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The CompCert project [Leroy, 2009] produced a verified compiler for a large fragment of
the C programming language. The CompCert compiler is implemented in the type-theoretic
proof assistant Coq [INRIA, 2019], and is fully verified: there is a proof that the semantics of
the source program matches the semantics of the target program. However, full verification
comes with a price: the majority of the formalization is concerned not with the runnable code
of the compiler, but with properties of its components and proofs of these properties. If we are
not willing to pay the price of full verification, can we nevertheless profit from the technology
of type-theoretic proof assistants to make our compilers safer and less likely to contain bugs?

In this talk, I am presenting a compiler for a small fragment of the C language using
dependently-typed syntax [Benton et al., 2012, Allais et al., 2018]. A typical compiler is proceed-
ing in phases: parsing, type checking, code generation, and finally, object/binary file creation.
Parsing and type checking make up the front end, which may report syntax and type errors to
the user; the other phases constitute the back end that should only fail in exceptional cases.
After type checking succeeded, we have to deal only with well-typed source programs, whose
abstract syntax trees can be captured with the indexed data types of dependently-typed proof
assistants and programming languages like Agda [Agda developers, 2019], Coq, Idris [Brady,
2013], Lean [de Moura et al., 2015] etc. More concisely, we shall by dependently-typed syntax
refer to the technique of capturing well-typedness invariants of syntax trees.

Representing also typed assembly language [Morrisett et al., 1999] via dependently-typed
syntax, we can write a type-preserving compiler whose type soundness is given by construction.
In the talk, the target of compilation is a fragment of the Java Virtual Machine (JVM) enriched
by some administrative instructions that declare the types of local variables. With JVM being
a stack machine, instructions are indexed not only by the types of the local variables, but also
by the types of the stack entries before and after the instruction. However for instructions that
change the control flow, such as unconditional and conditional jumps, we need an additional
structure to ensure type safety. Jumps are safe if the jump target has the same machine typing
than the jump source. By machine typing we mean the pair of the types of the local variables
and the types of the stack entries. Consequently, each label (i. e., jump target) needs to be
assigned a machine type and can only be targeted from a program point with the same machine
type. Technically, we represent labels as machine-typed de Bruijn indices, and control-flow
instructions are indexed by a context of label types. We then distinguish two types of labels:

1. Join points, e. g., labels of statements following an if-else statement. Join points can
be represented by a let binding in the abstract JVM syntax.

2. Looping points, e. g., labels at the beginning of a while statement that allow back jumps
to iterate the loop. Those are represented by fix (recursion).

Using dependently-typed machine syntax, we ensure that well-typed jumps do not miss. As
a result, we obtain a type-preserving compiler by construction, with a good chance of full
correctness, since many compiler faults already break typing invariants. Intrinsic well-typedness
also allows us to write the compiler as a total function from well-typed source to typed assembly,
and totality can be automatically verified by the Agda type and termination checker.
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