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Preface

The Disproving Workshop was held at the 21st International Conference on Automated
Deduction, in Bremen, Germany. The name automated theorem proving or automated
deduction derives from the fact that the field traditionally focused on the art of auto-
matically finding proofs. Initially, researchers were mainly motivated by the wish to
build computer systems that could automatically solve hard, mathematical problems.
When searching for a very hard proof, it is quite acceptable for a system to eat up all
resources and to never to give up. After all that is what we, researchers are also doing
all the time.

However in the last years, one has become aware of the fact that for many applications,
one needs to take more of an engineer’s approach. In particular, one needs to be aware
of resources. In order to use resources efficiently, it is essential to be able to efficiently
recognize non-theorems. As an example, consider a situation where an automated the-
orem proving system is used as assistant for automatically solving subtasks in a larger,
interactive project. In this context, the requirements to the automated theorem prover
are quite different than in mathematics. In case, the user is working on a faulty conjec-
ture, he should find out as early as possible. In addition, in case it cannot find a proof,
the prover should provide as much information as possible, so that the user can correct
the conjecture. The papers collected in this volume address this topic from different
angles.

Our invited speaker, Cesare Tinelli, starts by speaking about satisfiability modulo theo-
ries. This is the problem of determining satisfiability of first-order formulas with respect
to a logical background theory T. He will also address the problem of the generation of
adequate models in case a first-order formula cannot be proven.

Alan Bundy discusses a framework in which ontologies can be repaired. Concretely, he
studies the question of how an inconsistent ontology, (consisting of a theory part and an
observation part) can be repaired, so that the theory part is no longer inconsistent with
the observation part. This extends the range of disproving, which clearly contains the
problem of repairing non-theorems, to also include the problem of repairing inconsistent
ontologies.

Arjeh Cohen, Jan Willem Knopper and Scott H. Murray address the problem of gener-
ating proofs of graph non-isomorphism. The motivation is as follows: Nowadays, with
the increasing use of remote computing, questions about graph-isomorphism are often
delegated over the Internet to implementations written by experts (or people who claim
to be). This raises questions of trust and reliability. In case the remote algorithm says
’yes, the graphs are isomorphic’, one can demand that it will return the isomorphism.
In this paper, the other side is discussed: What proof the algorithm can give back in
case of non-isomorphism.

Our second invited speaker, Koen Claessen, observes a paradigm shift in automated
theorem proving (ATP): among other aspects this shift involves that proof tasks for ATP
systems are nowadays often generated from other formalisms and are quite different
wrt. size, difficulty, redundancy etc than traditional “hand-crafted” problems. Koen
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argues this paradigm shift is paralleled by changing needs from an also changing user
community, and ATP systems can be really useful then only if they can provide reasons
for failure to find a proof, e.g. by (approximating) counter examples.

Jan Otop disproved two related conjectures that are in the TPTP, using a specialized
algorithm. A right alternative ring is a ring in which for multiplication, the associative
law is weakened to ∀xy x(yy) = (xy)y. The disproven conjectures are: Does for weak
alternative rings hold that 2((xy)z − x(yz))3 = 0, and 6((xy)z − x(yz))3 = 0?

D. Galmiche en D. Larchey-Wendling and Y. Salhi study profs and counter models in
Gödel-Dummett Logics. Gödel-Dummett logics are logics between classical and intu-
itionistic logic. The authors develop a new approach for deciding hypersequents through
a kind of semantic graph called bicolored graph. Validity can be characterized through
a particular kind of chain in this graph.

Hans de Nivelle studies redundancy in geometric resolution. He does this through a
framework of proof permutations somewhat similar to those that are used in constructive
proofs of cut elimination. Geometric resolution is a proof procedure that attempts to
refute a set of formulas by exhaustively trying to construct a model for them. If a model
is found, then the original hypothesis has been disproven, if no model can be found, then
the original hypothesis is proven.

We are indebted to the members of the program committee for their reviewing efforts.
We made use of the EasyChair conference management by Andrei Voronkov, which
simplified the effort of organizing the reviewing process. Special thanks also deserve
our invited speakers Cesare Tinelli and Koen Claessen (the former being joint invited
speaker with the Verify workshop).

Wolfgang Ahrendt,
Peter Baumgartner,

Hans de Nivelle
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Trends and Challenges in
Satisfiability Modulo Theories

Cesare Tinelli?

Department of Computer Science
The University of Iowa
tinelli@cs.uiowa.edu

Satisfiability Modulo Theories (SMT) is concerned with the problem of de-
termining the satisfiability of first-order formulas with respect to a given logical
theory T. A distinguishing feature of SMT is the use of inference methods tai-
lored to the particular theory T. By being theory-specific and restricting their
language to certain classes of formulas (such as, typically but not exclusively,
ground formulas), such methods can be implemented into solvers that are more
efficient in practice than general-purpose theorem provers. SMT techniques have
been traditionally developed to support deductive software verification, but they
have also applications in model checking, certifying compilers, automated test
generation, and other formal methods.

This talk gives an overview of SMT and its applications, and highlights some
long-standing challenges for a wider applications of SMT techniques within for-
mal methods, as well as some fresh challenges introduced by new potential uses.
A major challenge is providing adequate model generation features for disproving
verification conditions.

? The author’s research described in this talk was made possible with the partial
support of grants #0237422 and #0551646 from the National Science Foundation.
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Where’s My Stuff? An Ontology Repair Plan ∗

Alan Bundy

June 15, 2007

Abstract

Appropriate representation is the key to successful reasoning. Hence, if intelligent agents
are to cope with changing goals in a changing environment, they must be able to adapt their
representations, i.e., to detect that a current representation is inadequate, to diagnose its
shortcomings and to repair it. In this paper we address the most basic kind of representational
shortcoming: inconsistency. We focus on how certain kinds of inconsistency can be repaired
using a repair plan that we entitle Where’s My Stuff?. We apply this repair plan manually to
four examples from the domain of Physics. In each case an inconsistent ontology is repaired
into a consistent one. This extends the interest of the Disproving workshop beyond the
“reparation of non-theorems” to the reparation of inconsistent ontologies. The Physics domain
has the advantage that many faulty ontologies have been recorded by historians of science,
together with the evidence that identified their faults and the ontological repairs that were
proposed to mend them. These records provide plenty of data for developing and evaluating
ontology repair plans.

1 Introduction

In [Bundy et al, 2006, McNeill & Bundy, forthcoming] we have described the Ontology Repair
System (ors), which repairs faulty, first-order ontologies by diagnosing the execution failures of
multi-agent plans. These repairs were not just belief revisions, but changes to the underlying
signatures, e.g., adding or removing predicate or function arguments, splitting or conflating predi-
cates or functions. Adding arguments and splitting functions are examples of refinement, in which
ontologies are enriched. An inherent problem with these refinement operations is that they are
only partially defined. For instance, when an additional argument is added to a function it is not
always clear what value each instance should take. When a function is split into two, it is not
always clear to which of the new functions each occurrence of the old one should be mapped.

In current work we are trying to develop a theory of ontology repair and to extend it to new
domains. In this paper we report two advances.

• The aggregation of repair operations into repair plans, which helps address the partial de-
finedness of the refinement operations.

• The development of the Where’s My Stuff1 repair plan and its manual application2 to four
examples from the Physics domain.

Our claim is that the Where’s My Stuff plan can successfully account for the ontological repairs
required in several historic advances in Physics. The evidence for this claim is the manually worked
examples in the rest of this paper.

∗The research reported in this paper was supported by EPSRC grant GR/S01771. Thanks to Graham Steel,
three anonymous Disproving workshop referees and members of the DREAM Group for feedback on an earlier draft.
Thanks to Alan Smaill for assistance with λProlog.

1With apologies to Amazon.
2An implementation in λProlog is under development.
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Our immediate aim is the exploration of mechanisms for ontology repair. Physics is a con-
venient development domain due to the abundance of historical records of fault diagnosis and
repair in Physical ontologies. Our objective is to build a prototype, possibly interactive, computer
program which can emulate3 a wide variety of these historical ontology repair episodes. In future,
this work might lead to some practical application, but this is not our current objective.

By repair plan we mean a compound, possibly hierarchical, system of repair operations, with
associated preconditions and effects, in the way that a proof plan [Bundy, 1991] is a compound
system of rules of inference. The Where’s My Stuff plan is intended to be the first move in
gathering a portfolio of such repair plans, which we hope will collectively cover a large number of
ontology repairs, at least in the Physics domain. For instance, we are currently developing a repair
plan based on adding additional arguments to functions with unexpected variation. The triggering
pattern for this new plan will overlap with that for Where’s My Stuff, providing a rival ontology
repair in some cases. Our hope is that just tens of similar repair plans will provide significant
coverage of historical ontology repairs in Physics; we expect complete coverage to be impossible
due to the need for idiosyncratic or domain-specific repairs in some cases.

Typed higher-order ontologies appear to be required in the Physics domain, since many of
the concepts, for instance, calculus, are essentially higher-order and many of the functions only
make sense when applied to objects of certain types, e.g., Orb V el takes an astronomical object
and returns a real number. So, in this paper, ontology will mean a theory in typed, higher-order
logic. We use the word “ontology” rather than “theory” because: (a) our emphasis on signature
modification might be obscured by the word “theory”; (b) we intend, eventually, to apply the
mechanisms we develop to ontology repair in the semantic web etc. and; (c) this frees up the
word “theory” to refer to the set of theorems of the ontology. Higher-order logic is also required
to describe the modifications to the functions of the ontology, i.e., to describe the mechanisms
themselves.

An ontology O is a pair 〈Sig(O), Ax(O)〉, where Sig(O) is the signature and Ax(O) are the
axioms. The language L(O) of O is set of formulae generated by the grammar Sig(O). The theory
Th(O) of O is the set of theorems generated from the closure of Ax(O) over the rules of inference
of simply-typed lambda calculus, e.g., expressed as a sequent calculus. We will write O ` φ when
φ ∈ Th(O). If ontology O is faulty then the repaired ontology will be denoted ν(O), where ν is
the function that converts the faulty ontologies into repaired ones, i.e., it is the instantiated repair
plan. Since ontology repair could, in principle, involve changes to the underlying logic, we reserve
the right to depart from these definitions (although not in this paper) and have deliberately left
them a little open-ended. Note, in particular, the need for both a typed and higher-order logic, in
contrast to the first-order, sorted logic of ors. As argued above, these extensions are needed for
the Physics domain.

We envisage these repair plans being implemented by higher-order deductive machinery. The
preconditions of each repair plan will contain some patterns expressed as higher-order formulae.
To trigger the repair plan, these patterns will be matched to the original ontology. When they
match, then some higher-order output patterns will be instantiated and thereby form the repaired
ontology. We have started to develop a prototype implementation in the higher-order logic pro-
gramming language λProlog [Miller & Nadathur, 1988]. Since the typed, higher-order Physics
ontologies required for this implementation do not already exist, we are constructing them on an
‘as needed’ basis for each of our test examples. Our examples below are intended to illustrate both
the triggering and the repair mechanisms. The uniform presentation is intended to illustrate the
essentially algorithmic nature of these processes, to convince the reader that they can be readily
implemented. Human intervention is, however, currently required to prepare the ontology to facil-
itate the triggering process. There is a brief discussion of the deductive and search issues involved
in such preparations, but the details are left to further work.

3I.e. “to rival with some degree of success”, but not to provide a historically valid model.
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2 The Where’s My Stuff Ontology Repair Plan

The Where’s My Stuff ontology repair plan is triggered by a mismatch between the predicted and
the actual value of some Physics function on some object. Let us call this function stuff , a higher-
order, variadic, function variable4 from physical objects or systems to some values that can be
added, usually the reals, but we will see, in §5 and §6, that there are other possibilities, so addition
must be polymorphic. The predicted value is a deductive inference from the original ontology of
Physics theory, say Ot ` stuff (~c) = v1, i.e., v1 is the value, predicted by the theoretical ontology
Ot, when stuff is applied to the n arguments in the vector ~c. However, the observed value is v2,
i.e., Os ` stuff (~c) = v2, where Os is the sensory theory whose axioms record the experimental
observations and whose theorems are deductions from these observations. The predicted and
observed values differ, i.e., v1 6= v2, resulting in a contradiction if the ontologies Ot and Os are
combined. So, to summarise, the triggering pattern is:

Ot ` stuff (~c) = v1, Os ` stuff (~c) = v2, Ot ` v1 6= v2 (1)

Note that = is polymorphic; it depends on the type of the value returned by stuff , e.g., reals.
It also needs to be a bit fuzzy, since there is always some noise in experimental data. One way
to achieve this would be to associate error bars with any value and count two values equal if the
intersection of the intervals defined by these error bars was non-empty.

The repair is to split stuff , into three new terms: stuff , stuff σvis and stuff σinvis, where σvis

and σinvis are substitutions that replace one or more higher-order function variables with new
functions of the same type. stuff σvis and stuff σinvis are intended to be the visible and invisible
parts of stuff , respectively. Then stuff is re-defined as the total of these two new functions:

∀~c:~τ . stuff (~c) ::= stuff σvis(~c) + stuff σinvis(~c) (2)

where the τi are the types of the ci and + is polymorphic, depending on the types of the values
returned by stuff , e.g. reals. We have chosen to retain the name of the old stuff function as the
name of the new total function. Alternatively, we could have retained it for the new visible part
of stuff or we need not have retained it at all, choosing, say, a substitution σtotal to create a new
term for the total function. These choices are just a matter of taste.

This new definition (2) is added to the axioms of the repaired theoretical ontology, Ax(ν(Ot)).
The remaining repairs to Ot and Os depend on whether v1 > v2 or v1 < v2, where > and < are
polymorphic total orders. If v1 > v2 then the remaining axioms of the repaired theory are copied
unchanged5 from the original axioms.

Ax(ν(Ot)) ::= {φ | φ ∈ Ax(Ot) ∨ φ = (2)} (3)

where φ = (2) is a convenient abuse of notation intended to abbreviate that φ might be the stuff
definition axiom given in (2) above. (3) defines the axioms of the repaired ontology as being
the old axioms plus (2). In particular, in the repaired ontology, ν(Ot) ` stuff (~c) = v1, i.e., the
problematic prediction is preserved unchanged, but, as we shall see, it ceases to be problematic.

The sensory ontology Os, however, is changed. We now take the observations of stuff to be
observations of stuff σvis.

Ax(ν(Os)) ::= {φ{stuff /stuff σvis} | φ ∈ Ax(Os)}

In particular, Os ` stuff σvis(~c) = v2. So, this observation no longer conflicts with the prediction.
We can no longer directly observe values of stuff , but only of its visible part. At some future point,
we hope we will devise methods to measure stuff σinvis, but not at the current stage of repair.

4We use the anti-Prolog variable/constant convention: lower case letters are variables and upper case are con-
stants.

5Since we have retained the old stuff name for the new total function.

3
4



If v1 > v2 then the roles of stuff and stuff σvis are reversed: stuff is renamed to stuff σvis in
Ot but retained unchanged in Os, i.e.,

Ax(ν(Ot)) ::= {φ{stuff /stuff σvis} | φ ∈ Ax(Ot) ∨ φ = (2)}
Ax(ν(Os)) ::= {φ | φ ∈ Ax(Os)}

So, the triggering formulae (1) are transformed to one of the following:

ν(Ot) ` stuff (~c) = v1, ν(Os) ` stuff σvis(~c) = v2, if Ot ` v1 > v2 (4)
ν(Ot) ` stuff σvis(~c) = v1, ν(Os) ` stuff (~c) = v2, if Ot ` v1 < v2 (5)

each of which breaks the previous derivation of a contradiction6. Note that this conditional
branching on whether v1 > v2 ensures that stuff σinvis is always positive. Below, we will show
examples of both (4) and (5).

Note how the Where’s My Stuff repair plan overcomes the problem introduced in the last
sentence of the first paragraph of §1: a function is split into three, but we are told exactly
which occurrences of the original function turn into one of the new functions and which to leave
unchanged. The repair also requires the addition of a new axiom and the mapping of some old
derivations into new ones. Despite the compound structure and special properties of this repair
plan, it is surprisingly widely applicable to the emulation of historical ontology repairs in Physics.
In the next four sections we apply it, manually, to four such repairs, drawn from different areas of
Physics and from different historical periods.

3 Application to the Latent-Heat Paradox

We start by applying it to the discovery of latent-heat by Joseph Black around 1750. [Wiser & Carey, 1983]
discusses a period when heat and temperature were conflated, which presented a conceptual barrier
that Black had to overcome before he could formulate the concept of latent heat. This conflation
creates a paradox: as water is frozen it is predicted to lose heat, but its heat, as measured by tem-
perature, remains constant. Black had to split the concept of heat into energy and temperature.

We can model this situation with the following formulae:

Ot ` Heat(H2O,Start(Freeze)) = Heat(H2O,Start(Freeze)) (6)
Os ` Heat(H2O,Start(Freeze)) = Heat(H2O,End(Freeze)) (7)
Ot ` Heat(H2O,Start(Freeze)) 6= Heat(H2O,End(Freeze)) (8)

where H2O is the water being frozen, Freeze is the time interval during which the freezing takes
place, Start returns the first moment of this period and End the last. (6) comes from the reflexive
law of equality, (7) comes from the observed constant temperature during freezing and (8) is
deduced from the then current physical theory that heat decreases strictly monotonically when
objects are cooled.

These formulae match the repair plan trigger (1) with the following substitution:

{Heat/stuff , 〈H2O,Heat(H2O,Start(Freeze))〉/~c, Heat(H2O,Start(Freeze))/v1, Heat(H2O,End(Freeze))/v2}

To effect the repair we will define σvis = {Temp/stuff } and σinvis = {LHF/stuff }, respectively,
in anticipation of their intended meanings, where LHF can be read as the latent heat of fusion.
These choices instantiate (2) to:

∀o:obj, t:mom. Heat(o, t) ::= Temp(o, t) + LHF (o, t)

which is not quite what is required, but is along the right lines. Some further indirect observations
of LHF are required to witness its behaviour under different states of o so that it can be further

6Which is not to say that some other contradiction does not still lurk undetected.
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repaired, e.g., the removal of its t argument. The Temp part of the new definition needs to be
further refined so that its contribution of energy depends both on temperature and mass. These
further refinements will be the subject of future ontology repair plans.

In the repaired ontologies, since Heat(H2O,Start(Freeze)) > Heat(H2O,End(Freeze)), the
repaired triggering formulae are transformed to :

ν(Ot) ` Heat(H2O,Start(Freeze)) = Heat(H2O,Start(Freeze))
ν(Os) ` Temp(H2O,Start(Freeze)) = Temp(H2O,End(Freeze))

which breaks the derivation of the detected contradiction, as required.

4 Application to the Bouncing-Ball Paradox

Our second example is based on an experiment described in [diSessa, 1983]. In [Bundy et al, 2006]
we described it thus:

“. . . consider the experiment conducted by Andreas diSessa on first-year MIT physics
students [diSessa, 1983]. The students were asked to imagine a situation in which a
ball is dropped from a height onto the floor. Initially, the ball has potential but not
kinetic energy. Just before it hits the floor it has kinetic but not potential energy. As
it hits the floor it has neither. Where did the energy go?”

The paradox arises because students typically idealise the ball as a particle without extent. How-
ever, the energy is stored in the compression of the ball7 and this cannot be represented unless
the idealisation of the ball has extent.

We can model this situation with the following formulae:

Ot ` TE(Ball, End(Drop)) = TE(Ball, Start(Drop)) (9)
Os ` TE(Ball, End(Drop)) = 0 (10)
Ot ` TE(Ball, Start(Drop)) 6= 0 (11)

where Ball is the ball, Drop is the time interval from its release to contact with the ground and
TE(Ball, t) is the total energy of the ball at time moment t. (9) comes from the law of conservation
of energy; (10) comes from the observation that the ball is stationary and at zero height at the
point of contact with the ground, so has neither potential nor kinetic energy; and (11) comes from
the inference that the original energy of the ball consists of potential energy which is not zero.
The substitution required to instantiate the trigger (1) with these three formulae is:

{TE/stuff , 〈Ball, End(Drop)〉/~c, TE(Ball, Start(Drop))/v1, 0/v2}

To effect the repair we will define σvis = {TEpart/stuff } and σinvis = {EE/stuff }, so the new
definition of TE that is proposed is:

∀o:obj, t:mom. TE(o, t) ::= TEpart(o, t) + EE(o, t)

where TEpart(o, t) is the total energy of a particle, defined as sum of its potential and kinetic
energy, and EE(o, t) is some invisible energy to be discovered. This invisible energy will turn out
to be the elastic potential energy of the ball viewed as a spring: EE(Ball, End(Drop)). But the
need to identify a source for this invisible energy could be the incentive to re-idealise the ball as
an object with a type that has such an additional source of energy available, e.g., a spring.

In the repaired ontologies, since TE(Ball, Start(Drop)) > 0, the repaired triggering formulae
are:

ν(Ot) ` TE(Ball, End(Drop)) = TE(Ball, Start(Drop))
ν(Os) ` TEpart(Ball, End(Drop)) = 0

which breaks the previous derivation of a contradiction, as required.
7And also of the floor, but we will ignore this factor in this exercise.
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5 Application to Dark Matter

Our third example is the invention8 of dark matter. The evidence for dark matter arises comes
from various sources, for instance, from an anomaly in the orbital velocities of stars in spiral
galaxies9 identified by Rubin in 1975. Given the observed distribution of mass in these galaxies,
we can use Newtonian Mechanics to predict that the orbital velocity of each star should be inversely
proportional to the square root of its distance from the galactic centre (called its radius). However,
observation of these stars show their orbital velocities to be roughly constant and independent of
their radius. Figure 1 illustrates the predicted and actual graphs. In order to account for this
discrepancy, it is hypothesised that galaxies also contain a halo of, so called, dark matter, which
is invisible to our radiation detectors, such as telescopes, because it does not radiate, so can only
be measured indirectly.

This diagram is taken from http: // en. wikipedia. org/ wiki/ Galaxy_ rotation_

problem . The x-axis is the radii of the stars and the y-axis is their orbital velocities.
The dotted line represents the predicted graph and the solid line is the observed graph.

Figure 1: Predicted vs Observed Stellar Orbital Velocities

We can trigger the preconditions (1) of the Where’s My Stuff plan with the following formulae:

Ot ` λs ∈ Spiral. 〈Rad(s), Orb V el(s)〉 = GraphA (12)
Os ` λs ∈ Spiral. 〈Rad(s), Orb V el(s)〉 = GraphB (13)
Ot ` GraphA 6= GraphB (14)

where Orb V el(s) is the orbital velocity of star s, Rad(s) is the radius of s from the centre of
its galaxy and Spiral is a particular spiral galaxy, represented as the set of stars it contains.
Formula (12) is the predicted orbital velocity graph based on the observed distribution of the
visible stars and their masses in a spiral galaxy: the orbital velocity decreases inversely with the
square root of the radius. Formula (13) is the observed orbital velocity graph: it is almost a
constant function over most of the values of s. Note the use of λ abstraction to create graph
objects as unary functions. These two graphs are unequal (14), within the range of legitimate
experimental variation.

GraphA is deduced by Newtonian Mechanics from the observed distribution of mass in the
spiral, i.e., it is a function, say, M2OV (mass to orbital velocity) 10 of the mass distribution

8discovery?
9http://en.wikipedia.org/wiki/Dark_matter

10Alternatively, the actual formula might be inserted here, but it is enough for our purposes to know that such a
formula exists, and the actual formula would clutter and obscure the picture. It involves complex calculus requiring
computer calculation to give a solution.
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graph: λs ∈ Spiral. 〈Rad(s),Mass(s)〉:

O ` λs ∈ Spiral. 〈Rad(s), Orb V el(s)〉 = M2OV (λs ∈ Spiral. 〈Rad(s),Mass(s)〉) (15)
= GraphA

Of course, the actual M2OV calculation was done in the reverse direction: the mass distribution of
the dark matter was calculated so that the predicted orbital velocities would fit the observational
evidence.

These three formulae instantiate the trigger preconditions (1) with the following substitution:

{λs ∈ g. 〈Rad(s), Orb V el(s)〉/stuff , 〈Spiral〉/~c, GraphA/v1, GraphB/v2}

Note that the repair plan works perfectly well with higher-order objects as the values v1 and v2,
provided polymorphic + and 6= can be defined as having meaning over this data-type: in this case
a piecewise addition over the individual values for each star and a fuzzy, negated equality between
graphs.

To effect the repair we will define σvis = {Spiralvis/g} and σinvis = {Spiralinvis/g}, so the
instantiation of definition (2) suggested by this triggering is:

λs ∈ Spiral. 〈Rad(s), Orb V el(s)〉
::= λs ∈ Spiralvis. 〈Rad(s), Orb V el(s)〉 + λs ∈ Spiralinvis. 〈Rad(s), Orb V el(s)〉

where Spiralvis is the visible part of the galaxy, that can be detected from its radiation, and
Spiralinvis is its dark matter part. Note that Spiral = Spiralvis ∪ Spiralinvis, which is also an
instantiation of definition (2), if you treat ∪ as addition for sets, but we cannot see how to trigger
this simpler redefinition using the trigger (1).

In the repaired ontologies, since GraphA < GraphB , the repaired triggering formulae are:

ν(Ot) ` λs ∈ Spiralvis. 〈Rad(s), Orb V el(s)〉 = GraphA

ν(Os) ` λs ∈ Spiral. 〈Rad(s), Orb V el(s)〉 = GraphB

which breaks the previous derivation of a contradiction, as required.

6 Application to the Precession of the Perihelion of Mer-
cury

Our fourth, and last, example was suggested to us by the sociologist of science, Harry Collins: the
precession of the perihelion of Mercury, i.e., the gradual rotation of the elliptical form of the orbit
(see Figure 2). The orbits of the planets in the Solar System precess in this way. This is predicted
by Newtonian Mechanics. However, Mercury’s orbit does not precess by quite the right amount
(http://physics.ucr.edu/~wudka/Physics7/Notes_www/node98.html). Nowadays, we under-
stand this as an accurate prediction of Einstein’s General Theory of Relativity, but for a long while
it was believed to be caused by the gravitational attraction of an additional planet, named Vulcan,
that was even closer to the Sun. Observation eventually ruled this out, but it is this (erroneous)
prediction that we wish to model. Alternatively, we could have shown how a similar ontological
repair could emulate the successful discovery of Pluto, but it is important to emphasise that our
repair plan can be used to emulate ultimately unsuccessful ontology repairs, as well as successful
ones.

We can represent the orbit of Mercury with the function λt. Posn(Mercury, t), where Posn(o, t)
is the 3D coordinate of object o at time t according to some implicit frame of reference. The trig-
gering formulae are then:

Ot ` λt. Posn(Mercury, t) = Orbitp (16)
Os ` λt. Posn(Mercury, t) = Orbito (17)
Ot ` Orbitp 6= Orbito (18)

7
8



This diagram is taken from http: // physics. ucr. edu/ ~wudka/ Physics7/ Notes_

www/ node98. html#fig: prec. mercury . It shows the elliptical orbits of Mercury
themselves rotating.

Figure 2: Precession of the Perihelion of Mercury

where (16) is the predicted orbit of Mercury, (17) is the observed orbit and (18) asserts that these
are not equal. Unfortunately, these triggers will not give us the right repair. What we would like
is that Solar System appeared in the term that instantiated stuff in (1). Then we could use (2)
to define:

Solar System ::= Solar Systemvis ∪ Solar Systeminvis

where Solar Systeminvis = {V ulcan}. Unfortunately, we can’t see a way of legitimately intro-
ducing Solar System into the LHS of (16), say. However, all is not lost. The predicted orbit of
Mercury, Orbitp, is calculated by considering the mass distribution of the Solar System.

λt. Posn(Mercury, t) = M2O(λs ∈ Solar System, t. 〈Posn(s, t),Mass(s)〉)
= Orbitp

where M2O is the calculation of the orbit of Mercury from the distribution of mass in the Solar
System over time, i.e., taking into account the gravitational influences of the sun and the other
planets. As with M2OV in formula (15) in §5, M2O will be some complex function involving
calculus and requiring computer calculation, but for our purposes the details do not matter; it is
enough that some such function exists.

By putting this calculation into reverse11 (M2O−1), we can create an alternative set of trigger
formulae that do contain Solar System, as required, namely:

Ot ` λo ∈ Solar System, t. 〈Posn(o, t),Mass(o)〉 = M2O−1(Orbitp)
Os ` λo ∈ Solar System, t. 〈Posn(o, t),Mass(o)〉 = M2O−1(Orbito) (19)
Ot ` M2O−1(Orbitp) 6= M2O−1(Orbito)

This set of triggers also has the nice property of predicting the mass distribution of the Solar
System from the observed orbit of Mercury (this is what (19) means), and hence predicting the
position of Vulcan. These three formulae instantiate the trigger preconditions (1) with the follow-
ing substitution:

{λo ∈ s, t. 〈Posn(o, t),Mass(o)〉/stuff , 〈Solar System〉/~c, M2O−1(Orbitp)/v1, M2O−1(Orbito)/v2}
11Assuming this is a function.
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To effect the repair we will define σvis = {Solar Systemvis/s} and σinvis = {Solar Systeminvis/s},
so the instantiation of definition (2) suggested by this triggering is:

ν(Ot) ` λo ∈ Solar System, t. 〈Posn(o, t),Mass(o)〉
= λo ∈ Solar Systemvis, t. 〈Posn(o, t),Mass(o)〉 + λo ∈ Solar Systeminvis, t. 〈Posn(o, t),Mass(o)〉

as required. In the repaired ontologies, since M2O−1(Orbitp) < M2O−1(Orbito), the repaired
triggering formulae are:

ν(Ot) ` λo ∈ Solar Systemvis, t. 〈Posn(o, t),Mass(o)〉 = M2O−1(Orbitp)
ν(Os) ` λo ∈ Solar System, t. 〈Posn(o, t),Mass(o)〉 = M2O−1(Orbito)

which breaks the previous derivation of a contradiction, as required.
This example demonstrates another dimension of choice: we may have to search back through

the derivation of the contradicted prediction in order to find the most appropriate form for the
trigger. We think this kind of choice was really also present in the previous examples, but we got
lucky and managed to avoid making it explicit. For instance, in the Bouncing Ball example in §4,
the trigger was phrased in terms of total energy, although this can hardly be directly observed.
What can be observed is positions, distances and mass, from which the energies can be inferred
and the contradiction derived. If this had been made more explicit then we think this dimension
of search would have been revealed here too. Similar remarks can also be made about the dark
matter example. Notice how this again forces us to mix theory and observation to deduce the
theory-contradicting observation.

7 Conclusion

In this paper we have described the Where’s My Stuff ontology repair plan. It consists of a
higher-order, triggering pattern describing a particular kind of disagreement between theoretical
predictions and experimental observations: a function stuff is predicted to have one value, but
is observed to have another. When this pattern can be instantiated to a situation occurring
in particular theoretical and sensory ontologies then this triggers some ontological repairs. The
repairs have two main parts. Firstly, function refinement is applied to divide stuff into three
functions: one for visible stuff, one for invisible stuff and one for their total. The original stuff is
replaced by the total stuff in one ontology, but by the visible stuff in the other. Secondly, a new
definition is added to the repaired theoretical ontology which defines the total function as the sum
of the other two. These repairs disrupt the derivation of the contradiction.

We have applied this repair plan to four examples: latent heat, deSessa’s bouncing ball , the
invention of dark matter and the precession of the perihelion of Mercury. In each case we see that
the repair plan provides a significant part of the required repair, but leaves some areas to be fixed.
We also see that there are choices that require heuristic guidance. These choices arise in at least
two ways: choices over which functions to refine into visible, invisible and their total, and choices
over how far back to go in the derivations of the prediction and observation to identify the trigger
formulae.

The dark matter and Mercury examples are particularly interesting, as stuff has to be instan-
tiated to a compound λ term. It also shows the need for polymorphic +, = and >, since these
need to be interpreted differently depending on the data-type.

It’s instructive to compare this repair plan with standard belief revision12. In belief revision
the problem is to add some new belief φ to an existing ontology O. The interesting case is
when just adding φ as a new axiom creates inconsistency. In this case, φ is usually assumed to
take precedence over O, and O is adjusted by reducing its theory, up to and including removing
O altogether. All this is done within a fixed signature. The Where’s My Stuff repair plan, is
triggered because an inconsistency will be created if we add, say, an observation φ to ontology Ot.

12http://en.wikipedia.org/wiki/Belief_revision
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But φ does not take precedence. In fact, the signature is changed 13 so that both φ and Ot can
be retained, but with a modified understanding of what each means. One is now seen to apply
to a larger totality of stuff than previously assumed and the other just to the original, narrower
conception of visible stuff. In this way, the inconsistency is made to melt away, but we come
away with a richer conception of the world’s complexity, including new questions about how to
investigate the newly hypothesised invisible stuff.

Implementing a repair mechanism based on this repair plan requires higher-order matching
and deduction, as well as some search control. The higher-order logic-programming language
λProlog is well suited as an implementation, since it embodies all three elements. A λProlog
implementation is currently under development.

We’ve been surprised to discover just how general the Where’s My Stuff plan is. When we
started this work we thought we knew a couple of examples, and had rejected two others: the
bouncing ball and the precession of Mercury’s orbit. But these rejected ones turned out to be
examples too. Generality is just what we want, but, of course, it won’t be enough. For instance,
if it is applied too often we will get ‘epicycles’. When we have 10 kinds of matter ranging from
very light to very dark, then we will know it is time to apply the Occam’s Razor repair plan ^.
We wonder what other plans are out there waiting to be revealed.
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AUTOMATIC PROOF OF GRAPH NONISOMORPHISM

ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

Abstract. We describe automated methods for constructing nonisomorphism proofs
for pairs of graphs. The proofs can be human-readable or machine-readable. We
have developed a proof generator for graph nonisomorphism, which allows users to
input graphs and construct a proof of (non)isomorphism.

1. Introduction

With the growth in computer power and internet access, an increasing number of prob-
lems are solved on remote machines by programs written by experts in a particular field.
In this situation, the user may have no knowledge of the algorithm used, its implementa-
tion, or indeed how the remote machine is maintained. A mere yes-or-no answer cannot
be trusted: we need additional verification that the answer is correct. For mathematical
problems, the most obvious form of verification is a proof of correctness. In this article,
we construct such proofs for the problem of graph isomorphism.

If two graphs are isomorphic, and we are given an isomorphism, then it is easy to
prove this by checking the isomorphism. Proving that a pair of graphs are not isomorphic
is more difficult. We show how to generate such a proof automatically. Our proofs are
intended to be human-readable but could be modified to give machine-readable proofs as
in [4]. We use a lot of computer time to find a short and understandable proof. Hence it
can take much longer to generate a proof than to determine nonisomorphism. Although
we are primarily interested in practical computations, we occasionally use the concept of
polynomial-time algorithms [6, Chapter 36].

In Section 2, we look at invariants: functions that take the same value on isomorphic
graphs, but may take different values on nonisomorphic graphs. In many cases, invariants
give short and easy-to-verify proofs of nonisomorphism. For example, two graphs with
different numbers of vertices clearly cannot be isomorphic, so this is an easily-checked
invariant.

When no simple invariants can be found to distinguish two graphs, we resort to general
graph-isomorphism algorithms building on the methods of [5]. We have implemented the
algorithm of Luks [11], and modified it to output a human-readable proof. We have also
modified the nauty implementation [12] of McKay’s algorithm [14] to produce such a proof.
We only discuss McKay’s algorithm, since it gave a shorter proof than Luks’ in every case
we tried. The modified version of McKay’s algorithm can also prove the correctness of the
identification of the automorphism group of a graph.

We have developed a proof generator for graph nonisomorphism [16], described in Sec-
tion 4. This will automatically construct a proof of (non)isomorphism, and can also be
used to compose a proof interactively by choosing invariants or calling one of the modified
algorithms. The algorithms are implemented in GAP [7], apart from the modifications
to nauty, which is in C [9]. The user interface is written in Java [17]. The proof genera-
tor, with installation instructions, can be found online at [16] or in the RIACA software
repository.

Date: June 22, 2007.
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2 ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

Because of the exponential growth in the lengths of the proofs produced, our modified
version of McKay’s algorithm is only practical for relatively small graphs. Invariants can
frequently distinguish much larger graphs, however.

The proofs have a hierarchical structure, with many small lemmas (see the example
in Section 4). It is possible to hide the proof of certain lemmas to take into account the
different levels of mathematical expertise among users. The user can also click on a hidden
part of the proof to reveal it.

Although we do not focus on complexity in this paper, it may be worth mentioning that
graph nonisomorphism is neither known nor believed to be in NP, that graph isomorphism
has time complexity O(exp(n1/2+o(1))) (cf. [2, 11]), and that graph nonisomorphism has
subexponential size proofs unless the polynomial-time hierarchy collapses (cf. [10]), where
n refers to the number of vertices of G. The proofs we give are not based on these advanced
algorithms.

2. Invariants

In order to check whether two graphs are isomorphic, the following invariants are
checked in order:

(1) number of vertices
(2) number of edges
(3) degree multiset
(4) diameter
(5) girth
(6) distance multiplicity
(7) subgraph invariance
(8) extended subgraph invariance
(9) characteristic polynomial of the adjacency matrix and Seidel matrix

(10) Smith normal form of the adjacency matrix
(11) powers of the adjacency matrix
(12) number of triangles per vertex, edge (multiset)
(13) number of K2,1,1-graphs per edge (multiset)
(14) edge distance multiplicity
(15) multiset of all edge invariants per edge

The precise definitions of most of these invariants can be found in [3].
The order of the invariants is chosen to balance understandability with ease of calcula-

tion. In larger graphs some of the invariants high in the tree become harder to humanly
verify, but still can give information about the graph.

Note that some invariants are straightforward to calculate but harder to prove correct.
Some effort is made to reduce the output, for example if the number of vertices with a
certain degree differs in two graphs it is not needed to mention the number of vertices
with a different degree.

3. McKay’s algorithm

3.1. Introduction. The current implementation of McKay’s algorithm [13, 14], called
nauty [12], is one of the most efficient practical graph isomorphism solvers available. We
have modified this program to give additional output, which allows us to construct a
human-readable proof.

Nauty’s default routine for establishing nonisomorphism involves computing a canonical

labelling for each graph. That is, a labelling of the vertices by integers with the property
that two graphs are isomorphic iff this labelling induces an isomorphism. The problem
with this for constructing a formal proof is that the definition of the canonical labelling
is almost as involved as the algorithm itself.
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AUTOMATIC PROOF OF GRAPH NONISOMORPHISM 3

We chose instead to prove nonisomorphism by constructing automorphism groups. A
disadvantage of using the automorphism group is that a new graph must be constructed
from the two earlier graphs and that the resulting graph is twice as big as the original
graphs. Let G = (V, E, γ) and G′ = (V ′, E′, γ′) be two connected graphs and suppose
v ∈ V and v′ ∈ V ′. We create a new graph G′′ by relabeling V ′ so that V and V ′ are
disjoint, adding an edge {v, v′} and creating a new coloring function γ′′ that colors the
vertices in V like γ and the vertices in V ′ like γ′ except for v and v′ which are given a new
color c that is different from all other colors. In other words, G′′ = (V ′′, E′′, γ′′) where
V ′′ = V ∪ V ′, E′′ = E ∪ E′ ∪ {{v, v′}}, γ′′(u) = γ(u) for u ∈ V \ {v}, γ′′(u′) = γ′(u′) for
u′ ∈ V ′ \ {v′}, and γ′′(v) = γ′′(v′) = c.

We can now determine whether there is an isomorphism G → G′ that takes v to v′, by
running the automorphism algorithm to compute the group of automorphisms of G′′ (they
leave the edge {v, v′} fixed). If the resulting group of automorphisms contains an element
that exchanges v and v′ then that element gives an isomorphism between G and G′. Now
fix a vertex v ∈ V .

Suppose there exists an isomorphism between G and G′. Let σ be such an isomorphism.
Let v′ ∈ V ′ be the image of v under σ. Now construct G′′ with this v′. If the automorphism
algorithm is called with G′′, then σ can be retrieved from the automorphism group.

Suppose we want to prove that there exist no isomorphisms that transform G to G′.
If an isomorphism σ exists, then for some v′ ∈ V the computed group of automorphisms
of G′′ must contain an element that transfers v to v′. If we can prove that for all v′ ∈ V ′

the automorphism group of the corresponding G′′ contains no such element then this is a
proof that the graphs are not isomorphic.

If we know automorphisms of G′ then we can use these to reduce the number of checks.
Suppose now that τ is an automorphism of G′ that does not fix v′ ∈ V ′, so there is
a vertex u′ = τ (v′) distinct from v′. Construct G′′ with v′ and calculate the group
of automorphisms A. Now the group of automorphisms for G′′ constructed with u′ is
B = {τστ−1 | σ ∈ A}. It is easy to see that the number of automorphisms that transform
v to v′ in A is equal to the number of automorphisms that transform v to u′ in B. This
means that for a nonisomorphism proof it is sufficient to prove the nonexistence only for
one vertex v′ in each orbit under a group of known automorphisms of G′. A further
reduction is discussed in the first paragraph of Section 4.

3.2. Algorithms and variables. Let G = (V, E) be a finite graph. A partition is defined
as a vertex coloring π : V → C with an ordering on π(V ) = C. For example, by
π = [1 | 2 4 | 3], we mean π(1) < π(2) = π(4) < π(3). A set consisting of vertices
with the same color is called a cell . A partition is called discrete if all vertices have a
different color, for example [1 | 2 | 3 | 4] is discrete. Let π and π′ be partitions of a set of
vertices V . Then π is called finer than π′ if every cell of π is a subset of a cell of π′ and
π′(v) > π′(v′) ⇒ π(v) > π(v′); π′ is then called coarser than π. Note that π is both finer
and coarser than itself. If π is finer (or coarser) than π′ and π 6= π′ then π is called strictly

finer (or strictly coarser) than π′. The number of cells of π is denoted by |π|. Let v ∈ V

and W ⊆ V . Define adjW (v) to be the number of elements of W which are adjacent to v

in G. If π = [V1 | . . . | Vk] is a partition of V and v ∈ Vi, for some i, then we define π ◦ v

to be (V1, . . . , Vi−1, {v}, Vi \ {v}, Vi+1, . . . , Vk) if |Vi| > 1, and π otherwise.

Refinement function. Let G = (V, E) be a graph and π = (V1, . . . , Vk) a partition of V .
For a sequence α = (Vi1 , . . . , Vil

) of distinct cells of π, let R(G, π, α) be a partition of V ,
with the following properties:

(1) R(G, π,α) is finer than π

(2) R(Gσ, πσ, ασ) = R(G, π, α)σ, for all σ ∈ Sym(V ).

A function defined this way is called a refinement function. Now we will give an example
of a refinement function (cf. Algorithm 1 from [13] and Algorithm 2.5 in [14]). This is
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4 ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

the standard algorithm that is used in nauty. For some types of graphs other refinement
functions might give better results. Define π ⊥ v to be the refinement R(G, π ◦ v, {v}).

The idea behind the algorithm is looking at the number of edges between cells of a
partition. Let Vi be cells of a partition π. Let Vj be another cell of π. Now calculate the
value of adjVi

(·) for the points in Vj . If the value is not the same for all points, then it is
possible to make a finer partition, in which Vj is split according to the different values.

This function can be used to narrow down the number of possibilities. The number
of cells can be increased in a way that is invariant under automorphisms. When using a
reference discrete partition it is also possible to check if the adjv(·) values are the same.
If they are not, then no map from a partition finer than the current partition and the
reference partition can be an automorphism. This has been implemented in the proof
constructor.

The basic search tree. Let G = (V, E, γ) be a colored graph. A discrete partition gives a
labeling of G. With two discrete partitions of the same vertices it is possible to construct
the vertex map that takes a vertex to the vertex in the second partition with the same
index (recall that a discrete partition is actually a list). It is then possible to check whether
this map is an automorphism. Now let p be a discrete partition finer than π0 = γ(V ). If
we check for each discrete partition p′ finer than π0, whether the vertex map between p

and p′ is an automorphism then we have found all automorphisms in the automorphism
group of G.

Checking all discrete partitions is not efficient. Fortunately it is possible to reduce the
number of checks by refinement and further it is sufficient to not generate the full auto-
morphism group but only generate its generators. This means that known automorphisms
can be used to reduce the number of possibilities. We describe the basic search tree and
the methods to reduce the number of checks. Algorithm 2 exhibits the code involved.

We now define the search tree T (G,π) on the nodes labeled by partitions of V . The
root is π. A node in the tree with a discrete partition is a leaf. Let the partition π be a
node in the tree that is not discrete. Then the children of π are the partitions π ⊥ w for
each w in the first cell of π with maximal length.

By comparing all leaves with the first leaf, the complete automorphism group can be
obtained.

3.3. Implementation and our modifications. A pair of discrete partitions of the same
graph gives a map from V to V . If such a map keeps the edges invariant it is an automor-
phism. Note that it is possible to generate the automorphism group by fixing one discrete
partition and letting the other run through the possibilities.

These possibilities can be narrowed down by using the refinement function R. Let π

and π′ be partitions of the same graph. Suppose there exists an automorphism σ such that
for every vertex v we have π(v) = π′(σ(v)), then because of the nature of the refinement
function R(G, π, v) = R(G, π′, σ(v). In general it is not necessary to carry out the full
refinement procedure. It suffices to show that the step in which the partitions are made
finer runs parallel in the sense that the refinements of π and π′ are compatible; if they are
not, there cannot be an automorphism and we are finished.

For the children of the node, it is enough to look at vertices in different orbits. Suppose
π is a partition in the tree and u1 and u2 are vertices to split and a is an automorphism
such that a(u1) = u2, then for every vertex v : a((π ⊥ u1)(v)) = (π ⊥ u2)(v). This means
that the node π ⊥ u2 has only leaves as descendants that are either not isomorphic or
isomorphic with an automorphism already calculated from the descendants of π ⊥ u1.

Each leaf, or discrete partition in the search tree, is compared with the fixed partition.
If the resulting map is an automorphism it is added to the generators of the automorphism
group.

McKay has written an implementation of his algorithm called nauty [12]. This imple-
mentation is in C [9]. Included in the implementation is an interactive program called
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AUTOMATIC PROOF OF GRAPH NONISOMORPHISM 5

Algorithm 1 Refinement algorithm

Input: G is a graph (used to calculate d), π is the partition that needs to be refined and
α = (W1 . . . WM ) is a list of cells, with which the partition will be refined.

Returns: π̃, a partition finer than π . more can be said, but this is not needed to
generate a proof

1: function R(G, π, α)
2: var

3: π̃:partition . a partition finer than π

4: π′:partition . a partition finer than π

5: α̃:partition . a partition finer than α

6: m:integer . index of α̃

7: t:integer . position in π′

8: end var

9: π̃ := π . π̃ is finer than π

10: α̃ := α

11: m := 1 . M = α̃ only grows if π̃ becomes strictly finer.
12: while m ≤ |α̃| and π̃ is not discrete do

13: k := 1 . Let |π̃| = K. Then K − k decreases and is nonnegative.
14: while k ≤ |π̃| do

15: calculate the partition π′ = (X1, . . . , Xs) of π̃[k] ordered by adjα̃[m].
16: let t be the index of the first set in π′ with maximal size

17: if π̃[k] = α̃[j], for any j then

18: replace α̃[j] by π′[t]
19: end if

20: for i := 1 to t− 1 do

21: append π′[i] to α̃

22: end for

23: for i := t + 1 to |π′[i]| do

24: append π′[i] to α̃

25: end for

26: update π̃ by splitting the cell π̃[k] into the cells X1, . . . , Xs in that order.
. π̃ becomes finer.

27: k := k + 1
28: end while

29: m := m + 1
30: end while

31: return π̃

32: end function

dreadnaut. It has options to give more information. We have extended these options
so that with new options turned on dreadnaut will produce output needed to construct a
proof. In particular, we display which node of the search tree we are currently working on.
We also display the partition computed in line 15 of Algorithm 1, whenever this partition
is strictly finer than the existing one.

This modified dreadnaut program is called from GAP. The data from the calculation
in dreadnaut is sent to standard output in XML form and parsed using the XML parser
in the GAPDoc package. The resulting tree is then traversed recursively and transformed
into a human readable proof. At the moment a lot of information is sent from dreadnaut
to GAP in this way. It should be possible to reduce this to improve performance. Some of
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6 ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

Algorithm 2 Finding generating automorphisms

Input: G is a graph (used to check automorphism), p is the reference discrete partition,
π is a partition finer than π0, π̃ is the set used to refine

Returns: result is (the set of generators of) the group of automorphisms that of G that
fix π.

1: function FindAutomorphisms(G, p, π, π̃)
2: var

3: c:cell . c is the first cell of π of maximal length
4: v:vertex . v ∈ c

5: π′:partition . π′ is finer than π

6: end var

7: result := ∅
8: π′ := R(G, π, π̃)
9: if π′ is discrete then . p and π′ define a map

10: if the map from (p, π′) denotes an automorphism then

11: result := {that automorphism}
12: else

13: result := ∅
14: end if

15: else . recursion; this terminates since the number of cells in
16: c :=the first cell of π′ of maximal length
17: for v ∈ c do

18: if an automorphism σ of G is known such that σ(π′) = π′ and such that
there exists a marked v′ ∈ c with σ(v′) = v then

19: do nothing . no new generator will be found, v does not have to be
marked

20: else

21: result := result∪FindAutomorphisms(G, p, π′ ◦ v, (v))
22: mark v

23: end if

24: end for

25: end if

26: return result

27: end function

the calculations in the refinement function turn out not to be necessary in the final proof;
these calculations are omitted.

3.4. Example. We want to check whether the two graphs are isomorphic, but the part
of nauty that we use gives the automorphism group of a colored graph. It is then possible
to check whether a vertex can be mapped to a vertex of the other graph by creating a
new graph by adding an edge between two vertices of the same color of different graphs,
coloring these two vertices in a new color and running the algorithm on that graph and
that edge. It is clear that if for all pairs of vertices there are no automorphisms that
exchange the graphs, there is no graph isomorphism. It is sufficient to fix a vertex in one
of the graphs and to only use one vertex in an orbit of the other graph.

Now look at the graphs in Figure 1. We use the upper left vertex of the right graph
and look at the orbits of the left graph. All vertices are in the same orbit (under rotation).
So it is sufficient to do the construction on the upper right vertex: see Figure 2.

The search tree in Figure 3 is formed by refining and case distinction. The root of
the search tree is the starting partition [15|234678]. From looking ahead at the algorithm
output, we get the reference partition p = [1|5|3|7|2|4|6|8]. The starting partition can be
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Figure 1. Two graphs
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Figure 2. The two graphs connected by an edge

refined to [1|5|3|7|24|68] in a number of steps. Since there has not been case distinction
yet, all discrete partitions p′ finer than the starting partition can be refined in the same
way and we will not prove this for each refining step.

If we look at how the cell 234678 is connected to 15 we see that 3 and 7 are the only
two vertices that have no connection to 15 and we can therefore split the partition to
[15|37|2468]. Now we look at how 2468 is connected to itself. The vertices 6 and 8 are
connected to another vertex in 2468 but 2 and 4 are not. The partition can now be split
further to [15|37|24|68]. Now we look at how 15 is connected to 24. 1 is connected to 24,
but 5 is not. The partition can therefore be split to [15|37|24|68]. Finally we look at how
37 is connected to 24. 3 is connected to two vertices of 24 and 7 is connected to none. So
we end get the partition [1|5|3|7|24|68].

Since this partition cannot be split further by refinement (it is not necessary to prove
this, we would just be doing more work), the tree is split by case distinction of 24: we can
color 24 so that γ(2) < γ(4) or so that γ(4) < γ(2) (where γ is the coloring).

In the left branch we have a case distinction again for the cell 68 and we get our first two
end-nodes. The graphs represented by these end-nodes are isomorphic with isomorphism
(6, 8). The first leaf we get is [1|5|3|2|4|6|8] which is our reference partition p. If p′ = p we
get the identity. The second leaf is p′ = [1|5|3|7|2|4|8|6], which leads to the automorphism
(6, 8).

Now we return to the case γ(4) < γ(2). Since we know that 6 and 8 are in the same
orbit under permutations that stabilize 2 and 4 we can to assume γ(6) < γ(8). This gives
us another end-node p′ = [1|5|3|7|4|2|6|8], which gives another isomorphism with the first
end-node: (2, 4).

The automorphism group now becomes 〈(2, 4), (6, 8)〉. There are no automorphisms
that interchange 1 and 5, and therefore the graphs are not isomorphic.

4. A proof constructor

We have developed a software package that automatically constructs a proof of (non)iso-
morphism of two given graphs. It is possible to ask for a specific proof by choosing
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Figure 3. The search tree in McKay’s algorithm

invariants, calling Luks’ algorithm, or calling McKay’s algorithm. It is conceivable that
the package be made more interactive by, for example, using a vertex invariant as the
coloring in the first step of MacKay’s algorithm. For instance, in the example below, the
case v = 2 could be ruled out by the observation that the valence of vertex 2 in H does
not match the valence of vertex 1 in G.

The software can derive the automorphism group of a single graph by calling the
algorithm from Section 3. It can further derive a proof of graph nonisomorphism by using
the graph automorphism algorithm from Section 3 in the following way.

The proof constructor and most of the algorithms assume that the graphs are con-
nected. For example Luks’s algorithm fails if the graphs are not connected. However it is
relatively easy to reduce graph (non-) isomorphism of unconnected graphs to graph (non-)
isomorphism of the connected components.

Because of the recursive nature of our proof, it is possible to modify the output for
the level of mathematical sophistication of the user by removing low-level lemmas. The
following example involving McKay’s algorithm on the graphs above, has been modified
in this way.

Proposition: the graph G with vertices [ 1, 2, 3, 4 ] and edges [ [ 1, 2 ], [ 1, 4 ], [ 2, 3 ], [ 3, 4 ] ] and

the graph H with vertices [ 1, 2, 3, 4 ] and edges [ [ 1, 2 ], [ 1, 4 ], [ 2, 3 ], [ 2, 4 ], [ 3, 4 ] ] are not

isomorphic.

Proof:

Suppose that p is an isomorphism that transforms G to H. Let v = 1^p. For all vertices v of H we show that5

there are no isomorphisms transforming 1 to v.

To prove this we use information about the orbits of H under automorphisms on H. If a is an automorphism

and v^a=v’, then 1^p = v’ if and only if 1^p^(a^-1) = v. In other words it is enough to verify for all v in

different orbits.

Let A be the group generated by (2,4) and (1,3). It is straightforward to verify that A is a group of10

automorphisms of H. Then we calculate the orbits.

Proposition: The orbits of A are [ 1, 3 ] and [ 2, 4 ]. (** proof hidden **)

It suffices to consider one vertex for each orbit i.e. the cases for v = 1 and v = 2.

case v = 1

From G and H we now construct a new graph F by relabelling G with (), relabelling H with15

(1,5)(2,6)(3,7)(4,8) and by joining the images of 1 of G and 1 of H with a new edge.

The resulting graph F has vertices [ 1 .. 8 ], edges [ [ 1, 2 ], [ 1, 4 ], [ 1, 5 ], [ 2, 3 ], [ 3, 4 ], [

5, 6 ], [ 5, 8 ], [ 6, 7 ], [ 6, 8 ], [ 7, 8 ] ] and new coloring [ 1 5 | 2:4 6:8 ].

We now calculate the automorphism group of F and check whether there exists an automorphism that

transforms 1 to 5.20

The automorphism group of the coloured graph G with vertices [ 1 .. 8 ] and edges [ [ 1, 2 ], [ 1, 4 ], [

1, 5 ], [ 2, 3 ], [ 3, 4 ], [ 5, 6 ], [ 5, 8 ], [ 6, 7 ], [ 6, 8 ], [ 7, 8 ] ] and colored by the

partition [ 1 5 | 2:4 6:8 ] is generated by the permutations [ (6,8), (2,4) ].

Proof:

Lemma: The permutations [ (6,8), (2,4) ] are automorphisms. (This is straightforward to verify.)25

Any automorphism can be written in the form p^-1 p’, with p a fixed permutation and p’ a variable

permutation.

Let p be [ 1 | 5 | 3 | 7 | 2 | 4 | 6 | 8 ] i.e. (2,5)(4,7,6) in cycle notation.

If [ 1 2 | 3:8 ]^p’ = [ 1 5 | 2:4 6:8 ] then [ 1 | 2 | 3 | 4 | 5 6 | 7 8 ]^p’ =[ 1 | 5 | 3 | 7 | 2 4 | 6
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8 ].30

Proof:

Lemma (refine part)

If [ 1 2 | 3:8 ]^p’ = [ 1 5 | 2:4 6:8 ] then [ 1 2 | 3 4 | 5:8 ]^p’ = [ 1 5 | 3 7 | 2 4 6 8 ].

Proof:

Look at [ 1 2 ]^pi and how it is connected to [3:8]^pi, for pi=p,p’.35

First for p

[ 1 2 ]^p = [ 1 5 ].

[ 3:8 ]^p = [ 2:4 6:8 ].

The vertices 3 7 are not connected to any vertices of [ 1 5 ].

The vertices 2 4 6 8 are each connected to 1 vertex of [ 1 5 ].40

QED(p)

Then for p’

[ 1 2 ]^p’ = [ 1 5 ].

[ 3:8 ]^p’ = [ 2:4 6:8 ].

The vertices 3 7 are not connected to any vertices of [ 1 5 ].45

The vertices 2 4 6 8 are each connected to 1 vertex of [ 1 5 ].

QED(p’)

If p^-1p’ is an automorphism then it transfers [ 1 5 ] to [ 1 5 ] and [ 2:4 6:8 ] to [ 2:4 6:8 ] and

must therefore transfer [ 3 7 ] to [ 3 7 ] and [ 2 4 6 8 ] to [ 2 4 6 8 ].

50

Since [ 1 2 | 3 4 | 5:8 ]^p = [ 1 5 | 3 7 | 2 4 6 8 ], we now know that [ 1 2 | 3 4 | 5:8 ]^p’ = [ 1

5 | 3 7 | 2 4 6 8 ].

QED(refine part)

Lemma (refine part)

If [ 1 2 | 3 4 | 5:8 ]^p’ = [ 1 5 | 3 7 | 2 4 6 8 ] then [ 1 2 | 3 4 | 5 6 | 7 8 ]^p’ = [ 1 5 | 3 755

| 2 4 | 6 8 ].

(** proof hidden **)

Lemma (refine part)

If [ 1 2 | 3 4 | 5 6 | 7 8 ]^p’ = [ 1 5 | 3 7 | 2 4 | 6 8 ] then [ 1 | 2 | 3 4 | 5 6 | 7 8 ]^p’ = [ 1

| 5 | 3 7 | 2 4 | 6 8 ].60

(** proof hidden **)

Lemma (refine part)

If [ 1 | 2 | 3 4 | 5 6 | 7 8 ]^p’ = [ 1 | 5 | 3 7 | 2 4 | 6 8 ] then [ 1 | 2 | 3 | 4 | 5 6 | 7 8 ]^p’

= [ 1 | 5 | 3 | 7 | 2 4 | 6 8 ].

(** proof hidden **)65

QED(refinement)

Now we look at all the different possibilities for [ 1 | 2 | 3 | 4 | 5 6 | 7 8 ]^p’ = [ 1 | 5 | 3 | 7 |

2 4 | 6 8 ] by looking at different possibilities for 5^p’.

Suppose that 5^p’ = 2.

Now [ 1 | 2 | 3 | 4 | 5 | 6 | 7 8 ]^p’ = [ 1 | 5 | 3 | 7 | 2 | 4 | 6 8 ].70

Now we look at all the different possibilities for [ 1 | 2 | 3 | 4 | 5 | 6 | 7 8 ]^p’ = [ 1 | 5 | 3

| 7 | 2 | 4 | 6 8 ] by looking at different possibilities for 7^p’.

Suppose that 7^p’ = 6.

Now [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 ]^p’ = [ 1 | 5 | 3 | 7 | 2 | 4 | 6 | 8 ].

So p’ = [ 1 | 5 | 3 | 7 | 2 | 4 | 6 | 8 ] or (2,5)(4,7,6).75

Then p^-1p’ = () is an automorphism.

Further more it is included in H (it is the identity).

QED(case 7^p’ = 6)

Suppose that 7^p’ = 8.

Now [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 ]^p’ = [ 1 | 5 | 3 | 7 | 2 | 4 | 8 | 6 ].80

So p’ = [ 1 | 5 | 3 | 7 | 2 | 4 | 8 | 6 ] or (2,5)(4,7,8,6).

Then p^-1p’ = (6,8) is an automorphism.

Further more it is included in H (it is a generator of H).

QED(case 7^p’ = 8)

QED(case distinction 7^p’)85

QED(case 5^p’ = 2)

Suppose that 5^p’ = 4.

Now [ 1 | 2 | 3 | 4 | 5 | 6 | 7 8 ]^p’ = [ 1 | 5 | 3 | 7 | 4 | 2 | 6 8 ].

Now we look at all the different possibilities for [ 1 | 2 | 3 | 4 | 5 | 6 | 7 8 ]^p’ = [ 1 | 5 | 3

| 7 | 4 | 2 | 6 8 ] by looking at different possibilities for 7^p’.90

Suppose that 7^p’ = 6.

Now [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 ]^p’ = [ 1 | 5 | 3 | 7 | 4 | 2 | 6 | 8 ].

So p’ = [ 1 | 5 | 3 | 7 | 4 | 2 | 6 | 8 ] or (2,5,4,7,6).

QED(case 7^p’ = 6)

QED(case distinction 7^p’)95

QED(case 5^p’ = 4)

QED(case distinction 5^p’)

QED(automorphismgroup)

QED(case v = 1)

case v = 2100

(** the proof is similar to the case v = 1 and hence omitted. **)

QED(case distinction)

QED(graphisomorphism)

The graphical frontend of our proof constructor is written in Java. Most of the algo-
rithms are written in GAP. From Java it is possible to call these through the RIACA GAP
Service by the corresponding RIACA GAP Link [8]. From GAP a modified local copy of
dreadnaut is called on demand. The information to dreadnaut is send in the format used
by dreadnaut, the information sent back to GAP is sent in a simple XML format. For
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the link with GAP we use the OpenMath library [15] and GAP phrasebook from RIACA.
They depend on the parsing library ANTLR [1].
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A Paradigm Shift in ATP:
Towards Model-based Reasoning Systems

(invited talk abstract)

Koen Claessen (koen@chalmers.se)

Introduction Traditionally and historically, ATP systems have been used in
a rather specialized way. The problems they solved were relatively small, and
almost always constructed by hand, very often by an expert on ATP systems
(if not the actual creator of the ATP system at hand). In this way, if a problem
could not be proved by a system, the behavior of the system could somehow be
understood by the constructor of the problem, and the problem was tweaked, for
example by changing an axiom, or adding new assumptions. When a problem
was difficult, this usually was caused by the proof of the problem being complex.
A paradigm shift in the use of ATP systems has happened over the last number
of years. Problems are not being created only by ATP experts anymore. Novel
areas for applications of ATP systems for first-order logic keep popping up; ar-
eas whose contents have very little to do with ATP systems, and whose active
members are not experts on ATP. People are automatically generating problems
for ATP systems from other formalisms. The problem sizes are steadily increas-
ing. Axiomatizations are not carefully crafted anymore. For many application
areas, problems are not difficult anymore simply because their proofs are com-
plex; new problems are often difficult because the proofs, which are relatively
small, are hard to find — there is often a lot of ”junk” irrelevant to the proof,
but clogging up the proof search.
In this talk, I would like to argue for the necessity of a corresponding paradigm
shift in ATP system design. The key feature that is lacking in almost all of
today’s most powerful ATP systems is feedback in the case of a failed proof.
Most ATP systems simply never terminate when presented with a problem that
they cannot solve (in some lucky cases termination does occur when a saturation
or a finite model has been found).
SAT-solvers I would like to draw a parallel with the development in the area
of SAT-solvers. Today, SAT-solvers are (literally) routinely used as black box
procedures in many different application areas. There are two key features that
make this possible. The first feature is feedback; when a SAT-solver terminates,
it actually produces more than just a ”yes” or a ”no” answer. When a problem
is deemed satisfiable, an actual model is produced as the result. For most
SAT-based algorithms it is vital that this model is produced. Quite quickly
after the developments in the SAT community that made SAT-solvers practical,
users of SAT-solvers realized that they also wanted feedback when a problem
was deemed unsatisfiable. In this case, the SAT-solver can produce a proof of
unsatisfiability. The second feature is incrementality. After feedback has been
examined by the caller of the SAT-solver, small changes can be made to the
problem (usually automatically), and the SAT-solver can be run again, reusing

1
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as much information from the previous run as possible.
Some of the most industrially successful applications of SAT-solvers (for exam-
ple interpolant-based model checking) critically depend on getting useful feed-
back from the SAT-solver in both the ”yes” and the ”no” case, and the use of
incrementality.
First-order Logic In first-order logic, things do not look as bright. Although
there are a number of areas where ATP systems have successfully been used as
black boxes, very little feedback is provided from today’s ATP systems. When
a proof is found, most systems are able to produce this. When a proof cannot
be found, the result of the ATP system does not contain any kind of reason why
not.
If we want our ATP systems to be used by non-experts, we need to provide
feedback for failed proofs that can be understood by non-experts. Even more
important, if we want our ATP systems to be used as a black box component
inside a larger system, it is vital that the ATP system provides feedback about
why it could not find a proof to its caller! Incremental use of a system is
empowered by an order of magnitude if useful feedback is provided between
calls.
The kind of feedback I propose to use is that of a candidate counter model.
One reason why we cannot simply copy what happens in the world of SAT-
solvers is that first-order logic is semi-decidable, which means that we cannot
always (or rather: we can very seldomly) produce an actual counter model of
the problem if there does not exist a proof. What we can do however, is to
produce a candidate counter model. A candidate counter model can be seen
as an approximation of a real counter model; the longer time the ATP system
runs, the closer to a real counter model the candidate counter model becomes.
The Talk In the talk, I will describe what such a candidate counter model is,
some theory behind it, how candidate counter models can be found, and how
they can be used.
It turns out that it is very natural for an ATP system that produces candidate
counter models to be instance based. We present some experimental evidence
that instance based (and thus model-based) methods actually are a very good fit
with the above mentioned paradigm shift in ATP usage. I will also discuss the
impact that a model-based view has on the internal design of an ATP system;
for example, it becomes very important to deal with typed problems, and even
basic algorithms such as clausification should be revisited!

2
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Solution to some right alternative ring problems

Jan Otop

Institute of Computer Science, University of Wroc law
ul. Joliot-Curie 15, PL-50-383, Wroc law, Poland.

Abstract. In this paper we show a computer construction of a coun-
terexample to the TPTP problems RNG030 and RNG032. These prob-
lems have been open up to now. The used method shares some ideas
with the Z-module method, but it is more semantic oriented.
We deal also with ensuring program correctness. This is harder than in
case of proving theorem, because there is no succinct ”proof”.

1 Introduction

The TPTP is a library of test problems for evaluating theorem provers [3]. We
tried to prove the open problems RNG30 and RNG32 which are problems in ring
theory. Even after implementing sophisticated data structures for term indexing
and different term orderings, the problems remained intractable.

Considering possibility that given hypothesis can be satisfiable, we wrote a
dedicated program that disproves these conjectures.

This paper is organized as follows. First we introduce basic notation (section
2) which will be used in this paper. Our method will be introduced in section
3. The implementation of our method will be described in section 4, we will
mention there how one can ensure program1 correctness. In the conclusion we
will discuss what can be straightforwardly generalized.

2 Preliminaries

A right alternative ring is an algebraic structure R = (R,+,−, 0, ∗) in which −
is an unary symbol, satisfying the following axioms:

1. Associativity and commutativity of addition ∀X,Y, Z X+Y = Y +X ∧X+
(Y + Z) = (X + Y ) + Z

2. Neutral element of addition ∀X X + 0 = X
3. Additive inverse ∀X X + (−X) = 0
4. Additive inverse is involution ∀X − (−X) = X
5. Multiplication by additive identity ∀X X0 = 0X = 0
6. Left distributivity ∀X,Y, Z X(Y + Z) = XY +XZ
7. Right distributivity ∀X,Y, Z (X + Y )Z = XZ + Y Z

1 We know that the method is correct, but the question is, whether its implementation
is correct.
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8. Right alternative ∀X,Y X(Y Y ) = (XY )Y

These are rings with weaker associativity. Every standard ring is a right
alternative ring, but the converse is not true. Multiplication in right alternative
rings is nonassociative. The right alternative rings are subset of nonassociative
rings. Nonassociative rings are defined similar to the right alternative rings, but
satisfy only the axioms 1-7.

The associator (X,Y, Z) is defined as (X,Y, Z) = (XY )Z + (−X(Y Z)). In
rings the associator is always equal to 0. Using distributivity one can show that
the associator is additive with respect to any argument, for example (X1 +
X2, Y, Z) = (X1, Y, Z) + (X2, Y, Z) . In this paper we will use the abbreviation
X − Y := X + (−Y ).

Ring R is called a free right alternative ring with generating set X if R is
a right alternative ring generated by X and for every right alternative ring R′

every mapping ϕ : X → R′ can be extended to homomorphism ϕ̂ : R→ R′.
For every signature Σ, and every set of elements X such that X ∩Σ = ∅ we

define set of terms T (Σ,X ) as the smallest set such that:

• X ⊆ T (Σ,X )
• for every constant c ∈ Σ, we have c ∈ T (Σ,X )
• for every function f ∈ Σ of arity k, and t1, ..., tk ∈ T (Σ,X ), we have
f(t1, ..., tk) ∈ T (Σ,X )

The set of monomials over X is defined as T ({∗},X ). A polynomial is a sum
of monomials and additive inverses of monomials.

From now on Σ will denote the ring signature, rather than some abstract
signature, so Σ = {+, ∗, 0,−}. In signature Σ there are constants that are de-
fined by the axioms. Constants in set X are Skolem symbols introduced by the
hypothesis.

For a monomial m we define the degree deg(m) recursively, deg(c) = 1
where c ∈ X and deg(m1m2) = deg(m1) + deg(m2). It can be extended to
the polynomials in the usual way, consider polynomial p =

∑
imi then deg(p) =

maxi(deg(mi)).
For a monomial m let dega(m) denote the number of occurrences of the

symbol a ∈ X in the term m. We extend this definition to polynomials, as
follows: for p =

∑
imi degree dega(p) = maxi(dega(mi)) for the polynomial p.

The ring R is torsion free iff for every a ∈ R \ {0} and a natural number n,
we have na 6= 0, where na = a+ ...+ a is added n times.

3 Method description

The problem RNG30 can be written as ”in right associative rings of characteristic
greater than 2, (X,X, Y )3 = 0 for all X,Y ” and in RNG032 the question is
essentially the same but assumption is stronger, ”in rings with characteristic
greater than 6, (X,X, Y )3 = 0 for all X,Y ”. Although the multiplication in
alternative rings in nonassociative, the X3 is uniquely defined because from the
right alternative axiom follows that X(XX) = (XX)X.
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To falsify the above identities one has to show that there exists a structure in
which they are false. How can we construct a right alternative ring that is not an
associative ring? Consider a vector space over the rationals with multiplication
of elements considered as an arbitrary linear operator2. Such a structure satisfies
all the axioms except (possibly) the right alternative axiom. How can we define
such a linear operator to obtain a right alternative ring?

There exists the free right alternative ring generated by {a, b} and it is iso-
morphic to T (Σ,X )/ ≈A where ≈A= {(s, t) ∈ T (Σ, {a, b})× T (Σ, {a, b}) : A `
s = t} where A is a set of right alternative ring axioms. In other words ≈A is the
equivalence relation of terms which have to be equal in every right alternative
ring. Deciding whether two terms are equal in the free right alternative ring is
so complicated as proving theorems. However if we have two terms then we can
easily compute result of the multiplication.

We will construct a homomorphism from the free right alternative ring into a
vector space over rationals. The multiplication in a vector space will be induced
by this homomorphism. On the one hand, the multiplication will be well-defined.
On the other hand, we will have structure in which we can easily decide if given
two elements are equal. The constructed homomorphism will be constant on the
equivalence classes of ≈A so it will induce a homomorphism form the free right
alternative ring into the vector space.

3.1 Homomorphism construction

First we prove some general facts about the right alternative rings.

Claim. For every term t ∈ T (Σ,X ) there exist a polynomial p, such that t = p
in every right alternative ring.

Proof. The claim above can be proved by a straightforward induction. Using
distributivity it can be proved that a product of polynomials can be transformed
into a polynomial.

The claim allows us to think about elements of the ring as polynomials. A
polynomial can be seen as a finite sum

∑N
i=0 nimi where ni are integer coeffi-

cients and mi are different monomials.
Consider a linear mapping φ : T (Σ, {a, b}) → V where V is a vector space

over the rationals with countable basis.

Definition 1. We call lin(X) the linear closure of set X, i.e. lin(X) is the
smallest set such that:

• X ⊆ lin(X)
• q1x1 + q2x2 ∈ lin(X) for each x1, x2 ∈ lin(X) and q1, q2 ∈ Q

lin(X) is the smallest vector space containing X.

2 A linear function from vector pairs into vectors
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From now on, we will treat φ(T (Σ, {a, b})) as a structure (U,+, ∗,−, 0) where
U = lin(φ(T (Σ, {a, b}))), where 0 is the zero in vector space, + coincides with
the addition from vector space, − is interpreted as the multiplication by −1 and
the multiplication defined as follows V1V2 = φ(φ−1(V1)φ−1(V2)). The multipli-
cation is induced by φ from the multiplication in the free right alternative ring.
One must only argue that the multiplication is well defined, because φ does not
need to be injective.

Definition 2. A function φ : T (Σ,X ) → V defined on polynomials is said to be
monotonic if for each term X,Y, Z if X is subterm of Z and φ(X) = φ(Y ) then
φ(Z) = φ(Z[X := Y ]), where Z[X := Y ] denotes usual term substitution.

Notice that monotonicity on monomials implies monotonicity on polynomials.
Every ring homomorphism is monotonic.

Claim. Monotonicity of φ implies that the multiplication in a vector space in-
duced from the free right alternative ring is well defined.

Proof. Assume, that v1 = φ(x1) = φ(x2) and v2 = φ(y1) = φ(y2) then φ(x1y1) =
φ(x2y1) = φ(x2y2). It shows that φ(φ−1(v1)φ−1(v2)) is unique assuming mono-
tonicity of φ.

φ is a ring homomorphism iff it is linear and monotonic, this follows directly
from the definition of homomorphism. Taking all together, if φ is linear and
monotonic then φ(T (Σ, {a, b})) is a nonassociative ring. How can we achieve
right alternativity?

Definition 3. The linearization of the right alternative axiom (X,Y, Y ) = 0
are two axioms (X,Y, Y ) = 0 and (X,Y, Z) + (X,Z, Y ) = 0.

The following lemma justifies name linearization.

Lemma 1. For every ring R = (R,+,−, ∗), if A ⊆ R generates R with respect
to addition, i.e. every x ∈ R is a linear combination of elements from A, then
R |= ∀X,Y ∈ R (X,Y, Y ) = 0 iff R |= ∀X,Y, Z ∈ A (X,Y, Y ) = 0 ∧ (X,Y, Z) +
(X,Z, Y ) = 0

Proof.

0 = (X,Y + Z, Y + Z) = (X,Y, Y ) + (X,Y, Z) + (X,Z, Y ) + (X,Z,Z) =

= (X,Y, Z) + (X,Z, Y ) = 0

This proves the implication from left to right. To prove the converse, we use the
fact that A is a generating set, so X,Y can be written as a sum of elements of
A, there exist ni,mj ∈ A, such that

X =
K∑

i=1

mi Y =
N∑

j=1

nj
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(X,Y, Y ) = (
K∑

i=1

mi, Y, Y ) =
K∑

i=1

(mi, Y, Y )

it is enough to show that for every 1 ≤ i ≤ K holds (mi, Y, Y ) = 0.

(mi, Y, Y ) = (mi,

N∑
j=1

nj ,

N∑
k=1

nk) =
N∑

j=1

N∑
k=1

(mi, nj , nk) =

=
N∑

j=1

(mi, nj , nj) +
N∑

j=1

j−1∑
k=1

(mi, nj , nk) + (mi, nk, nj) = 0.

In the torsion free rings (X,Y, Z) + (X,Z, Y ) = 0 implies (X,Y, Y ) = 0
because if we consider Y = Z in the first equation (X,Y, Y ) + (X,Y, Y ) = 0 but
since the ring is torsion free (X,Y, Y ) = 0. In the free right alternative ring it
does not need to be true.

From above lemma it follows that, if homomorphism φ will be defined on
monomials in such a way that it will satisfy linearization of the right alternative
axiom, it implies that φ(T (Σ,X )) satisfies the right alternative axiom. In other
words φ will be constant on equivalent classes of relation ≈A so φ induce the
homomorphism from the right alternative ring into vector space, so its image is
a right alternative ring. We cannot define φ on the set of monomials, because
it is infinite. At least we cannot define it explicitly. However we do not need to
care about the ”large” monomials, in this case we can define φ to be zero on the
monomials with a degree larger than the hypothesis without affecting the truth
value of hypothesis.

Lemma 2. Suppose that a homomorphism φ is defined, such that φ(T (Σ, {a, b}))
is a right alternative ring and let the polynomial p ∈ T (Σ, {a, b}) be such that
φ(p) 6= 0. Define ψ on monomials such that

• ψ(m) = φ(m) if deg(m) ≤ deg(p)
• ψ(m) = 0 otherwise.

Then ψ(p) 6= 0 and ψ (T (Σ, {a, b})) is a right alternative ring.

Proof. Since φ(m) = ψ(m) if deg(m) ≤ deg(p) it follows that φ(p) = ψ(p) so
ψ (T (Σ, {a, b})) |= ψ(p) 6= 0. It is enough to show that ψ satisfies the linearized
right alternative axiom.

To show that ψ((X,Y, Z) + (X,Z, Y )) = 0 where X,Y, Z are monomials,
notice that in (X,Y, Z) + (X,Z, Y ) = (XY )Z −X(Y Z) + (XZ)Y −X(ZY ) all
this monomials have equal degree. Then either this degree is greater than deg(p)
and all monomials in (X,Y, Z)+ (X,Z, Y ) are mapped to zero, so ψ((X,Y, Z)+
(X,Z, Y )) = 0, either they have degree less or equal. In the second case ψ and
φ coincides on this monomials and it follows that ψ((X,Y, Z) + (X,Z, Y )) =
φ((X,Y, Z) + (X,Z, Y )) = 0.
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The structure carrier can be even more pruned without changing truth value
of our conjecture.

Lemma 3. Suppose that a homomorphism φ is defined, such that φ(T (Σ, {a, b}))
is a right alternative ring and let the polynomial p ∈ T (Σ, {a, b}) will be such
that φ(p) 6= 0. Define ψ on monomials such that

• ψ(m) = φ(m) if dega(m) ≤ dega(p) and degb(m) ≤ degb(p)
• ψ(m) = 0 otherwise.

Then ψ(p) 6= 0 and ψ (T (Σ, {a, b})) is a right alternative ring.

Proof. Proof is essentially the same as in case of the degree in lemma 2.

4 Implementation

A run of the program can be divided into two stages. First it constructs a
linear and monotonic mapping φ : T (Σ, {a, b}) → V which was described in
section 3. When φ is constructed, one can query for vectors which correspond to
certain monomials. φ is linear and monotonic, so it has unique extension to the
polynomials.

Since every term can be transformed to a polynomial, we can decide whether
an identity t1 = t2 holds in our structure by calculating if φ(p1 − p2) = 0 where
A ` (t1 = p1 ∧ t2 = p2) and p1, p2 are polynomials.

4.1 Construction of linear mapping

The homomorphism φ is represented as an associative array, a data structure
similar to std::mapin C++, which associates monomials with vectors. This as-
sociative array will be denoted by T.

The algorithm can be seen as an inductive construction. Step 0 is the in-
duction basis, no inferences can be done between monomials of length one, so
they are simply associated with different vectors which are basic vectors. Next,
steps 1, 2 in the algorithm can be considered as the inductive step. Assuming
that we have constructed φ for every monomial of degree d′ < d, we will use
the definition of φ on the monomials of length less than d to construct φ for the
monomials of length d. These steps are repeated for every 1 < d ≤ h where h is
the degree of the hypothesis.

The number n(d) of monomials of a given degree d can be easily computed
form recursive equation n(1) = |X | (in our case 2) and n(k) =

∑k−1
i=1 n(i)∗n(k−

i− 1). There are 862118 monomials constructed from the symbols a, b of degree
less than 9 which is the degree of our hypothesis. We are not able to store all this
monomials with corresponding vectors in memory. The vectors associated with
the monomials can be quite long, counting only nonzero coefficients. Fortunately,
we need to keep only a relatively small subset of the whole set of monomials,
that is the set of non-redundant monomials which will be defined later.
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There are some linear dependencies between monomials, for example a(aa) =
(aa)a, so the set of monomials is not a basis of the vector space. A monomial is
called basic, if the corresponding vector was unchanged in step 2, while enforcing
the linearized right alternative axiom. A resulting vector is called basic vector. A
monomial is called non-redundant, if all its proper subterms are basic monomials.
In fact, it is equivalent to say that its two immediate subterms are basic, i.e. t
has form s1s2 and s1, s2 are basic monomials. Notice that due to the inductive
construction, all proper subterms are constructed and fully resolved.

Lemma 1 was used to ensure that the linearized right alternative axiom on
monomials yields right alternativity on all polynomials. But we can use lineariza-
tion lemma on a smaller set of basic monomials and obtain that it is sufficient
to enforce the linearized right alternativity on the basic monomials.

We will define φ on the non-redundant monomials, because we need to know
what is the result of multiplication of two basic monomials. Multiplying two basic
monomials one can obtain a nonbasic monomial, but it will be a non-redundant
monomial. They need to be considered in order for φ to enjoy monotonicity.

0. T[a]:=(1.a), T[b]:=(1.b)
For d=2 to length_of_hypothesis:

1. Construct all non-redundant monomials of degree d and
insert them to associative tab

2 Enforce linearization of the right alternative axioms on
monomials of degree d

During step 1, the program generates all non-redundant monomials of degree
d, and associates them with the basic vectors as follows:

1. For k=1 to d-1
2. For each basic monomial s1 of degree k
3. For each basic monomial s2 of degree n - k - 1
4. T[s1s2]:=(1.s1s2)

After this step there are no relations between the non-redundant monomials of
degree d.

At step 2, the program enforces the linearized right alternative axiom on the
basic monomials.

To enforce that (X,Y, Z)+ (X,Y, Z) = 0 each monomial m with deg(m) ≥ 3
is decomposed, likem = a(bc) to [a, b, c] orm = (ab)c to [a, b, c]. It is also possible
that a monomial can be decomposed in two ways, for example {(a(bb))(bb)} can
be decomposed into [a, bb, bb] and [a(bb), b, b]. For each possible decomposition
of a monomial m into [a, b, c] such that b = c and a, b, c are basic monomials, we
calculate a vector w = φ((a, b, c) + (a, c, b)) = φ((ab)c) − φ(a(bc)) + φ((ac)b) −
φ(a(cb)). According to the right alternative ring axioms w should be equal to 0.
If w 6= 0 then there is a conflict and the program resolves the conflict. Since w is
nonzero vector, it contains basic vector ej with nonzero coefficient aj , therefore
ej = 1

aj
(w − ajej). Using the last equation, program resolves ej from every

vector. Changing the basic vector of the monomial which corresponds to ej does
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not suffice, ej can occur in many vectors because it could be on the right side of
last equation used to resolving some earlier conflict. The choice of ej is arbitrary,
it can change the basis of linear space, but the set of polynomials which are equal
to zero is invariant.

We need to convince ourselves that this definition of φ on non-redundant
monomials yields unique linear and monotonic extension to polynomials. Unique-
ness refers to the extension, because φ can be defined in many different ways,
according to the choice of ej while resolving conflicts. Step 2 can be seen in other
way as enforcing linearity of φ because all linear conflicts were resolved. Moreover
the images of non-redundant monomials generates φ(T (Σ, {a, b})) from which
uniqueness of extension follows. We need to argue that there are no conflicts
with monotonicity.

Consider non-redundant monomialsm1,m2 with subterms, respectivelym3,m4.
m3,m4 are basic monomials, so φ(m3) = φ(m4) implies that m3 = m4 and
m1[m3/m4] = m1. Indeed φ defined on the non-redundant monomials is mono-
tonic.

Notice that in the steps 1,2 of the algorithm, according to the lemma 3, one
can consider only monomials m such that dega(m) ≤ 6 and degb(m) ≤ 3 because
dega((a, a, b)3) = 6 and degb((a, a, b)3) = 3.

4.2 Calculating vectors

φ is defined on the non-redundant monomials, since φ is monotonic and linear
it is enough to calculate the value of every polynomial. Here is the function that
calculates a vector that corresponds to the monomial m.

Calculate(m)
1. If m is non-redundant return Phi(m)
2. Decompose m = m1 m2
3. v1 = calculate(m1)
4. v2 = calculate(m2)
5. result = 0
6. For each basic vector w1 in v1
7. For each basic vector w2 in v2
8. n1 is basic monomial to which corresponds w1
9. n2 is basic monomial to which corresponds w2
10. result += coff(v1,w1)*coff(v2,w2)*Phi(n1n2)
11. Return result

Phi(m) returns a vector corresponding to the non-redundant monomial and
coff(v,n) if coefficient with which the monomial n is taken in the vector v.

4.3 Program results

Our program has no input. Equation (a, a, b)3 = 0 is built-in. Considering mono-
mials with degree not greater than 9 program runs 3 hours on a 1.7 GHz Intel
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Core Duo and uses approximately 400 MB of memory. As output it writes out
the vector which corresponds to (a, a, b)3. The computed vector is nonzero which
means that φ((a, a, b)3)) 6= 0 so RNG030 and RNG032 are satisfiable. Consider-
ing only monomials m with dega(m) ≤ 6 and degb(m) ≤ 3 resulted in significant
speedup to 15 minutes and memory consumption to 80 MB. We anticipated high
memory consumption (the number of monomials of the degree less than the hy-
pothesis can be easyli computed), so the program is implemented in C++.

Before writing out results, the program performs the consistency checking.

4.4 Program testing

How can we convince ourselves that the program implementation is correct? The
generated structure is quite large, so it cannot be checked manually. Taking into
account the program construction, we can write a testing module. After the first
stage when the structure has been constructed one can query about the vectors
which correspond to polynomials. Querying is quite cheap so we can query about
all the axioms.

In our program we implemented tests if:

1. for monomials X,Y mapped by ψ on nonzero elements ψ((X,Y, Y )) = 0
2. for monomials X,Y, Z mapped by ψ on nonzero elements ψ((X,Y, Z) +

(X,Z, Y )) = 0
3. for a monomial X with the degree less or equal than the hypothesis (or

additionally with the number of occurrences a, b less or equal than in the
hypothesis) whether φ(X) 6= 0

4. for monomials X,Y, Z mapped by ψ on nonzero elements, if X is a subterm
of Z and φ(X) = φ(Y ) then φ(Z) = φ(Z[X/Y ]) (monotonicity)

Thinking about φ as a ”black-box” and assuming only linearity, we need to
test 1,2 and 4 to ensure that φ(T (Σ,X )) is a right alternative ring. Although
checking 1 and 2 takes notably less time than constructing φ, testing monotonic-
ity is a very time consuming process.

Testing 3 is not needed because we have a model which is counterexample.
But this is an additional consistency constraint. We know that every monomial
is not equal to zero because there are torsion free models in which it is unequal
to zero (for example standard associative Z× Z with a = (2, 1) and b = (1, 2))

5 Conclusions

The presented method allowed us to disprove two open problems from TPTP.
The generated structure is infinite but it is enough to represent only a finite part.
As far as we know there are no other systems that can produce such structure
because of the description size. Although in this paper we have referred to specify
equations, there are possible numerous generalizations.
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5.1 Possible generalizations

Without any changes one can try to disprove any identity containing only two
variables. The hypothesis after transformation to polynomial should have degree
less or equal then 9. Due to the memory consumption (80 MB in case of proving
the main hypothesis), the degree could be incremented to 10 or even 11, but not
larger.

The method can be straightforwardly generalized to disprove identities with
a greater number of variables. There are also possible generalizations to the
alternative rings (the rings that are left and right alternative). More general,
this method can be applied to any nonassociative ring which extra axioms after
modification (like the right alternativity in case of the right alternative rings),
which behave like right alternativity, that is

• the axioms transformed to the polynomials are homogeneous polynomials,
i.e. all monomials in a given polynomial have equal degree

• the set of axioms has a linearization, i.e. it can be transformed to an equiv-
alent set of axioms called linearization, such that if the linearization holds
on any generating set then axioms holds on all polynomials.

5.2 Comparison with the Z-module method

This paper shares some important ideas with the Z-module method[2]. However
in the Z-module method a structure is represented in a different way. In the
Z-module method, in the first step there is generated a set of polynomials which
are instances of the linearized right alternative axiom. Not all such instances are
generated, only those which can infer with the hypothesis. All the polynomials in
such a set are equal to zero, so in the second step the algorithm decides whether
the difference between both sides in the hypothesis is a linear combination with
integer coefficients of the polynomials generated in the first step. If it is then
the difference between both sides of hypothesis is equal to zero in every right
alternative ring, so the hypothesis is theorem.

Although there are some common ideas, the Z-module method is a rather
syntactic method and it is oriented on proving theorems. In our method we are
taking into account monotonicity of multiplication to introduce a notation of
basic monomial, that is the knowledge about equality on subterms propagate to
decrease the number of considered monomials. In the Z-module method there
is no such analogon. The number of polynomials generated in step one is more
than ten times larger than the number of the basic monomials in our method.
The increase in memory consumption dramatic.
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Abstract. Hypersequent calculi, that are a generalization of sequent calculi, have
been studied for Gödel-Dummett logics LC and LCn. In this paper we propose a
new characterization of validity in these logics from the construction of particular
bi-colored graphs associated to hypersequents and the search of specific chains in
such graphs. It leads to other contributions that are a new hypersequent calculus
and a related tableau system for LCn. We mainly study the class of so-called basic
hypersequents and then we generalize our approach to hypersequents.

1 Introduction

Gödel-Dummett logic LC and its finitary versions (LCn)n>0 were introduced by Gödel
and later axiomatized by Dummett in [8]. They are intermediate logics (between clas-
sical and intuitionistic logics) with semantics based on linear Kripke models. It has
a Hilbert axiomatic system composed of axioms of intuitionistic logic and the axiom
A→B∨B→A. One of its interests lies in its relationship with fuzzy logics [12] and
recently LCn logics have been characterized as resource use bounding logics for some
particular process calculus [14].
There exist various calculi dedicated to proof-search in LC like sequent calculi [9],
sequent of relations calculi [6], tableau calculi [1], goal-directed calculi [17], decom-
position systems [4] and also based-on bi-colored graphs calculi [16]. Hypersequent
calculi, that generalize sequent calculi, have been also studied [3,5,10]. In order to pro-
pose decision procedures from sequent or hypersequent calculi an interesting approach
consists in defining local and invertible proof rules, in reducing a (hyper)sequent into
a set of irreducible (hyper)sequents and in defining an algorithm to decide such (hy-
per)sequents [13]. For instance [3] presents a decision procedure from a hypersequent
calculus by using particular hypersequents, called basic hypersequents [3].
In this work we focus on hypersequent calculi mainly with countermodel search that is
not developed in the above-mentioned works. Our alternative approach for deciding hy-
persequents is based on two main steps: the construction of a semantic graph called bi-
colored graph and a characterization of validity based on detection of particular chains
in this graph. The idea to characterize validity in a given logic from a semantic graph
and its analysis has been already studied in non-classical logics, for instance in BI (logic
of Bunched Implications) with resource graphs [11]. The notion of bi-colored graph has
been recently defined to deal with formulae in LC and LCn [13], but its possible use for
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hypersequents is a non-trivial question to solve. In fact a hypersequent calculus incor-
porates a sequent calculus as a sub-calculus but adds an additional layer of information
by considering a sequent to live in the context of finite multisets of sequents (called
hypersequents) [5]. It includes rules for exchanging information between sequents that
make it powerful but proof-search methods for sequents are not well-adapted to such
structures.
A first contribution concerns the basic hypersequents [3], for which we define new char-
acterizations of validity for LC and LCn. They are based on the construction of a spe-
cific bi-colored graph associated to a basic hypersequent and on the search of particular
chains in such a graph. The detection of such chains and the generation of countermod-
els can be realized in linear time [13]. Using the result that for every hypersequent G
one can find a set B of basic hypersequents such that G is valid if and only if every
element of B is valid [3] we also provide new decision procedures for hypersequents in
LC and LCn with a focus on countermodel construction. The study of bi-colored graphs
associated to hypersequents leads to other important contributions that complete the re-
sults of [3]: a new hypersequent calculus and a related tableau system for LCn. In the
above mentioned results we start with a particular class of hypersequents but it seems
important to study if we can directly deal with (general) hypersequents and define as-
sociated bi-colored graphs in order to characterize provability. From this perspective
we can apply to a given hypersequent an indexing process defined in [13] and then
associate a so-called indexed flat sequent from which a bi-colored graph can be built.
Then we can define a procedure that decides validity from the detection of particular
chains in all instances of such a graph. The key point is that, if one of these instances
contains no particular chains, then we can extract a countermodel from this instance.
The results are obtained first for mono-conclusioned hypersequents but also hold for
(multi-conclusioned) hypersequents. As a sequent is a specific hypersequent, our pro-
cedure also provides by specialization a new procedure to decide sequents and generate
countermodels in Gödel-Dummett Logics.

2 Gödel-Dummett logics

In this section, we consider the family of propositional Gödel-Dummett logics LCn. The
value n belongs to the set N

∗
= {1,2, . . .}∪{∞} of strictly positive natural numbers with

its natural order 6, augmented with a greatest element ∞. In the case n = ∞, the logic
LC∞ is also denoted by LC: this is the usual Gödel-Dummett logic.
Let us start by reminding the key points about semantics and proof theory. The set
of propositional formulae, denoted Form is defined inductively, starting from a set of
propositional variables denoted by Var with an additional bottom constant ⊥ denoting
absurdity and using the connectives ∧, ∨ and →. IL denotes the set of formulae that
are provable in any intuitionistic propositional calculus and CL denotes the classically
valid formulae. As usual an intermediate propositional logic [1] is a set of formulae
L satisfying IL ⊆ L ⊆ CL and closed under the rule of modus ponens and under arbi-
trary substitution. In the case of LC, the logic has a simple Hilbert axiomatic system:
(A→ B)∨ (B → A) added to the axioms of IL but also a based-on sequent formulation.
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From the semantic point of view Gödel-Dummett logic is characterized by the linear
Kripke models of size n (see [8].) The following strictly increasing sequence holds:
IL ⊂ LC = LC∞ ⊂ ·· · ⊂ LCn ⊂ ·· · ⊂ LC1 = CL Moreover there exists an algebraic se-
mantics characterization of LCn [3]. Let n ∈ N

∗, the algebraic model is the set [0,n) =
[0, . . . ,n[∪{∞} composed of n+1 elements. An interpretation of propositional variables
[[·]] : Var→ [0,n) is inductively extended to formulae: ⊥ interpreted by 0, the conjunc-
tion ∧ is interpreted by the minimum function denoted ∧, the disjunction ∨ by the max-
imum function ∨ and the implication → by the operator _ defined by a _b = if a 6

b then ∞ else b. Then we have [[A∧B]] = [[A]]∧ [[B]], [[⊥]] = 0, [[A∨B]] = [[A]]∨ [[B]],
[[A → B]] = [[A]]_ [[B]]. A formula D is valid for the interpretation [[·]] if the equality
[[D]] = ∞ holds. This interpretation is complete for LC. A countermodel of a formula D
is an interpretation [[·]] such that [[D]] < ∞.
For a sequent Γ`∆, with Γ,∆ multisets of formulae, and a given interpretation [[·]] we
interpret Γ ≡ A1, . . . ,An and ∆ ≡ B1, . . . ,Bp by: bbΓcc = [[A1]]∧ ·· · ∧ [[Ap]], bb /0cc = ∞
and dd∆ee = [[B1]]∨ ·· ·∨ [[Bq]], dd /0ee = 0. Then a sequent is valid for the interpretation
[[·]] if bbΓcc ≤ dd∆ee. Moreover [[·]] is a countermodel of Γ`∆ if dd∆ee< bbΓcc.

From the proof-theoretic point of view there exist various calculi in LC mainly based on
sequent calculi [6,9] but we consider here hypersequent calculi introduced as a natural
generalization of Gentzen’s sequent calculi [3,17]. A hypersequent calculus is defined
by incorporating a sequent calculus as a sub-calculus and adding an additional layer of
information. It allows to define rules for information exchange between sequents [5].
A hypersequent is a structure Γ1 ` ∆1 | Γ2 ` ∆2 | . . . | Γn ` ∆n in which Γi ` ∆i is a
sequent, called a component of the hypersequent. Let us remark that sequents (resp.
hypersequents) are multisets of formulae (resp. sequents). A hypersequent is mono-
conclusioned if the ∆i’s consist of at most one formula. The symbol | denotes a disjunc-
tion at the meta-level. Hypersequent calculi consists of axioms, structural and logical
rules like in sequent calculi but structural rules are divided into internal and external
rules. The first ones deal with formulae within components and the other manipulate
whole components of a hypersequent.
The hypersequent calculus HG (Figure 1) for LC is an extension of the hypersequent
calculus for intuitionistic logic HIL [9] with the communication rule [com]. A hyper-
sequent can be seen as a multi-processor [2] and from this perspective the (com) rule
fixes the way of exchanging information between processes. As an illustration we prove
the axiom (A→ B)∨ (B→ A) in HG that is not valid in intuitionistic logic.

A`A B`B
[com]

A`B | B`A
[→R]

`A→ B | `B→ A
[∨R]

`(A→B)∨ (B→A)

We observe that it is not possible to derive (A→ B)∨ (B→ A) in HG without using
the [com] rule. Let H = Γ1`∆1 | Γ2`∆2 | . . . | Γm`∆m be a hypersequent and [[·]] : [0,n)
be an interpretation. H is valid for the interpretation [[·]] iff there exists i ∈ [1,m] such
that bbΓicc ≤ dd∆iee. Then [[·]] is a countermodel of H iff ∀i ∈ [1,m], dd∆iee< bbΓicc.
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Axioms Cut rule

A`A
G | Γ′ `A G′ | A,Γ`C

G | G′ | Γ,Γ′ `C
[cut]

External structural rules

G

G | Γ`A
[ew]

G | Γ`A | Γ`A

G | Γ`A
[ec]

Internal structural rules

G | Γ`C

G | Γ,A`C
[w, l]

G | Γ,A,A`C

G | Γ,A`C
[c, l]

Logical rules

G | Γ,A,B`C

G | Γ,A∧B`C
[∧L]

G | Γ`A G | Γ`B

G | Γ`A∧B
[∧R]

G | Γ,A`C G | Γ,B`C

G | Γ,A∨B`C
[∨L]

G | Γ`A | Γ`B

G | Γ`A∨B
[∨R]

G | Γ`A G′ | Γ,B`C

G | G′ | Γ,A → B`C
[→L]

G | Γ,A`B

G | Γ`A → B
[→R]

Special structural rule

G | Γ,Γ′ `A G′ | Γ1,Γ′
1 `A′

G | G′ | Γ,Γ′
1 `A | Γ′,Γ1 `A′

[com]

Fig. 1. The Hypersequent Calculus HG for LC

Proof-search in LC and in some intermediate logics is based on different calculi: a
contraction-free calculus derived from intuitionistic logic [1,9], sequent or hyperse-
quent of relations calculi in LC [6,7] and more generally in many-valued logics and hy-
persequent calculi [3,18]. Some refinements, based on local and invertible rules, have
been proposed for sequents or hypersequents with semantic criteria to decide irreducible
sequents or hypersequents [3]. Here we aim at studying validity and proof-search in LC

and LCn with hypersequent calculi in a new perspective based on countermodel con-
struction from so-called bi-colored graph introduced in [13,15].

3 A new procedure for basic hypersequents

Before starting to study a particular class of hypersequents, namely the basic hyperse-
quents [3], let us remind what is a bi-colored graph in this context.

Definition 3.1. A (conditional) bi-colored graph is a finite oriented graph with two
kinds of arrows, the green ones represented by → and the red ones represented by ⇒,
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that are indexed by boolean formulae. The boolean variables of these formulae can be
instantiated by {0,1} through a valuation. Moreover an instance of the graph is the
bi-colored graph with only the arrows indexed by an expression e with v(e) = 1.

We use the symbols → and ⇒ to denote the corresponding relation in the graph.
For example →⇒ represents the composition of two relations and u→⇒w means that
there exists a path u→v⇒w in the graph. The relation→? is the reflexive and transitive
closure of →, i.e, the accessibility of the relation →. Moreover →+⇒ is the union of
both relations and x denotes the negation of the boolean expression x.

Definition 3.2. Let G be a bi-colored graph, a ⇒-cycle of G is a chain of the form
u(→+⇒)?⇒u and a k-alternating chain of G is a chain of the form (→?⇒)k.

Therefore the key point of our approach consists in associating a bi-colored graph
to a given hypersequent and in relating validity in the given logic with the existence of
⇒-cycle or k-alternating chain. Let us start this study with particular hypersequents.

Definition 3.3. A basic hypersequent is a hypersequent such that any component is
either Γ` p where p and any element of Γ are atoms, or p→ q` p where p and q are
atoms and p 6= q, p 6=⊥.

Let H = S1 | . . . | Sk be a basic hypersequent, the bi-colored graph GH associated
to H is built as follows:
- the nodes are: the variables of H , a node denoted ♦ and a node ⊥ if H contains ⊥.
- the arrows are the union of the set B and arrows Ai∈[1,k] where

B =

{

/0 i f H does not contain ⊥
{⊥→ p, for any p ∈ Var} otherwise

and Ai∈[1,k] associated to the components Si∈[1,k] of H defined as follows: if Si = p→q`
p then Ai = {p→q, p⇒♦}, else if Si = q1, . . . ,qm` p then Ai = {p⇒q1, . . . , p⇒qm}.

Let us illustrate this construction with the basic hypersequent H1 ≡ A→B`A | A`B.
The bi-colored graph associated to H1 is the following:

A B

♦

Proposition 3.1. Let H be a basic hypersequent and GH be its associated bi-colored
graph. Let [[·]] be a countermodel of H in LCn (extended with [[♦]] = ∞) and X1→ . . .→
Xk⇒Y be a chain in GH . Then we have [[X1]] 6 . . . 6 [[Xk]] < [[Y ]].

Proof. Let H = S1 | . . . | Sk be a basic hypersequent. As [[·]] is a countermodel of H
then [[·]] is a countermodel of all the components Si∈[1,k] of H . If Y 6= ♦ then there
exists a component Si such that Xk is the conclusion of Si and Y belongs to the multiset
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of Si hypotheses. Thus we have [[Xk]] < [[Y ]]. If Y =♦ then there exists a component Si

having Xk as conclusion. Therefore Xk < [[♦]] = ∞. Moreover for all j ∈ [2,k] we have
X j−1 →X j ∈ GH and there exists a component Si = X j−1 →X j `X j−1 or X j−1 = ⊥.
Then we deduce that [[X j−1]] 6 [[X j]] and [[X1]] 6 . . . 6 [[Xk]] < [[Y ]].

Moreover we can define, from a bi-colored graph G , the notion of bi-height that is
a function h : G →N such that for any u,v ∈ G , if u→ v ∈ G then h(u) ≤ h(v) and if
u⇒ v ∈ G then h(u) < h(v) [13]. Then a countermodel can be generated from G by
using the following results: if a bi-colored graph G does not contain a ⇒-cycle (resp. a
n-alternating chain) then there exists a bi-height h (resp. that satisfies h(v) < n for any
v∈G) [13]. Moreover it is known that we can decide if a graph instance contains or not
a ⇒-cycle and also compute the bi-height both in a linear time [15].

Proposition 3.2. Let H be a basic hypersequent containing ⊥. If there exists a bi-
height h for GH then the function h′ defined by: h′(X) = 0 if h(X) = h(⊥) and h′(X) =
h(X) if h(X) 6= h(⊥), is a bi-height for GH .

Proof. From the set of arrows B defined in the construction of the bi-colored graphs
associated to the basic hypersequents.

Theorem 3.1 (n < ∞). A basic hypersequent H has a countermodel in LCn if and only
if its bi-colored graph GH does not contain a (n+1)-alternating chain.

Proof. First we prove the if part. Let H = S1 | . . . | Sk be a basic hypersequent. We
suppose that GH does not contain a chain of the form (→?⇒)n+1. Then there ex-
ists a bi-height h : GH → [0,n]. By Proposition 3.2, we define from h a new bi-height
h′ : GH → [0,n] by: h′(X) = 0 if h(X) = h(⊥) and h′(X) = h(X) if h(X) 6= h(⊥) and
then we define the semantic function [[·]] : Var→ [0,n) by: [[X ]] = h′(X) if h′(X) < n and
[[X ]] = ∞ if h′(X) = n. We prove that [[·]] is a countermodel of H , i.e., a countermodel
of any component Si∈[1,k].
(i) if Si = p→q` p then p→q ∈ GH and p⇒♦ ∈ GH . Thus, we have h′(p) 6 h′(q)
and h′(p) < n. We deduce that [[p]] 6 [[q]] and [[p]] < ∞. Thus we have [[p→q]] = ∞ and
[[p]] < ∞ = [[p→q]]. Consequently [[·]] is a countermodel of Si.
(ii) if Si = q1, . . . ,qm ` p then ∀i ∈ [1,m], p⇒qi ∈ GH and ∀i ∈ [1,m], h′(p) < h′(qi).
We deduce that ∀i ∈ [1,m], [[p]] < [[qi]] and [[·]] is a countermodel of Si.
From (i) and (ii) we deduce that [[·]] is a countermodel of H .
We now prove the only if part. Let [[·]] be a countermodel of H , we define a new
interpretation [[·]]′ by: [[V ]]′ = [[V ]] for any variable V of H and [[♦]]′ = ∞. As [[·]]′

and [[·]] have the same values for H ’s atoms, we deduce that [[·]]′ is a countermodel
of H . We suppose that there exists a chain of the form (→?⇒)n+1 in GH : X0 →?

⇒X1→?⇒X2 →?⇒ . . . →?⇒Xn→
?⇒Xn+1. Thus, by Proposition 3.1, the sequence

[[X0]] < [[X1]] < [[X2]] < .. . < [[Xn]] < [[Xn+1]] is a strictly increasing sequence of n + 2
elements in [0,n). As this set does contain only n+1 elements, that is contradictory.

Theorem 3.2 (n = ∞). A basic hypersequent H has a countermodel in LC if and only
if its bi-colored graph GH does not contain a ⇒-cycle.
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Proof. For the if part: if GH does not contain a⇒-cycle, we know that there exists a bi-
height h : GH →N. By Proposition 3.2, we define from h a new bi-height h′ : GH →N

by: h′(X) = 0 if h(X) = h(⊥) and h′(X) = h(X) if h(X) 6= h(⊥). By defining [[X ]] ∈
N∪{∞} by and [[X ]] = h′(X) we obtain a countermodel of H in LC. For the only if part:
the existence of a chain X →?⇒→? . . . →?⇒→?⇒X implies [[X ]] < [[X ]] and then we
have a contradiction.

Coming back to our example we observe that the bi-colored graph associated to H1
contains a ⇒-cycle: A→B⇒A. Then we conclude that H1 has no countermodel in LC.
Let us give another example with the basic hypersequent H2 ≡ `A | A`⊥. The bi-
colored graph associated to H2 is the following:

⊥ A ♦

This graph has one instance and does not contain a ⇒-cycle. In order to extract a
countermodel we modify the previous graph in such a way that red arrows always go
up and greens arrows never go down.

⊥ 0

A

♦

1

∞

Then [[·]] : Var→ [0,n) such that [[A]] = 1 is a countermodel of H2 in LCn for n > 2.

A decision procedure for basic hypersequents has been already provided but only for
LC [3]. It is based on the generation of constraints and some criteria for solving them.
Here we define new criteria, based on bi-colored graphs, to decide the basic hyperse-
quents in LC but also in (LCn)n>0. Moreover, the extraction of countermodels can be
realized from the bi-colored graphs associated to hypersequents.

4 New results for LC and LCn

In order to propose new results for (general) hypersequents from the above results on
basic hypersequents, we can relate them to the system GLC∗ and some results of [3].

4.1 Decision procedures for hypersequents

The main one is that for every hypersequent G one can effectively find a set B of basic
hypersequents, so that G is valid if and only if H is valid for every H ∈ B .
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G | Γ,A,B`C

G | Γ,A∧B`C
[∧L]

G | Γ`A G | Γ`B

G | Γ`A∧B
[∧R]

G | Γ,A`C G | Γ,B`C

G | Γ,A∨B`C
[∨L]

G | Γ`A | Γ`B

G | Γ`A∨B
[∨R]

G | Γ,A→B,A→C`D

G | Γ,A→ (B∧C)`D
[→∧L]

G | Γ,A→B`D G | Γ,A→C`D

G | Γ,A→ (B∨C)`D
[→∨L]

G | Γ,A→C`D G | Γ,B→C`D

G | Γ,(A∧B)→C`D
[∧→L]

G | Γ,A→C,B→C`D

G | Γ,(A∨B)→C`D
[∨→L]

G | Γ,A→C`D G | Γ,B→C`D

G | Γ,A→ (B→C)`D
[→(→)L]

G | A`B | Γ,B→C`D G | Γ,C`D

G | Γ,(A→B)→C`D
[(→)→L]

G | Γ` r | p→q` p G | Γ,q` r

G | Γ, p→q` r
[→L]

G | Γ,A`B

G | Γ`A→B
[→R]

Fig. 2. The Rules of GLC∗ for LC

Proposition 4.1. Let [[·]] : Var→ [0,n) be an interpretation,
[[·]] is a countermodel of G | Γ,⊥→ A`B in LCn (resp. LC) iff [[·]] is countermodel of
G | Γ`B in LCn (resp. LC);
[[·]] is countermodel of G | Γ,A → A`B in LCn (resp. LC) iff [[·]] is countermodel of
G | Γ`B in LCn (resp. LC);
[[·]] is countermodel of G | Γ, p → q ` p in LCn (resp.LC) iff [[·]] is countermodel of
G | Γ` p | p → q` p in LCn (resp. LC).

From these results we now consider the GLC∗ system the rules of which are given
in Figure 2. The axioms of GLC∗ are the generalized axioms defined as follows [3]: A
generalized axiom is a basic hypersequent of one of the following forms: a) p1 ≺ p2 |
p2 ≺ p3 | . . . | pn−1 ≺ pn | pn ` p1 where n > 1, p1, . . . , pn are n distinct propositional
variables, and for all 1 ≤ i ≤ n−1, pi ≺ pi+1 is either pi ` pi+1 or (pi+1 → pi)` pi+1;
b) (p1→⊥)` p1 | (p2→ p1)` p2 | . . . | (pn−1→ pn−2)` pn−1 | pn−1` pn where n > 1,
p1, . . . , pn are n distinct propositional variables (in the case n = 1 we take p0 to be ⊥).

Let us recall some useful definitions. Knowing that a proof rule is composed of premises
Hi with a conclusion C, it is strongly sound if, for any instance of the rule and any in-
terpretation [[·]], if [[·]] is a model of all the Hi then it is a model of C. Moreover it is
strongly invertible if, for any instance of the rule and any interpretation [[·]], if [[·]] is a
countermodel of at least one Hi then it is a countermodel of C.

Theorem 4.1. The rules of GLC∗ are strongly sound for LCn (resp. LC).

Proof. We consider the (→)→ rule. The other cases are similar. Let [[·]] be an in-
terpretation which is a model of both premises. Thus, [[·]] is a model of G or both
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bbΓcc∧ [[C]]≤ [[D]] and either [[A]]≤ [[B]] or bbΓcc∧ [[B→C]]` [[D]] hold:
- if [[·]] is a model of G then [[·]] is a model of G | Γ,(A→B)→C`D, conclusion of the
(→)→ rule;
- if bbΓcc∧ [[C]]≤ [[D]] and [[A]]≤ [[B]]. Since [[A]]≤ [[B]], we have [[(A→B)→C]] = [[C]]
and we conclude that bbΓcc ∧ [[(A→B)→C]] ≤ [[D]]; - if bbΓcc ≤ D then bbΓcc ∧ [[(A→
B)→C]]≤ [[D]] holds;
- if [[C]] ≤ [[D]] and [[B→C]] ≤ [[D]] then if [[A]] > [[B]] then [[(A→B)→C]] = [[B→C]]
and bbΓcc∧ [[(A→B)→C]]≤ [[D]] holds. Else, [[(A→B)→C]] = [[C]] and we deduce that
bbΓcc∧ [[(A→B)→C]]≤ [[D]].

Theorem 4.2. The rules of GLC∗ are strongly invertible for LCn (resp. LC).

Proof. We consider the (→)→ rule. The other cases are similar. Let [[·]] be a coun-
termodel of G | Γ,C `D (the left premise). Then both [[·]] is a countermodel of G and
bbΓcc ∧ [[C]] > [[D]] hold. Since [[C]] ≤ [[(A→ B)→C]], we deduce that [[·]] is a coun-
termodel of G and bbΓcc ∧ [[(A→ B)→C]] > [[D]]. Therefore, [[·]] is a countermodel
of the conclusion of the rule (→)→. Let [[·]] be a countermodel of G | Γ,B→C `D
(the right premise). We have [[·]] is a countermodel of G and both [[A]] > [[B]] and
bbΓcc ∧ [[B→C]] > [[D]] hold. Since [[A]] > [[B]], we have [[(A→ B)→C]] = [[B→C]].
Thus bbΓcc∧ [[(A→B)→C]] > [[D]] holds and we conclude that [[·]] is a countermodel of
the (→)→ rule conclusion.

Since all GLC∗ rules are strongly invertible, we obtain, for any H ∈ B , if [[·]] :
Var→ [0,n) is countermodel of H in LCn (resp. LC) then [[·]] is countermodel of G
in LCn (resp. LC) because B is obtained from the GLC∗ rules and Proposition 4.1.
Thus we get a decision procedure for hypersequents in LCn (resp. LC) which builds
countermodels, by using the previous decision procedure in order to decide which ba-
sic hypersequents are valid in LCn (resp. LC) and eventually to build a countermodel.
Moreover we can characterize the axioms of GLC∗ as the basic hypersequents with as-
sociated bi-colored graphs that contain a ⇒-cycle.
Therefore we have provided new decision procedures for LC but also LCn with construc-
tion of countermodels and decision of irreducible hypersequents that can be realized in
linear time. In comparison sequent of relations calculi provide a nice framework for
proof search in LC [6,7] but cannot deal with the finitary versions LCn.

4.2 A new hypersequent calculus and a tableau system for LCn

Having defined a new procedure for hypersequents in LC but mainly for LCn by defin-
ing bi-colored graphs associated to hypersequents. In a dual approach we show how
we can deduce, from our study of bi-colored grpahs, a new hypersequent calculus for
LCn similar to system GLC∗, by providing a new class of axioms called n-generalized
axioms.

Definition 4.1 (n-generalized axiom). A n-generalized axiom is either a generalized
axiom or a basic hypersequent of the form:
p1

m1 ` p1
m1−1 | (p2

1→ p2
2)` p2

1 | (p2
2→ p2

3)` p2
2 | . . . | (p2

m2−2→ p2
m2−1)` p2

m2−2 | p2
m2 `

p2
m2−1 | (p3

1→ p3
2)` p3

1 | (p3
2→ p3

3)` p3
2 | . . . | (p3

m3−2→ p3
m3−1)` p3

m3−2 | p3
m3 ` p3

m3−1
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. . .

| (pn
1→ pn

2)` pn
1 | (pn

2→ pn
3)` pn

2 | . . . | (pn
mn−2→ pn

mn−1)` pn
mn−2 | pn

mn
` pn

mn−1 | pn
mn
`′ p f

where for all 1 ≤ k ≤ n, mk > 2 and pi
mk

= pi+1
1 . Moreover, for all 2 ≤ i ≤ n and

1≤ j ≤mi, pi
j, p1

m1 , p f are 2+m2 + . . . +mn distinct propositional variable, and p1
m1−1

is either a distinct propositional variable or ⊥ and p`′ q is either q≺ p or q→ p`q.

From the n-generalized axioms, we can derive all the basic hypersequents the bi-
colored graphs of which contain a (n+1)-alternating chain, by using (internal and ex-
ternal) weakenings and permutations.

As an example H ≡ B`A | C `B | C→D`C is a 2-generalized axiom with the
following bi-colored graph:

A B

♦

C D

Theorem 4.3. A basic hypersequent is valid in LCn iff it is a basic hypersequent derived
from some n-generalized axiom using weakenings and permutations.

Proof. First we prove the if part. Let H be a basic hypersequent. We suppose that H is
derived from a n-generalized axiom using weakenings and permutations. Then the bi-
colored GH contain a n+1-alternating chain. By Theorem 3.1, we have H valid in LCn.
We now prove the only if part. Let H be a basic hypersequent valid in LCn. We suppose
that H is not derived from a n-generalized axiom using weakenings and permutations.
Then the bi-colored GH does not contain a (n+1)-alternating chain. By Theorem 3.1,
we deduce that H is not valid in LCn and then we have a contradiction.
Definition 4.2. We define the GLC∗

n system as the hypersequent calculus having
- basic hypersequents derived from the n-generalized axioms using (internal and exter-
nal) weakenings and permutations, as axioms;
- rules of GLC∗ as rules.

The GLC∗
n axioms are the basic hypersequents whose the bi-colored graphs contain

(n + 1)-alternating chains. Therefore, they are the basic hypersequents valid in LCn.
Since for every hypersequent G , one can find a set of basic hypersequents B , so that G
is valid in LCn if and only if H is valid in LCn for every H ∈ B , we conclude that a
hypersequent G is valid in LCn if and only if G has a proof in GLC∗

n .
Theorem 4.4. A formula F is valid in LCn iff the sequent `F has a proof in GLC∗

n .

A consequence is that a tableau system for finitary versions of Gödel-Dummett
logic (LCn)n>0 based on the hypersequent calculus GLC∗

n can be obtained from the
Avron’s tableau system for LC based on GLC∗ [3]. We only have to change the definition
of closed branchs by using the axioms of GLC∗

n instead of the ones of GLC∗. This
direct extension to LCn is the result of the use of bi-colored graphs to decide the basic
hypersequents. In order to check if a branch is closed, it seems simpler to verify the
existence of a particular chain or cycle in the graph than to verify if a set of signed
formulas (and links) represents or not an instance of an axiom (in GLC∗

n or GLC∗).
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5 Bi-colored graphs and hypersequents in LC and LCn

In this section we consider (general) hypersequents and aim at studying if the approach
used in the case of a particular class of hypersequents can be generalized in the general
case by defining adequate bi-colored graphs to to characterize provability.
Our approach consists in applying to a given hypersequent H an indexing process [13]
and then to reduce it to a flat sequent S such that H is valid if and only if S is valid.
Let us precise that H cannot include occurrences of special variables � and ♦ but can
include occurrences of ⊥. Such occurrences are eliminated during the flattening pro-
cess. We remind that a formula is flat if it is implicational, of the form X → (Y ? Z)
or (X ?Y )→Z with X ,Y,Z ∈ Var and ? ∈ {∧,∨,→}. A ♦-context ∆♦ is a non-empty
multiset of implicational formulae such that if A→B ∈ ∆♦ then ♦→B ∈ ∆♦. More-
over Γ`∆♦ is a flat sequent if the context Γ contains only flat formulae and ∆♦ is a
♦-context. A flat hypersequent is such that all its components are flat.
The indexing process is based on the two linear functions δ+ and δ−, that map occur-
rences of subformulae of a given formula D to multisets. They are defined as follows:

δ+(⊥) = X⊥→�

δ+(V ) = XV →V,�→V with V is a variable
δ+(A∗B) = δ+(A),δ+(B),XA∗B→ (XA ∗XB) with ∗ ∈ {∧,∨}
δ+(A→B) = δ−(A),δ+(B),XA→B→ (XA→XB)

δ−(⊥) = �→X⊥

δ−(V ) = V →XV ,�→V with V is a variable
δ−(A∗B) = δ−(A),δ−(B),(XA ∗XB)→XA∗B with ∗ ∈ {∧,∨}
δ−(A→B) = δ+(A),δ−(B),(XA→XB)→XA→B

The size of a formula is the number of occurrences of its subformulae that is the
number of nodes in its decomposition tree. Let D be a formula of size n, it has been
proved that the cardinals of δ+(D) and δ−(D) are smaller than 2n. Moreover the el-
ements of these multisets are only flat formulae of size less than 5. Then the size of
δ−(D) and δ+(D) are bounded by 5n.

Proposition 5.1. Let D be a formula, if [[·]] is an interpretation such that [[�]] = 0 and
[[XK ]] = [[K]] for any occurrence of subformula K of D then δ+(D) = δ−(D) = ∞.

This proposition has been proved in [15]. The next step consists, using this indexing
process, in transforming a given hypersequent H into an indexed flat sequent S and in
building a bi-colored graph from this sequent. Before to give this construction we study
the preservation of validity and countermodels through such a transformation.

5.1 Hypersequents and flat sequents

For the presentation we consider mono-conclusioned hypersequents but we finally show
how and why results are valid for (multi-conclusioned) hypersequents.
Let H = A1

1, . . . ,A
1
n1 `B1 | . . . | Ap

1 , . . . ,Ap
np `Bp be a hypersequent of LC. We associate

to H a particular flat sequent S = FS(H ) = δ+(A1
1), . . . ,δ

+(Ap
np), δ−(B1), . . . ,δ−(Bp)
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` XA1
1
→XB1 , . . . ,XA1

n1
→ XB1 ,XA2

1
→ XB2 , . . . ,XA2

n2
→XB2 , . . . ,XAp

1
→ XBp , . . . ,XAp

np
→

XBp ,♦→XB1 , . . . ,♦→XBp .

Theorem 5.1. Let H =A1
1, . . . ,A

1
n1 `B1 | . . . | Ap

1 , . . . ,Ap
np `Bp. If the sequent FS(H ) is

valid in LCn then the hypersequent H is valid in LCn.

Proof. Let [[·]] : Var→ [0,n) be an interpretation. We define a new interpretation [[·]]′ by
[[V ]]′ = [[V ]] for any variable V of H , [[XK ]]′ = [[K]] for any K subformula of H formulae,
[[♦]]′ = ∞ and [[�]]′ = 0. As [[·]]′ and [[·]] have the same values for H ’s atoms , for any
subformula K of H formulae, [[K]]′ = [[K]]. Therefore [[XK ]]′ = [[K]]′ and [[�]]′ = 0. By
Proposition 5.1, we obtain ∀i ∈ [1, p] ∀ j ∈ [1,ni] bbδ+(Ai

j)cc = bbδ−(Bi)cc = ∞. As S is
valid in LCn, [[·]]′ is a model of S and consequently ∃i∈ [1, p] ∃ j ∈ [1,ni] [[XAi

j
→XBi ]]

′ =

∞ or [[♦→XBi ]]
′ = ∞. But [[♦]] = ∞ and then ∃i ∈ [1, p] ∃ j ∈ [1,ni] [[XAi

j
]]′ 6 [[XBi ]]

′ or
[[XBi ]]

′ = ∞. Thus ∃i∈ [1, p] ∃ j ∈ [1,ni] [[Ai
j]] 6 [[Bi]] or [[Bi]] = ∞. As we have proved that

∃i ∈ [1, p] ∃ j ∈ [1,ni] [[Ai
j]] 6 [[Bi]] or [[Bi]] = ∞, for any interpretation [[·]] : Var→ [0,n),

we deduce that H is valid in LCn.

Let [[·]] : Var→ [0,n) be an interpretation and α ∈ [0,n), we define the translated
interpretation by:

[[X ]]−α =







∞ if [[X ]] = ∞
[[X ]]−α if [[X ]]≥ α
0 if [[X ]] < α

Theorem 5.2. Let H =A1
1, . . . ,A

1
n1 `B1 | . . . | Ap

1 , . . . ,Ap
np ` Bp, if [[·]] : Var→ [0,n) is

a countermodel of the sequent FS(H ) in LCn then [[�]] < ∞ and for α = [[�]], the
translated interpretation [[·]]−α is a countermodel of the hypersequent H in LCn.

Proof. Given in appendix A.

5.2 Bi-colored graphs

Let H be a given hypersequent of LC. As shown in the previous section we can associate
to H an equivalent flat sequent FS(H ) = S = δ+(A1

1), . . . ,δ+(Ap
np),δ−(B1), . . . ,δ−(Bp)`

XA1
1
→XB1 , . . . ,XA1

n1
→XB1 ,XA2

1
→XB2 , . . . ,XA2

n2
→XB2 , . . . ,XAp

1
→XBp , . . . ,XAp

np
→XBp ,

♦→XB1 , . . . ,♦→XBp . Now we define a procedure that builds, from H and the flat se-
quent FS(H ), a particular bi-colored graph GH that is associated to H .

The nodes of GH are defined from the set of the nodes of the decomposition tree of
all the formulae of H (set of the subformulae occurrences).
Moreover we introduce a new variable XF for every occurrence F of subformula of D
in H . It is the corresponding node of F . The nodes are signed as follows: we have − at
the root D− if D is a hypothesis else we have + and we propagate the signs as usual.1

1 The connectors ∧ and ∨ preserve the signs and → preserves the sign on the righthand side and
inverses the sign on the lefthand side.
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We can write X +
F or X −

F in order to emphasize the signs.
We also add the node denoted V for all propositional variables of H . Thus several oc-
currences of V generate only one node V and several nodes X +

V or X −
V . Moreover we

add two new nodes denoted♦ et �.

The arrows of GH are defined as follows: we describe the green and red arrows be-
tween the nodes together with the boolean expressions indexing them.
First we start with the non-indexed arrows introduced independently of the internal
structure of H ’s formulae. We add
- a red arrow X −

D ⇒♦ for any formula D of the multi-set of conclusions of H .
- a red arrow X −

B →X +
A for any formula A and B of H that belong to the same compo-

nent.
- a green arrow V →X −

V for any negative occurrence of variable V and a green arrow
X +

V →V for any positive occurrence of variable V .
- a green arrow �→V for any variable V , a green arrow �→X −

⊥ for any negative
occurrence of ⊥ and a green arrow X +

⊥ →� for any positive occurrence of ⊥.
Secondly we consider the introduction of arrows for the internal nodes. Let us start with
the non-indexed arrows. We add
- two green arrows X +

C →X +
A and X +

C →X +
B for any positive subformula occurrence

C ≡ A∧B.
- two green arrows X −

A →X −
C and X −

B →X −
C for any negative subformula occurrence

C ≡ A∨B.
We now complete with the indexed arrows, i.e., arrows indexed by boolean expressions
of the form x or x with x propositional variable. Then we introduce a new boolean vari-
able for any subformula occurrence. We add
- a new boolean variable x and two green arrows X −

A →x X −
C and X −

B →x X −
C for any

negative subformula occurrence C ≡ A∧B.
- a new boolean variable x and two green arrows X +

C →x X +
A and X +

C →x X +
B for any

positive subformula occurrence C ≡ A∨B.
- a new boolean variable x, two green arrows X −

B →x X −
C and ♦→x X −

C and two red
arrows X −

B ⇒x X +
A and X −

B ⇒x♦ for any negative subformula occurrence C ≡ A→B.
- a new boolean variable x and two green arrows X +

C →x X +
B and X −

A →x X +
B for any

positive subformula occurrence C ≡ A→B.

We illustrate this construction with the hypersequent H3 = A`B | A→B`B. The
bi-colored graph GH3 associated to H3 is given in Figure 3.
It is clear that the construction of the graph GH for a given hypersequent H is in linear
time because we add at most four arrows for each subformula instance. Now we have
to define a characterization of the validity of H from the associated bi-colored graph.

5.3 A procedure for countermodel search

We have proved, in the previous section, that deciding if a hypersequent H is valid or
has a countermodel in LCn can be reduced to deciding if the flat sequent associated to
H (see Theorem 5.1 and 5.2) is valid or has a countermodel in LCn. Then we focus
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A � B

A+
1 B−2 A−4 B+

5

♦ B−6 →+
3

x

x

Fig. 3. A Bi-colored Graph of a Hypersequent

now on the graph GH and analyze validity of H from it.
First any flat sequent can be reduced or transformed into a set of implicational sequents,
i.e., sequents of the form S = X1→Y1, . . . ,Xk→Yk `A1→B1, . . . ,Al→Bl . Secondly we
can associate a bi-colored graph GS to such a sequent S as follows: the set of nodes is
the set of the variables of S , namely {Xi}∪{Yi}∪{Ai}∪{Bi} and the set of arrows is
{X1→Y1, . . . ,Xk→Yk}∪{B1⇒A1, . . . ,Bl ⇒Al}. Then an implicational sequent S has
a countermodel in LCn (resp. in LC) if and only if its associated bi-colored graph does
not contain a (n+1)-alternating chain (resp. a ⇒-cycle) [16]. Thus we now study if we
can relate the search of particular chains in an instance of the associated graph GH to
the existence of countermodels.

Theorem 5.3 (n = ∞). Let H be a hypersequent and GH its bi-colored graph, H has a
countermodel in LC if and only if there exists an instance of GH that does not contain
a ⇒-cycle.

Proof. Let H be a hypersequent and S be the associated flat sequent. An interpretation
[[·]] is a countermodel of S if and only if at least it is a countermodel of one of the impli-
cational sequents issued of the transformation of S . The bi-colored graphs associated to
these implicational sequents exactly correspond to the instances of GH . By the above-
mentioned results S has a countermodel if and only if one of the instances of GH does
not contain a ⇒-cycle. Thus, H has a countermodel if and only if one of the instances
of GH does not contain a ⇒-cycle.

Theorem 5.4 (n < ∞). Let H be a hypersequent and GH its associated bi-colored
graph, H has a countermodel in LCn if and only if there exists an instance of GH that
does not contain a (n+1)-alternating chain.

Proof. For LCn with n 6= ∞, the proof is similar by replacing the notion of ⇒-cycle by
the one of (n+1)-alternating chain.

Let us come back to our example with the hypersequent H3 = A`B | A→B`B. If
we consider its associated graph GH3 (see previous subsection) we observe that it has
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two instances (x = 0 and x = 1). The first one (x = 0) contains the following ⇒-cycle:
B−

2 ⇒A+
1 →A→A−

4 →B+
5 →B→B−

2 . The second one (x = 1) contains the following
⇒-cycle: B−

6 ⇒→+
3 →B+

5 →B→B−
6 . Then we deduce that H3 does not contain coun-

termodels in LC. An example with countermodel generation is given in appendix B.

These results on mono-conclusioned hypersequents can be easily extended to (multi-
conclusioned) hypersequents.
Let H =A1

1, . . . ,A
1
n1 ` B1

1, . . . ,B
1
m1 | . . . | Ap

1 , . . . ,Ap
np `Bp

1 , . . . ,Bp
mp be a given hyperse-

quent, we build the flat sequent FS(H ) = δ+(A1
1), . . . ,δ

+(Ap
np),δ−(B1

1), . . . ,δ
−(Bp

mp),
(X`1)→XA1

1
, . . . ,(X`1)→XA1

n1
, . . . ,(X`p)→XAp

np
` (X`1)→XB1

1
, . . . ,(X`1)→XB1

m1
, . . . ,

(X`p)→XBp
1
, . . . ,(X`p)→XBp

mp
,♦→XB1

1
, . . . ,♦→XBp

mp
. Then we can prove theorems

similar to Theorem 5.1 and Theorem 5.2 and then directly use the procedure defined for
bi-colored graph construction. In addition our new procedure can be applied to a spe-
cific case of hypersequents that are sequents. Therefore we also provide a new proce-
dure for deciding provability of LC sequents through bi-colored graphs with generation
of countermodels.

6 Conclusion and perspectives

In this paper we propose new characterizations of validity in LC and LCn based on the
construction, from a hypersequent, of a specific bi-colored graph on which the search
of particular chains corresponds to countermodel search. It leads to new decision proce-
dures for hypersequents in Gödel-Dummett logics that is well adapted to countermodel
generation. These results present an alternative approach to works on proof-search with
analytic calculi. Thus we aim at developing it for other logics including substructural
or intermediate logics [18].
Recent works have studied the relationships between parallel dialogue games and hy-
persequents for some intermediate logics including LC [10]. We also aim at relating
bi-colored graphs and such games in such a way that we could generate directly win-
ning strategies from bi-colored graphs associated to sequents or hypersequents. From
preliminary results for graphs associated to implicational sequents we expect to study
how to deal with general sequents or hypersequents.
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Journal of Logic and Computation, 13(6):835–861, 2004.

6. M. Baaz and C. Fermüller. Analytic calculi for projective logics. In Int. Conference on
Analytic Tableaux and Related Methods, TABLEAUX’99, LNAI 1617, pages 36–51, Saratoga
Spring, USA, 1999.

7. A. Ciabattoni, C. Fermüller, and G. Metcalfe. Uniform rules and dialogue games for fuzzy
logics. In Int. Conference on Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR 2004, LNAI 3452, pages 496–510, Montevideo, Uruguay, 2004.

8. M. Dummet. A propositional calculus with a denumerable matrix. JSL, 24:96–107, 1959.
9. R. Dyckhoff. A deterministic terminating sequent calculus for Gödel-Dummett logic. Logic
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Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2005,
LNAI 3835, pages 682–696, December 2005.
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A Proof of Theorem 5.2

To prove the result we need the three following propositions, proved in [16].

Proposition A.1. Let A be a formula without ⊥, α be a value in [0,n) and [[·]] : Var→
[0,n) be an interpretation such that, for any variable X of A, [[X ]] > α. We have [[A]] > α
and if α < ∞ then [[A]]−α = [[A]]−α.

Proposition A.2. Let D be a formula, we have the following properties:
1. For any subformula K of D, the formulae of δ+(K) and δ−(K) are flat and do not
contain the constant ⊥;
2. For any variable V of D, the atomic implication �→V is in δ+(K) and in δ−(K);
3. The size of δ+(K) and δ−(K) is linear in the size of D.

Proposition A.3. Let D be a formula, for any subformula K of D, the two sequents
δ+(K),XK `K� and δ−(K),K� `XK are valid in LCn.
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Theorem 5.2
Let H =A1

1, . . . ,A
1
n1 `B1 | . . . | Ap

1 , . . . ,Ap
np `Bp, if [[·]] : Var→ [0,n) is a countermodel of

the sequent FS(H ) in LCn then [[�]] < ∞ and for α = [[�]], the translated interpretation
[[·]]−α is a countermodel of the hypersequent H in LCn.

Proof. Let [[·]] : Var→ [0,n) be a countermodel of the sequent S . The following proper-
ties are satisfied:

1. ∀i, j ∈ [1, p] and ∀k ∈ [1,ni],bbδ+(Ai
k)cc> [[♦→XB j ]];

2. ∀i, j ∈ [1, p], ∀k ∈ [1,ni] and ∀l ∈ [1,n j], bbδ+(Ai
k)cc> [[X

A j
l
→XB j ]];

3. ∀i, j ∈ [1, p], bbδ−(Bi)cc> [[♦→XB j ]];
4. ∀i, j ∈ [1, p] and ∀k ∈ [1,n j], bbδ−(Bi)cc> [[X

A j
k
→XB j ]].

By property 4, we have ∀i ∈ [1, p], bbδ−(Bi)cc > [[♦→ XBi ]] and we deduce that for
any i ∈ [1, p], [[♦→XBi ]] < ∞ and [[XBi ]] = [[♦]]_ [[XBi ]] < ∞. Then, for any i ∈ [1, p],
[[XBi ]] < bbδ−(Bi)cc. By Proposition A.3, ∀i ∈ [1, p], δ−(Bi),(Bi)� `XBi is a valid se-
quent and then ∀i ∈ [1, p], bbδ−(Bi)cc ∧ [[(Bi)�]] 6 [[XBi ]] < bbδ−(Bi)cc. Therefore ∀i ∈
[1, p], bbδ−(Bi)cc ∧ [[(Bi)�]] < bbδ−(Bi)cc and we obtain [[(Bi)�]] < bbδ−(Bi)cc for any
i ∈ [1, p].
- We now prove that, for any variable V of H , [[V ]] > [[�]]. First, if H does not contain
variables, i.e., all its atoms are occurrences of ⊥, then the previous property is trivially
verified. Else, let Bi be one of its conclusion formulae and V0 be a variable of (Bi)� that
realizes the minimal value γ of the non-empty set {[[�→V ]], V variable of Bi�}. Thus
γ = [[�→V0]] and for any variable V of (Bi)�, [[�→V ]] > γ. If V0 is in the variable
set of Bi then, by Proposition A.2, �→V0 ∈ δ−(Bi) and then bbδ−(Bi)cc6 [[�→V0]] =
γ. Else V0 = � and therefore bbδ−(Bi)cc 6 [[�→V0]] = [[�→�]] = ∞. In both cases
bbδ−(Bi)cc6 [[�→V0]] = γ.
- We now prove that [[�]] 6 γ. Let us suppose [[�]] > γ = [[�→V0]] and let V be a variable
de (Bi)�: either V = � and [[V ]] = [[�]] > γ or V is a variable of Bi and [[�→V ]] > γ,
and then [[V ]] > γ. By Proposition A.1, as (Bi)� does not contain ⊥, [[(Bi)�]] > γ. We
deduce γ 6 [[(Bi)�]] < bbδ−(Bi)cc6 [[�→V0]] = γ, that is contradictory and then � 6 γ.
For any variable V of (Bi)�, [[�]] 6 γ 6 [[�→V ]] = [[�]] _ [[V ]]. Then , for any vari-
able V of (Bi)�, [[�]] 6 [[V ]] and by Proposition A.1 [[(Bi)�]] > [[�]]. Thus ∀i ∈ [1, p]
[[(Bi)�]] > [[�]] because we have no hypothesis on Bi.
- We now prove that, for any variable V of H , [[V ]] > [[�]]. We suppose that there exists
a variable V1 such that [[V1]] < [[�]]. By Proposition A.2, �→V1 belongs to the mul-
tiset of hypotheses of S . Then ∀i ∈ [1, p] [[�→V1]] = [[V1]] > XBi . We have ∀i ∈ [1, p]
bbδ−(Bi)cc > [[XBi ]] and by Proposition A.3, δ−(Bi),(Bi)� `XBi is a valid sequent and
then ∀i∈ [1, p] [[(Bi)�]] 6 [[XBi ]]. Thus we have ∀i∈ [1, p] [[�]] 6 [[(Bi)�]] 6 [[XBi ]] < [[V1]]
that is contradictory.
By property 3, ∀i, j ∈ [1, p] ∀k ∈ [1,ni] ∀l ∈ [1,n j] bbδ+(Ai

k)cc> [[X
A j

l
→XB j ]] and we de-

duce that ∀ j ∈ [1, p] ∀l ∈ [1,n j] [[X
A j

l
→XB j ]] < ∞. Then ∀i ∈ [1, p] ∀ j ∈ [1,ni] [[XAi

j
]] >

[[XBi ]] and finally ∀i ∈ [1, p] ∀ j ∈ [1,ni] bbδ+(Ai
j)cc > [[XBi ]] and then bbδ+(Ai

j),XAi
j
cc >

[[XBi ]]. By Proposition A.3, ∀i ∈ [1, p] ∀ j ∈ [1,ni] δ+(Ai
j),(A

i
j)� ` XAi

j
is a valid se-

quent. Thus ∀i ∈ [1, p] ∀ j ∈ [1,ni] [[(Ai
j)�]] > [[XBi ]]. Moreover ∀i ∈ [1, p] ∀ j ∈ [1,ni]
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[[(Ai
j)�]] > [[(Bi)�]] because ∀k ∈ [1, p], [[Bk�]] 6 [[XBk ]].

We have proved that ∀i ∈ [1, p] [[(Bi)�]] < bbδ−(Bi)cc. But ∀i ∈ [1, p] [[(Bi)�]] > [[�]] and
then [[�]] < ∞. Let α = [[�]], as [[�]]−α = [[�]]−α = 0 = [[⊥]]−α. We obtain [[D]]−α =
[[D�]]−α, for any formula D of H , and by Proposition A.1, [[D�]]−α = [[D�]]−α. We
have ∀i ∈ [1, p] ∀ j ∈ [1,ni] [[Ai

j�]] > [[(Bi)�]] and α < ∞. Thus ∀i ∈ [1, p] ∀ j ∈ [1,ni]

[[(Ai
j)�]]−α > [[(Bi)�]]−α and then [[Ai

j]]−α > [[Bi]]−α. Then [[·]]−α is a countermodel.

B An example with countermodel generation

The bi-colored graph of the hypersequent H4 ≡`A | A`⊥ is

A−1 ♦

A ⊥−3

�

A+
2

This graph has only one instance that does not contain ⇒-cycle. Then we deduce
that H4 has a countermodel. In order to extract it we modify the graph as follows: the
red arrows always go up and the green arrows never go down.

A−1 A A+
2

� ⊥−3

♦

0

1

∞

Then [[·]] : Var→ [0,n) such that [[A]] = 1 and n > 2, is a countermodel of H4 in LCn.
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Abstract. We study lemma simplification for geometric resolution, mainly
from a theoretical viewpoint. For this purpose we develope a framework
of proof permutations, which is somewhat similar to the permutions used
in proofs of cut elimination. A side effect of this framework is, that one of
the rules of the original geometric resolution calculus, could be simplified
into simpler rules, which may have advantage for proof presentation.

Using the framework of proof permutations, we are able to prove the-
oretical results on proof length for three simplification rules that have
been empirically successful in our implementation geo. These rules are
subsumption, functional reduction, and equality splitting.

This work is work-in-progress, because there exist more simplification
principles, for which at this moment we have neither theoretical results,
nor practical experience.

1 Introduction

Geometric resolution is a proof search strategy, which was initiated in [3]. It
works on a normal form called geometric formula, which it tries to refute by
enumerating candidate models.

The variant of geometric resolution studied in this paper was initiated in [6],
and differs from the one in [3] in the following ways:

1. The structure of geometric formulas is more restricted, but it is allowed to
contain equality.

2. Witnesses for quantifiers are enumerated in the same way as in [4], (and
different from [3]), which makes it possible to obtain completeness for first-
order logic with equality.

3. From every failed attempt to construct a model, a lemma is learnt, which
ensures that no similar models will explored later during proof search.

We now define (our variant) of a geometric formula, then we outline the proof
search algorithm for geometric resolution. It makes use of a resolution-like cal-
culus (the geometric resolution calculus) with which it derives a closing lemma
from every failed attempt to find a model. (Very similar to the way lemmas
are learnt in modern approaches to DPLL, see [7]). The fact that this is always
possible, was proven in [6].
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After that we discuss what effects one can expect from simplification in geomet-
ric resolution, and we compare with simplification for saturation-based calculi.
([1]) The main difference is that in geometric resolution, inferences are controlled
by the model search algorithm, where in saturation-based calculi, they are made
blindly. Because of this, we expect the effect of simplification in geometric reso-
lution to be more predictable.

Definition 1. We assume an infinite set of variables V . A variable atom is
defined by one of the following two forms:

– x1 6≈ x2, with x1, x2 ∈ V and x1 6= x2.

– p(x1, . . . , xn) with n ≥ 0 and the xi ∈ V .

There are no constants and no function symbols in variable atoms. There are
also no positive equalities. Negative of equalities of form v 6≈ v are disallowed,
because they are trivially false. Geometric formulas are built from variable atoms
as follows:

Definition 2. A geometric formula has form

∀x A1(x) ∧ · · · ∧Ap(x) ∧ x1 6≈ x′1 ∧ · · · ∧ xq 6≈ x′q → Z(x),

in which p ≥ 0, q ≥ 0, and the x1, x
′

1, . . . , xq, x
′

q ∈ x ⊆ V .

The right hand side Z(x) must have one of the following three forms:

1. The false constant ⊥.

2. A non-empty disjunction of non-disequality atoms B1(x) ∨ · · · ∨ Br(x) with
r > 0.

3. An existential formula of form ∃y B(x, y) with y ∈ V but y 6∈ x. The variable
y must occur in B(x, y).

A formula of the first type is called lemma. A formula of the second type is called
disjunctive. A formula of the third type is called existential.

The notations can be clarified as follows:

– In ∀x, x denotes an enumeration of x, in arbitrary order, mentioning each
variable of x exactly once. The scope of ∀x is the complete geometric formula.

– In A(x), x denotes a sequence of variables from x. Variables may be re-
peated, and not all variables need to occur.

– Later in this paper, an expression of form Φ(x), Ψ(x) or X(x) will denote
a conjunction of variable atoms, possibly containing disequality and non-
disequality atoms.

It was shown in [6] that every first-order formula can be translated into an equi-
satisfiable set of geometric formulas. The translation is related to the translation
in of [2], and also somewhat related to the translation in [5]. The main difference
with [5] is that we do not introduce functionality axioms. (although we will see
them back as simplification rules later)

2
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An interpretation can be viewed as a set of ground atoms I. An interpretation
does not contain disequality atoms. Let ρ = ∀x Φ(x) → Z(x) be a geometric rule.
Let Θ be a substitution that assigns constants occurring in I to the variables in
x. We call the rule ρ applicable in I with substitution Θ if

1. for each disequality atom x1 6≈ x2 ∈ Φ(x), we have x1Θ 6= x2Θ,

2. for each usual atom A(x) ∈ Φ(x), the atom A(x)Θ occurs in I, and
3. Z(x)Θ is false in I under substitution Θ.

(The constant ⊥ is always false. The disjunction B1(x) ∨ · · · ∨Br(x) is false
if none of the Bj(x)Θ occurs in I. A formula of form ∃y B(x, y) is false if I

contains no constant c, s.t. B(xΘ, c) ∈ I )

As an example, ∀x A(x) → B(x) is not applicable in {A(0), B(0), A(1), B(1)}.
The rule ∀x A(x) → B(x) ∨ C(x) is not applicable in {A(0), B(0), A(1), C(1)}.
It is applicable in {A(0), C(0), A(1)} with substitution {x := 1}.
The rule ∀xy A(x) ∧B(y) ∧ x 6≈ y → ∃z C(x, y, z) is applicable in
{A(0), A(1), B(0), B(1), C(0, 1, 0)} with substitution {x := 1, y := 0}. It is not
applicable with any other substitution.
In geometric resolution, proof search proceeds by a combination of model search
and lemma generation. The algorithm recursively tries to extend an interpreta-
tion I into a model. (i.e. an interpretation in which no rule is applicable) At each
recursive level, the input consists of an interpretation I, and a set of geometric
formulas G. When I cannot be extended into a model, the algorithm returns
a pair (ρ, Θ) s.t. ρ is a lemma which applicable on I with substitution Θ. In
case the lemma ρ is not already present in G, either I is a model, or there is an
applicable rule ρ′ which is not a lemma. In that case, the algorithm uses ρ′ to
extend I, by which it possibly has to backtrack. When backtracking is complete,
it uses the geometric resolution rules to derive a ρ. It was proven in [6] that this
is always possible, using geometric resolution. We describe the algorithm:

1. Select a rule ρ and a substitution Θ, s.t. ρ is applicable in I with Θ.

2. If no (ρ, Θ) was found, then I is a model. Report I.

3. If ρ is of type 1, then return (ρ, Θ).
4. If ρ is of type 2, then write ρ = ∀x Φ(x) → B1(x) ∨ · · · ∨Bq(x). Recursively

call the algorithm on each I ∪ {Bj(xΘ)}. If one of the recursive calls results
in a model, then report this model. Otherwise, the recursive calls will collect
a sequence of pairs (ρ1, Θ1), . . . , (ρq, Θq), s.t. each ρj is a lemma applicable
in the interpretation I ∪ {Bj(xΘ)} with Θj . Using disjunction resolution, it
is possible to derive a pair (ρ′, Θ′), s.t. ρ′ is a lemma applicable in I with
substitution Θ′.

5. If ρ is of type 3, then write ρ = ∀x Φ(x) → ∃y B(x, y). Assume that the
constants occurring in I are called c0, . . . , cn−1. Let cn be the next constant
which is not in I. For each i with 1 ≤ i < n, recursively call the model search
algorithm on the interpretation I ∪ {B(xΘ, ci)}. Also call the model search
algorithm on I∪{B(xΘ, cn)}. If one of the recursive calls constructs a model,
then report this model. Otherwse, the recursive calls will collect a sequence
of pairs (ρ1, Θ1), . . . , (ρn, Θn), s.t. each ρi is a lemma which is applicable in
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I ∪ {B(xΘ, ci)} with substitution Θi. Using existential resolution, one can
derive a pair (ρ′, Θ′), s.t. ρ′ is a lemma applicable in I with substitution Θ′.

The most important heuristic of the algorithm is the choice which application
(ρ, Θ) should be expanded. In general, it seems sensible to prefer lemmas over
rules of other types. Between lemmas, geo currently decides by selecting the
smaller lemma. Between rules ∀x Φ(x) → Z(x) of type 2 or type 3, it decides
by selecting the application for which Φ(x)Θ has the smallest set of premisses,
viewing this set as a multiset, and considering older atoms smaller than new
atoms. In this way, fairness is guaranteed. However, there is a much variation
possible and the effect of the heuristic on the performance of geo is largely
unexplored.
The main distinction between geometric resolution and saturation-based theo-
rem proving, (e.g. superposition) apart from the different normal form, is the
fact that in geometric resolution, proof search is controlled by the model search
algorithm. The model search algorithm decides which resolution inferences are
made. When it needs a closing lemma, it calls the resolution module with de-
tailed instructions about which inferences should be made. In saturation-based
theorem, inferences are made essentially ’in a blind way’. Clauses are selected,
and all possible inferences are made. This difference has some important conse-
quences for the use of redundancy.
First recall that in saturation-based theorem proving a clause d is called re-
dundant when it is implied by a set of clauses c1, . . . , cn, such that (somewhat
informally) c1, . . . , cn come before d in the multiset order. This notion was in-
troduced in [1], and it is able to prove the completeness of most of the existing
simplification rules for superposition theorem proving.
In this paper, we study only a relatively weak version of redundancy in the
geometric setting: A lemma λ is redundant when it is implied by a set of lemmas
λ1, . . . , λn, s.t. each of the lemmas λ1, . . . , λn would be preferred over λ by
the heuristic. This notion would cover λ-subsumption, but also the following
example:
∀xyz S(x, y) ∧ S(x, z) ∧ y 6≈ z → ⊥ and ∀xy A(x) ∧ B(y) ∧ x 6≈ y → ⊥ make
∀xyzt A(x) ∧ S(x, y) ∧B(y) ∧ S(y, z) ∧ y 6≈ z redundant. If one wants to obtain
stronger notions of redundancy, where the implying clauses do not need to be
lemmas, then one very probably needs to modify the heuristic. This will be a
subject for future study.
Now that we have defined redundancy in our setting, we can discuss the differ-
ences with redundancy in saturation-based theorem proving.

1. Redundancy is much more important for saturation-based theorem proving
it is than for geometric resolution. In saturation-based theorem proving,
redundant clauses can become selected, they will create consequences, which
again may be selected, etc. Therefore, high priority should be given to the
deletion of redundant clauses.
In geometric resolution, redundant lemmas will not be selected by the heuris-
tic. Therefore, they will not be used in the derivation of new lemmas.
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2. For saturation-based theorem proving, forward redundancy checking is more
important than backward redundancy checking. For geometric resolution,
forward redundancy checking is wasted effort: The algorithm will never
create a redundant lemma. If λ1, . . . , λn make λ redundant, then one of
λ1, . . . , λn would have been a closing lemma, and the algorithm would have
reused it.

We have now seen, that whereas the price for tolerating redundant clauses in
saturation-based theorem proving can be exponential, it causes only a small over-
head in geometric resolution. So we could stop here, and make this is pleasant,
short paper.
Unfortunately there is something more to tell, namely about simplification. Sim-
plification is when one derives a consequence λ′ of a lemma λ, s.t. λ′ (possibly
with some other lemmas) makes λ redundant. Although it is not possible that the
model search algorithm derives a redundant lemma, it is possible that it derives
a lemma that can be simplified. If one does not simplify a lemma that could have
been simplified, it will possibly resolve with other lemmas that could have been
simplified, and the effect will add up. For this reason, simplification is important
for geometric resolution. As an example, consider the following simplification
rule, which is an instance of functional reduction. Suppose that the rulesystem
contains only one positive occurrence of A, which has form ∃y A(y). Then in
every interpretation constructed by the model search algorithm, there will be
at most one constant c such that A(c) occurs in the model. As a consequence,
in any lemma containing more than one occurrence of A, all these occurrences
can be unified (Because they will be unified anyway in every application of the
lemma) If one does not unify all occurrences of A in a lemma, it may resolve
with another lemma which also contains multiple occurrences of A. In that case,
the resulting lemma will inherit the repeated occurrences of A from both its
parents.
In the rest of this paper, we analyze redundancy-based simplification refinements
of geometric resolution using proof theoretic methods. The reason for this is that
we want to obtain results about proof length.
In saturation-based theorem proving, in general one cannot prove anything about
proof length when redundant clauses are removed. The completeness proof im-
plies that the new proof is smaller under the multiset order, but the length of
the new proof can actually be bigger. One notable exception to this situation is
subsumption. For subsumption, it can be proven that the new proof using the
subsuming clause, is not longer than the proof using the subsumed clause.
Our intuition is that the chances of obtaining results about proof length with
geometric resolution are better. The reason for this is the fact that the derivations
are in some sense more deterministic, because they are governed by the model
search algorithm. At this moment, we only have results for a few equality-based
refinements, but we think that more results are possible. In order to prepare for
proving the results about proof length, we first introduce a modification of the
calculus of [6]. The reason for this is that the calculus of [6] is too much tuned
towards the model search algorithm. (In particular the ∃-resolution rule of [6] is
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too complicated to analyze) We show that the new calculus is as strong as the
old calculus, and that proofs constructed by the model search algorithm are in
a certain normal form, which we call ≈∃-normal form. Note that this change of
the calculus has no influence at all on the model search algorithm, because the
lemmas derived remain the same.
We then study the effect of proof replacements. Suppose that one has a proof π

obtained by a run of the model search algorithm. Let λ be a lemma occurring in
π that was redundant at the moment it was used. If λ is made redundant by a
set of lemmas λ1, . . . , λn, then it is possible to construct a proof π′ which proves
λ from λ1, . . . , λn. We can remove λ from π and replace it by the new proof π′.

In all probability this new proof will not correspond to a run of the model search
algorithm anymore, because of two possible reasons:

1. The new proof is not in ≈∃-normal form.
2. The new proof is in ≈∃-normal form, but is not consistent with the applica-

tion selection heuristic.

We will introduce a set of proof permutations, with which every proof can be
permuted back into ≈∃-normal form. In case a clause was deleted due to redun-
dancy, the proof π[π′] is almost in ≈∃-normal form, except for the path leading
to π′ and π′ itself. We will give examples (functional reduction, nested subsump-
tion) where it can be shown that the permutation back to ≈∃-normal form does
not increase the size of the proof. This means that these refinements can be
applied without restriction.

2 A Modified Calculus for Geometric Resolution

We present the modified calculus that we used for analyzing proof lengths. The
main difference with the calculus of [6] is that we simplified the existential reso-
lution rule and introduced a new rule called equality resolution. Apart from that,
the only difference is that we made instantiation explicit. In practice the instan-
tiations are determined by unification, but for analysis it is more convenient to
have a calculus with explicit instantiation.

Definition 3. The new calculus consists of the following rules:

instantiation: Let

ρ = ∀x Φ(x) → Z(x)

be a geometric rule. Let Σ be a substitution of form x1 := x2, where x1 ∈ x.

Then

∀(xΣ) Φ(xΣ) → Z(xΣ)

is an instance of ρ. In case both x1 and x2 occur in Φ(x) or Z(x), and
x1 6= x2, we call the instantiation a proper instantiation. In case x2 does
not occur in Φ(x) or Z(x), we call the result a renaming of ρ.
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merging: Let λ be a lemma of form

∀x Φ(x) ∧A(x) ∧A(x) → ⊥.

Then the lemma

∀x Φ(x) ∧A(x) → ⊥

is a merging of λ. A(x) can be either a disequality atom, or a usual atom.
disjunction resolution: Let

ρ = ∀x Φ(x) → B1(x) ∨ · · · ∨Bq(x)

be a disjunctive formula. For 1 ≤ j ≤ q, let each

λj = ∀x Ψj(x) ∧Bj(x) → ⊥

be a lemma. Then

∀x Φ(x) ∧ Ψ1(x) ∧ · · · ∧ Ψq(x) → ⊥

is a disjunction resolvent of ρ with λ1, . . . , λq.

existential resolution: Let ρ = ∀x Φ(x) → ∃y B(x, y) be an existential for-
mula. Let λ have form

∀x ∀y Ψ(x) ∧B(x, y) → ⊥.

We have y 6∈ x. Then

∀x Φ(x) ∧ Ψ(z) → ⊥

is an existential resolvent of ρ with λ.

(degenerated) existential resolution: Let ρ = ∀x Φ(x) → ∃y B(x, y) be an
existential formula. Let λ have form

∀x ∀y Ψ(x) → ⊥.

We have y 6∈ x. Then

∀x Φ(x) ∧ Ψ(x) → ⊥

is a (degenerated) existential resolvent of ρ with λ.

equality resolution: Let ρ = ∀x Φ(x) ∧ x1 6≈ x2 → ⊥ be a lemma. Let Σ be
the substitution x1 := x2. Let λ be a lemma that can be written in the form

λ = ∀(xΣ) Ψ(xΣ) → ⊥.

Then the lemma

∀x Φ(x) ∧ Ψ(x) → ⊥

is an equality resolvent of ρ with λ.
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Disjunction resolution is the same as hyperresolution. Equality resolution can be
explained as follows: If Σ is the substitution x1 := x2, then ∀(xΣ)Ψ(xΣ) → ⊥is
equivalent to ∀x x1 ≈ x2 ∧ Ψ(x) → ⊥. In this formula, the equality can resolve
with the disequality in ρ.

Most cases of degenerated existential resolution can be simulated by instantia-
tiong y to one of the variables of x. In that case, one would obtain ∀x Ψ(x) → ⊥
which subsumes the result. We keep the degenerated existential resolution rule
because it is still needed for the case where x is empty, and in the future we may
want to add types to geometric resolution. In that case it may happen that the
type of y is not among the types of x.

Theorem 1. The calculus of Definition 3 is complete. If ρ1, . . . , ρn are geomet-
ric rules, and λ is a lemma, then if ρ1, . . . , ρn |= λ, then λ is provable from
ρ1, . . . , ρn.

For λ = ⊥, completeness follows from the fact that the new calculus can sim-
ulate the old calculus. (This will be proven in the next section) For λ 6= ⊥,

completeness can be proven in a fairly standard way, by enumerating the models
of ρ1, . . . , ρn. Full completeness, (for λ 6= ⊥) is not used in this paper, but it
may be important in future studies of other redundancy rules.

3 ≈∃-Normal Derivations

In this section we show that the calculus of Definition 3 can be used in the
same way as the calculus of [6] for the generation of closing lemmas during
model search. This change of calculus will have no impact on the model search
algorithm and on the lemmas that it generates. 1 The reason for introducing
the new calculus is that its permutations can be understood more easily. There
could also exist an advantage in proof output for external verification, because
the new calculus is more standard.

The difference between the old calculus and the calculus of Definition 3, is the
replacement of the stronger existential resolution rule of [6] by the combination
of a weaker existential resolution rule and equality resolution.

It is not possible to derive the stronger existential resolution rule in the new
calculus, but it can be shown that every lemma obtained by an application of
strong existential resolution can be obtained by a combination of weak existential
resolution and equality resolution.

In [6], existential resolution is always used in the way shown in Figure 1. Figure 2
shows a proof of the same result using (non-generalized) existential resolution
and equality resolution. First, the disequalities in ∀x Φ(x) ∧ B(x, y) ∧ y 6≈ x1 ∧
· · ·∧y 6≈ xn → ⊥ are resolved away one-by-one using equality resolution. On the
result, (non-generalized) existential resolution is applied, and the same result is
obtained.

1 actually, they can sometimes be slightly stronger
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It can be seen from Figure 2 that equality resolution is never applied ’stand
alone’ in proofs that are constructed by the model search procedure. Equality
resolution is only used for resolving away the disequalities in a lemma of form
∀xy Ψ(x) ∧ B(x, y) ∧ y 6≈ x1 ∧ · · · ∧ y 6≈ xn → ⊥ in order ’to prepare it’ for
an existential resolution step in which B(x, y) is resolved away. We call proofs
satisfying this condition ≈∃-normal. Proofs constructed by the model search
algorithm will be always ≈∃-normal.

Fig. 1. Application of General ∃-Resolution

Let π be an existential resolution step

∀x Φ(x) → ∃y B(x, y) ∀x Ψ(x) ∧ B(x, y) ∧ y 6≈ x1 ∧ · · · ∧ y 6≈ xn → ⊥

∀x Φ(x) ∧ Ψ(x) → B1(x, x1) ∨ · · · ∨ Bq(x, xn),

It is used in a proof of form

π ∀x X1(x) ∧B1(x, x1) → ⊥ · · · ∀x Xn(x) ∧B1(x, xn) → ⊥

(∨-res)

∀x Φ(x) ∧ Ψ(x) ∧X1(x) ∧ · · · ∧Xn(x) → ⊥

4 Redundancy through Proof Permutations

The final goal of the research reported in this paper is to study the effect of
redundancy on proof length, using proof transformations. At present, we have
only hard results for a restricted form of simplifications but we expect that more
results are possible.

We outline the general technique: In case a lemma λ is made redundant by
formulas ρ1, . . . , ρn, we take out every application of λ from the proof, and re-
place it by a proof of ρ1, . . . , ρn |= λ. The resulting proof is still a valid proof, but
very probably it is not in ≈∃-normal form anymore. The proof can be permuted
back into ≈ ∃-normal form, using proof permutations. If the new proof is not too
long, in comparison to the old proof, then efficiency improves when λ is replaced
by ρ1, . . . , ρn.

Since our calculus is similar to resolution, all transformations have essentially
one of the forms that follow below. (Equality resolution is similar to standard
resolution, if one keeps in mind that ∀(xΣ) Φ(xΣ) → ⊥ with Σ = {x1 := x2} is
equivalent to ∀x x1 ≈ x2 ∧ Φ(x) → ⊥)
In both of the permutations, application of the first rule is postponed until after
the second rule. The two possibilities depend on where the premiss of the second
rule originates from. If it originates from only one of the parents of the first rule,
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Fig. 2. Reconstruction of General ∃-Resolution

For each i with 1 ≤ i ≤ n, let Σi be the substitution {y := xi}.
Then each of the lemmas ∀x Xi(x) ∧B(x, xi) → ⊥ can be written in the form

∀((xy)Σi) Xi((xy)Σi) ∧B((xy)Σi, yΣi) → ⊥,

because no variable in x is modified by Σi, and yΣi = xi. Let π1 be the proof

∀((xy)Σ1) X1((xy)Σ1)∧B((xy)Σ1, yΣ1) → ⊥ ∀xy Ψ(x)∧B(x, y)∧y 6≈ x1∧· · ·∧y 6≈ xn → ⊥

(≈-res)

∀xy X1(x) ∧ Ψ(x) ∧ B(x, y) ∧B(x, y) ∧ y 6≈ x2 ∧ · · · ∧ y 6≈ xn → ⊥

Similarly, let π2 be the proof

∀((xy)Σ2) X2((xy)Σ2) ∧B((xy)Σ2, yΣ2) → ⊥ π1

(≈-res)

∀xy X1(x) ∧X2(x) ∧ Ψ(x) ∧B(x, y) ∧ B(x, y) ∧ B(x, y) ∧ y 6≈ x3 ∧ · · · ∧ y 6≈ xn → ⊥

Continuing, one eventually reaches πn, which has form

∀((xy)Σn) Xn((xy)Σn) ∧ B((xy)Σn, yΣn) → ⊥ πn−1

(≈-res)

∀xy X1(x) ∧X2(x) ∧ · · · ∧Xn(x) ∧ Ψ(x) ∧ B(x, y) ∧ · · · ∧ B(x, y) → ⊥

At this point, one can apply ∃-resolution:
πn

(merging)

∀x Φ(x) → ∃y B(x, y) ∀xy X1(x) ∧ · · · ∧Xn(x) ∧ Ψ(x) ∧ B(x, y) → ⊥

(∃-res)

∀x Φ(x) ∧X1(x) ∧ · · · ∧Xn(x) ∧ Ψ(x) → ⊥
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then the transformation is unproblematic, because the size of the proof does not
increase. If the premiss of the second rule originates from both parents of the
first rule, then the size of the proof does increase. We give examples of both
situations:

unproblematic:

A ∨ B ∨ R1 ¬A ∨ R2

(res)

B ∨ R1 ∨ R2 ¬B ∨ R3

(res)

R1 ∨ R2 ∨ R3

permutes into

A ∨ B ∨ R1 ¬B ∨ R3

(res)

A ∨ R1 ∨ R3 ¬A ∨ R2

(res)

R1 ∨ R2 ∨ R3

problematic:

A ∨ B ∨ R1 ¬A ∨ B ∨R2

(res+merging)

B ∨ R1 ∨ R2 ¬B ∨ R3

(res)

R1 ∨ R2 ∨ R3

permutes into

A ∨ B ∨ R1 ¬B ∨ R3 ¬A ∨ B ∨ R2 ¬B ∨ R3

(res) (res)

A ∨ R1 ∨ R3 ¬A ∨ R2 ∨ R3

(res+merging)

R1 ∨ R2 ∨ R3

As mentioned above, proof permutations can be used to bring a proof back
into ≈∃-normal form, after some lemma λ has been replaced by some formu-
las ρ1, . . . , ρn that make it redundant. They also can be used to make a proof
consistent with the selection heurstic of the search algorithm.

Unfortunately, each time a rule application from the redundancy proof is per-
muted down, it may double the part of π that it permutes through, due to the
problematic permutations.

We conclude that, when designing redundancy strategies, one should look for
strategies that do not cause too much doubling. One of the possible ways to
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do this, is by showing that there exists a low upperbound on one of the copies.
Since the other copy is not bigger than the original proof, the increase in proof
size can be kept small in this way. We end the paper with a few examples, and
explain for each of the examples how this can be done.

– We first study functional reduction. Functional reduction exploits the fact
that some predicate can be shown to be functional in one or more of its
arguments during proof search. Let F be a predicate whose only positive
occurrences are in formulas of form ∀x Φ(x) → ∃y F (x, y). The model search
algorithm will create an atom F (c, d1) only in case there exists no other atom
of form F (c, d2) in the interpretation. Therefore, in every interpretation I

the last argument of F is a function of the other arguments. This fact can
be used in simplifications. Whenever a lemma contains two atoms of form
F (x, y1) and F (x, y2), the variables y1 and y2 can be unified.
In order to ensure that the simplified clause implies the original clause, we
add so called inductive axioms. The axiom for F is

∀xy1y2 F (x, y1) ∧ F (x, y2) ∧ y1 6≈ y2 → ⊥.

Since F is functional, the inductive axiom will never be applicable. However,
it triggers functional reduction. Consider the formula

∀xyz F (x, y) ∧ F (x, z) ∧B(y, z) → ⊥,

which can be functionally reduced into

∀xy F (x, y) ∧B(y, y) → ⊥.

Using the inductive axiom for F, one can can construct the following proof:

∀xyz F (x, y) ∧ F (x, z) ∧ y 6≈ z → ⊥ ∀xz F (x, z) ∧ B(z, z) → ⊥

(≈-res)

∀xyz F (x, y) ∧ F (x, z) ∧ B(y, z) → ⊥

The ≈-resolution has to be permuted down in order to restore ≈∃-normality.
We show that during these permutations, the ≈-resolution disappears. First
the ≈-resolution permutes down to the point where either F (x, y) or F (x, z)
is used in disjunction resolution or exists resolution. At this point, since
functionality holds for F, F (x, y) and F (x, z) have to be merged before they
are resolved away. But then the ≈-resolution will become an instantiation
when it permutes with the merging.
Using the same argument, it can be shown that the ≈-resolution also disap-
pears in case the ≈-resolution is already in ≈∃-normal form.
Note the peculiar way in which the inductive axiom ∀xyz F (x, y)∧F (x, z)∧
y 6≈ z → ⊥ was used in the simplification. If F is indeed functional, the
axiom will never be applicable, and therefore never occur in a proof. The
axiom caused the functional reduction step, but the correctness of the step
does not rely on it. Soundness follows from the fact that functional reduction
is a form of instantiation.
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– Next we consider nested subsumption. Suppose we want to use a ≈ b to
delete s(a) ≈ s(b):

∀xyt S(x, y) ∧ S(x, t) ∧ y 6≈ t → ⊥ ∀xz A(x) ∧ B(z) ∧ x 6≈ z → ⊥

(≈-res)

∀xyzt A(x) ∧ S(x, y) ∧B(z) ∧ S(z, t) ∧ y 6≈ t → ⊥

The equality resolution step uses the substitution {x := z}. By the same
argument as in the previous case, it can be seen that the ≈-resolution will
disappear when it is permuted downward.

– The following simplification has no counterpart in resolution, because it can
be expressed only with relations. In the presence of

λ1 = ∀xyzt A(x) ∧ S(x, y) ∧B(z) ∧ S(z, t) ∧ y 6≈ t → ⊥,

the formula

λ2 = ∀xyzt αβγδ A(x) ∧ S(x, y) ∧ C(α) ∧ F (y, α, β)∧

B(z) ∧ S(z, t) ∧D(γ) ∧ F (t, γ, δ) ∧ β 6≈ δ → ⊥

can be simplified into

λ3 = ∀xztαβγδA(x) ∧ S(x, t) ∧ C(α) ∧ F (t, α, β)∧

B(z) ∧ S(z, t) ∧D(γ) ∧ F (t, γ, δ) ∧ β 6≈ δ → ⊥.

λ2 is an equality resolvent of λ1 and λ3. In case all positive occurrences of the
predicates S, A, B are in existential formulas, the only way in which formula
λ1 can be used is in an equality resolution, followed by an ∃-resolution. It
follows that the path from λ1 towards the ≈-resolution must have length 1.

Therefore the increase in proof length is at most 1.

5 Conclusions and Future Work

First, we have modified the calculus of [6], in such a way that that the resulting
calculus is close to standard resolution. The most notable difference, which is
the equality resolution rule, can be explained from the equivalence

∀(x{x1 := x2}) Φ(x{x1 := x2}) → ⊥ ⇔ ∀x x1 ≈ x2 ∧ Φ(x) → ⊥.

We intend to change geo to use the new calculus, because we expect that it will
make proof verification easier.

We have introduced a proof theoretical method with which it is possible
to justify some of the successful forms of redundancy in geometric resolution.
With this method, we can rigorously prove that functional reduction and nested
subsumption (the first two cases in the previous section) do not increase proof
length.
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At this moment, we do not have sufficient empirical evidence to be able to tell
whether a more sophisticated form of analysis will be necessary. In particular, it
may be necessary to take reuse of proofs into account. A concrete example where
this could be the case is the last case of previous section, (the one with λ1, λ2, λ3)
It seems likely that also in the case when S occurs positively in disjunctive
formulas, the replacement λ2 ⇒ λ3 would be an improvement. In order to justify
such replacements, one could argue that it is very likely (perhaps provable) that
the system will encounter situations in which λ1 alone is applicable, as well as
situations where λ2 is applicable. The effect of the simplification can be viewed
as replacing λ2 by λ2\λ1. If, whenever λ2\λ1 is applied, λ1 has already been
applied before, then the simplification has caused no loss in logical strength.
At this moment, we first need to collect some more experience with ad hoc
implemented redundancy criteria.
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