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Abstract

We present a dependent type theory for which termination checking is entirely type-based, through
the use of sized types. Sizes are absent from terms to ensure they are irrelevant for computation and
reasoning. The novelty of our approach is the combination of first class size quantification ∀ i → T and
dependent types, justified by a predicative semantics.

Proof assistants based on dependent types, such as the very successful implementation
Coq [9], rely on a termination checker to validate proofs by induction, which are represented as
purely functional, recursive programs. The prevailing structural termination checkers have the
main drawback that they lack compositionality, i. e., one cannot abstract out arbitrary parts of
a program without leaving the termination checker clueless.

Type-based termination – suggested for functional programming [8] and dependent type
theory [6, 3] already two decades ago – inherits the compositionality of polymorphic type
systems for termination checking. Sized types allow to encode size-change behavior of functions
in their types, and this refined type signature can be used for termination checking later without
referring to the code of these functions. This way, the termination checker does not need to
inline code and break abstraction barriers, and it works well with abstract and modularized
developments. Following experiments with the prototype MiniAgda [1], the proof assistant
Agda [2] is the first practical system utilizing sized types for termination checking.

However, in the presence of dependent types, size witnesses in terms may get in the way of
equality, preventing the user from proving expected properties about their programs. Consider
the function gscale on sized natural numbers, which is a generalization of multiplication and di-
vision. For instance, gscale (subtract 1) (add 2) implements scaling by 3

2 . It can be implemented
in Agda using first-class size polymorphism for argument f . Note that ↑ is the size successor.
The function scale1, where both f and g are the identity, should behave as the identity function.

data Nat : (i : Size) → Set where
zero : ∀ i → Nat (↑ i)
suc : ∀ i (n : Nat i) → Nat (↑ i)

gscale : (∀ i → Nat i → Nat i) → (Nat ∞ → Nat ∞) → ∀ i → Nat i → Nat ∞
gscale f g .(↑ j) (zero j) = zero ∞
gscale f g .(↑ j) (suc j n) = g (suc ∞ (gscale f g j (f j n)))

scale1 = gscale (ń _ x → x) (ń x → x)

However, in a proof of scale1 i n ≡ n by induction on n we get stuck in both cases, since
the size arguments on the constructors zero and suc are not unifiable (∞ 6= j). In the following
proof skeleton, we only show the goal and its reduced form for both cases.
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scale1-id : ∀ i (n : Nat i) → scale1 i n ≡ n
scale1-id .(↑ j) (zero j) = goal (scale1 (↑ j) (zero j) ≡ zero j)

goal (zero ∞ ≡ zero j)
scale1-id .(↑ j) (suc j n) = goal (scale1 (↑ j) (suc j n) ≡ suc j n)

goal (suc ∞ (scale1 j n) ≡ suc j n)

We aspire a language where sizes are irrelevant for computation and definitional equality.
The purpose of this work is to exhibit a calculus with size annotations omitted at the term level
and only present on the type level, handling first-class quantification by subtyping.

This work consists of the definition of such a system along with a bidirectional algorithm
for type checking and an algorithmic equality directed by size-erased types. The language we
present extends Martin-Löf Type Theory by sized natural numbers, case distinction, and size-
based recursion over natural numbers. In our effort to make sizes irrelevant, size abstraction
and application is silent in terms which means there are no size arguments in terms that could
get in the way of equality. Unlike previous works on sized dependent types [5, 4, 7, 10], we
permit arbitrary rank (not only ML-style) size quantification ∀ i→ T in types.

We provide algorithms for evaluation and conversion checking. The use of sized-erased terms
in algorithmic equality allows it to be syntax-directed for inferable terms.

We introduce a logical relation indexed by environments of ordinals to deduce normalization
and subject reduction and eventually soundness of conversion checking. We then continue to
prove its completeness and termination. Finally, we are able to derive a bidirectional type
checker, assuming we have an algorithm to guess sizes verifying linear constraints.
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