulas takes place
in algebras S ∈ SFin

DL
, i.e. the symbol a is always interpreted with an attribute vec-

tor aS that contains some standard value in almost all places. The quantified up-
date {for i : nat • a(obj C(i)) := l↓ i} assigns a such a vector,5 and all possible vectors
can on the other hand be reached by choosing an appropriate list l.

4In theory, it would equivalently be possible to use an encoding of lists into natural numbers.
5The update can also be regarded as binding the symbol a within its scope: renaming a to some

other symbol (that does not already turn up in ϕ) does not change the meaning of the formula. This
explains why a seems to occur free in ψ but not in ∃a.ϕ.

38

4.4 Searching For Counterexamples Using Free Variables

After having produced a formula like Eq. (2), one is particularly interested in finding
satisfying values of the variable l: the lists that l is ranging over represent (parts of)
counterexample candidates for the original formula, namely the values of attribute a for
finitely many objects. The derivation of the lists can practically be performed by using
a tableaux-like calculus with existential free variables [Fit96]. In this setting, l is in the
beginning of a proof replaced with a place holder, a free variable L. From a closed proof
one can then read off the desired list by looking at the term that was substituted for L.
If the substitution that closed the proof is not ground, then it can even be regarded as
a description of a class of counterexamples.

4.5 Different Algebraic Datatypes

Lists are the most obvious algebraic datatype for representing the values of instance
attributes, but by far not the only possible one. A different choice would be a datatype
for partial functions with finite graph, which would suite the task of specifying the values
of attributes for finitely many objects more directly. It can be expected that one needs to
make a trade-off between (i) types that enable a good representation of natural classes of
counterexamples, and (ii) types that make efficient search for counterexamples possible.
Lists have some restrictions regarding the first item, because they make a representation
of counterexamples modulo permutation of objects difficult.

5 Example

As test-bed for the described approach the KeY prover [ABB+05] was used, which
provides an almost complete implementation of a JavaDL calculus (and a complete
implementation for the Java variant JavaCard for smart card software). KeY contains a
concept of free existential variables (called metavariables) that work well together with
the quantification over algebraic datatypes.

The following paragraphs show an example of disproving a JavaDL formula given in
the syntax that is used by the KeY system. Context of the example is a class C:

public class C { public int attr; }

and two variables x, y of type C. In this environment we specify that a piece of Java code
swaps the values of the integer attribute of two objects by doing a bit of arithmetic:

!x=null & !y=null & x.<created>=TRUE & y.<created>=TRUE ->

ex xPre:int. ex yPre:int. (x.attr = xPre & y.attr = yPre &

<{ y.attr += x.attr;

x.attr = y.attr - x.attr;

y.attr -= x.attr; }> (x.attr = yPre & y.attr = xPre))

The task of finding the bug in the program (or in the specification) is left to the reader
for the time being.

In order to show that this formula is invalid, it is negated and quantifiers are added
for all relevant symbols, i.e. for the variables x, y and the attribute attr. The two local

39

variables are treated by two quantifiers (resp.) for covering also the possible value null.6

Accesses to list elements are written al(Cattr,i).

ex Cattr:ListOfInt. ex xId:nat. ex yId:nat.

ex Ccreated:ListOfBoolean. ex xNull:boolean. ex yNull:boolean.

{ for (i:nat) objC(i).attr := al(Cattr, i),

for (i:nat) objC(i).<created> := al(Ccreated, i),

x := if (xNull=TRUE) (null) (objC(xId)),

y := if (yNull=TRUE) (null) (objC(yId)) }

!(!x=null & !y=null & x.<created>=TRUE & y.<created>=TRUE ->

ex xPre:int. ex yPre:int. (x.attr = xPre & y.attr = yPre &

<{ y.attr += x.attr;

x.attr = y.attr - x.attr;

y.attr -= x.attr; }> (x.attr = yPre & y.attr = xPre)))

This formula can be proven valid using KeY in a mostly automated fashion (which
means that the considered program violates its specification). In order to illustrate
what is happening we show the major steps of a proof. The calculus used is a Gentzen-
style sequent calculus for JavaDL [Bec01].

First, the quantifiers can be removed by introducing metavariables (place holders
XID, YID, XNULL, YNULL, CATTR, CCREATED for the counterexample) and skolem symbols
(denoted with @xPre, @yPre), and after a number of basic simplifications the proof
arrives at two goals. The first goal ensures that the counterexample that is searched
for is consistent with the precondition of the original formula. The second goal states
that the program does not terminate properly, i.e. that it does not terminate or that
the postcondition is violated after its termination.

==> XNULL = FALSE & YNULL = FALSE &

al(CCREATED, XID) = TRUE & al(CCREATED, YID) = TRUE

==

al(CATTR, XID) = @xPre, al(CATTR, YID) = @yPre,

XNULL = FALSE, YNULL = FALSE,

al(CCREATED, XID) = TRUE, al(CCREATED, YID) = TRUE

==> ! { for (i:nat) objC(i).attr := al(CATTR, i),

for (i:nat) objC(i).<created> := al(CCREATED, i),

x := if (XNULL=TRUE) (null) (objC(XID)),

y := if (YNULL=TRUE) (null) (objC(YID)) }

<{ y.attr += x.attr;

x.attr = y.attr - x.attr;

y.attr -= x.attr; }> (x.attr = @yPre & y.attr = @xPre)

In the second sequent it is now possible to work off the Java program by symbolic
execution. This leads to two new goals in the end, because a case distinction between
XID=YID and !XID=YID is made: the expressions x.attr, y.attr in the program can
either address the same or different locations.

6This could be done in other, perhaps more elegant ways as well, but until now it is not clear which
possibility is the most efficient one in practice.

40

==> XNULL = FALSE & YNULL = FALSE &

al(CCREATED, XID) = TRUE & al(CCREATED, YID) = TRUE

==

@xPre=0, @yPre=0, XID=YID, ...

==> ! al(CATTR, XID) = 0

==

@xPre=al(CATTR, XID), @yPre=al(CATTR, YID), !XID=YID, ...

==> ! al(CATTR, YID) + al(CATTR, XID) - al(CATTR, YID)

= al(CATTR, XID)

At this point a counterexample can be constructed by choosing suitable instantiations
of the free variables (KeY is able to find these instantiations automatically). The last
goal can be closed by the substitution [YID/XID] (XID is substituted for YID) because
of the negated equation of the antecedent. To handle the second goal, the equa-
tion al(CATTR,XID)=0 can be made wrong by (for instance) choosing CATTR as the
list [1] and XID as 0. Finally, the first goal can be handled by substituting FALSE for
XNULL, YNULL and [TRUE] for CCREATED. Altogether, the proof is closed by the substi-
tution

[XID/0, YID/0, CATTR/[1], CCREATED/[TRUE], XNULL/FALSE, YNULL/FALSE]

When having a closer look at the program, one can see that the program violates its
specification whenever started in a state in which (i) the variables x and y point to the
same object, and (ii) the value of x.attr (which is the same as y.attr) is not 0. The
counterexample described by the substitution is one particular instance of this situation.

6 Conclusions and Future Work

A method has been presented that uses calculi for the validity problem for Java Dynamic
Logic to disprove formulas, and that is also able to construct counterexamples or whole
classes of counterexamples. Within a fragment of JavaDL the method provides relatively
complete calculi for satisfiability. Only little implementation work has to be invested
to make a theorem prover for JavaDL (in our case KeY) search for counterexamples,
and the procedure immediately supports full Java if this is the case for the underlying
prover.

Our method is particularly suited for showing that programs are partially incorrect,
i.e. that there are inputs for which a program terminates but produces wrong results,
because in this setting loops can be treated without inductive arguments: for a particular
counterexample one can only have a bounded number of loop iterations. Treating total
incorrectness is most likely a more difficult problem (at least in practice) which we plan
to investigate in the future.

Though the experiments with finding counterexamples by employing the KeY prover
and the presented method are promising so far, it remains to be examined how well the
method performs for more complex programs. We expect that this will necessitate a
number of optimisations of KeY specifically for counterexample search. In the end it
would be interesting to compare the performance of our approach with existing tech-
niques for generating test cases. While the approach described here has a very high

41

precision and the ability to construct whole classes of counterexamples, the complexity
caused by using a theorem prover and symbolic execution to this end is significant.
Techniques like random testing can be expected to find counterexamples with a much
lower effort in many cases, but are bound to fail in situations in which counterexamples
are only sparsely distributed over the space of all program inputs and hard to find.
In practice it should be beneficial to combine these different paradigms for debugging
software, which is one further aspect we consider as future work.

7 Related Work

Model finders like Paradox [CS03] are able to derive finite models of conjectures (pro-
vided that there are any). Because JavaDL involves arithmetic, model finders are not
directly applicable for the derivation of counterexamples as described in this abstract,
but could be used in combination with abstraction techniques.

In [Ahr02], models of conjectures are derived by searching for appropriate valuations
of loose functions over freely generated algebras. The method is complete but in general
not sound, i.e. it is possible that false models are found. Still it might be possible
to use the approach in combination with the ideas given in this abstract to extract
counterexamples.

Software testing is concerned with finding input data for a given program that re-
veals erroneous behaviour. The generation of these input records can be guided in
different ways, for instance by creating random data [CH00], by exhaustively cover-
ing non-isomorphic classes of input data [BKM02, MK01] or by trying to optimise the
execution path coverage in some way. For the latter approach, both actual and sym-
bolic execution of programs are employed [GMS98, BCH+04], and also model-checking
techniques are used. Related to our approach is [VPK04], which—besides comparing
different approaches for using a model-checker (Java PathFinder [VHBP00]) for creating
test input sets with maximal code coverage—focuses on a combination of model-checking
and symbolic execution to treat branch predicates and preconditions. In contrast to our
method, conditions that are symbolically derived are only used to create test input, and
are not verified against a specification.

ESC/Java2 [SoSGox] uses a theorem prover to detect violations of (implicit or ex-
plicit) assertions that are added to Java code. The prover Simplify is able to derive coun-
terexamples from failed prove attempts, which are subsequently used to create warnings
about possible erroneous behaviour of a program for certain concrete situations.

In [RST01], failed proof attempts of the theorem prover KIV [BRS+00] are used to
derive counterexamples for theorems concerning algebraic datatypes and dynamic logic.
The approach reuses an existing calculus for the validity problem and is not restricted
to a fragment of the concerned logic, but apparently there are no completeness results.

Acknowledgements

I would like to thank Wolfgang Ahrendt for many comments and discussions that led
to this paper, and Wojciech Mostowski and Tobias Gedell for numerous complains and
discussions about unclear paragraphs. Thanks are also due to the anonymous referees
for helpful comments.

42

References

[ABB+05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin
Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth,
Steffen Schlager, and Peter H. Schmitt. The KeY tool. Software and System
Modeling, 4:32–54, 2005.

[Ahr02] Wolfgang Ahrendt. Deductive search for errors in free data type specifica-
tions using model generation. In Andrei Voronkov, editor, Automated Deduc-
tion – CADE-18, 18th International Conference on Automated Deduction,
Copenhagen, Denmark, volume 2392 of LNCS. Springer-Verlag, 2002.

[BCH+04] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Ru-
pak Majumdar. Generating tests from counterexamples. In Proceedings of
the 26th International Conference on Software Engineering (ICSE’04, Edin-
burgh), pages 326–335. IEEE Computer Society Press, 2004.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of Java Card
programs. In I. Attali and T. Jensen, editors, Java on Smart Cards: Program-
ming and Security. Revised Papers, Java Card 2000, International Work-
shop, Cannes, France, volume 2041 of LNCS, pages 6–24. Springer, 2001.

[BKM02] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:
automated testing based on java predicates. SIGSOFT Softw. Eng. Notes,
27(4):123–133, 2002.

[BRS+00] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system
development with KIV. In T. Maibaum, editor, Fundamental Approaches to
Software Engineering, volume 1783 of LNCS. Springer, 2000.

[CH00] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

[CS03] Koen Claessen and Niklas Sörensson. New techniques that improve mace-
style finite model finding. In Peter Baumgartner and Chris Fermueller,
editors, Model Computation - Principles, Algorithms, Applications, Miami,
Florida, July 2003. CADE-19 Workshop.

[Fit96] Melvin C. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, New York, second edition, 1996.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison Wesley, 2nd edition, 2000.

[GMS98] Neelam Gupta, Aditya P. Mathur, and Mary Lou Soffa. Automated test data
generation using an iterative relaxation method. In SIGSOFT ’98/FSE-6:
Proceedings of the 6th ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 231–244. ACM Press, 1998.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press,
2000.

43

[MK01] Darko Marinov and Sarfraz Khurshid. Testera: A novel framework for auto-
mated testing of java programs. In ASE ’01: Proceedings of the 16th IEEE
International Conference on Automated Software Engineering, page 22. IEEE
Computer Society, 2001.

[Pla04] André Platzer. An object-oriented dynamic logic with updates. Master’s
thesis, University of Karlsruhe, Department of Computer Science. Institute
for Logic, Complexity and Deduction Systems, September 2004.
http://www.functologic.com/logic/Diplomath.pdf.

[RST01] Wolfgang Reif, Gerhard Schellhorn, and Andreas Thums. Flaw detection in
formal specifications. In IJCAR ’01: Proceedings of the First International
Joint Conference on Automated Reasoning, pages 642–657. Springer-Verlag,
2001.

[Rüm05] Philipp Rümmer. A language for sequential, parallel and quantified updates
of first-order structures. To appear, 2005. To appear.

[Sch02] Steffen Schlager. Behandlung von Integer Arithmetik bei der Verifikation
von Java-Programmen. Diplomarbeit, Fakultät für Informatik, Universität
Karlsruhe, May 2002.

[SoSGox] University of Nijmegen Security of Systems Group. ESC/Java2 (Extended
Static Checking for Java Version 2) project, .
http://www.sos.cs.ru.nl/research/escjava/index.html.

[VHBP00] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park.
Model checking programs. In ASE ’00: Proceedings of the The Fif-
teenth IEEE International Conference on Automated Software Engineering
(ASE’00), page 3. IEEE Computer Society, 2000.

[VPK04] Willem Visser, Corina S. Păsăreanu, and Sarfraz Khurshid. Test input gen-
eration with java pathfinder. SIGSOFT Softw. Eng. Notes, 29(4):97–107,
2004.

44

Automatic theorem proving for program verification engines

Byron Cook

Microsoft Research

Cambridge

Invited talk, joint with the workshop on Empirically Successful Classical Automated
Reasoning (ESCAR)

Abstract. Microsoft has made an extensive investment in the area of software model

checking. Tools such as Slam, Zing, KIS, Terminator, and ESP are now being used

both inside and outside of the company. In this talk I’ll describe some of the underlying

automatic theorem proving frastructure used by these verification tools. I will also

describe some recent advances and findings in this area.

Bio: Dr. Byron Cook is a researcher at Microsoft’s research laboratory in Cambridge,

England. His research interest include automatic theorem proving, model checking and

programming language theory.

45

	Disproving Termination of Term Rewriting Invited talk by Jürgen Giesl
	Validated Construction of Congruence Closures Aaron Stump
	Correction of faulty conjectures and programs extraction M. Demba, F. Alexandre and K. Bsaïes
	Disproving Distributivity in Lattices Using Geometric Logic Marc Bezem
	Generating Counterexamples for Java Dynamic Logic Philipp Rümmer
	Automatic theorem proving for program verification engines Invited talk by Byron Cook

